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“Machine learning gives computers the ability to learn without

being explicitly programmed for the task at hand.”



Machine Learning – the four cornerstones

Cornerstone 1 (Data) Typically we need lots of it.

Cornerstone 2 (Mathematical model) A mathematical model is a com-

pact representation of the data that in precise mathematical form cap-

tures the key properties of the underlying situation.

Cornerstone 3 (Learning algorithm) Used to compute the unknown

variables from the observed data using the model.

Cornerstone 4 (Decision/Control) Use the understanding of the current

situation to steer it into a desired state.
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Ex – Automatic ECG classification

ECG data

Input, x

Computer program

Model

y ∈


atrial fibrillation

sinus tachycardia

1st degree AV block

. . .

Prediction

We are now reaching human level (medical doctor) performance on

certain specific tasks.

Key difference to ”classical engineering”: The model is not derived

based on our ability to mathematically explain what we see in an ECG.

Instead, a generic model is automatically learned based on data.

Ribeiro, A. H., Ribeiro, M. H., Paixao, G. M. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., Ferreira, M. P. S., Andersson, C. R.,

Macfarlane, P. W., Meira, W., TS and Ribeiro, A. L. P. Automatic diagnosis of the short-duration 12-lead ECG using a deep neural

network: the CODE study, arXiv:1904.01949, 2019.
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Ex (Machine Learning) – Ambient magnetic field map

The Earth’s magnetic field sets a background for the ambient magnetic

field. Deviations make the field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

www.youtube.com/watch?v=enlMiUqPVJo

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NeurIPS), Long Beach, CA, USA, December, 2017.

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.
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Probabilistic modelling – representation of beliefs (uncertainty)

For a machine to behave intelligently I believe it needs the

capability to represent and manipulate beliefs/uncertainty

about the real world.

As the machine perceives the world via its sensors it must then update its

beliefs in light of the new information.

The mathematics of probability theory is well developed and

1. it allows us to not only represent uncertainty,

2. but it also prescribes how to manipulate it based on the information

in new measurements.
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Probabilistic modelling – representation of beliefs (uncertainty)

A very important fact is that inverse probability (i.e. Bayes rule)

p(x | y) =
p(y | x)p(x)

p(y)

allows us to infer unknown variables (x), adapt our models, make

predictions and learn from data (y).

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Key lesson from contemporary Machine Learning

Flexible models often give the best performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use ”more parameters” as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Blending prior knowledge and data

While we can do a lot with our data and flexible black-box models, we

have already understood a lot about nature.

What if we could combine the two?!

Meaning that we start from small (rigid) models describing the phenomenon we

are studying and augment them with flexible models driven by data.

Personal opinion: I believe that there are (massive) gains to be made in

the (simple) combination of flexible data-driven models and solid widely

available knowledge that we already have.

Aim of this talk: Try to provide some concrete evidence for my

opinion (and to mention the GP).

7/20



The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.
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GP regression – illustration
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Starting somewhere – more concrete from hereon

Fact: Linear functional constraints and measurements are useful

in describing nature and simple to work with.

Very specific examples:

1. The magnetic field H is curl-free (recall example from before)

∇× H = 0.

2. Measurements are expressed as line integrals of the target function

• X-ray computed tomography (CT)

• Strain field reconstruction from neutron diffraction experiments
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Computed tomography (CT)

Tomographic reconstruction: Recover the internal structure

f (x), x = [x y ]T

of an object from irradiation experiments.

Line integral measurements

y =

∫ R

−R
f (x0 + sn̂)ds + ε, ε ∼ N (0, σ2)

Limited data (sparse projections) important.
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Linear functional measurements in GPs (more general)

Model the target function f (x) as a GP

f (x) ∼ GP(0, k(x, x′))

Fact: a GP is closed under linear transformations:

Lf (x) ∼ GP(0,LL′k(x, x′))

where for us (in the CT case)

Lf (x) =

∫ r

−r
f (x0 + sn̂)ds,

Our CT and strain field reconstruction examples have measurements:

y =

∫ r

−r
f (x0 + sn̂)ds + ε, ε ∼ N (0,Q)

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 13/20



Ex. CT – carved cheese experiment

Ground truth FBP GP

Question: Why is the GP solution so blurry?

All details on this construction are available in
Zenith Purisha, Carl Jidling, Niklas Wahlström, Simo Särkkä, TS. Probabilistic approach to limited-data computed tomography

reconstruction, Inverse problems, 2019.
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Extending the expressiveness to non-stationary behaviors

The covariance function k(x, x′), stipulates the basic behavior of the

target function f (x).

The selection of k(x, x′) is the most crucial part of GP modelling.

Extend the expressiveness of stationary covariance functions by

transforming the inputs through a nonlinear mapping u(·) to form

k(u(x), u(x′)), effectively opening up for non-stationary behaviors.

Question: Which mapping should we use?

Let’s try a deep neural network...

Andrew G.Wilson, Zhiting Hu, Ruslan R. Salakhutdinov, and Eric P. Xing. Deep kernel learning. In Advances in Neural Information

Processing Systems (NIPS), 2016.

