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“Machine learning gives computers the ability to learn without

being explicitly programmed for the task at hand.”



“Anyone making confident predictions about anything having to do with

the future of artificial intelligence is either kidding you or kidding

themselves.”

Andrew McAfee, MIT
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What we do in the team — who we are

We automate the extraction of knowledge and

understanding from data.

Both basic research and applied research (with companies).

Create probabilistic models of dynamical systems and

their surroundings.

Develop methods to learn models from data.

The models can then be used by machines (or humans) to

understand or make decisions about what will happen next.
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What do I hope to achieve today?

1. Briefly introduce the scientific field of Machine Learning.

2. Create an awareness/interest around this technology.

3. A bit more specific: Give a few concrete examples o↵ering a

(hopefully) intuitive understanding.
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What is machine learning all about?

Machine learning is about learning, reasoning

and acting based on data.

Machine learning gives computers the ability to learn without being

explicitly programmed for the task at hand.

“It is one of today’s most rapidly growing technical fields, lying at the

intersection of computer science and statistics, and at the core of

artificial intelligence and data science.”

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.

Jordan, M. I. and Mitchell, T. M. Machine Learning: Trends, perspectives and prospects. Science, 349(6245):255-260, 2015.
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Machine Learning (supervised)

Data on its own is typically useless, it is only when we can extract

knowledge from the data that it becomes useful.

Learning a model from labelled data.

Labels e.g. mat,

mirror, boat

Training data

Model
Learning

algorithmprediction

update model
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Machine Learning (supervised)

Using the learned model on new previously unseen data.
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 
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Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

?

Unseen data

Model
prediction

The model must generalize to new unseen data.

Unsupervised, reinforcement and semi-supervised learning.
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The four cornerstones

Cornerstone 1 (Data) Typically we need lots of it.

Cornerstone 2 (Mathematical model) A mathematical model is a com-

pact representation of the data that in precise mathematical form cap-

tures the key properties of the underlying situation.

Cornerstone 3 (Learning algorithm) Used to compute the unknown

variables from the observed data using the model.

Cornerstone 4 (Decision/Control) Use the understanding of the current

situation to steer it into a desired state.
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Mathematical models – representations

The performance of an algorithms typically depends on which

representation (model) that is used for the data.

When solving a problem – start by thinking about which

model/representation to use!

International Conference on Learning Representations (ICLR)

www.iclr.cc/
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Ex (Classical Engineering) – Motion estimation

Aim: Compute the position and orientation of the di↵erent body

segments of a person moving around indoors (motion capture).

What is a mathematical model?

Illustrate the use of three di↵erent models:

1. Integration of sensor observations.

2. Add a biomechanical model.

3. Add a world model.

Pose estimation using inertial sensors Manon Kok 15 / 34

Inertial motion capture

Estimate the relative position and
orientation of body segments.

Possibly also estimate the body’s
absolute position.

17 sensors placed on the body
Figures courtesy of Xsens Technologies

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

An experiment to illustrate the importance of a model

ω"

a$g"

m"

Inertial sensors Bio-mechanical Ultra-wideband The world

Task: Find the position and orientation of a human (human motion). 

Key models:
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Ex (Machine Learning) – Ambient magnetic field map

The Earth’s magnetic field sets a background for the ambient magnetic

field. Deviations make the field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NeurIPS), Long Beach, CA, USA, December, 2017.
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Ex (Machine Learning) – Automatic ECG classification

ECG data

Input, x

Computer program

Model

y 2

8
>>>>><

>>>>>:

atrial fibrillation

sinus tachycardia

1st degree AV block

. . .

Prediction

We are now reaching human level (medical doctor) performance on

certain specific tasks.

Key di↵erence to ”classical engineering”: The model is not derived

based on our ability to mathematically explain what we see in an ECG.

Instead, a generic model is automatically learned based on data.
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The model – learning relationship

The problem of learning (estimating) a model based on data leads to

computational challenges, both

• Integration: e.g. the HD integrals arising during marg. (averaging

over all possible parameter values z):

p(D) =

Z
p(D | z)p(z)dz .

• Optimization: e.g. when extracting point estimates, for example by

maximizing the posterior or the likelihood

bz = argmax
z

p(D | z)

Typically impossible to compute exactly, use approximate methods

• Monte Carlo (MC), Markov chain MC (MCMC), and sequential MC

(SMC).

• Variational inference (VI).

