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Introduction

A state space model (SSM) consists of a Markov process {xt}t≥1

that is indirectly observed via a measurement process {yt}t≥1,

xt+1 |xt ∼ fθ(xt+1 |xt, ut),
yt |xt ∼ gθ(yt |xt, ut),

x1 ∼ µθ(x1),

(θ ∼ π(θ)).

xt+1 = aθ(xt, ut) + vθ,t,

yt = cθ(xt, ut) + eθ,t,

x1 ∼ µθ(x1),

(θ ∼ π(θ)).

Identifying the nonlinear SSM: Find θ based on
y1:T , {y1, y2, . . . , yT } (and u1:T ). Hence, the off-line problem.

One of the key challenges: The states x1:T are unknown.

Aim of the talk: Reveal the structure of the system identification
problem arising in nonlinear SSMs and highlight where SMC is used.
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Two commonly used problem formulations

Maximum likelihood (ML) formulation – model the unknown pa-
rameters as a deterministic variable and solve

θ̂ML = arg max
θ∈Θ

pθ(y1:T ).

Bayesian formulation – model the unknown parameters as a ran-
dom variable θ ∼ π(θ) and compute

p(θ | y1:T ) =
p(y1:T | θ)π(θ)

p(y1:T )
=
pθ(y1:T )π(θ)

p(y1:T )
.

The combination of ML and Bayes is probably more interesting
than we think.

2 / 42 thomas.schon@it.uu.se Workshop on nonlinear system identification benchmarks, Brussels, Belgium, April 26, 2016.

mailto:thomas.schon@it.uu.se


Central object – the likelihood

The likelihood is computed by marginalizing the joint density

pθ(x1:T , y1:T ) = µθ(x1)

T∏

t=1

gθ(yt |xt)
T−1∏

t=1

fθ(xt+1 |xt),

w.r.t. the state sequence x1:T ,

pθ(y1:T ) =

∫
pθ(x1:T , y1:T )dx1:T .

We are averaging pθ(x1:T , y1:T ) over all possible state sequences.

Equivalently we have

pθ(y1:T ) =
T∏

t=1

pθ(yt | y1:t−1) =
T∏

t=1

∫
gθ(yt |xt) pθ(xt | y1:t−1)︸ ︷︷ ︸

key challenge

dxt.
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Sequential Monte Carlo

The need for computational methods, such as SMC, is tightly
coupled to the intractability of the integrals on the previous slide.

SMC provide approximate solutions to integration problems
where there is a sequential structure present.

The particle filter and the particle smoother maintain empirical
approximations

p̂θ(xt | y1:t) =

N∑

i=1

witδxit(xt), p̂θ(x1:t | y1:t) =

N∑

i=1

witδxi1:t
(x1:t).

Converge to the true distributions as N −→∞.
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Using SMC for nonlinear system identification

SMC can be used to approximately

1. Compute the likelihood and its derivatives.

2. Solve state smoothing problems, e.g. compute p(x1:T | y1:T ).

3. Simulate from the smoothing pdf, x̃1:T ∼ p(x1:T | y1:T ).

These three capabilities are key components in implementing
various nonlinear system identification strategies.
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Identification strategies – overview

Marginalization Deal with x1:T by marginalizing (integrating)
them out and view θ as the only unknown quantity.

• Frequentistic formulation: Prediction Error Method (PEM)
and direct maximization of the likelihood.

• Bayesian formulation: the Metropolis Hastings sampler.

Data augmentation Deal with x1:T by treating them as auxiliary
variables to be estimated along with θ.

• Frequentistic formulation: Expectation Maximization (EM).

• Bayesian formulation: the Gibbs sampler.

Only data augmentation strategies in this talk.
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Outline

1. Problem formulation

2. Identification strategies for nonlinear SSMs

3. Sequential Monte Carlo (SMC)

4. Data augmentation

a) Expectation maximization (EM)
b) Gibbs sampling “identification without optimization”

5. Snapshots of current research

a) The Gaussian process SSM and regularization
b) The nonlinear SSM is just a special case...
c) SMC in high dimensions
d) Coupling of particle filters
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Particle filter – introductory example (I/III)

Consider a toy 1D localization problem.

Data Model
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes
velocity (known), vt ∼ N (0, 5) denotes an
unknown disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here
the terrain height) and et ∼ N (0, 1)
denotes an unknown disturbance.

The same idea has been used in many applications, see e.g.

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed
linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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Particle filter – introductory example (II/III)

Task: Find the state xt based on a set of measurements
y1:t , {y1, . . . , yt} by computing the filter PDF p(xt | y1:t).

The particle filter (PF) maintains an approximation according to

p̂(xt | y1:t) =

N∑

i=1

witδxit(xt),

that converge to the true filtering distribution as N →∞.

“Think of each particle as one simulation of the system state.
Keep the ones that best explains the measurements.”
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Particle filter – introductory example (III/III)

Highlights two key
capabilities of the PF:

1. Automatically
handles an
unknown and
dynamically
changing number
of hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.
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Example – indoor localization

Aim: Compute the position of a person moving around indoors
using sensors (inertial, magnetometer and radio) located in an ID
badge and a map.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio
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Example – indoor localization

Show movie

Johan Kihlberg, Simon Tegelid, Manon Kok and Thomas B. Schön. Map aided indoor positioning using particle
filters. Reglermöte (Swedish Control Conference), Linköping, Sweden, June 2014.
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Sequential Monte Carlo – particle filter

SMC = resampling + sequential importance sampling

1. Resampling: P
(
ait = j

)
= w̄jt−1/

∑
l w̄

l
t−1.

2. Propagation: xit ∼ fθ(xt |x
ait
1:t−1) and xi1:t = {xa

i
t

1:t−1, x
i
t}.

3. Weighting: w̄it = Wt(x
i
t) = gθ(yt |xt).

The ancestor indices {ait}Ni=1 are very useful auxiliary variables!
They make the stochasticity of the resampling step explicit.
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Use of random numbers in the particle filter

Random numbers are used

1. to initialize the particles,

2. to resample and

3. to propagate them.

The weighting step does not require any new random numbers, it
is just a function of already existing random numbers.

We can reason about and make use of the probability
distribution from which the particle filter generates one

realisation each time it is executed.
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The particle system degenerates (illustration)

Clearly motivates the need
for particle smoothers.

Self-contained introduction to particle smoothing using BS and AS
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.
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Outline

1. Problem formulation

2. Identification strategies for nonlinear SSMs

3. Sequential Monte Carlo (SMC)

4. Data augmentation
a) Expectation maximization (EM)
b) Gibbs sampling “identification without optimization”

5. Snapshots of current research

a) The Gaussian process SSM and regularization
b) The nonlinear SSM is just a special case...
c) SMC in high dimensions
d) Coupling of particle filters
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Identification strategy – data augmentation

Motivation: If we had access to the complete likelihood

pθ(x1:T , y1:T ) = µθ(x1)

T∏

t=1

gθ(yt |xt)
T−1∏

t=1

fθ(xt+1 |xt)

the problem would be much easier.

Key idea: Treat the state sequence x1:T as an auxiliary variable
that is estimated together with θ.

The data augmentation strategy breaks the original problem into
two new and closely linked problems.

Intuitively the data augmentation strategy amounts to iterating
between updating x1:T and θ.
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Data augmentation – EM

Maximum likelihood (ML) formulation – model the unknown pa-
rameters as a deterministic variable and solve

θ̂ML = arg max
θ∈Θ

pθ(y1:T ).

The expectation maximization algorithm is an iterative approach to
compute ML estimates of unknown parameters (θ) in probabilistic
models involving latent variables (e.g. the state trajectory x1:T ).

Expectation maximization (EM) employs the complete likelihood
pθ(x1:T , y1:T ) as a substitute for the observed likelihood pθ(y1:T ),

pθ(x1:T , y1:T ) = pθ(x1:T | y1:T )pθ(y1:T ).
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Data augmentation – EM

EM works by iteratively computing

Q(θ, θk) =

∫
log pθ(x1:T , y1:T )pθk(x1:T | y1:T )dx1:T

and then maximizing Q(θ, θk) w.r.t. θ.

Problem: The E-step requires us to solve a smoothing problem,
i.e. to compute an expectation under pθk(x1:T | y1:T ).

EM MCEM PSEM

SMC is used to approximate the smoothing pdf pθk(x1:T | y1:T ).
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Using EM and particle smoothing together

Algorithm 1 EM for identifying nonlinear dynamical systems

1. Initialise: Set k = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θk) =

∫
log pθ(x1:T , y1:T ) pθk(x1:T | y1:T )︸ ︷︷ ︸dx1:T

using sequential Monte Carlo (particle smoother).

