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Machine learning (supervised)

Data on its own is typically useless, it is only when we can extract

knowledge from the data that it becomes useful.

Learning a model from labelled data.

Labels e.g. mat,

mirror, boat

Training data

Model
Learning
algorithmprediction

update model
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Machine learning (supervised)

Using the learned model on new previously unseen data.

?

Unseen data

Model
prediction

The model must generalize to new unseen data.

Unsupervised, reinforcement and semi-supervised learning.
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Machine Learning – the four cornerstones

1. Data Typically we need lots of it.

2. Mathematical model A compact representation of the data that in

a precise mathematical form captures the key properties.

3. Learning algorithm Used to compute the unknown variables from

the observed data using the model.

4. Decision/Control Use the understanding of the current situation to

steer it into a desired state.
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Key lesson from contemporary Machine Learning

Flexible models often give the best predictive performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use more parameters as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R. Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.

Be careful as flexible models can be deceptive!
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Mindset – classical approach via motion estimation

Aim: Compute the position and orientation of the different body

segments of a person moving around indoors (motion capture).

Available sensors:

1. Accelerometers

2. Gyroscopes

3. Magnetometers (not used)

4. ultra-wideband

Pose estimation using inertial sensors Manon Kok 15 / 34

Inertial motion capture

Estimate the relative position and
orientation of body segments.

Possibly also estimate the body’s
absolute position.

17 sensors placed on the body
Figures courtesy of Xsens Technologies

Show movie!
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Mindset – Machine learning (deep probabilistic regression)

Aim: Estimate a bounding box of a target object in every frame of a

video. The target object is defined by a given box in the first video frame.

Key difference to classical approach: The model is not derived based

on our ability to mathematically explain what we see in the image.

Instead, a generic model is automatically learned based on data.

Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat, TS. Energy-based models for deep probabilistic regression. In Proceedings of the

European Conference on Computer Vision (ECCV), Online, August, 2020.
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Mindset – Machine learning (deep probabilistic regression)

Aim: Detect objects from sensor

data (here laser), estimate their size

and position in the 3D world.

Key perception task for self-driving

vehicles and autonomous robots.

New probabilistic regression formulation based on deep neural networks.

The combination of probabilistic models and deep neural networks is

very exciting and promising.

Fredrik K. Gustafsson, Martin Danelljan, and TS. Accurate 3D object detection using energy-based models. Submitted, October, 2020.
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Aim and outline

Aim: Motivate (using three/four concrete examples) the use of ML as

a tool in research.

Outline:

1. Introduction

2. Gentle deep learning background

3. Three concrete examples

a. Medicine – human-level ECG diagnosis

b. Physics – magnetic fields

c. Physics – CT reconstruction

d. Physics – Strain reconstruction (if there is time)

Note: Trying to convey the organic research journey our team has made

over the past three years motivating the case for AI4Research.
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Deep learning – what is it?

The mathematical model has been around for 70 years, but over the past

decade there has been a revolution. Key reasons:

1. Very large datasets

2. Better and faster computers

3. Enormous industrial interest (e.g. Google, Facebook, MS)

4. Some methodological breakthroughs

Underlying idea: when representing a function, a deep, hierarchical

model can be exponentially more efficient than a shallow model.

The functional representation has multiple layers of abstraction,

commonly containing millions of parameters.

The parameter values are automatically determined based on a large

amount of training data.
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Constructing a neural network for regression

A neural network (NN) is a hierarchical nonlinear function y = gθ(x)

from an input variable x to an output variable y parameterized by θ.

Linear regression models the relationship between a continuous output

variable y and an input variable x ,

y =
n∑

i=1

θixi + θ0 + ε = θTx + ε,

where θ is the parameters composed by the “weights” θi and the offset

(“bias”) term θ0,

θ =
(
θ0 θ1 θ2 · · · θn

)T
,

x =
(

1 x1 x2 · · · xn

)T
.
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Generalized linear regression and NNs

We can generalize this by introducing nonlinear transformations of the

predictor θTx ,

y = f (θTx).

