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Deep learning for classification is handled using standard losses and output representations,

but this is not (yet) the case when it comes to regression.
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The problem we are interested in – regression using DNNs

Supervised regression: learn to predict a continuous output (target)

value y? ∈ Y = RK from a corresponding input x? ∈ X , given a

training set D of i.i.d. input-output data

D = {(xn, yn)}Nn=1, (xn, yn) ∼ p(x , y).

Deep neural network (DNN): a function fθ : X → Y, parameterized

by θ ∈ RP , that maps an input x ∈ X to an output fθ(x) ∈ Y.

Generally applicable, but we have (so far) mainly worked with examples

from computer vision and robotics.

Input space X : Space of images or point clouds.

Output space Y = RK : Y = R2 for image-coordinate regression,

Y = R+ for age estimation, Y = R4 for 2D bounding-box regression. 2/26



Intuitive preview of our construction

A general regression method with a clear probabilistic interpretation.

Let us first note that with a probabilistic take on regression, the task is

to learn the conditional target density p(y | x).

We create and train an energy-based model (EBM) of the conditional

target density p(y | x), allowing for highly flexible target densities to be

learned directly from data.

1D toy illustration showing that we can learn multi-modal and

asymmetric distributions, i.e. our model is flexible.
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Aim and outline

Aim: Create an awareness of how we can use deep neural networks for

regression and show that energy-based models are useful in this context.

1. Intuitive preview

2. Regression using deep neural networks

3. Energy-based models

4. Our construction

5. Training

6. Experiments
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Four existing approaches

1. Direct regression

2. Probabilistic regression

3. Confidence-based regression

4. Regression-by-classification
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1. Direct regression (I/II)

Train a DNN fθ : X → Y to directly predict the target y? = fθ(x?).

Learn the parameters θ by minimizing a loss function `(fθ(xi ), yi ),

penalizing discrepancy between prediction fθ(xi ) and ground truth yi

θ̂ = argmin
θ

J(θ),

where

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi ).

Common choices for ` are the L2 loss, `(ŷ , y) = ‖ŷ − y‖22, and

the L1 loss, `(ŷ , y) = ‖ŷ − y‖1.
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1. Direct regression (II/II)

Minimizing

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi )

then corresponds to minimizing the negative log-likelihood∑N
i=1− log p(yi | xi ; θ), for a specific model p(y | x ; θ) of the conditional

target density.

Ex: The L2 loss corresponds to a fixed-variance Gaussian model:

p(y | x ; θ) = N (y ; fθ(x), σ2).
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2. Probabilistic regression (I/II)

Why not explicitly employ this probabilistic perspective and try to create

more flexible models p(y | x ; θ) of the conditional target density p(y | x)?

One idea is to restrict the parametric model to unimodal distributions

such as Gaussian or Laplace.

Probabilistic regression: train a DNN fθ : X → Y to predict the

parameters φ of a certain family of probability distributions p(y ;φ), then

model p(y | x) with

p(y | x ; θ) = p(y ;φ(x)), φ(x) = fθ(x).

The parameters θ are learned by minimizing
∑N

i=1− log p(yi | xi ; θ).
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2. Probabilistic regression (II/II)

Ex: A general 1D Gaussian model can be realized as:

p(y | x ; θ) = N
(
y ;µθ(x), σ2

θ(x)
)
,

where the DNN is trained to output

fθ(x) =
(
µθ(x) log σ2

θ(x)
)T
∈ R2.

The negative log-likelihood
∑N

i=1− log p(yi | xi ; θ) then corresponds to

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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3. Confidence-based regression

The quest for improved regression accuracy has also led to the

development of more specialized methods.

Confidence-based regression: train a DNN fθ : X ×Y → R to predict

a scalar confidence value fθ(x , y), and maximize this quantity over y to

predict the target

y? = argmax
y

fθ(x?, y)

Key to this approach is that fθ(x , y) depends on both the input x and

the target y .

The parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function

`
(
fθ(xi , y), c(xi , yi , y)

)
.
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4. Regression-by-classification

Discretize the output space Y into a finite set of C classes and use

standard classification techniques...
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High-level description of our idea

Confidence-based regression give impressive results, but:

1. it require important (and tricky) task-dependent design choices (e.g.

how to generate the pseudo ground truth labels)

2. and usually lack a clear probabilistic interpretation.

Probabilistic regression is straightforward and generally applicable, but:

1. it can usually not compete in terms of regression accuracy.

Our construction combines the benefits of these two approaches

while removing the problems above.

12/26



Background – Energy-based models (EBM)

An energy-based models (EBM) specifies a probability density

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x)dx ,

explicitly parameterized by the scalar function fθ(x).

By defining fθ(x) using a deep neural network, p(x ; θ) becomes

expressive enough to learn practically any density from observed data.

LeCun, Y., Chopra, S., Hadsell, R. Ranzato, M and Huang, F. J. A tutorial on energy-based learning. In Predicting structured data, 2006.

Teh, Y. W., Welling, M., Osindero, S. and Hinton, G. E. Energy-based models for sparse overcomplete representations. Journal of

Machine Learning Research, 4:1235–1260, 2003.

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. A neural probabilistic language model. Journal of machine learning research,

3:1137–1155, 2003.

Hinton, G., Osindero, S., Welling, M. and Teh, Y-W. Unsupervised discovery of nonlinear structure using contrastive backpropagation.

Cognitive science, 30(4):725–731, 2006.

Mnih, A. and Hinton, G. Learning nonlinear constraints with contrastive backpropagation. In Proceedings of the IEEE International

Joint Conference on Neural Networks, 2005.

Osadchy, M., Miller, M. L. and LeCun, Y. Synergistic face detection and pose estimation with energy-based models. In Advances in

Neural Information Processing Systems (NeurIPS), 2005.

13/26



Background – Energy-based models (EBM)

The EBM allows for the full predictive power of the DNN to be exploited,

enabling us to learn

• multimodal and

• asymmetric densities

directly from data.

The cost of the flexibility is that the normalization constant (partition

function)

Z (θ) =

∫
efθ(x)dx

is intractable, which complicates

• evaluating p(y | x ; θ) and

• sampling from p(y | x ; θ).
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Our construction using EBMs for regression

A general regression method with a clear probabilistic interpretation in

the sense that we learn a model p(y | x , θ) without requiring p(y | x , θ)

to belong to a particular family of distributions.

Let the DNN be a function fθ : X × Y → R that maps an input-output

pair {xi , yi} to a scalar value fθ(xi , yi ) ∈ R.

Define the resulting (flexible) probabilistic model as a conditional EBM

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ
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Training

The DNN fθ(x , y) that specifies the conditional EBM can be trained

using methods for fitting a density p(y | x ; θ) to observed data

{(xn, yn)}Nn=1.

The most straightforward method is to minimize the negative

log-likelihood

L(θ) = −
N∑
i=1

log p(yi | xi ; θ)

=
N∑
i=1

log

(∫
efθ(xi ,ỹ)dỹ

)
︸ ︷︷ ︸

Z(xi ,θ)

−fθ(xi , yi ).

Challenge: Requires the normalization constant to be evaluated (the

integral is intractable)...
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Solution 1 – Importance sampling

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ

The parameters θ are learned by minimizing
∑N

n=1− log p(yn | xn; θ).

Use importance sampling to evaluate Z (x , θ):

− log p(yi | xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

Use a Gaussian mixture (centered around the measurements) as proposal.
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Solution 2 – Noise Contrastive Estimation (NCE)

Noise Contrastive Estimation (NCE) is a parameter estimation

method for loglinear models, which avoids calculation of the partition

function (normalization constant) or its derivatives at each training step.
Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models.

In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages 297–304, 2010.

Zhuang Ma and Michael Collins. Noise Contrastive Estimation and Negative Sampling for Conditional Models: Consistency and

statistical efficiency, in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 3698–3707, 2018.

This is precisely what we need!