(b) Maximization (M) step: Compute θk+1 = arg max
θ∈Θ

Q(θ, θk)

(c) k ← k + 1

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models.
Automatica, 47(1):39-49, January 2011.
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Data augmentation – Gibbs sampling

Bayesian formulation – model the unknown parameters as a ran-
dom variable θ ∼ π(θ) and compute

p(θ | y1:T ) =
p(y1:T | θ)π(θ)

p(y1:T )
=
pθ(y1:T )π(θ)

p(y1:T )
.

Gibbs sampling amounts to sequentially sampling from conditionals
of the target distribution p(θ, x1:T | y1:T ).

A (blocked) example:

• Draw θ[m] ∼ p(θ |x1:T [m− 1], y1:T ); OK!

• Draw x1:T [m] ∼ p(x1:T | θ[m], y1:T ). Hard!

SMC is used to simulate from the smoothing pdf p(x1:T | y1:T ).
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Sampling based on SMC

With P
(
x?1:T = xi1:T

)
∝ wiT we get, x?1:T

approx.∼ p(x1:T | θ, y1:T ).
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Problems and a solution

Problems with this approach,

• Based on a PF ⇒ approximate sample.

• Does not leave p(x1:T | θ, y1:T ) invariant!

• Relies on large N to be successful.

• A lot of wasted computations.

To get around these problems,

Use a conditional particle filter. One pre-specified ref-
erence trajectory is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Gibbs (PG)

The idea underlying Particle Gibbs (PG) is to make use of a
certain SMC sampler to construct a Markov kernel leaving the
joint smoothing distribution p(x1:T | θ, y1:T ) invariant.

This Markov kernel is then used within a standard Gibbs sampler
that operates on a non-standard space.

SMC is used to build an MCMC kernel with p(x1:t | θ, y1:t) as its
stationary distribution without introducing any systematic errors!
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Three SMC samplers

Three SMC samplers leaving p(x1:T | θ, y1:T ) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods,
Journal of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)
N. Whiteley, Discussion on Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical
Society: Series B, 72(3), 306–307, 2010.

Fredrik Lindsten and Thomas B. Schön. On the use of backward simulation in the particle Gibbs
sampler. Proceedings of the 37th International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Particle Gibbs with ancestor sampling. Journal
of Machine Learning Research, 15(1):2145–2184, 2014.
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Conditional particle filter (CPF)

Let x′1:T = (x′1, . . . , x
′
T ) be a fixed reference trajectory.

• At each time t, sample N − 1 particles in the standard way.

• Set the N th particle deterministically: xNt = x′t.

“

CPF causes us to degenerate to the something that is very similar
to the reference trajectory, resulting in slow mixing.
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CPF vs. CPF-AS – motivation

BS is problematic for models with more intricate dependencies.

Reason: Requires complete trajectories of the latent variable in
the backward sweep.

Solution: Modify the computation to achieve the same effect as
BS, but without an explicit backwards sweep.

Implication: Ancestor sampling opens up for inference in a wider
class of models, e.g. non-Markovian SSMs, PGMs and BNP
models.

Ancestor sampling is conceptually similar to backward simulation,
but instead of using separate forward and backward sweeps, we

achieve the same effect in a single forward sweep.
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CPF-AS – intuition

Let x′1:T = (x′1, . . . , x
′
T ) be a fixed reference trajectory.

• At each time t, sample N − 1 particles in the standard way.

• Set the N th particle deterministically: xNt = x′t.

• Generate an artificial history for xNt by ancestor sampling.

“

CPF-AS causes us to degenerate to something that is very
different from the reference trajectory, resulting in better mixing.
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PGAS vs PG

PGAS PG
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Red: Old reference trajectory.

Blue: New reference trajectory.
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Example – semiparametric Wiener model

Lut g(·) Σ

vt et

yt
zt

Parametric LGSS and a nonparametric static nonlinearity:

xt+1 =
(
A B

)
︸ ︷︷ ︸

Γ

(
xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.

yt = g(zt) + et, et ∼ N (0, R).
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Example – semiparametric Wiener model

“Parameters”: θ = {A,B,Q, g( · ), r}.
Bayesian model specified by priors

• Conjugate priors for Γ = [A B], Q and r,

• p(Γ, Q) = Matrix-normal inverse-Wishart
• p(r) = inverse-Wishart

• Gaussian process prior on g( · ),

g( · ) ∼ GP(z, k(z, z′)).

