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Deep learning for classification is handled using standard losses and output representations,

but this is not (yet) the case when it comes to regression.
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The problem we are interested in – regression using DNNs

Supervised regression: learn to predict a continuous output (target)

value y? ∈ Y = RK from a corresponding input x? ∈ X , given a

training set D of i.i.d. input-output data

D = {(xn, yn)}Nn=1, (xn, yn) ∼ p(x , y).

Deep neural network (DNN): a function fθ : X → Y, parameterized

by θ ∈ RP , that maps an input x ∈ X to an output fθ(x) ∈ Y.

Generally applicable, but we have (so far) mainly worked with examples

from computer vision and robotics.

Input space X : Space of images or point clouds.

Output space Y = RK : Y = R2 for image-coordinate regression,

Y = R+ for age estimation, Y = R4 for 2D bounding-box regression. 2/22



Intuitive preview of our construction

A general regression method with a clear probabilistic interpretation.

With a probabilistic take on regression, the task is to learn the

conditional target density p(y | x).

We create and train an energy-based model (EBM) of the conditional

target density p(y | x), allowing for highly flexible target densities to be

learned directly from data.

1D toy illustration showing that we can learn multi-modal and

asymmetric distributions, i.e. our model is flexible.
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Aim and outline

Aim: Create an awareness of how we can use deep neural networks for

regression and show that energy-based models are useful in this context.

1. Intuitive preview

2. Regression using deep neural networks

3. Energy-based models

4. Our construction

5. Experiments

6. Pitch: Overparametrized models requires new analysis
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1. Direct regression (I/II)

Train a DNN fθ : X → Y to directly predict the target y? = fθ(x?).

Learn the parameters θ by minimizing a loss function `(fθ(xi ), yi ),

penalizing discrepancy between prediction fθ(xi ) and ground truth yi

θ̂ = argmin
θ

J(θ),

where

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi ).

Common choices for ` are the L2 loss, `(ŷ , y) = ‖ŷ − y‖22, and

the L1 loss, `(ŷ , y) = ‖ŷ − y‖1.
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1. Direct regression (II/II)

Minimizing

J(θ) =
1

N

N∑
i=1

`(fθ(xi ), yi )

then corresponds to minimizing the negative log-likelihood∑N
i=1− log p(yi | xi ; θ), for a specific model p(y | x ; θ) of the conditional

target density.

Ex: The L2 loss corresponds to a fixed-variance Gaussian model:

p(y | x ; θ) = N (y ; fθ(x), σ2).
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2. Probabilistic regression (I/II)

Why not explicitly employ this probabilistic perspective and try to create

more flexible models p(y | x ; θ) of the conditional target density p(y | x)?

One idea is to restrict the parametric model to unimodal distributions

such as Gaussian or Laplace.

Probabilistic regression: train a DNN fθ : X → Y to predict the

parameters φ of a certain family of probability distributions p(y ;φ), then

model p(y | x) with

p(y | x ; θ) = p(y ;φ(x)), φ(x) = fθ(x).

The parameters θ are learned by minimizing
∑N

i=1− log p(yi | xi ; θ).
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2. Probabilistic regression (II/II)

Ex: A general 1D Gaussian model can be realized as:

p(y | x ; θ) = N
(
y ;µθ(x), σ2

θ(x)
)
,

where the DNN is trained to output

fθ(x) =
(
µθ(x) log σ2

θ(x)
)T
∈ R2.

The negative log-likelihood
∑N

i=1− log p(yi | xi ; θ) then corresponds to

J(θ) =
1

N

N∑
i=1

(yi − µθ(xi ))2

σ2
θ(xi )

+ log σ2
θ(xi ).
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3. Confidence-based regression

The quest for improved regression accuracy has also led to the

development of more specialized methods.

Confidence-based regression: train a DNN fθ : X ×Y → R to predict

a scalar confidence value fθ(x , y), and maximize this quantity over y to

predict the target

y? = argmax
y

fθ(x?, y)

Key to this approach is that fθ(x , y) depends on both the input x and

the target y .

The parameters θ are learned by generating pseudo ground truth

confidence values c(xi , yi , y), and minimizing a loss function

`
(
fθ(xi , y), c(xi , yi , y)

)
.
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4. Regression-by-classification

Discretize the output space Y into a finite set of C classes and use

standard classification techniques...
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High-level description of our idea

Confidence-based regression give impressive results, but:

1. it require important (and tricky) task-dependent design choices (e.g.

how to generate the pseudo ground truth labels)

2. and usually lack a clear probabilistic interpretation.

Probabilistic regression is straightforward and generally applicable, but:

1. it can usually not compete in terms of regression accuracy.

Our construction combines the benefits of these two approaches

while removing the problems above.
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Background – Energy-based models (EBM)

An energy-based models (EBM) specifies a probability density

p(x ; θ) =
efθ(x)

Z (θ)
, Z (θ) =

∫
efθ(x)dx ,

explicitly parameterized by the scalar function fθ(x).

By defining fθ(x) using a deep neural network, p(x ; θ) becomes

expressive enough to learn practically any density from observed data.

LeCun, Y., Chopra, S., Hadsell, R. Ranzato, M and Huang, F. J. A tutorial on energy-based learning. In Predicting structured data, 2006.

Teh, Y. W., Welling, M., Osindero, S. and Hinton, G. E. Energy-based models for sparse overcomplete representations. Journal of

Machine Learning Research, 4:1235–1260, 2003.

Bengio, Y., Ducharme, R., Vincent, P. and Jauvin, C. A neural probabilistic language model. Journal of machine learning research,

3:1137–1155, 2003.