• Stochastic optimization.
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Key lesson from contemporary Machine Learning

Flexible models often give the best performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.

(parametric, ex. deep learning)

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use more parameters as we get access to more data.

(non-parametric, ex. Gaussian process)

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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“With enough training data the machine can be trained to make very

good predictions from previously unseen data.”
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Outline

1. What is machine learning?

2. Models – a few examples

3. Flexible models

a) Deep learning

b) Gaussian processes

4. Short overview of our research topics (if there is time)

5. Conclusion

Machine learning gives computers the ability to learn without being

explicitly programmed for the task at hand.

15/38



Deep learning – what is it?

The mathematical model has been around for 70 years, but over the last

5� 7 years there has been a revolution. Key reasons:

1. Very large datasets

2. Better and faster computers

3. Enormous industrial interest (e.g. Google, Facebook, MS)

4. Some methodological breakthroughs

The underlying model is a big mathematical function with multiple

layers of abstraction, commonly containing millions of parameters.

The parameter values are automatically determined based on a large

amount of training data.
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Constructing a neural network for regression

A neural network (NN) is a hierarchical nonlinear function y = g✓(x)

from an input variable x to an output variable y parameterized by ✓.

Linear regression models the relationship between a continuous output

variable y and an input variable x ,

y =

nX

i=1

✓ixi + ✓0 + " = ✓
Tx + ",

where ✓ is the parameters composed by the “weights” ✓i and the o↵set

(“bias”) term ✓0,

✓ =

⇣
✓0 ✓1 ✓2 · · · ✓n

⌘T
,

x =

⇣
1 x1 x2 · · · xn

⌘T
.
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Generalized linear regression and NNs

We can generalize this by introducing nonlinear transformations of the

predictor ✓
Tx ,

y = f (✓Tx).

We can think of the neural network as a sequential construction of

several generalized linear regressions.
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Deep neural networks

Let the computer learn from experience and understand the situation in

terms of a hierarchy of concepts, where each concepts is defined in

terms of its relation to simpler concepts.

If we draw a graph showing these concepts of top of each other, the

graph is deep, hence the name deep learning.

It is accomplished by using multiple levels of representation. Each

level transforms the representation at the previous level into a new and

more abstract representation,

z (l+1)
= f

⇣
⇥

(l+1)z (l) + ✓
(l+1)
0

⌘
,

starting from the input (raw data) z (0) = x .

Key aspect: The layers are not designed by human engineers, they are

generated from (typically lots of) data using a learning procedure and

lots of computations.
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Deep learning – example (skin cancer)

Start from a mathematical model trained on 1.28 million images

(transfer learning). Make minor modifications of it, specializing to

present situation.

Learn new model parameters using

129 450 clinical images (⇠ 100 times

more images than any previous

study).
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 
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Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
classifier-with.html
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

?

Unseen data

Model
prediction

The results are on par with professional dermatologists on specific tasks.

Still, far from being clinically useful, but at least they give us “valid

reasons to remain cautiously optimistic” as someone said.

Andre Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. and Thrun, S. Dermatologist-level classification of skin

cancer with deep neural networks. Nature, 542, 115–118, February, 2017.
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Deep learning – example (skin cancer)

Start from a mathematical model trained on 1.28 million images

(transfer learning). Make minor modifications of it, specializing to

present situation.

Learn new model parameters using

129 450 clinical images (⇠ 100 times

more images than any previous

study).
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lesions. In this task, the CNN achieves 72.1 ±  0.9% (mean ±  s.d.)  overall 
accuracy (the average of individual inference class accuracies) and two 
dermatologists attain 65.56% and 66.0% accuracy on a subset of the 
validation set. Second, we validate the algorithm using a nine-class 
disease partition—the second-level nodes—so that the diseases of 
each class have similar medical treatment plans. The CNN achieves 
55.4 ±  1.7% overall accuracy whereas the same two dermatologists 
attain 53.3% and 55.0% accuracy. A CNN trained on a finer disease 
partition performs better than one trained directly on three or nine 
classes (see Extended Data Table 2), demonstrating the effectiveness 
of our partitioning algorithm. Because images of the validation set are 
labelled by dermatologists, but not necessarily confirmed by biopsy, 
this metric is inconclusive, and instead shows that the CNN is learning 
relevant information.