Inference using PGAS with N = 15 particles.
T = 1 000 measurements. We ran 15 000 MCMC
iterations and discarded 5 000 as burn-in.

x1:T

y1:T

Γ Q
u1:T

g(·) r
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Example – semiparametric Wiener model

−10

0

10

20

M
a
g
n
it
u
d
e
(d
B
)

 

 

0 0.5 1 1.5 2 2.5 3

−200

−100

0

100

Frequency (rad/s)

P
h
a
se

(d
eg
)

True
Posterior mean
99 % credibility
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Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan. Bayesian semiparametric Wiener system
identification. Automatica, 49(7): 2053-2063, July 2013.

Look at the algorithms!!
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Combined ML and Bayesian approach

EM MCEM PSEM

SAEM Markov SAEM PSAEM

In stochastic approximation EM (SAEM) Q(θ, θk) is replaced by

Q̂k(θ) = (1− γk)Q̂k−1(θ) + γk log pθ(x1:T [k], y1:T ),

where x1:T [k] denotes a sample from pθk(x1:T | y1:T ).

F. Lindsten, An efficient stochastic approximation EM algorithm using conditional particle filters. In Proceedings
of the Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.
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Outline

1. Problem formulation

2. Identification strategies for nonlinear SSMs

3. Sequential Monte Carlo (SMC)

4. Data augmentation

a) Expectation maximization (EM)
b) Gibbs sampling “identification without optimization”

5. Snapshots of current research
a) The Gaussian process SSM and regularization
b) The nonlinear SSM is just a special case...
c) SMC in high dimensions
d) Coupling of particle filters
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Gaussian Process nonlinear state space model

Consider the Gaussian Process SSM (GP-SSM):

xt+1 = f(xt) + wt, s.t. f(x) ∼ GP(0, κθ,f (x, x′)),

yt = g(xt) + et, s.t. g(x) ∼ GP(0, κθ,g(x, x
′)).

The model functions f and g are assumed to be realizations from
Gaussian process priors and wt ∼ N (0, Q), et ∼ N (0, R).

We can now find the posterior distribution

p(f, g,Q,R, θ | y1:T ),

by making use of new MCMC algorithms.

Andreas Svensson, Arno Solin, Simo Särkkä and Thomas B. Schön, Computationally efficient Bayesian learning of
Gaussian process state space models. In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics (AISTATS), Cadiz, Spain, May, 2016.

Roger Frigola, Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen. Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. Advances in Neural Information Processing Systems
(NIPS) 26, Lake Tahoe, NV, USA, December, 2013.
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Gaussian Process nonlinear state space model

m = 6

m = 100

m = 100
+ regularization

Data
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True function
Standard deviation of 𝑤t

Identified function
Estimated standard deviation of 𝑤t

Fig. 1. The first example, with three different settings: 𝑚 = 6 basis
functions (top), 𝑚 = 100 basis functions (middle) and 𝑚 = 100 basis
functions with regularization (bottom). The model with 𝑚 = 6 is not flexible
enough to describe the ‘steep’ part of 𝑓 , but results in a sensible, albeit not
perfect, model. The second model is very flexible with its 101 parameters, and
becomes a typical case of over-fitting to the data points (cf. the distribution
of the data at the very bottom), causing numerical problems and a useless
model. The regularization in the third case is a clear remedy to this problem,
still maintaining the high flexibility of the model.

A natural question is indeed how to choose the prior preci-
sion 𝑃 . As stated by [12], the optimal choice (in terms of mean
square error) is 𝑃−1

opt = E
[︀
[𝜔(1) · · · 𝜔(𝑚)]T[𝜔(1) · · · 𝜔(𝑚)]

]︀
,

if we think of 𝜔(1), . . . , 𝜔(𝑚) as being random variables.
As an example, with the natural assumption of 𝑓𝑥(·) being
smooth, the diagonal elements of 𝑃 should be larger with
increasing order of the Fourier basis functions. The special
case of assuming 𝑓𝑥(·) to be a sample from a Gaussian process
is addressed by [14].

Other regularization schemes, such as 𝐿1, are possible but
will not result in closed-form expressions such as (9).

C. Computational aspects

Let 𝑁 denote the number of particles in the CPF-AS, 𝑚 the
numer of terms used in the basis function expansion, 𝑇 the
number of data points and 𝐾 the numer of iterations used in
Algorithm 2. The computational load is then 𝒪(𝑚𝑇𝐾𝑁) +
𝒪(𝑚3). In practice, 𝑁 and 𝑚 can be chosen fairly small (e.g.,
𝑁 = 5 and 𝑚 = 10 for a 1D model).

