
Machine learning approaches

for system identification

Thomas Schön, Uppsala University, Sweden.

Conference on Modelling Identification and Control of Nonlinear Systems (MICNON)

Guadalajara, Mexico,

June 22, 2018.

Key lesson from contemporary Machine Learning

Flexible models often give the best performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use more parameters as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R. Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.

1/28

Gaussian process

The Gaussian process is a non-parametric and probabilistic model of a

nonlinear function.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.

2/28

Motivation 0 – Static model of the ambient magnetic field

The Earth’s magnetic field sets a background for the ambient magnetic

field. Deviations make the field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 2018. (in press)

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 3/28

www.youtube.com/watch?v=enlMiUqPVJo

Motivation 1 – GP-based linear impulse response estimation

Consider a linear time-invariant dynamical system described by

y(tk) =

∫ ∞
0

g(τ)u(tk − τ)dτ + e(tk).

Task: Learn a model of the true underlying impulse response g(τ).

Beats the “classical system identification approach”.
Gianluigi Pillonetto and Giuseppe De Nicolao. A new kernel-based approach for linear system identification. Automatica, 46(1):81–93,

2010.

The GP offers a data-driven model flexibility tuning, an automatic

regularization striking a bias-variance trade-off that is “just right”.

The “classic” parametric approaches and the GP-based approach are

linked via a decision-theoretic formulation.
Johan Wågberg, Dave Zachariah and TS. Regularized parametric system identification: a decision-theoretic formulation. In Proceedings

of the American Control Conference (ACC), Milwaukee, WI, USA, June, 2018.

4/28

Motivation 2 – GP-based nonlinear ARX models

Standard nonlinear ARX model structure

yt = ϕ(yt−1, . . . , yt−ny , ut , . . . , ut−nu) + et

= ϕ(zt) + et ,

where ϕ is some function and zt = (yt−1, . . . , yt−ny , ut , . . . , ut−nu).

The GP can be used to represent

the unknown nonlinear function ϕ,

ϕ(z) ∼ GP(0, κη(z , z ′)).

System Identification through Online Sparse Gaussian Process Regression with Input Noise

Figure 1: Predictions of the NIGP algorithm (left) and the SONIG algorithm (right) after
n = 30 training points have been incorporated. Exact conditions are described
in the main text.

below 0.1). However, when the input is near −3 or −1/2, the standard deviation is larger
(near 0.2). This is what can be expected, because measurements in these steep regions are
much more affected/distorted by the noise, and hence provide less information.

A second thing to be noticed is the difference between the two methods. Especially for
x > 2, where there are relatively few training points, the SONIG algorithm gives much
higher variances. There are two reasons for this. The first is inherent to sparse algorithms.
(The FITC algorithm would show a similar trend.) The second reason is inherent to the
SONIG algorithm. Whereas regular GP regression (and similarly the NIGP algorithm) uses
all training points together, the SONIG algorithm only uses data from previous training
points while incorporating a new training point. As a result, when there are relatively
few measurements in a certain region, and many of these measurements appear early in the
updating process, the accuracy in that region can be expected to be slightly lower. However,
as more training points are incorporated, which can be done very efficiently, the problem
will quickly disappear.

5.2 Identifying the dynamics of a magneto-rheological fluid damper

In the next experiment we will apply the developed system identification algorithm (Al-
gorithm 2) to a practical problem. In particular, we model the dynamical behavior of
a magneto-rheological fluid damper. The measured data for this example was provided
by Wang et al. (2009) and supplied through The MathWorks Inc. (2015), which also dis-
cusses various system identification examples using the techniques from Ljung (1999). This
example is a common benchmark in system identification applications. It has for instance
been used more recently in the context of Gaussian Process State Space Models (GP-SSM)
by Svensson and Schön (2017) in their Reduced Rank GP-SSM (RR GP-SSM) algorithm.

This example has 3499 measurements provided, sampled every ∆t = 0.05 seconds. We
will use the first 2000 measurements (10 seconds) for training and the next 1499 measure-

17

Jus Kocijan, Agathe Girard, Blaz Banko, and Roderick Murray-Smith. Dynamic systems identification with Gaussian processes.

Mathematical and Computer Modelling of Dynamical Systems, 11(4):411–424, 2005.

