
Sequential Monte Carlo and

deep regression

Thomas Schön

Uppsala University

Sweden

Australian Centre for Field Robotics, The University of Sydney

Sydney, Australia, November 26, 2019.

Application – indoor localization using the magnetic field (I/II)

Aim: Compute the position using variations in the ambient magnetic

field and the motion of the person (acceleration and angular velocities).

All of this observed using sensors in a standard smartphone.

Fig. 1: Principle of magnetic terrain navigation. Here a pre-generated magnetic map is overlaid on top of a picture of the space.
The map depicts a vector field with both a direction (the arrows indicate the direction based on the x and y components)
and magnitude (warm colours indicate stronger values, cool colours weaker). During positioning, the vector valued (three-
component) measurement track obtained by the smartphone magnetometer is matched to the magnetic landscape.

II. METHODS

An illustration of the general concept of magnetic terrain
navigation is shown in Figure 1. The magnetic terrain naviga-
tion setup in this paper boils down to three distinctive parts:

• The positioning is overseen by a particle filter, which is a
sequential Monte Carlo approach for proposing different
state histories and finding which one matches the data the
best.

• The magnetic terrain which the observations are matched
against. The map is constructed by a Gaussian process
model which is able to return a magnetic field estimate
and its variance for any spatial location in the building.

• A model for the movement of the person being tracked,
often referred to as a pedestrian dead reckoning model.

The following sections will explain these components of the
map matching algorithm in detail.

A. Particle filtering

Particle filtering [12, 22, 23] is a general methodology for
probabilistic statistical inference (i.e., Bayesian filtering and
smoothing) on state space models of the form

xk+1 ∼ p(xk+1 | xk),

yk ∼ p(yk | xk),
(1)

where p(xk+1 | xk) defines a vector-Markov model for the
dynamics of the state xk ∈ Rdx , and p(yk | xk) defines
the model for the measurements yk ∈ Rdy in the form of
conditional distribution of the measurements given the state.
For example, in (magnetic) terrain navigation, the dynamic
model tells how the target moves according to a (pedestrian)
dead reckoning and the (Markovian) randomness is used
for modeling the errors and uncertainty in the dynamics.
In conventional terrain navigation, the measurement model
tells what distribution of height we would measure at each
position, and in magnetic terrain navigation it tells what is the
distribution of magnetic field measurements we could observe
at a given position and orientation.

A particle filter aims at computing the (Bayesian) filtering
distribution, which refers to the conditional distribution of the
current state vector given the observations up to the current
time step p(xk | y1:k). Particle filtering uses a weighted
Monte Carlo approximation of n particles to approximate this
distribution. The approximation has the form

p(xk | y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k), (2)

where δ(·) stands for the Dirac delta distribution and w
(i)
k

are non-negative weights such that
∑

i w
(i)
k = 1. Under this

First we need a map, which we build using a tailored Gaussian process.

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 1/27

www.youtube.com/watch?v=enlMiUqPVJo

Application – indoor localization using the magnetic field (II/II)

Show movie!

Arno Solin, Simo Särkkä, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor

positioning. In Proceedings of the European Navigation Conference, Helsinki, Finland, June, 2016.
2/27

Aim and outline

Aim: To provide intuition for the key mechanisms underlying sequential

Monte Carlo (SMC), hint at a few ways in which SMC fits into the

machine learning toolbox and show a new approach to deep regression.

Outline:

1. Introductory example

2. SMC for dynamical systems

3. SMC is a general method

4. Deep probabilistic regression

3/27

Representing a nonlinear dynamical systems

The state space model is a Markov chain that makes use of a latent

variable representation to describe dynamical phenomena.

Consists of the unobserved (state) process {xt}t≥0 modelling the

dynamics and the observed process {yt}t≥1 modelling the relationship

between the measurements and the unobserved state process:

xt = f (xt−1, θ) + vt ,

yt = g(xt , θ) + et .

x0 x1 . . . xT

y1 yT

θ

4/27

Representations using distributions and programmatic models

Representation using probability distributions

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ).