We can think of the neural network as a sequential construction of

several generalized linear regressions.
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Medicine – ECG diagnosis

Aim: Predict abnormalities based

on a short-duration 12-lead

electrocardiogram (ECG) recording.

Current situation: The automated

diagnosis that is currently available

is not good enough.

?

Unseen data

Model
prediction

Background: Joint work with cardiologists and ML engineers from

Brazil with an urgent need for automated analysis due to the vast

distances between the patient and a cardiologist with full expertise in

ECG diagnosis.

The existing telehealth network provides the data (more than 2 300 000

ECGs), implying some clinical relevance.
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Medicine – Automatic human-level ECG diagnosis

ECG data

Input, x

Computer program

Model

y ∈


atrial fibrillation

sinus tachycardia

1st degree AV block

. . .

Prediction

We are now reaching human level (medical doctor) performance on

certain specific tasks.

Key difference to classical approach: The model is not derived based

on our ability to mathematically explain what we see in an ECG.

Instead, a generic model is automatically learned based on data.

Antonio H. Ribeiro, Manoel H. Ribeiro, Gabriela M.M. Paixao, Derick M. Oliveira, Paulo R. Gomes, Jessica A. Canazart, Milton P. S.

Ferreira, Carl R. Andersson, Peter W. Macfarlane, Wagner Meira Jr., TS, Antonio Luiz P. Ribeiro. Automatic diagnosis of the 12-lead

ECG using a deep neural network. Nature Communications, 11(1760), 2020. 13/31



Physics – Ambient magnetic field map

The Earth’s magnetic field sets a

background for the ambient

magnetic field. Deviations make the

field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NeurIPS), Long Beach, CA, USA, December, 2017.
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Blending prior knowledge and data

Recall the two mindsets: While we can do a lot with our data and flexible

black-box models, we have already understood a lot about nature.

Obvious idea: What if we could combine the two?!

Meaning that we start from small (rigid) models describing the phenomenon we

are studying and augment them with flexible models driven by data.

Personal opinion: I believe that there are (massive) gains to be made in

the simple combination of flexible data-driven models and solid widely

available knowledge that we already have.
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Vision

Create flexible model building blocks containing the basic knowledge

we have about the phenomenon we are studying.

I stress the fact that the model should be flexible enough to allow for

new knowledge to be gained.

The data complements our existing basic knowledge and adapts it to the

specific situation we are studying.

Has the potential to also allow us to learn new basic knowledge.

Reflection: Quite obvious really, but surprisingly little has been done,

but the idea is gaining traction.

I foresee such building blocks containing basic knowledge about physics,

medicine, chemistry, biology, etc. 16/31



Blending prior knowledge and data

Resulting technical challenge: How can we use known structures and

domain knowledge to design priors?

p(x | y) =
p(y | x)p(x)

p(y)

Once we have designed such a prior it will effectively restrict the

flexibility in a goal-oriented fashion.

Question: What is the right blend of such priors and data?
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Starting somewhere – linear functional constraints

Fact: Linear functional constraints and measurements are useful

in describing nature and simple to work with.

Very specific examples:

1. The magnetic field H is curl-free (recall example from before)

∇× H = 0.

2. Measurements are expressed as line integrals of the target function

• X-ray computed tomography (CT)

• Strain field reconstruction from neutron diffraction experiments

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NeurIPS), Long Beach, CA, USA, December, 2017.

Johannes Hendriks, Carl Jidling, Adrian Wills, TS. Linearly constrained neural networks. arXiv:2002.01600, March, 2020.
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2 16 13 3

11 5 8 10

7 9 12 6

14 4 1 15

4 9 2

3 5 7

8 1 6
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Computed tomography (CT)

Tomographic reconstruction: Recover the internal structure

f (x), x = [x y ]T

of an object from irradiation experiments.