D. Convergence

The convergence properties of PSAEM are not yet fully
understood, but it can under certain assumptions be shown
to converge to a stationary point of 𝑝𝜃(𝑢1:𝑇 , 𝑦1:𝑇 ) by [17,
Theorem 1]. We have not experienced practical problems with
the convergence, although it is sensitive to initialization when
the dimension of 𝜃 is large (e.g., 1 000 parameters).

TABLE I
RESULTS FOR THE HAMMERSTEIN-WIENER BENCHMARK

Experiment with 𝑇 = 2000
Mean simulation error 0.0005 V

Standard deviation of simulation error 0.020 V
RMS simulation error 0.020 V

Run time 13 min

IV. NUMERICAL EXAMPLES

We demonstrate our proposed method on a series of numer-
ical examples. The source code is available via the web site
of the first author.

A. Simulated example

As a first simple numerical example, consider an au-
tonomous system (i.e., no 𝑢𝑡) defined by

𝑥𝑡+1 =
−10𝑥𝑡

1 + 3𝑥2
𝑡

+ 𝑤𝑡, 𝑦𝑡 = 𝑥𝑡 + 𝑒𝑡, (10)

where 𝑤𝑡 ∼ 𝒩 (0, 0.1) and 𝑒𝑡 ∼ 𝒩 (0, 0.5). We identify 𝑓(·)
and 𝑄 from 𝑇 = 1000 simulated measurements 𝑦1:𝑇 , while
assuming 𝑔(·) and 𝑅 to be known. We consider three different
settings with 𝑚 = 6 basis functions, 𝑚 = 100 basis functions
and 𝑚 = 100 basis functions with regularization, respectively,
all using the Fourier basis. To encode the a priori assumption
of 𝑓(·) being a smooth function, we choose the regularization
as a Gaussian prior of 𝑤𝑘 with standard deviation inversely
proportional to 𝑘. The results are shown in Figure 1, where
the over-fitting problem for 𝑚 = 100, and how regularization
helps, is apparent.

B. Hammerstein-Wiener benchmark

To illustrate how to adapt our approach to problems with
a given structure, we apply it to the real-data Hammerstein-
Wiener system identification benchmark by [20]. We will use
a subset with 2 000 data points from the original data set for
estimation. Based on the domain knowledge provided by [20]
(two third order linear systems in a cascade with a static
nonlinearity between), we identify a model with the structure

[︃
𝑥1
𝑡+1

𝑥2
𝑡+1

𝑥3
𝑡+1

]︃
= 𝐴1

[︃
𝑥1
𝑡

𝑥2
𝑡

𝑥3
𝑡

]︃
+𝐵𝑢𝑡, (11a)

[︃
𝑥4
𝑡+1

𝑥5
𝑡+1

𝑥6
𝑡+1

]︃
= 𝐴2

[︃
𝑥4
𝑡

𝑥5
𝑡

𝑥6
𝑡

]︃
+

[︃
Σ𝑘𝜔

(𝑘)𝜑(𝑘)(𝑥3
𝑡 )

0

0

]︃
, (11b)

𝑦𝑡 = 𝐶 [ 𝑥4
𝑡 𝑥5

𝑡 𝑥6
𝑡 ] , (11c)

where the superindex on the state denotes a particular com-
ponent of the state vector. Furthermore, we have omitted
all noise terms for notational brevity. There is only one
nonlinear function, but the linear parts can be seen as the
special case where {𝜑(𝑘)(𝑥)}𝑚𝑘=1 = {𝑥}, which can directly
be incorporated into the presented framework.

We present the results in Table I (all metrics are with respect
to the evaluation data from the original data set). We refer to
[21] for a thorough evaluation of alternative methods.

This gives us a flexible
nonparametric model where
the GP prior on f takes on
the role of a regularizer. This
provides a data-driven way of
tuning the model complexity.

Toy example:

xt+1 = −10
xt

1 + 3x2t
+ vt,

yt = xt + et.

Andreas Svensson and Thomas B. Schön. A flexible state space model for learning nonlinear dynamical systems,
Preprint on ArXiv:1603.05486, 2016.
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The nonlinear SSM is just a special case...

A graphical model is a probabilistic model where a graph
G = (V, E) represents the conditional independency structure
between random variables,

1. a set of vertices V (nodes) represents the random variables

2. a set of edges E containing elements (i, j) ∈ E connecting a
pair of nodes (i, j) ∈ V

x0 x1 x2 . . . xT

y1 y2 yT

p(x0:T , y1:T ) = p(x0)

N∏

t=1

p(xt |xt−1)

N∏

t=1

p(yt |xt).
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The nonlinear SSM is just a special case...