Representation using a programmatic model

x[1] ∼ Gaussian(0.0, 1.0); p(x1)

y[1] ∼ Gaussian(x[1], 1.0); p(y1 | x1)

for (t in 2..T) {
x[t] ∼ Gaussian(a*x[t - 1], 1.0); p(xt | xt−1)

y[t] ∼ Gaussian(x[t], 1.0); p(yt | xt)
}

A probabilistic program encodes a probabilistic model using a

particular probabilistic programming language (here Birch).
Lawrence Murray and TS. Automated learning with a probabilistic programming language: Birch. Annual Reviews in Control, 46:29–43,

2018.
5/27

State space model – full probabilistic model

The full probabilistic model is given by

p(x0:T , θ, y1:T) =
T∏

t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

likelihood p(y1:T | x0:T ,θ)

T∏

t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior p(x0:T ,θ)

The nonlinear filtering problem involves the measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
p(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =

∫
p(xt | xt−1)︸ ︷︷ ︸

dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.

6/27

Sequential Monte Carlo (SMC)

The need for approximate methods (such as SMC) is tightly coupled to

the intractability of the integrals above.

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

The particle filter approximates p(xt | y1:t) for

xt = f (xt−1) + vt ,

yt = g(xt) + et ,

by maintaining an empirical distribution made up of N samples

(particles) {x it}Ni=1 and the corresponding weights {w i
t}Ni=1

p̂(xt | y1:t)︸ ︷︷ ︸
π̂(xt)

=
N∑

i=1

w i
t∑N

l=1 w
l
t

δx i
t
(xt).

7/27

SMC – in words

1. Propagation: Sample a new successor state and append it to the

earlier.

2. Weighting: The weights corrects for the discrepancy between the

proposal distribution and the target distribution.

3. Resampling: Focus the computation on the promising parts of the

state space by randomly pruning particles, while still preserving the

asymptotic guarantees of importance sampling.

8/27

Resampling Propagation Weighting Resampling Propagation

Sequential Monte Carlo (SMC) – abstract

The distribution of interest π(x) is called the target distribution.

(Abstract) problem formulation: Sample from a sequence of prob-

ability distributions {πt(x0:t)}t≥1 defined on a sequence of spaces of

increasing dimension, where

πt(x0:t) =
π̃t(x0:t)

Zt
,

such that π̃t(xt) : X t → R+ is known point-wise and Zt =
∫
π(x0:t)dx0:t

is often computationally challenging.

SMC methods are a class of sampling-based algorithms capable of:

1. Approximating π(x) and compute integrals
∫
ϕ(x)π(x)dx .

2. Approximating the normalizing constant Z (unbiased).

Important question: How general is this formulation?
9/27

SMC is actually more general than we first thought

The sequence of target distributions {πt(x1:t)}nt=1 can be constructed in

many different ways.

The most basic construction arises from chain-structured graphs, such

as the state space model.

x0 x1 x2

. . .

xT

y1 y2 yT

πt(x1:t)︷ ︸︸ ︷
p(x1:t | y1:t) =

π̃t(x1:t)︷ ︸︸ ︷
p(x1:t , y1:t)

p(y1:t)︸ ︷︷ ︸
Zt

πt(x1:t) = p(x1:t | y1:t),

Zt =

∫
π(x1:t)dx1:t = p(y1:t).

π̃t(x1:t) = p(x1:t , y1:t),

10/27

SMC can be used for general graphical models

SMC methods are used to approximate a sequence of probability

distributions on a sequence of spaces of increasing dimension.

Key idea:

1. Introduce a sequential decomposition of any probabilistic

graphical model.

2. Each subgraph induces an intermediate target dist.

3. Apply SMC to the sequence of intermediate target dist.

SMC also provides an unbiased estimate of the normalization constant!

Christian A. Naesseth, Fredrik Lindsten and TS. Sequential Monte Carlo methods for graphical models. In Advances in Neural

Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

11/27

Going from classical SMC fo D&C-SMC

The computational graph of classic SMC is a sequence (chain)

0

π1

1

π2

2

πn

nIteration:

D&C-SMC generalize the classical SMC

framework from sequences to trees.

πc1 πcC

.

πt
. . .

πr

Figure 2: Computational flow of D&C-SMC. Each node corresponds to a target distribution {πt : t ∈ T} and,
thus, to a call to D&C-SMC (Algorithm 2). The arrows illustrate the computational flow of the algorithm
via its recursive dependencies.

the execution flow of the algorithm, and the sequence of distributions organized on the chain
does not necessarily correspond to a chain-structured PGM.

