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Deep learning for classification is handled using standard losses and output representations,

but this is not (yet) the case when it comes to regression.



I have two messages

1. The combined use of probabilistic models and deep learning is more

interesting than we think.

Illustration: Formulating and solving regression problems.

2. Analysis: An overparametrized model has enough degrees of

freedom to perfectly fit the training data and still they achieve state-of-

the-art generalization performance!

We need new theory to understand this.
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Key lesson from contemporary Machine Learning

Flexible models often give the best predictive performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use more parameters as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R. Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.

Be careful as flexible models can be deceptive!
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Deep learning

Works extremely well on clearly defined problems with lots of data.

Accounts for the vast majority of all progress and investment in AI/ML.

Has generated massive business potential.

The mathematical model is 70 years old...

Need for new mathematics to understand

why it works.

When representing a function, a deep, hierarchical model can be

exponentially more efficient than a shallow model.
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Flexible models solve relevant problems – an example

Aim: Automatic classification of Electrocardiography (ECG) data.

ECG data

Input, x

Computer program

Model

y ∈


atrial fibrillation

sinus tachycardia

1st degree AV block

. . .

Prediction

We are reaching human level performance on specific tasks.

Key difference to classical approach: The model is not derived based

on our ability to mathematically explain what we see in an ECG.

Instead, a generic model is automatically learned based on data.

Antonio H. Ribeiro, Manoel H. Ribeiro, Gabriela M.M. Paixao, Derick M. Oliveira, Paulo R. Gomes, Jessica A. Canazart, Milton P. S.

Ferreira, Carl R. Andersson, Peter W. Macfarlane, Wagner Meira Jr., TS, Antonio Luiz P. Ribeiro. Automatic diagnosis of the 12-lead

ECG using a deep neural network. Nature Communications, 11(1760), 2020. 4/37



Reflection on the example

Standard deep learning classification problem formulation.

What about regression problems like the ones in system identification?

5/37



Let us make this very concrete

NARX models assume that the output yt depends on

• past outputs yt−1, . . . , yt−Dy

• and past inputs ut−1, . . . , ut−Dy

Goal: Find p(yt | xt), where

xt = {yt−1, . . . , yt−Dy , ut−1, . . . , ut−Dy }.

Challenge: How should we choose this predictive distribution?

The straightforward option is to assume a functional form pθ(yt | xt).

Immediately gives rise to at least two questions:

1. How should we parameterize this distribution?

2. How should we learn it from data?
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The most common answers to these two questions

1. How should we parameterize this distribution?

Traditionally we assume an output equation

yt = fθ(xt) + et .

The solution pθ(yt | xt) is dictated by the assumption on et .

2. How should we learn pθ(yt | xt) from data?

Traditionally we make use of maximum likelihood.

Ex. Assuming et ∼ N (0, σ2), the maximum likelihood problem becomes

θ̂ = argmax
θ

T∑
t=1

‖yt − fθ(xt)‖2

Question for you: Why not use of more flexible model?
7/37



A more general question

How should we best formulate and solve regression problems

using deep learning?
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Outline

1. Introduction and main message

2. Deep probabilistic regression

3. Open problems and entry-points

Far from being solved, lots of interesting opportunities for future work!!
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Regression using deep neural networks

Supervised regression: learn to predict a continuous output (target)

value y? ∈ Y = RK from a corresponding input x? ∈ X , given a

training set D of i.i.d. input-output data

D = {(xn, yn)}Nn=1, (xn, yn) ∼ p(x , y).

Deep neural network (DNN): a function fθ : X → Y, parameterized

by θ ∈ RP , that maps an input x ∈ X to an output fθ(x) ∈ Y.

Recall that with a probabilistic take on regression, the task is to learn the

conditional output density pθ(yt | xt).
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Current status

DL for classification is handled using standard losses and representations.

When it comes to regression the situation is quite different.

In fact, current standard practice involves—implicitly or explicitly—the

use of simple unimodal distributions.

Four existing approaches:

1. Direct regression

2. Probabilistic regression

3. Confidence-based regression

4. Regression-by-classification
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1. Direct regression (I/II)

Train a DNN fθ : X → Y to directly predict the target y? = fθ(x?).