NCE entails learning to discriminate between observed data examples and

samples drawn from a noise distribution.
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Using NCE for regression

Using NCE for regression entails training the DNN fθ(x , y) by minimizing

J(θ) = − 1

N

N∑
i=1

Ji (θ),

Ji (θ) = log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i | yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i | yi )

} ,
where y

(0)
i , yi , and {y (m)

i }Mm=1 are M samples drawn from a noise

distribution q(y |yi ) that depends on the true target yi .

Interpretation: J(θ) is the softmax cross-entropy loss for a classification

problem with M + 1 classes.

A simple choice for q(y |yi ) is a mixture of K Gaussians centered at yi ,

q(y | yi ) =
1

K

K∑
k=1

N (y ; yi , σ
2
k I ).
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NCE explained using figures

The EBM is trained by having to discriminate between the given label yi
(red box) and noise samples {y i,m}Mm=1 (blue boxes).
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Allowing NCE to account for noise in the annotations

We have slightly generalized NCE to explicitly account for noise in the

annotation process.

Given a label yi (red box), the EBM is trained by having to discriminate

between yi + νi (yellow box) and noise samples {y i,m}Mm=1 (blue boxes).
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Allowing NCE to account for noise in the annotations

The DNN fθ(x , y) is still trained by minimizing

J(θ) = − 1

N

N∑
i=1

Ji (θ), Ji (θ) = log
exp
{
fθ(xi , y

(0)
i )−log q(y

(0)
i | yi )

}
M∑

m=0
exp
{
fθ(xi , y

(m)
i )−log q(y

(m)
i | yi )

} ,
but y

(0)
i is now defined as

y
(0)
i , yi + νi .

The true target yi is thus perturbed with νi ∼ qβ(y), where

qβ(y) =
1

K

K∑
k=1

N (y ; 0, βσ2
k I ).

This is how we can account for possible inaccuracies in the annotation

process producing yi .

Gustafsson, Fredrik K and Danelljan, Martin and Timofte, Radu and TS, How to Train Your Energy-Based Model for Regression,

Proceedings of the British Machine Vision Conference (BMVC), September, 2020.
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Prediction at test time

Train a DNN fθ : X ×Y → R to predict fθ(x , y) and model p(y | x) with

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ .

The parameters θ are learned by minimizing
∑N

i=1− log p(yi | xi ; θ).

Given a test input x?, we predict the target y? by maximizing p(y | x?; θ)

y? = argmax
y

p(y | x?; θ) = argmax
y

fθ(x?, y).

By designing the DNN fθ to be differentiable w.r.t. targets y , the gradient

∇y fθ(x?, y) can be efficiently evaluated using auto-differentiation.

Use gradient ascent to find a local maximum of fθ(x?, y), starting from

an initial estimate ŷ .
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Experiments – Visual tracking

Good results on four different computer vision (regression) problems:

1. Object detection, 2. Age estimation, 3. Head-pose estimation and

4. Visual tracking.

Task (visual tracking): Estimate a bounding box of a target object in

every frame of a video. The target object is defined by a given box in the

first video frame.

Show Movie!

Gustafsson, Fredrik K and Danelljan, Martin and Bhat, Goutam and TS, Energy-based models for deep probabilistic regression, in

Proceedings of the European Conference on Computer Vision (ECCV). August, 2020. 24/26



Experiments – 3D object detection from laser data

Task: Detect objects from sensor

data (here laser), estimate their size

and position in the 3D world.

Key perception task for self-driving

vehicles and autonomous robots.

The combination of probabilistic models and deep neural networks is

very exciting and promising.

Fredrik K. Gustafsson, Martin Danelljan, and TS. Accurate 3D object detection using energy-based models. Submitted, October, 2020.
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Conclusion

Aim: Create an awareness of how we can use deep neural networks for

regression and show that energy-based models are useful in this context.

• Introduced an EBM for regression using DNNs

• Solved the training problem using

• Importance sampling

• Generalized noise contrastive esimation

• State-of-the-art performance on challenging regression problems

useing images and laser point clouds.
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