In a similar way, D&C-SMC operates on a tree of distributions, which need not correspond
to a tree-structured PGM. Specifically, as in Section 2.3, assume that we have a collection
of (auxiliary) distributions, {πt : t ∈ T}. However, instead of taking the index set T to be
nodes in a sequence, T = {1, 2, . . . , n}, we generalize T to be nodes in a tree. For all t ∈ T ,
let C(t) ⊂ T denote the children of node t, with C(t) = ∅ if t is a leaf, and let r ∈ T denote
the root of the tree. We assume πt to have a density, also denoted by πt, defined on a set
Xt. We call such a collection a tree structured auxiliary distributions a tree decomposition
of the target distribution π (introduced in Section 2.1) if it has two properties. First, the
root distribution is required to coincide with the target distribution, πr = π. The second
is a consistency condition: we require that the spaces on which the node distributions are
defined are constructed recursively as

Xt =
(
⊗c∈C(t)Xc

)
× X̃t (5)

where the “incremental” set X̃t can be chosen arbitrarily (in particular, X̃t = ∅ for all t in
some proper subset of the nodes in T is a valid choice). Note that the second condition
mirrors the product space condition (1). That is, the distributions {πt : t ∈ T} are defined
on spaces of increasing dimensions as we move towards the root from the leaves of the tree.

Figure 2 illustrates the execution flow of the D&C-SMC algorithm (which is detailed in
the subsequent section), which performs inference for the distributions {πt : t ∈ T} from
leaves to root in the tree. As pointed out above, the computational tree T does not necessarily
correspond to a tree-structured PGM. Nevertheless, when the PGM of interest is in fact a
tree, the computational flow of the algorithm can be easily related to the structure of the
model (just as the computational flow of standard SMC is easily understood when the PGM
is a chain, although the SMC framework is in fact more general). Let us therefore consider
an example of how the target distributions {πt : t ∈ T} can be constructed in such a case,
to provide some intuition for the proposed inference strategy before getting into the details
of the algorithm.

Example (Hierarchical models). Consider the simple tree-structured Bayesian network of
Figure 3 (rightmost panel), with three observations y1:3, and five latent variables x̃1:5. The
distribution of interest is the posterior p(x̃1:5 | y1:3). To put this in the notation introduced
above, we define x5 = x̃1:5 and π(x5) = π5(x5) = p(x̃1:5 | y1:3). To obtain a tree decomposition

8

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, TS, John Aston and Alexandre Bouchard-Côté.

Divide-and-Conquer with Sequential Monte Carlo. Journal of Computational and Graphical Statistics (JCGS), 26(2):445-458, 2017.

12/27

Approximate Bayesian inference – blending

Deterministic methods

Message passing

f

x

Laplace’s method

Variational inf.

q?

π

q0

]

Monte Carlo methods

Markov chain Monte Carlo

θ
1
 (

φ
)

θ2 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
1
 (

φ
)

θ2 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
1
 (

φ
)

θ2 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
3
 (

φ
)

10×θ4 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
3
 (

φ
)

10×θ4 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
3
 (

φ
)

10×θ4 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
3
 (

φ
)

10×θ4 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
3
 (

φ
)

10×θ4 (σv)

0
.0

0
.2

0
.4

0
.6

0.81.21.62.0

θ
3
 (

φ
)

10×θ4 (σv)

F
ig

u
re

3:
T

h
e

tr
ac

e
p
lo

ts
of

th
e

fi
rs

t
50

st
ep

s
u
si

n
g

P
M

H
0

(b
la

ck
),

P
M

H
1

(r
ed

)
an

d
P

M
H

2
(b

lu
e)

.
T

h
e

d
ot

te
d

li
n
es

sh
ow

th
e
tr
u
e

p
ar

am
et

er
s

of
th

e
L

G
S
S

m
o
d
el

.
T

h
e

g
ra

y
co

n
to

u
rs

sh
ow

th
e

lo
g-

p
os

te
ri

or
.