Learn the parameters θ by minimizing a loss function `(fθ(xi ), yi ),

penalizing discrepancy between prediction fθ(xi ) and ground truth yi

θ̂ = argmin
θ

J(θ),

where

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi ).

Common choices for ` are the L2 loss, `(ŷ , y) = ‖ŷ − y‖22, and

the L1 loss, `(ŷ , y) = ‖ŷ − y‖1.
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1. Direct regression (II/II)

Minimizing

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi )

then corresponds to minimizing the negative log-likelihood∑N
i=1− log p(yi | xi ; θ), for a specific model p(y | x ; θ) of the conditional

target density.

Ex: The L2 loss corresponds to a fixed-variance Gaussian model:

p(y | x ; θ) = N (y ; fθ(x), σ2).
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2. Probabilistic regression (I/II)

Why not explicitly employ this probabilistic perspective and try to create

more flexible models p(y | x ; θ) of the conditional target density p(y | x)?

One idea is to restrict the parametric model to unimodal distributions

such as Gaussian or Laplace.

Probabilistic regression: train a DNN fθ : X → Y to predict the

parameters φ of a certain family of probability distributions p(y ;φ), then

model p(y | x) with

p(y | x ; θ) = p(y ;φ(x)), φ(x) = fθ(x).

The parameters θ are learned by minimizing
∑N

i=1− log p(yi | xi ; θ).
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2. Probabilistic regression (II/II)

Ex: A general 1D Gaussian model can be realized as:

p(y | x ; θ) = N
(
y ;µθ(x), σ2

θ(x)
)
,

where the DNN is trained to output

fθ(x) =
(
µθ(x) log σ2

θ(x)
)T
∈ R2.

The negative log-likelihood
∑N

i=1− log p(yi | xi ; θ) then corresponds to

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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3. Confidence-based regression

The quest for improved regression accuracy has also led to the

development of more specialized methods.

Confidence-based regression: train a DNN fθ : X ×Y → R to predict

a scalar confidence value fθ(x , y) that can be maximized over y to predict

the output

y? = argmax
y

fθ(x?, y)

Key to this approach is that fθ(x , y) depends on both the input x and

the target y .

The parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function

`
(
fθ(xi , y), c(xi , yi , y)

)
.
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4. Regression-by-classification

Discretize the output space Y into a finite set of C classes and use

standard classification techniques...
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High-level description of our idea

Confidence-based regression give impressive results, but:

• it requires important (and tricky) task-dependent design choices

(e.g. how to generate the pseudo ground truth labels)

• and usually lacks a clear probabilistic interpretation.

Probabilistic regression is straightforward and generally applicable, but:

• it can usually not compete in terms of regression accuracy.

Our construction combines the benefits of these two approaches

while removing the problems above.
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Background – Energy-based model (EBM)

An energy-based model (EBM) specifies a probability density

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x)dx ,

explicitly parameterized by the scalar function fθ(x).

By defining fθ(x) using a deep neural network, p(x ; θ) becomes

expressive enough to learn practically any density from observed data.

LeCun, Y., Chopra, S., Hadsell, R. Ranzato, M and Huang, F. J. A tutorial on energy-based learning. In Predicting structured data, 2006.

Teh, Y. W., Welling, M., Osindero, S. and Hinton, G. E. Energy-based models for sparse overcomplete representations. Journal of

Machine Learning Research, 4:1235–1260, 2003.

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. A neural probabilistic language model. Journal of machine learning research,

3:1137–1155, 2003.

Hinton, G., Osindero, S., Welling, M. and Teh, Y-W. Unsupervised discovery of nonlinear structure using contrastive backpropagation.

Cognitive science, 30(4):725–731, 2006.

Mnih, A. and Hinton, G. Learning nonlinear constraints with contrastive backpropagation. In Proceedings of the IEEE International

Joint Conference on Neural Networks, 2005.

Osadchy, M., Miller, M. L. and LeCun, Y. Synergistic face detection and pose estimation with energy-based models. In Advances in

Neural Information Processing Systems (NeurIPS), 2005.
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Background – Energy-based models (EBM)

The EBM allows for the full predictive power of the DNN to be exploited,

enabling us to learn

• multimodal and

• asymmetric densities

directly from data.

The cost of the flexibility is that the normalization constant

Z (θ) =

∫
efθ(x)dx

is intractable, which complicates

• evaluating p(y | x ; θ) and

• sampling from p(y | x ; θ).
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Intuitive preview the EBM construction

An energy-based model of the conditional output density p(y | x), allow-

ing for highly flexible models to be learned directly from data.

1D toy illustration showing that we can learn multi-modal and

asymmetric distributions, i.e. the model is flexible.
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New construction that use EBMs for regression

A general regression method with a clear probabilistic interpretation in

the sense that we learn a model p(y | x , θ) without requiring it to belong

to a particular family of distributions.

Let the DNN be a function fθ : X × Y → R that maps an input-output

pair {xi , yi} to a scalar value fθ(xi , yi ) ∈ R.

Define the resulting (flexible) probabilistic model as a conditional EBM,

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ .
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Training

The DNN fθ(x , y) specifying the conditional EBM can be trained using

methods for fitting a density p(y | x ; θ) to observed data {(xn, yn)}Nn=1.

Most straightforward is to minimize the negative log-likelihood

L(θ) = −
N∑
i=1

log p(yi | xi ; θ)

=
N∑
i=1

log

(∫
efθ(xi ,ỹ)dỹ

)
︸ ︷︷ ︸

Z(xi ,θ)

−fθ(xi , yi ).

Challenge: Requires the normalization constant to be evaluated (the

integral is intractable)...
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Solution 1 – maximum likelihood using importance sampling

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ

The parameters θ are learned by minimizing
∑N

n=1− log p(yn | xn; θ).

Use importance sampling to evaluate Z (x , θ):

− log p(yi | xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

Use a Gaussian mixture (centered around the measurements) as proposal.
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Solution 2 – Noise Contrastive Estimation (NCE)

Noise contrastive estimation is a parameter estimation method,

avoiding calculation of the normalization constant and its derivatives.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models.

In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), pages 297–304, 2010.

NCE entails learning to discriminate between observed data examples

and samples drawn from a noise distribution.

Gustafsson, Fredrik K and Danelljan, Martin and Timofte, Radu and TS, How to train your energy-based model for regression,

Proceedings of the British Machine Vision Conference (BMVC), September, 2020.
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Prediction at test time

Train a DNN fθ : X ×Y → R to predict fθ(x , y) and model p(y | x) with

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ .

The parameters θ are learned by minimizing
∑N

i=1− log p(yi | xi ; θ).

Given a test input x?, we predict the target y? by maximizing p(y | x?; θ)

y? = argmax
y

p(y | x?; θ) = argmax
y

fθ(x?, y).

By designing the DNN fθ to be differentiable w.r.t. targets y , the gradient

∇y fθ(x?, y) can be efficiently evaluated using auto-differentiation.

Use gradient ascent to find a local maximum of fθ(x?, y), starting from

an initial estimate ŷ .

26/37



Experiments – Visual tracking

Task (visual tracking): Estimate a bounding box of a target object in

every frame of a video. The target object is defined by a given box in the

first video frame.

Show Movie!

Gustafsson, Fredrik K and Danelljan, Martin and Bhat, Goutam and TS, Energy-based models for deep probabilistic regression, in

Proceedings of the European Conference on Computer Vision (ECCV). August, 2020.
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Experiments – 3D object detection from laser data

Task: Detect objects from sensor

data (here laser) and estimate their

size and position in the 3D world.

Key perception task for self-driving

vehicles and autonomous robots.

Fredrik K. Gustafsson, Martin Danelljan, and TS. Accurate 3D object detection using energy-based models. Workshop on Autonomous

Driving (WAD) at the conference on Computer Vision and Pattern Recognition (CVPR), Online, 2021.
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Outline

1. Introduction and main message

2. Deep probabilistic regression

3. Open problems and entry-points

Far from being solved, lots of interesting opportunities for future work!!
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Experiments – NARX models

Remark: EBMs are not necessarily the best way to solve this problem...

Toy AR(1) example:

yt = 0.95yt−1 + et ,

where

et ∼
1

2
N (0.4, 0.12) +

1

2
N (−0.4, 0.12).

Always test on the simplest simulated example and real data.