Hildo Bijl, TS, Jan-Willem van Wingerden and Michel Verhaegen. System identification through online sparse Gaussian process

regression with input noise. IFAC Journal of Systems and Control, 2:1–11, December, 2017.
5/28

Motivation 3 – GP-based nonlinear state space model

“Inspired by the Gaussian process, enabled by the particle filter”

xt+1 = f (xt) + vt , s.t. f (x) ∼ GP(0, κη,f (x , x ′)),

yt = g(xt) + et , s.t. g(x) ∼ GP(0, κη,g (x , x ′)).

Results in a flexible non-parametric model where the GP prior takes on

the role of a regularizer. Enables regularization also in nonlinear models.

We can now approximately recover the posterior distribution

p(f , g ,Q,R, η | y1:T),

(we use SMC and MCMC).

Frigola, Roger, Fredrik Lindsten, TS, and Carl Rasmussen. Bayesian inference and learning in Gaussian process state-space models with

particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Andreas Svensson and TS. A flexible state space model for learning nonlinear dynamical systems, Automatica, 80:189-199, June, 2017.
6/28

Motivation 4 – GP-based maximum likelihood in nonlinear SSMs

Find the unknown parameters θ in a nonlinear SSM

xt = f (xt−1, θ) + vt ,

yt = g(xt , θ) + et ,

x0 ∼ p(x0 | θ).

Maximum likelihood – model the unknown parameters as a

deterministic variable θ and solve

max
θ

p(y1:T | θ),

where p(y1:T | θ) =
∏T

t=1

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

approx. by SMC

dxt .

Challenge: The non-convex optimization problem is stochastic!

Adrian G. Wills and TS. On the construction of probabilistic Newton-type algorithms, Proceedings of the 56th IEEE Conference on

Decision and Control (CDC), Melbourne, Australia, December 2017. 7/28

Motivation – why use the GP in system identification?

Static models:

0. Estimating the ambient magnetic field

Linear dynamical models:

1. Impulse response estimation

Nonlinear dynamical models:

2. Nonlinear ARX models

3. Nonlinear state space model

4. Maximum likelihood learning of nonlinear SSM

• Stochastic quasi-Newton algorithm (much more general)

Perhaps most interesting:
5. Situations where it has not yet been used...

8/28

Outline

Message: The Gaussian process can be used to construct new models

and algorithms for identification of nonlinear dynamical systems.

Outline:

Introductory motivation

Part 1 – Probabilistic modelling of nonlinear dynamical systems

Part 2 – Inferring the state via sequential Monte Carlo

Part 3 – Stochastic optimization

”The Gaussian process (GP) is a non-parametric and probabilistic model of a

nonlinear function.”

9/28

Part 1 – Probabilistic modelling

of dynamical systems

Probabilistic modeling of dynamical systems

Probabilistic modeling allow for representing and manipulating

uncertainty in data, models, decisions and predictions.

A parametric state space model (SSM) is given by:

xt = fθ(xt−1, ut) + vθ,t ,

yt = gθ(xt , ut) + eθ,t ,

x0 ∼ pθ(x0),

(θ ∼ p(θ)).

xt | xt−1 ∼ pθ(xt | xt−1, ut),

yt | xt ∼ pθ(yt | xt , ut),
x0 ∼ pθ(x0),

(θ ∼ p(θ)).

10/28

SSM – full probabilistic model

The full probabilistic model is given by

p(x0:T , θ, y1:T) = p(y1:T | x0:T , θ)︸ ︷︷ ︸
data distribution

p(x0:T , θ)︸ ︷︷ ︸
prior

Distribution describing a parametric nonlinear SSM

p(x0:T , θ, y1:T) =
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏
t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!

11/28

Finding the states and the parameters

Based on our generative model, compute the posterior distribution

p(x0:T , θ | y1:T) = p(x0:T | θ, y1:T)︸ ︷︷ ︸
state inf.

p(θ | y1:T)︸ ︷︷ ︸
param. learn.

.

Bayesian formulation – model the unknown parameters as a random

variable θ ∼ p(θ) and compute

p(θ | y1:T) =
p(y1:T | θ)p(θ)

p(y1:T)

Maximum likelihood formulation – model the unknown parameters as

a deterministic variable and solve

θ̂ = argmax
θ∈Θ

p(y1:T | θ).