Sequential Monte Carlo

13/27

VSMC

VMCMC
· · ·

Blending deterministic and Monte Carlo methods

Deterministic methods:

Good: Accurate and rapid inference

Bad: Results in biases that are hard to quantify

Monte Carlo methods:

Good: Asymptotic consistency, lots of theory available

Bad: Can suffer from a high computational cost

Examples of freedom in the SMC algorithm that opens up for blending:

The proposal distributions can be defined in many ways.

The intermediate target distributions can be defined in many ways.

Leads to very interesting and useful algorithms, many of them still

remain to be discovered and explored.
14/27

Deep probabilistic regression

Background: regression using deep neural networks

Supervised regression: learn to predict a continuous output (target)

value y? ∈ Y = RK from a corresponding input x? ∈ X , given a

training set D of i.i.d. input-output data

D = {(xn, yn)}Nn=1, (xn, yn) ∼ p(x , y).

Deep neural network (DNN): a function fθ : X → Y, parameterized

by θ ∈ RP , that maps an input x ∈ X to an output fθ(x) ∈ Y.

15/27

Our ongoing work on deep regression

Deep learning for classification is handled using standard losses and

output representations.

This is not the case when it comes to regression.

Train a model p(y | x ; θ) of the conditional target density using a DNN to

predict the un-normalized density directly from input-output pair (x , y).

16/27

Four existing approaches: 1. Direct regression

Train a DNN fθ : X → Y to directly predict the target y? = fθ(x?).

Learn the parameters θ by minimizing a loss function `(fθ(xn), yn),

penalizing discrepancy between prediction fθ(xn) and ground truth yn

J(θ) =
1

N

N∑

n=1

`(fθ(xn), yn), θ = argmin
θ′

J(θ′).

Common choices for ` are the L2 loss, `(ŷ , y) = ‖ŷ − y‖2
2, and the L1 loss.

Minimizing J(θ) then corresponds to minimizing the negative log-

likelihood
∑N

n=1− log p(yn | xn; θ), for a specific model p(y | x ; θ) of the

conditional target density.

Ex: The L2 loss corresponds to a fixed-variance Gaussian model:

p(y | x ; θ) = N (y ; fθ(x), σ2).
17/27

Four existing approaches: 2. Probabilistic regression

Why not explicitly employ this probabilistic perspective and try to create

more flexible models p(y | x ; θ) of the conditional target density p(y | x)?

Probabilistic regression: train a DNN fθ : X → Y to predict the

parameters φ of a certain family of probability distributions p(y ;φ), then

model p(y | x) with

p(y | x ; θ) = p(y ;φ(x)), φ(x) = fθ(x).

The parameters θ are learned by minimizing
∑N

n=1− log p(yn | xn; θ).

Ex: A general 1D Gaussian model can be realized as:

p(y | x ; θ) = N
(
y ;µθ(x), σ2

θ(x)
)
, fθ(x) =

(
µθ(x) log σ2

θ(x)
)T

∈ R2.

18/27

Four existing approaches: 3. Confidence-based regression

The quest for improved regression accuracy has also led to the

development of more specialized methods.

Confidence-based regression: train a DNN fθ : X ×Y → R to predict

a scalar confidence value fθ(x , y), and maximize this quantity over y to

predict the target

y? = argmax
y

fθ(x?, y)

The parameters θ are learned by generating pseudo ground truth

confidence values c(xn, yn, y), and minimizing a loss function

`
(
fθ(xn, y), c(xn, yn, y)

)
.

19/27

Four existing approaches: 4. Regression-by-classification

Discretize the output space Y into a finite set of C classes and use

standard classification techniques...

20/27

High-level description of our idea

Confidence-based regression give impressive results, but:

1. they require important (and tricky) task-dependent design choices

(e.g. how to generate the pseudo ground truth labels)

2. and usually lack a clear probabilistic interpretation.

Probabilistic regression is straightforward and generally applicable, but:

1. it can usually not compete in terms of regression accuracy.

Our construction combines the benefits of these two approaches while

removing the problems above.

21/27

Our (simple and very general) construction

A general regression method with a clear probabilistic interpretation in

the sense that we learn a model p(y | x , θ) without requiring p(y | x , θ)

to belong to a particular family of distributions.

Let the DNN be a function fθ : X × Y → R that maps an input-output

pair {xn, yn} to a scalar value fθ(xn, yn) ∈ R.

Define the resulting (flexible) probabilistic model as

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,y)dy

22/27

Learning flexible deep conditional target densities

1D toy illustration showing that we can learn multi-modal and

asymmetric distributions, i.e. our model is flexible.

We train by maximizing the log-likelihood:

max
θ

N∑

n=1

log p(yn | xn, θ) = max
θ

N∑

n=1

− log

(∫
efθ(xn,y)dy

)

︸ ︷︷ ︸
Z(xn,θ)

+fθ(xn, yn)

Challenge: Requires the normalization constant to be evaluated...

Solution: Monte Carlo! (via a simple importance sampling construction) 23/27

Training the model

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,y)dy

The parameters θ are learned by minimizing
∑N

n=1− log p(yn | xn; θ).

Use importance sampling to evaluate Z (x , θ):

− log p(yn | xn; θ) = log

(∫
efθ(xn,y)dy

)
− fθ(xn, yn)

= log

(∫
efθ(xn,y)

q(y)
q(y)dy

)
− fθ(xn, yn)

≈ log

(
1

M

M∑

k=1

efθ(xn,y
(k))

q(y (k))

)
− fθ(xn, yn), y (k) ∼ q(y).

Use a Gaussian mixture as proposal.

24/27

Prediction at test time

Train a DNN fθ : X ×Y → R to predict fθ(x , y) and model p(y | x) with

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,y)dy .

The parameters θ are learned by minimizing
∑N

n=1− log p(yn | xn; θ).

Given a test input x?, we predict the target y? by maximizing p(y | x?; θ)

y? = argmax
y

p(y | x?; θ) = argmax
y

fθ(x?, y).

By designing the DNN fθ to be differentiable w.r.t. targets y , the gradient

∇y fθ(x?, y) can be efficiently evaluated using auto-differentiation.

Use gradient ascent to find a local maximum of fθ(x?, y), starting from

an initial estimate ŷ .

25/27

Experiments

Good results on four different computer vision (regression) problems:

1. Object detection, 2. Age estimation, 3. Head-pose estimation and

4. Visual tracking.

Task (visual tracking): Estimate a bounding box of a target object in

every frame of a video. The target object is defined by a given box in the

first video frame.

Show Movie!

Fredrik K. Gustafsson, Martin Danelljan, Goutam Bhat and TS. Learning deep conditional target densities for accurate regression.

Submitted, November, 2019. 26/27

Conclusion

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

• SMC is more general than we first though.

• SMC can indeed be computationally challenging, but it comes

with rather well-developed analysis and guarantees.

• There is still a lot of freedom waiting to be exploited.

• Constructed a practical deep flexible model for regression

Forthcoming SMC introduction written with an ML audience in mind
Christian A. Naesseth, Fredrik Lindsten, and TS. Elements of sequential Monte Carlo. Foundations and Trends in Machine Learning,

2019.

27/27

Backup slides

Recent developments working with the trend of blending

Develop new approximating families of distributions.
Naesseth, C. A., Linderman, S. W., Ranganath, R. and Blei, D. M. Variational Sequential Monte Carlo. Proceedings of the 21st

International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.

Maddison, C. J., Lawson, D., Tucker, G., Heess, N., Norouzi, M., Mnih, A., Doucet, A. and Teh, Y. W. Filtering variational objectives. In

Advances in Neural Information Processing Systems (NIPS), 2017.

Le, T. A., Igl, M., Rainforth, T., Jin, T. and Wood, F. Auto-encoding sequential Monte Carlo. In International Conference on Learning

Representations (ICLR), 2018.

Alter the intermediate targets to take ”future variables“ into account.

Results in ”additional intractability“ – use deterministic methods.

Alternative interpretation: Use SMC as a post-correction for the bias

introduced by the deterministic methods.
Lindsten, F., Helske, J. and Vihola, M. Graphical model inference: Sequential Monte Carlo meets deterministic approximations. In

Advances in Neural Information Processing Systems (NeurIPS), 2018.

”The combination of the two ideas mentioned above“.
Lawson, D., Tucker, G., Naesseth, C. A., Maddison, C. J., Adams, R. P., and Teh, Y. W. Twisted Variational Sequential Monte Carlo.

Bayesian Deep Learning (NeurIPS Workshop), 2018.

	Deep probabilistic regression
	Appendix
	Backup slides