See Fredrik’s talk on this afternoon
Johannes Hendriks, Fredrik K. Gustafsson, Antonio H. Ribeiro, Adrian Wills and TS. Deep energy-based NARX models. In Proceedings

of the 19th IFAC Symposium on System Identification (SYSID), Online, July, 2021.
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Constructing a deep state space model (SSM)

Why?

1. The deep neural networks opens up for flexibility.

2. The SSM offers a natural latent variable representation.

3. The stochastic nature of the SSM allows for representing

uncertainty.

Some entry points in case you are interested:
Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T. and Alameda-Pineda, X. Dynamical variational autoencoders: a comprehensive

review. arXiv:2008.12595, 2020.

Fraccaro, M., Kamronn, S., Ulrich Paquet, U. and Winther, O. A disentangled recognition and nonlinear dynamics model for

unsupervised learning. In Neural Information Processing Systems (NeurIPS), 2017.

Bayer, J. and Osendorfer, C. Learning stochastic recurrent networks. arXiv:1411.7610, 2014.

Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., and Bengio, Y. A recurrent latent variable model for sequential data. In

Neural Information Processing Systems (NeurIPS), 2015.

See Daniel’s talk on Thursday
Daniel Gedon, Niklas Wahlström, TS and Lennart Ljung. Deep state space models for nonlinear system identification. In Proceedings of

the 19th IFAC Symposium on System Identification (SYSID), Online, July, 2021.
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Not all systems have exponentially decaying memory...

Long memory applications: handwritten text and speech.

Simulated model output.

Hierarchical structured data

Combines an autoregressive

model with a hierarchical VAE.

See Carl’s talk on Thursday
Carl Andersson, Niklas Wahlström and TS. Learning deep autoregressive models for hierarchical data. In Proceedings of the 19th IFAC

Symposium on System Identification (SYSID), Online, July, 2021.
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Data to control (too brief...)

When you build a model you should have its intended use in mind.

Inspired by stochastic MPC we formulate (using a learned SSM)

ut
∗ = arg min

ut

∫
Vt(xt , ut , θ,ut ,wt) p(xt , θ,wt |y1:t , u1:t)dxt dθ dwt

s.t. cu(ut) � 0,

P
(
c jx(xt , ut , θ,ut ,wt) ≥ 0

)
≥ 1− ε, j = 1, . . . , ncx .

ut , ut+1:t+N+1, wt , wt+1:t+N+1.

The cost function Vt(·) can include both

1. control performance (exploitation)

2. and identification (exploration) related goals.

Johannes Hendriks, James Holdsworth, Adrian Wills, TS and Brett Ninness. Data to controller for nonlinear systems: an approximate

solution. IEEE Control Systems Letters (L-CSS), 2021. (accepted for publication)
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Classical statistics tells use to use less flexible models

The traditional bias-variance

trade-off formalize this principle

in probabilistic terms.
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Towards a theory of overparametrized (=highly flexible) models

Message 2 (Analysis): DNNs are often overparametrized, with

enough degrees of freedom to perfectly fit the training data

and still they achieve state-of-the-art generalization performance!

Understanding this requires new theory.

History:
Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling

modern machine-learning practice and the classical bias–variance

trade-off. Proceedings of the National Academy of Sciences,

116(32), 15849–15854.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R.J.(2019).

Surprises in High-Dimensional Ridgeless Least Squares

Interpolation. arXiv:1903.08560.

Bartlett, P.L., Long, P.M., Lugosi, G., and Tsigler, A.(2020). Benign

overfitting in linear regression. Proceedings of the National

Academy of Sciences, 117(48):30063–30070.

See Antonio’s talk this afternoon
Antonio H. Ribeiro, Johannes Hendriks, Adrian Wills and TS. Beyond Occam’s razor in system identification: double-descent when

modeling dynamics. In Proceedings of the 19th IFAC Symposium on System Identification (SYSID), Online, July, 2021. 35/37



Education – new book and associated course

Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and TS. Machine Learning – a first course for engineers and scientists.

Cambridge University Press, 2021.

http://smlbook.org/

All material for a popular first ML course is available if you are interested.
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Conclusions

Message 1: The combination of probabilistic models and deep neural

networks is exciting and promising.

Message 2: We need new theory to understand the state-of-the-art

generalization performance achieved by deep learning.

What I have presented here is work done by a fantastic team.

Remember to talk to people who work on different problems with

different tools!! (Visit other fields!)
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