To conclusively validate the algorithm, we tested, using only 
 biopsy-proven images on medically important use cases, whether 
the algorithm and dermatologists could distinguish malignant versus 
benign lesions of epidermal (keratinocyte carcinoma compared to 
benign seborrheic keratosis) or melanocytic (malignant melanoma 
compared to benign nevus) origin. For melanocytic lesions, we show 

two trials, one using standard images and the other using dermoscopy 
images, which reflect the two steps that a dermatologist might carry out 
to obtain a clinical impression. The same CNN is used for all three tasks. 
Figure 2b shows a few example images, demonstrating the difficulty in 
distinguishing between malignant and benign lesions, which share many 
visual features. Our comparison metrics are sensitivity and specificity:

=sensitivity true positive
positive

=specificity true negative
negative

where ‘true positive’ is the number of correctly predicted malignant 
lesions, ‘positive’ is the number of malignant lesions shown, ‘true neg-
ative’ is the number of correctly predicted benign lesions, and ‘neg-
ative’ is the number of benign lesions shown. When a test set is fed 
through the CNN, it outputs a probability, P, of malignancy, per image.  
We can compute the sensitivity and specificity of these probabilities 
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Figure 1 | Deep CNN layout. Our classification technique is a  
deep CNN. Data flow is from left to right: an image of a skin lesion  
(for example, melanoma) is sequentially warped into a probability 
distribution over clinical classes of skin disease using Google Inception  
v3 CNN architecture pretrained on the ImageNet dataset (1.28 million 
images over 1,000 generic object classes) and fine-tuned on our own 
dataset of 129,450 skin lesions comprising 2,032 different diseases.  
The 757 training classes are defined using a novel taxonomy of skin disease 
and a partitioning algorithm that maps diseases into training classes 

(for example, acrolentiginous melanoma, amelanotic melanoma, lentigo 
melanoma). Inference classes are more general and are composed of one 
or more training classes (for example, malignant melanocytic lesions—the 
class of melanomas). The probability of an inference class is calculated by 
summing the probabilities of the training classes according to taxonomy 
structure (see Methods). Inception v3 CNN architecture reprinted 
from https://research.googleblog.com/2016/03/train-your-own-image-
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Figure 2 | A schematic illustration of the taxonomy and example test 
set images. a, A subset of the top of the tree-structured taxonomy of skin 
disease. The full taxonomy contains 2,032 diseases and is organized based 
on visual and clinical similarity of diseases. Red indicates malignant, 
green indicates benign, and orange indicates conditions that can be either. 
Black indicates melanoma. The first two levels of the taxonomy are used in 
validation. Testing is restricted to the tasks of b. b, Malignant and benign 

example images from two disease classes. These test images highlight the 
difficulty of malignant versus benign discernment for the three medically 
critical classification tasks we consider: epidermal lesions, melanocytic 
lesions and melanocytic lesions visualized with a dermoscope. Example 
images reprinted with permission from the Edinburgh Dermofit Library 
(https://licensing.eri.ed.ac.uk/i/software/dermofit-image-library.html).

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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The results are on par with professional dermatologists on specific tasks.

Still, far from being clinically useful, but at least they give us “valid

reasons to remain cautiously optimistic” as someone said.

Andre Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. and Thrun, S. Dermatologist-level classification of skin

cancer with deep neural networks. Nature, 542, 115–118, February, 2017.
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ECG classification – the CODE study

Aim: Predict abnormalities based

on a short-duration 12-lead

electrocardiogram (ECG) recording.

?

Unseen data

Model
prediction

Background: Joint work with medical doctors from Brazil with an

urgent need for automated analysis due to the vast distances between

the patient and a cardiologist with full expertise in ECG diagnosis.

The existing telehealth network provides the data (more than 2 300 000

ECGs), implying some clinical relevance.

Ribeiro, A. H., Ribeiro, M. H., Paixao, G. M. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., Ferreira, M. P. S., Andersson, C. R.,

Macfarlane, P. W., Meira, W., TS and Ribeiro, A. L. P. Automatic diagnosis of the short-duration 12-lead ECG using a deep neural

network: the CODE study. Submitted, 2019. 21/38



Outline

1. What is machine learning?

2. Models – a few examples

3. Flexible models

a) Deep learning

b) Gaussian processes

4. Short overview of our research topics (if there is time)

5. Conclusion

Machine learning gives computers the ability to learn without being

explicitly programmed for the task at hand.
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The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.
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An abstract idea

In probabilistic (Bayesian) linear regression

yt = �
T
xt|{z}

f (xt)

+et , et ⇠ N (0,�
2
),

we place a prior on �, e.g. � ⇠ N (0,↵
2I ).