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite

possibly underutilized) idea.

y1 y2 y3

x1 x2 x3

x4

x5

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, Thomas B. Schön, John Aston
and Alexandre Bouchard-Côté. Divide-and-Conquer with Sequential Monte Carlo. arXiv:1406.4993, June 2015.
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SMC in high dimensions

The bootstrap PF suffers
from weight collapse in
high-dimensional settings.

This degeneracy can be
reduced by using so-called
fully adapted proposals. · · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

k − 1 k k + 1

We can mimic the efficient fully adapted proposals for arbitrary
latent spaces and structures in high-dimensional models.

Approximations the proposal distribution and use a nested
coupling of multiple SMC samplers and backward simulators.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Nested sequential Monte Carlo. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), Lille, France, July, 2015.
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Coupling of particle filters

New coupled resampling schemes can be used to improve a
variety of particle-based algorithms.
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Log-likelihood estimates obtained by particle filters, in a hidden AR(1).

New particle smoother, easy to parallelize and with analysis.

Pierre Jacob, Fredrik Lindsten, Thomas B. Schön, Coupling of particle filters. On arXiv soon.
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New project – ASSEMBLE

Vision – hands on: “Develop the equivalent of cvx for inference
and learning problems”. Create a market place for inference
algorithms, especially SMC and MCMC.

Develop a formally defined probabilistic modeling language and
a model compiler.

Probabilistic programming makes use of computer
programs to represent probabilistic models.

Creates a clear separation between the model and the inference
methods, encouraging model based thinking. Potential to
automate inference!

Time frame: 5 years, starting 1 July 2016. Industry collaborators.

Swedish Foundation for Strategic Research.
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Conclusion

Marginalization Data augmentation
ML Direct optimization Expectation Maximization

Bayesian Metropolis Hastings Gibbs sampling

SMC is used to realize all of these approaches for nonlinear SSMs.

SMC can be used to approximately

1. Compute the likelihood and its derivatives.

2. Solve state smoothing problems, e.g. compute p(x1:T | y1:T ).

3. Simulate from the smoothing pdf, x̃1:T ∼ p(x1:T | y1:T ).

Fast moving research area offering lots of opportunities!

42 / 42 thomas.schon@it.uu.se Workshop on nonlinear system identification benchmarks, Brussels, Belgium, April 26, 2016.

mailto:thomas.schon@it.uu.se


SMC convergence in one slide...

Let ϕ : X 7→ R be some test function of interest. The expectation

Eθ [ϕ(xt) | y1:t] =

∫
ϕ(xt)pθ(xt | y1:t)dxt,

can be estimated by the particle filter

ϕ̂Nt ,
N∑

i=1

witϕ(xit).

The CLT governing the convergence of this estimator states
√
N
(
ϕ̂Nt − Eθ [ϕ(xt) | y1:t]

) d−→ N (0, σ2
t (ϕ)).

The likelihood estimate p̂θ(y1:t) =
∏t
s=1

{
1
N

∑N
i=1 w̄

i
s

}
from the

PF is unbiased, Eψθ [p̂θ(y1:t)] = pθ(y1:t) for any value of N and
there are CLTs available as well.
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Micro: MCMC – AR(1) example (I/II)

One realisation from x[k + 1] = 0.8x[k] + v[k] where
v[k] ∼ N (0, 1). Initialise in x[0] = −40.

0 100 200 300 400 500
−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Time

x

This will eventually
generate samples from the
following stationary
distribution:

πs(x) = N
(
x

∣∣∣∣ 0,
1

1− 0.82

)

as t→∞.
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Micro: MCMC – AR(1) example (II/II)

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

1 000 samples

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

100 000 samples

The true stationary distribution is showed in black and the
empirical histogram obtained by simulating the Markov chain
x[k + 1] = 0.8x[k] + v[k] is plotted in gray.

The initial 1 000 samples are discarded (burn-in).
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Micro: MCMC

In the example, the Markov chain was fully specified and the
stationary distribution could be expressed in closed form.

Not possible in the situations we are interested in, but we can
(since 2010) find a Markov chain that has the target distribution
(e.g. p(θ | y1:T )) as its stationary distribution.

Two constructive ways of doing this are:

1. Metropolis Hastings (MH) algorithm

2. Gibbs sampling

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain
which has the target distribution as its stationary distribution.
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