Line integral measurements

y =

∫ R

−R
f (x0 + sn̂)ds + ε, ε ∼ N (0, σ2)

Limited data (sparse projections) important.
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Linear functional measurements in GPs (more general)

Model the target function f (x) as a GP

f (x) ∼ GP(0, k(x , x ′))

Fact: a GP is closed under linear transformations:

Lf (x) ∼ GP(0,LL′k(x , x ′))

where for us (in the CT case)

Lf (x) =

∫ r

−r
f (x0 + sn̂)ds,

Our CT and strain field reconstruction examples have measurements:

y =

∫ r

−r
f (x0 + sn̂)ds + ε, ε ∼ N (0,Q)

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 21/31



Ex. CT – carved cheese experiment

Ground truth FBP GP

Question: Why is the GP solution so blurry?

All details on this construction are available in
Zenith Purisha, Carl Jidling, Niklas Wahlström, TS and Simo Särkkä. Probabilistic approach to limited-data computed tomography

reconstruction, Inverse Problems, 35(10):105004, 2019.
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Extending the expressiveness to non-stationary behaviors

The covariance function k(x , x ′), stipulates the basic behavior of the

target function f (x).

The selection of k(x , x ′) is the most crucial part of GP modelling.

Extend the expressiveness of stationary covariance functions by

transforming the inputs through a nonlinear mapping u(·) to form

k(u(x), u(x ′)), effectively opening up for non-stationary behaviors.

Question: Which mapping should we use?

Let’s try a deep neural network...

Roberto Calandra, Jan Peters, Carl E. Rasmussen, and Marc P. Deisenroth. Manifold Gaussian processes for regression. In Proceedings

of the International Joint Conference on Neural Networks (IJCNN), 2016.

Andrew G.Wilson, Zhiting Hu, Ruslan R. Salakhutdinov, and Eric P. Xing. Deep kernel learning. In Advances in Neural Information

Processing Systems (NIPS), 2016.
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One useful way of combining deep learning with GPs

Intuition: The neural network does not have to learn the complete

function f (x), but only identify its discontinuities while for the remaining

part the model can rely upon the regression capabilities of the GP.
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Ex. – illustrating the idea

k(x , x ′) = σ2
f e
− 1

2l2
(x−x′)2 k(x , x ′) = σ2

f e
− 1

2l2
(u(x)−u(x′))2
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Using the idea together with integral measurements

Ground truth FBP GP GP + DL

GP + DL: Deep learning to use the input mapping together with our

taylored GP prior encoding our understanding of the underlying physics.

Recall our vision: Create flexible model building blocks containing the

basic knowledge we have about the phenomenon we are studying.
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Physics – strain field reconstruction

Tomographic reconstruction: Recover the internal structure of an

object from irradiation experiments.

Deformed object

Reconstruct the strain tensor

ε(x) =

εxx(x) εxy (x)

εxy (x) εyy (x)
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Strain field reconstruction – experimental results

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and

reconstruction of strain. Nuclear instruments and methods in physics research: section B, 436:141-155, 2018.
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AI4Research – new university-wide AI project

At Uppsala University we will develop and make use of

AI/ML for research.

A time-limited five year effort

consisting of an antidisciplinary entity

from the entire university.

Located in newly refurbished premises

at our main library Carolina Rediviva.

Key mechanism: Internal AI sabbatical periods

• Funded 50% by the entity and the rest by the department where the

fellow remains employed/external grants.

• Duration: around 12 months.

• The fellows brings along 1-2 of their PhD students/post-docs.
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AI4Research – new university-wide AI project

Read about the research from the project website

www.uu.se/forskning/ai4research

New positions for 2022 opens soon! 30/31
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Conclusion

While ML techniques are used more and more in industry, scientists

are—for good reasons—becoming aware of the potential in

using ML in fundamental research.

The best predictive performance is currently obtained from

highly flexible learning systems.

Showed three (or four) concrete examples motivating AI4Research.

Remember to talk to people who work on different problems with

different tools!! (Visit other fields!)
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