(Abstract) idea: What if we instead place a prior directly on the func-

tion f (·)
f ⇠ p(f )

and look for p(f | y1:T ) rather than p(� | y1:T )?!
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One concrete construction

Well, one (arguably simple) idea on how we can reason probabilistically

about an unknown function f is by assuming that f (x) and f (x 0) are

jointly Gaussian distributed

 
f (x)

f (x 0)

!
⇠ N (m,K ) .

If we accept the above idea we can without conceptual problems

generalize to any arbitrary finite set of input values {x1, x2, . . . , xT}.

0

B@
f (x1)
.
.
.

f (xT )

1

CA ⇠ N

0

B@

0

B@
m(x1)

.

.

.

m(xN)

1

CA ,

0

B@
k(x1, x1) . . . k(x1, xT )

.

.

.
. . .

.

.

.

k(xT , x1) . . . k(xT , xT )

1

CA

1

CA

25/38



Definition

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)

collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.
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We now have a prior!

f ⇠ GP(m, k)

The GP is a generative model so let us first sample from the prior.
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GP regression – illustration
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Snapshot — Constrained GP for tomographic reconstruction

Tomographic reconstruction goal: Build a map of an unknown

quantity within an object using information from irradiation experiments.

Ex1) Modelling and reconstruction of

strain fields.

Ex2) Reconstructing the internal structure

from limited x-ray projections.

(a) (b) (c)

Figure 5: (a) FBP reconstruction of cheese using dense 360 projections. (b) Filteredback projection
reconstruction from 9 projections. (c) GP reconstruction from 9 projections.

3.3 Discussion
We have presented x-ray tomography reconstruction from both simulated and real data for only 9
projections using an approach based on the Gaussian process. As a benchmark algorithm, FBP
reconstructions are overwhelmed by streak artifacts as it can be seen in Figure 4(b) for the chest
phantom and Figure 5(b) the for cheese target. The edges of the target are badly reconstructed.
Because of the artefacts, it is difficult to distinguish the lighter region (which is assumed as tissue)
and the black region (the air). It is confirmed by a high value (more than 80%) of the relative
error in figures of merit in Table 1. On the other hand, the GP reconstructions from both data
outperform the FBP algorithm in terms of image quality as reported in figures of merit. The PSNR
value of the GP-approach reconstruction is higher than that of the FBP reconstruction, and the
relative error is only 19.3%. The GP prior clearly suppresses the artifacts in the reconstructions as
shown in Figure 4(c) and 5(c). In Figure 4(c), the air and tissue region are recovered much better,
since it has less prominent artefacts. In Figure 5(c), the air region (outside the cheese and the C
and T letters) are recovered much sharper than in the FBP reconstructions. Overall, the results
indicate that the image quality can be improved significantly by employing the GP method.

We emphasize that in the proposed GP-approach, some parameters in the prior is a part of the
inference problem (see Equation 4). Henceforth, we can avoid the difficulty in choosing the prior
parameters. This problem corresponds to the classical regularization methods, in which selecting
the regularization parameters is a very crucial step to produce a good reconstruction.

4 Conclusions and Future work
We have employed the Gaussian process with hierarchical prior to reconstruct the x-ray attenuation
coefficient for limited projection data. The method can be implemented to estimate the attenuation
coefficient from the measured data produced by the Radon transform. Simulated and real data
are tested, and the results in both cases are quite promising. Unlike algorithms commonly used in
limited x-ray tomography problem in which tuning or choosing the prior parameters is required,
the proposed GP method offers an easier set up as it takes into account the prior parameters as a
part of the estimation. Henceforth, it constitutes a promising and user-friendly strategy.

The most important part of the GP model is the selection of the covariance function, since it
stipulates the properties of the unknown function. As such, it also leaves most room for improve-
ment. Considering the examples in Section 3, a common feature of the target functions is that they
consists of a number of well-defined, separate regions. The function values are similar and thus
highly correlated within the regions, while the correlation is low at the edges where rapid changes
occur. This kind of behavior is hard to capture with a stationary covariance function that models
the correlation as completely dependent on the distance between the input locations.

A non-stationary alternative is the neural network covariance function, which is known for its
ability to model functions with non-smooth features [29]. Other more advanced options include
deep GPs [45] and manifold GPs [46]. The price is, however, that the implementation becomes
significantly harder. Numerical methods would most likely be required in the evaluation of (9a)-
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Ongoing work: We can also combine DL and GPs!

Problem: The standard stationary kernels can not deal with

noon-smooth features, such as rapid, step-like changes.

Solution: Learn a deep NN transforming the inputs to a stationary

kernel. Known as manifold Gaussian processes or deep kernel learning.

Our contribution: Developed a model that e�ciently handles measured

data that is expressed as line integrals of the unknown function.

Relevance: Tomographic reconstruction problems are on this form.

We are currently in the process of properly explaining this ... 30/38



Data Consistency Check

Question: Is a model class p(y | ✓), ✓ 2 ⇥ consistent (whatever that

could mean . . . ) with given data y?

Existing methods:

Compare models Validate a model

Cross-validation, Ljung-Box (AR-like models)

AIC, BIC, . . . Kolmogornov-Smirnov,

Anderson-Darling, . . . (1-D IID data)

Very few (if any?) general methods

Our idea: Simulate data from the model and

compare it (in terms of likelihoods) to the

given data.

! A very general (but computer-intensive)

approach!

Kangaroo count model

Conclusion: Model not inconsistent
with observed data!

Earthquake count models

Conclusion: Poisson model inconsistent
with “small” earthquakes!

Andreas Lindholm, Dave Zachariah, Petre Stocia and TS. Data Consistency Approach to Model Validation. IEEE Access, 2019.

(accepted this morning). arXiv:1808.05889. github.com/saerdna-se/consistency-criterion 31/38
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Active research topics – slightly technical

1. Probabilistic modelling

a) General: Flexible models, in particular the

Gaussian process (GP), deep GPs.

b) Specific: Dynamical phenomena and their

surroundings.

2. New relevant algorithms

a) Large-scale optimization

b) Approximate integration/inference

i) Sequential Monte Carlo

ii) Variational inference

iii) Markov chain Monte Carlo
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Active research topics – slightly technical

3. Deep learning (DL)

a) Deep probabilistic constructions

b) Representing (and understanding)

uncertainty within deep learning (including

Bayesian DL)

c) Mathematical understanding of DL

Spatio-temporal modeling of vehicle surroundings
Thomas Schön (Uppsala University), Jacob Roll (Autoliv) and Dave Zachariah (Uppsala

University)

February 3, 2017

1 Background

Autoliv is the world’s largest automotive safety supplier with sales to all the leading car manu-
facturers in the world. We develop, manufacture and market protective systems such as airbags,
seatbelts, steering wheels, pedestrian protection systems, child seats, passive safety electronics and
active safety systems. Our leading market position in automotive safety includes a global market
share of approximately 39% in passive safety and more than 20-25% in active safety.

At Autoliv Vision Tech Center in Linköping, we focus on vision-based systems for active safety
and autonomous driving, based on cutting edge image processing technology. We have 250 employees
working on tomorrow’s technology.

The statistical Machine Learning group at Uppsala University work on both basic and applied
research in order to automate the extraction of knowledge and understanding from data. We mainly
work with probabilistic models for dynamical systems and their surroundings, focusing on developing
new models and how these models can be learnt from data.

Deep learning (LeCun et al., 2015) is a quickly evolving research area. Based on numerous
examples (training data), a deep neural network can, in theory, learn virtually any function, with
applications such as describing the content of diverse images, playing games (chess, Go, Poker),
understanding speech, or find user preferences in social networks. An application that has received
much attention in recent years is vehicle active safety and autonomous driving. With the help
of vision and other sensors, the autonomous driving system needs to get a representation of its
surroundings, suitable to determine how to control the vehicle. This is the topic of this PhD project.

The statistical Machine Learning group at Uppsala University and Autoliv have a longstanding
collaboration on this and other problems. This PhD project is a natural progression that is fully
inline with this collaboration. Some earier joint results in the same direction as this project are
illustrated in the left plot in Figure 1.

Figure 1: Left: Illustration of a spatial model (here a so-called conditional random field) of the road
surface in front of the vehicle that is learnt on-line based on information from a stereo camera and
other on-board sensors. The vehicle surroundings have also been classified into various categories
as indicated using different colours. Right: Example of our existing semantic segmentation using
deep learning that we have illustrated on freely available data from Cordts (2016). Each pixel in the
image is assigned a specific object class (car, road, person, traffic sign, pole, vegetation, etc.)

4. Probabilistic programming

a) Potential to automate modelling!

b) Developing our own probabilistic

programming language (Birch)
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Active research topics – slightly technical

5. Reinforcement learning/control

a) Learn how to control

b) Mathematical guarantees

Figure 2: (left) Median % of unstable closed-loop models, with open-loop models sampled from
the 95% confidence region of the posterior, for nx = 3 and N = 15, as a function of the number of
samples M used in the MC approximation (4). (right) LQR suboptimality as a function of M . 50
experiments were conducted, c.f. Section5.1 for details. Shaded regions cover the interquartile range.
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(a) (b)

Figure 3: (a) LQR cost on real-world pendulum experiment, as a function of the number of rollouts.
1 cost denotes controllers that resulted in instability during testing. n/a denotes cases in which the
synthesis problem was infeasible. (b) pendulum angle and control signal recorded after 10 rollouts.

training data, the superposition of a non-stabilizing control signal and a sinusoid of random frequency
is applied to the rotary arm motor while the pendulum is inverted. The arm and pendulum angles
(along with velocities) are sampled at 100Hz until the pendulum angle exceeds 20�, which takes
no more than 5 seconds. This constitutes one rollout. We applied the worst-case, H2/H1, and
proposed methods to optimize the LQ cost with Q = I and R = 1. To generate bounds ✏A �
kAls �Atrk2 and ✏B � kBls �Btrk2 for worst-case and H2/H1, we sample {Ai, Bi}5000i=1 from the
95% confidence region of the posterior, using Gibbs sampling, and take ✏A = maxi kAls � Aik2
and ✏B = maxi kBls �Bik2. The proposed method used 100 such samples for synthesis. We also
applied the least squares policy iteration method [26], but none of the policies could stabilize the
pendulum given the amount of training data. Results are presented in Figure 3, from which we make
the following remarks. First, as in Section5.1, the proposed method achieves high performance
(low cost), especially in the low data regime where the magnitude of system uncertainty renders the
other synthesis methods infeasible. Insight into this performance is offered by Figure 3(b), which
indicates that policies from the proposed method stabilize the pendulum with control signals of
smaller magnitude. Finally, performance of the proposed method converges after very few rollouts.
Data-inefficiency is a well-known limitation of RL; understanding and mitigating this inefficiency is
the subject of considerable research [15, 44, 16, 39, 21, 22]. Investigating the role that a Bayesian
approach to uncertainty quantification plays in the apparent sample-efficiency of the proposed method
is an interesting topic for further inquiry.

8

6. Causality (new topic)

a) Aiming to learn causal relationships (not

just associations/correlations)

b) Naturally leads to the need for combining

human knowledge and data.

7. Self-supervised learning (new topic)

a) Use small amount of labeled data and

large amounts of unlabeled data. 34/38



Education – Our Machine Learning courses and new initiatives

PhD level courses in Machine Learning

1. Probabilistic Machine Learning (given since 2011) 50 students

2. Deep Learning (first time this spring) 50 students

3. Sequential Monte Carlo (given since 2012) 80 students

MSc level courses in Machine Learning

1. Statistical Machine Learning (given since 2017) 160 students

2. Probabilistic Machine Learning (first time this autumn)

New MSc programs involving Machine Learning (starting in 2020)

1. Data Science

2. Image processing and Machine Learning
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Intensive PhD level course on SMC in August

Intensive PhD course on SMC methods in August 2019.

Sequential Monte Carlo (SMC) is a random-sampling-based class of

methods for approximate inference. Perfect for problems in nonlinear

time series, but it is indeed much more generally applicable.

www.it.uu.se/research/systems_and_control/education/2019/smc

Christian A. Naesseth, Fredrik Lindsten and TS. Elements of Sequential Monte Carlo. arXiv:1903.04797, March, 2019. 36/38
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What did I hope to achieve today?

1. Briefly introduce the scientific field of Machine Learning.

2. Create an awareness/interest around this technology.

3. A bit more specific: Give a few concrete examples o↵ering a

(hopefully) intuitive understanding.
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Conclusion

Machine learning gives computers the ability to learn without being

explicitly programmed for the task at hand.

The best predictive performance is currently obtained from

highly flexible learning systems.

We discussed two flexible model classes:

1. Deep learning

2. Gaussian processes

Uncertainty is a key concept!

Remember to talk to people who work on di↵erent problems with

di↵erent tools!! (Visit other fields!)
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