12/28

Central object – the likelihood

The likelihood is computed by marginalizing

p(x0:T , y1:T | θ) = p(x0 | θ)
T∏
t=1

p(yt | xt , θ)
T∏
t=1

p(xt | xt−1, θ),

w.r.t the state sequence x0:T ,

p(y1:T | θ) =

∫
p(x0:T , y1:T | θ)dx0:T .

(We are averaging p(x0:T , y1:T | θ) over all possible state sequences.)

Equivalently we have

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ) =
T∏
t=1

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

key challenge

dxt .

TS, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential Monte Carlo

methods for system identification. In Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing, China,

October 2015.
13/28

The model – learning relationship

Learning a model based on data leads to computational challenges:

• Integration: e.g. the HD integrals arising during marg. (averaging

over all possible parameter values z):

p(y1:T) =

∫
p(y1:T | z)p(z)dz .

• Optimization: e.g. when extracting point estimates, for example by

maximizing the likelihood

ẑ = argmax
z

p(y1:T | z)

Impossible to compute exactly, approximations are needed:

• Monte Carlo (MC), Markov chain MC, and sequential MC.

• Variational inference (VI).

• Stochastic optimization.

14/28

Part 2 – Inferring the state via

sequential Monte Carlo

Learning the state – nonlinear filtering problem

Aim: Compute the nonlinear filtering distribution p(xt | y1:t).

The solution entails the measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
p(yt | xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and the time update

p(xt | y1:t−1) =

∫
p(xt | xt−1)︸ ︷︷ ︸

dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.

Key problem: The integrals are intractable!

15/28

Sequential Monte Carlo (SMC)

SMC provide approximate solutions to integration problems where

there is a sequential structure present.

The particle filter approximates p(xt | y1:t) for

xt = f (xt−1) + vt ,

yt = g(xt) + et ,

by maintaining an empirical distribution made up of N samples

(particles) {x it}Ni=1 and the corresponding weights {w i
t}Ni=1

p̂(xt | y1:t) =
N∑
i=1

w i
t∑N

j=1 w
j
t

δx i
t
(xt),

that converge to the true filtering distribution as N →∞.

16/28

Application – indoor localization

Aim: Compute the position of a person moving around indoors using

sensors (inertial, magnetometer, radio) located in an ID badge and a map.

Probability density function

representing an office environment,

the bright areas are rooms and

corridors (i.e., walkable space).

Show movie

17/28

Sequential Monte Carlo (SMC) – abstract

The distribution of interest π(x) is called target distribution.

(Abstract) problem formulation: Sample from a sequence of prob-

ability distributions {πt(x0:t)}t≥1 defined on a sequence of spaces of

increasing dimension, where

πt(x0:t) =
π̃t(x0:t)

Zt
,

such that π̃t(xt) : X t → R+ is known point-wise and Zt =
∫
π(x0:t)dx0:t

is often computationally challenging.

1. Approximate the normalizing constant Zt .

2. Approximate πt(xt) and compute integrals
∫
ϕ(xt)πt(xt)dxt .

Important question: How general is this formulation?

18/28

Automation via a probabilistic programming language

1. Basic idea of probabilistic programming: equate probabilistic

models with the computer programs that implement them.

2. Just as we can think of doing inference over models, we can now

think of doing inference over programs.

Provides a means for separating the model and the learning algorithms.

We are developing a probabilistic programming language called Birch.

birch-lang.org

19/28

birch-lang.org

Part 3 – Stochastic optimization

Intuitive preview example – Rosenbrock’s banana function

Let f (θ) = (1− θ1)2 + 100(θ2 − θ2
1)2.

Deterministic problem

min
θ

f (θ)

Stochastic problem

min
θ

f (θ)

when we only have access to noisy

versions of the cost function

(f̃ (θ) = f (θ) + e, e = N (0, 302))

and its gradients. 20/28

Quasi-Newton – A non-standard take

Our problem is of the form

max
θ

f (θ)

Idea underlying (quasi-)Newton methods: Learn a local quadratic

model q(θk , δ) of the cost function f (θ) around the current iterate θk

q(θk , δ) = f (θk) + g(θk)Tδ +
1

2
δTH(θk)δ

g(θk) = ∇f (θ)
∣∣
θ=θk

, H(θk) = ∇2f (θ)
∣∣
θ=θk

, δ = θ − θk .