Roberto Calandra, Jan Peters, Carl E. Rasmussen, and Marc P. Deisenroth. Manifold Gaussian processes for regression. In Proceedings

of the International Joint Conference on Neural Networks (IJCNN), 2016.
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One useful way of combining deep learning with GPs

Intuition: The neural network does not have to learn the complete

function f (x), but only identify its discontinuities while for the remaining

part the model can rely upon the regression capabilities of the GP.

16/20



Ex. – illustrating the idea

k(x , x ′) = σ2
f e
− 1

2l2
(x−x′)2 k(x , x ′) = σ2

f e
− 1

2l2
(u(x)−u(x′))2
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Using the idea together with integral measurements

Ground truth FBP GP GP + DL

GP + DL: Deep learning to use the input mapping together with our

taylored GP prior encoding our understanding of the underlying physics.

Vision: Create flexible model building blocks containing the basic

knowledge we have about the phenomenon we are studying.
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AI4theSciences – University-wide rapidly moving entity

At Uppsala University we will develop and make use of

AI/ML for the sciences.

A time-limited five year effort consisting of an

antidisciplinary entity from the entire university.

Key mechanism: Internal AI sabbatical periods

• Probably funded 50% by the entity and the rest by the department

where the fellow remains employed/external grants.

• Duration: around 12 months.

• The fellows are expected to bring along one or several of their PhD

students/post-docs to develop the ideas formed within the entity.

• Opens up for many of the positive aspects of doing a sabbatical.
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Conclusion

The combined use of data-driven flexible models and existing

knowledge can be quite rewarding.

The best predictive performance is currently obtained from

highly flexible learning systems.

We mainly used one flexible model class: Gaussian process (GP)

Hinted at how to embed basic knowledge from physics into the GP.

Uncertainty is a key concept!

Remember to talk to people who work on different problems with

different tools!! (Visit other fields!)
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Backup slides



Strain field reconstruction – background

Tomographic reconstruction: Recover the internal structure of an

object from irradiation experiments.

Deformed object

Reconstruct the strain tensor

ε(x) =

εxx(x) εxy (x)

εxy (x) εyy (x)





Strain field reconstruction – measurement model

Neutron beams are generated at a

source, transmitted through the

sample (along n̂) and recorded at a

detector.

Measurement model (vectorised form):

y =
1

L

∫ L

0

NTf (x0 + sn̂)ds + ε

f(x) =


εxx(x)

εxy (x)

εyy (x)

 , N =


n2x

2nxny

n2y





Strain field reconstruction – covariance model

Put a GP on the strain field f(x)

f(x) ∼ GP(0,K(x, x′))

Since f(x) is multivariate, the covariance function is a matrix

K(x, x′) =

k11(x, x′) k12(x, x′) k13(x, x′)

k21(x, x′) k22(x, x′) k23(x, x′)

k31(x, x′) k32(x, x′) k33(x, x′)



How should we select K(x, x′)?

There are certain physical constraints that it needs to fulfill.



Multivariate GP – constraint incorporation

Assume linear constraints

F xf(x) = 0

Let f(x) = G xg(x)

f(x) = G xg(x) ∼ GP
(
G xµg(x), G xKg(x,x′)G

T
x′
)

Then

F xG xg(x) = 0

Arbitrary g(x)

⇒ F xG x = 0

Find G x

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017.



Multivariate GP – constraint incorporation

Toy Example

Let

f(x) =

[
f1(x)

f2(x)

]
, x =

[
x

y

]
and consider the constraint

∂f1
∂x

+
∂f2
∂y

= 0 ⇔
[

∂
∂x

∂
∂y

]
︸ ︷︷ ︸

F x

f(x) = 0

Need G x such that F xG x = 0. One option is

G x =

− ∂
∂y

∂
∂x


since

F xG x =
[

∂
∂x

∂
∂y

]− ∂
∂y

∂
∂x

 = − ∂2

∂x∂y
+

∂2

∂y∂x
= 0.



Strain field reconstruction – constraint incorporation

A physical strain field must satisfy the equilibrium constraints (isotropic

linear elastic solid materials under plain stress)

0 =
∂fxx(x)

∂x
+ (1− ν)

∂fxy (x)

∂y
+ ν

∂fyy (x)

∂x
,

0 = ν
∂fxx(x)

∂y
+ (1− ν)

∂fxy (x)

∂x
+
∂fyy (x)

∂y
.

These can be written as

0 =

 ∂
∂x (1− ν) ∂

∂y ν ∂
∂x

ν ∂
∂y (1− ν) ∂

∂x
∂
∂y


︸ ︷︷ ︸

F x

f(x) =

cT
1

cT
2

 f(x)

We have constructed a Gaussian process that is guaranteed to obey

linear operator constraints by shaping the covariance function
Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and

reconstruction of strain. Nuclear instruments and methods in physics research: section B, 436:141-155, 2018.



Strain field reconstruction – experimental results

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and

reconstruction of strain. Nuclear instruments and methods in physics research: section B, 436:141-155, 2018.
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