Hinton, G., Osindero, S., Welling, M. and Teh, Y-W. Unsupervised discovery of nonlinear structure using contrastive backpropagation.

Cognitive science, 30(4):725–731, 2006.

Mnih, A. and Hinton, G. Learning nonlinear constraints with contrastive backpropagation. In Proceedings of the IEEE International

Joint Conference on Neural Networks, 2005.

Osadchy, M., Miller, M. L. and LeCun, Y. Synergistic face detection and pose estimation with energy-based models. In Advances in

Neural Information Processing Systems (NeurIPS), 2005.
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Background – Energy-based models (EBM)

The EBM allows for the full predictive power of the DNN to be exploited,

enabling us to learn

• multimodal and

• asymmetric densities

directly from data.

The cost of the flexibility is that the normalization constant

Z (θ) =

∫
efθ(x)dx

is intractable, which complicates

• evaluating p(y | x ; θ) and

• sampling from p(y | x ; θ).
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Our construction using EBMs for regression

A general regression method with a clear probabilistic interpretation in

the sense that we learn a model p(y | x , θ) without requiring p(y | x , θ)

to belong to a particular family of distributions.

Let the DNN be a function fθ : X × Y → R that maps an input-output

pair {xi , yi} to a scalar value fθ(xi , yi ) ∈ R.

Define the resulting (flexible) probabilistic model as a conditional EBM

p(y | x , θ) =
efθ(x,y)

Z (x , θ)
, Z (x , θ) =

∫
efθ(x,ỹ)dỹ
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Training

The DNN fθ(x , y) that specifies the conditional EBM can be trained

using methods for fitting a density p(y | x ; θ) to observed data

{(xn, yn)}Nn=1.

The most straightforward method is to minimize the negative

log-likelihood

L(θ) = −
N∑
i=1

log p(yi | xi ; θ)

=
N∑
i=1

log

(∫
efθ(xi ,ỹ)dỹ

)
︸ ︷︷ ︸

Z(xi ,θ)

−fθ(xi , yi ).

Challenge: Requires the normalization constant to be evaluated (the

integral is intractable)...
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Two possible solutions

1. Use importance sampling to evaluate Z (x , θ):

− log p(yi | xi ; θ) = log

(∫
efθ(xi ,y)dy

)
− fθ(xi , yi )

= log

(∫
efθ(xi ,y)

q(y)
q(y)dy

)
− fθ(xi , yi )

≈ log

(
1

M

M∑
k=1

efθ(xi ,y
(k))

q(y (k))

)
− fθ(xi , yi ), y (k) ∼ q(y).

2. Noise Contrastive Estimation (NCE) is a parameter estimation

method, which avoids calculation of the normalization constant and its

derivatives at each training step.

NCE entails learning to discriminate between observed data examples and

samples drawn from a noise distribution.
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Experiments – Visual tracking

Good results on four different computer vision (regression) problems:

1. Object detection, 2. Age estimation, 3. Head-pose estimation and

4. Visual tracking.

Task (visual tracking): Estimate a bounding box of a target object in

every frame of a video. The target object is defined by a given box in the

first video frame.

Show Movie!

Gustafsson, Fredrik K and Danelljan, Martin and Bhat, Goutam and TS, Energy-based models for deep probabilistic regression, in

Proceedings of the European Conference on Computer Vision (ECCV). August, 2020. 17/22



Experiments – 3D object detection from laser data

Task: Detect objects from sensor

data (here laser), estimate their size

and position in the 3D world.

Key perception task for self-driving

vehicles and autonomous robots.

The combination of probabilistic models and deep neural networks is

very exciting and promising.

Fredrik K. Gustafsson, Martin Danelljan, and TS. Accurate 3D object detection using energy-based models. Workshop on Autonomous

Driving (WAD) at the conference on Computer Vision and Pattern Recognition (CVPR), Online, 2021.
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Theory of overparametrized models

DNNs are often overparametrized, with enough degrees of freedom to

perfectly fit the training data

and still they achieve state-of-the-art generalization performance!

Understanding this requires new theory.

History:
Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2019). Reconciling

modern machine-learning practice and the classical bias–variance

trade-off. Proceedings of the National Academy of Sciences,

116(32), 15849–15854.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R.J.(2019).

Surprises in High-Dimensional Ridgeless Least Squares

Interpolation. arXiv:1903.08560.

Bartlett, P.L., Long, P.M., Lugosi, G., and Tsigler, A.(2020). Benign

overfitting in linear regression. Proceedings of the National

Academy of Sciences, 117(48):30063–30070.
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Ongoing work – Adversarial error to study robustness

Overparametrized models can generalize effectively when train and test

come from the same distribution...

Can it also generalize effectively when there is a distribution shift?

Illustration of an adversarial attack: I.J. Goodfellow, J. Shlens, C. Szegedy, “Explaining and Harnessing Adversarial Examples”, ICLR 2015.

Initial results presented at the Workshop on the Theory of

Overparameterized Machine Learning (TOPML) last month.
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Education – new book and associated course

Andreas Lindholm, Niklas Wahlström, Fredrik Lindsten, and TS. Machine Learning – a first course for engineers and scientists.

Cambridge University Press, 2021.

http://smlbook.org/

All material for a popular first ML course is available if you are interested.
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Conclusion

Aim: Create an awareness of how we can use deep neural networks for

regression and show that energy-based models are useful in this context.

• Introduced an EBM for regression using DNNs

• The construction is generally applicable

• Solved the training problem using

• Importance sampling

• Generalized noise contrastive esimation

• State-of-the-art performance on challenging regression problems

using images and laser point clouds.

• Analyzing overparameterized models is an important topic.
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