We have measurements of

• the cost function fk = f (θk),

• and its gradient gk = g(θk).

Question: How do we update the Hessian model?
21/28

Useful basic facts

Line segment connecting two adjacent iterates θk and θk+1:

rk(τ) = θk + τ(θk+1 − θk), τ ∈ [0, 1].

1. The fundamental theorem of calculus states that∫ 1

0

∂

∂τ
∇f (rk(τ))dτ = ∇f (rk(1))−∇f (rk(0)) = ∇f (θk+1)︸ ︷︷ ︸

gk+1

−∇f (θk)︸ ︷︷ ︸
gk

.

2. The chain rule tells us that

∂

∂τ
∇f (rk(τ)) = ∇2f (rk(τ))

∂rk(τ)

∂τ
= ∇2f (rk(τ))(θk+1 − θk).

gk+1 − gk︸ ︷︷ ︸
=yk

=

∫ 1

0

∂

∂τ
∇f (rk(τ))dτ =

∫ 1

0

∇2f (rk(τ))dτ(θk+1 − θk︸ ︷︷ ︸
sk

).

22/28

Result – the quasi-Newton integral

With the definitions yk , gk+1 − gk and sk , θk+1 − θk we have

yk =

∫ 1

0

∇2f (rk(τ))dτsk .

Interpretation: The difference between two consecutive gradients (yk)

constitute a line integral observation of the Hessian.

Problem: Since the Hessian is unknown there is no functional form

available for it.

23/28

Solution 1 – recovering existing quasi-Newton algorithms

Existing quasi-Newton algorithms (e.g. BFGS, DFP, Broyden’s method)

assume the Hessian to be constant

∇2f (rk(τ)) ≈ Hk+1, τ ∈ [0, 1],

implying the following approximation of the integral (secant condition)

yk = Hk+1sk .

Find Hk+1 by regularizing H:

Hk+1 = min
H

‖H − Hk‖2
W ,

s.t. H = HT, Hsk = yk ,

Equivalently, the existing quasi-Newton methods can be interpreted as

particular instances of Bayesian linear regression.

Philipp Hennig. Probabilistic interpretation of linear solvers, SIAM Journal on Optimization, 25(1):234–260, 2015. 24/28

Solution 2 – use a flexible nonlinear model

The approach used here is fundamentally different.

Recall that the problem is stochastic and nonlinear.

Hence, we need a model that can deal with such a problem.

Idea: Represent the Hessian using a Gaussian process learnt from data.

25/28

Resulting stochastic qN integral and Hessian model

Summary: resulting stochastic quasi-Newton integral:

yk = Dk

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(θ) ∼ GP(µ(θ), κ(θ, θ′)).

The Hessian can now be estimated using tailored GP regression.

Linear transformations (such as an integral or a derivative) of a GP

results in a new GP.

26/28

Resulting stochastic optimization algorithm

Standard numerical optimization loop with non-standard components.

Algorithm 1 Stochastic optimization

1. Initialization (k = 1)

2. while not terminated do

(a) Compute a search direction pk using the current approximation of

the gradient gk and Hessian Bk .

(b) Stochastic line search to find a step length αk and set

θk+1 = θk + αkpk .

(c) Update the Hessian model (tailored GP regression).

(d) Set k := k + 1.

3. end while

Curvature information is useful also for stochastic optimization.
27/28

Conclusions

Message: The Gaussian process can be used to construct new models

and algorithms for identification of nonlinear dynamical systems.

Motivation via 4 recent applications of the GP for dynamical systems.

Part 1 – Probabilistic modelling of nonlinear dynamical systems

Part 2 – Inferring the state via sequential Monte Carlo

Part 3 – Showed that the GP can be useful also for deriving methods

(stochastic optimization)

Take away: There are still many unexplored avenues when it comes

to combining these tools for nonlinear system identification and control!

28/28

	Part 1 – Probabilistic modelling of dynamical systems
	Part 2 – Inferring the state via sequential Monte Carlo
	Part 3 – Stochastic optimization

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PauseLeft:
	0.PlayLeft:
	0.PlayPauseLeft:
	0.PauseRight:
	0.PlayRight:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:

