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Dynamical systems are everywhere! 2(36)

Some of the dynamical systems we have been working with,

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

Dynamical systems are everywhere!

Examples of systems I have been working with

Create new probabilistic models of dynamical systems and automatically learn these 
models from data.

Use the models to automatically understand and control various systems.

We first have to learn the models. Then we can use them.
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Learning nonlinear dynamical systems from data 3(36)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ f t(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1).

We observe

y1:T , {y1, . . . , yT},

(leaving the latent variables x1:T unobserved).

Identification problem: Find f , g, µ (or θ) based on y1:T.
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Strategies for inference in latent variable models 4(36)

Alternate between updating θ and updating x1:T.

Frequentists:

• Find θ̂ML = arg max
θ

pθ(y1:T).

• Use e.g. the expectation maximization (EM) algorithm.

Bayesians:

• Find p(θ | y1:T).

• Use e.g. Gibbs sampling.
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Outline 5(36)

1. Maximum Likelihood (ML) identification
• Problem formulation
• Solution using EM and a particle smoother

2. Bayesian identification
• Problem formulation
• Gibbs sampling

3. Sequential Monte Carlo (SMC), the particle filter
4. Particle Gibbs with ancestor sampling (PG-AS)

• Example: Identifying Wiener systems
• Bayesian nonparametric dynamical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Problem formulation – ML 6(36)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1).

Identification problem: Find θ based on y1:T.

ML amounts to solving,

θ̂
ML

= arg max
θ

log pθ(y1:T)

where the log-likelihood function is given by

log pθ(y1:T) =
T

∑
t=1

log pθ(yt | y1:t−1)
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Expectation Maximization (EM) – Strategy in SSMs 7(36)

The EM algorithm computes ML estimates of unknown parameters in
probabilistic models involving latent variables.

The latent variables in an SSM are given by the states,

{x1, . . . , xT}.

Strategy: Use the structure inherent in the SSM to separate the
original problem into two closely linked subproblems, each of which
is hopefully in some sense more tractable than the original problem.
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EM – the algorithm 8(36)

Algorithm 1 EM for identifying nonlinear dynamical systems

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(x1:T, y1:T) | y1:T]

=
∫

log pθ(x1:T, y1:T) pθi(x1:T | y1:T)︸ ︷︷ ︸dx1:T

using PS (forward filter/backward simulation, FFBS).

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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Problem formulation – Bayesian 9(36)

Consider a Bayesian SSM (θ is now a random variable with a prior
density p(θ))

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1),
θ ∼ p(θ).

Identification problem: Compute the posterior p(θ, x1:T | y1:T), or
one of its marginals.

The key challenge is that there is no closed form expression
available for the posterior.
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Gibbs sampler for SSMs 10(36)

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain.

Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T),

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T).

The above procedure results in a Markov chain,

{θ[m], x1:T[m]}m≥1

with p(θ, x1:T | yT) as its stationary distribution!
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Gibbs sampler for a general SSM 11(36)

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T); OK!

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T). Hard!

Problem: p(x1:T | θ[m], y1:T) not available!

Idea: Approximate p(x1:T | θ[m], y1:T) using a sequential
Monte Carlo method!
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Outline 12(36)

1. Maximum Likelihood (ML) identification
• Problem formulation
• Solution using EM and a particle smoother

2. Bayesian identification
• Problem formulation
• Gibbs sampling

3. Sequential Monte Carlo (SMC), the particle filter

4. Particle Gibbs with ancestor sampling (PG-AS)

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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The particle filter 13(36)

The particle filter provides an approximation of the filter PDF
p(xt | y1:t), when the state evolves according to an SSM,

xt+1 | xt ∼ ft(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

The particle filter maintains an empirical distribution made up N
samples (particles) {xi

t}N
i=1 and corresponding weights {wi

t}N
i=1

p̂N(xt | y1:t) =
N

∑
i=1

wi
tδxi

t
(xt).

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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The particle filter 14(36)

1. Resampling: {xi
1:t−1, wi

t−1}N
i=1 → {x̃i

1:t−1, 1/N}N
i=1.

2. Propagation: xi
t ∼ Rt(xt | x̃i

1:t−1) and xi
1:t = {x̃i

1:t−1, xi
t}.

3. Weighting: wi
t = Wt(xi

1:t).

The result is a new weighted set of particles {xi
1:t, wi

t}N
i=1.

A systematic way of obtaining approximations that converge
Xiao-Li Hu, Thomas B. Schön and Lennart Ljung. A basic convergence result for particle filtering. IEEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.
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Example – Indoor localization 15(36)

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio

Show movie
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The particle filter – alternative formulation 16(36)

1. Resampling + Propagation:

(ai
t, xi

t) ∼ Mt(at, xt) =
wat

t−1

∑l wl
t−1

Rt(xt | xat
1:t−1).

2. Weighting: wi
t = Wt(xi

1:t).

The result is a new weighted set of particles {xi
1:t, wi

t}N
i=1.
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The particle filter – illustrating particle degeneracy 17(36)
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Sampling based on the PF 18(36)

With P(x′1:T = xi
1:T) ∝ wi

T we get, x′1:T
approx.∼ p(x1:T | θ, y1:T).
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Problems 19(36)

Problems with this approach,

• Based on a PF⇒ approximate sample.

• Does not leave p(θ, x1:T | y1:T) invariant!

• Relies on large N to be successful.

• A lot of wasted computations.

To get around these problems,

Use a conditional particle filter (CPF). One pre-specified
path is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Markov Chain Monte Carlo (PMCMC) 20(36)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1:T | θ, y1:T) invariant.

This Markov kernel is then used in a standard MCMC algorithm (e.g.
Gibbs, results in the Particle Gibbs (PG)).

Three SMC samplers leaving p(x1:T | θ, y1:T) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)
Fredrik Lindsten and Thomas B. Sch Schön. On the use of backward simulation in the particle Gibbs sampler.
Proc. of the 37th Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.
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Conditional PF with ancestor sampling 21(36)

Algorithm CPF w. ancestor sampling (CPF-AS), conditioned on x?1:T

1. Initialize (t = 1):
(a) Draw xi

1 ∼ Rθ
1(x1) for i 6= N and set xN

1 = x?1 .
(b) Set wi

1 = Wθ
1(x

i
1) for i = 1, . . . , N.

2. for t = 2, . . . , T:
(a) Draw (ai

t, xi
t) ∼ Mθ

t (at, xt) for i 6= N and set xN
t = x?t .

(b) Draw aN
t with P(aN

t = i) ∝ wi
t−1p(x?t | θ, xi

t−1).

(c) Set xi
1:t = {x

ai
t

1:t−1, xi
t} and wi

t = Wθ
t (x

i
1:t) for i = 1, . . . , N.

(The red text highlights the difference to the standard PF)
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CPF vs. CPF-AS 22(36)
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Conditional PF with ancestor sampling 23(36)

Theorem
For any N ≥ 2, the procedure;

(i) Run CPF-AS(x?1:T);

(ii) Sample P(x′1:T = xi
1:T) ∝ wi

T;

defines a Markov kernel on XT which leaves p(x1:T | θ, y1:T)
invariant.

Three additional reasons for using CPF-AS:

1. Significantly improves the mixing compared to CPF.

2. The computational complexity is linear in N.

3. Opens up for non-Markovian models.
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Particle Gibbs with ancestor sampling 24(36)

Bayesian identification: Gibbs + CPF-AS = PG-AS

Algorithm PG-AS: Particle Gibbs with ancestor sampling

1. Initialize: Set {θ[0], x1:T[0]} arbitrarily.
2. For m ≥ 1, iterate:

(a) Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T).

(b) Run CPF-AS(x1:T[m− 1]), targeting p(x1:T | θ[m], y1:T).

(c) Sample with P(x1:T[m] = x1:T
i) ∝ wi

T.

For any number of particles N ≥ 2, the Markov chain
{θ[m], x1:T[m]}m≥1 has stationary distribution p(θ, x1:T | y1:T).
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Toy example – stochastic volatility (I/II) 25(36)

Consider the stochastic volatility model,

xt+1 = 0.9xt + wt, wt ∼ N (0, θ),

yt = et exp
(

1
2

xt

)
, et ∼ N (0, 1).

Let us study the ACF for the estimation error, θ̂ − E [θ | y1:T]
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Toy example – stochastic volatility (II/II) 26(36)
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Some observations:
• We want the ACF to decay to zero as rapidly as possible (indicates good

mixing in the PG sampler).

• Note the superior mixing of PG-AS compared to PG-CPF (already for just
N = 5 particles!).
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Example – semiparametric Wiener model (I/III) 27(36)

Lut g(·) Σ

vt et

yt
zt

Parametric LGSS and a nonparametric static nonlinearity:

xt+1 =
(
A B

)︸ ︷︷ ︸
Γ

(
xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.
yt = g(zt) + et, et ∼ N (0, R).

Thomas Schön, Nonlinear system identification enabled via sequential Monte Carlo

Uppsala University Machine Learning seminar series, September 18, 2013.



Example – semiparametric Wiener model (II/III) 28(36)

Everything is learned from the data, by introducing the possibility to
switch specific model components on and off.

“Parameters”: θ = {A, B, Q, δ, g(·), r}.
Bayesian model specified by priors

• Sparseness prior (ARD) on Γ = [A B],
• Inverse-Wishart prior on Q and r
• Gaussian process prior on g(·),

g(·) ∼ GP(z, k(z, z′)).

Inference using PG-AS with N = 15 particles.
T = 1 000 measurements. We ran 15 000 MCMC
iterations and discarded 5 000 as burn-in.

x1:T

y1:T

Γ

δ

Q
u1:T

g(·) r
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Example – semiparametric Wiener model (III/III) 29(36)

Show movie
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Bode diagram of the 4th-order linear system.
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black) and 99% credibility intervals (blue).
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Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan. Bayesian semiparametric Wiener system identification.
Automatica, 49(7): 2053-2063, July 2013.
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Bayesian nonparametric models 30(36)

Bayesian nonparametric (BNP) models allow us to build flexible
models where the structure grows and adapts to data.

BNP models: Gaussian, Dirichlet and Beta processes.

Opens up for systematic reasoning of uncertainty not only over
parameters, but also orders, segmentations (clustering), etc.

DP model example from Johan Wågberg.

each measurement to the clusters. If the point gets assigned to one of the proposal parameters settings,
the parameters are kept and a new cluster is introduced. Otherwise all proposals are thrown away and
new ones are sampled for the next data point. The second part of the inference algorithm, requires us to
sample line parameters given the points that are assigned to it. For this we currently use a slice sampler
that is initialized with a valid parameter setting and then run for a fixed number of iterations before a
sample is accepted as the new parameter value.

4 Results

A point cloud was generated by simulating a robot driving around a room with a laser scanner collecting
range measurements from 20 positions with 20 measurements at each location. This gives a total of 400
points in the point cloud. The shape o↵ the room together with the robot trajectory and measurements
can be seen in Figure 1. Most objects in the room consists of straight lines and should fit out model well.
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Figure 1: A robot driving around a room with a laser scanner was simulated to generate the point cloud.
The robot took measurements from 20 positions and collecting 20 measurements at each location. This
gives a point cloud of a total of 400 points. The red dots are the points of the point cloud, the red line
the trajectory of the robot and the light gray lines the laser beams from the laser scanner.

The same point cloud was used for both parameterizations of the line segments.
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Bayesian nonparametric models 31(36)

Bayesian nonparametric (BNP) models allow us to build flexible
models where the structure grows and adapts to data.

BNP models: Gaussian, Dirichlet and Beta processes.

Opens up for systematic reasoning of uncertainty not only over
parameters, but also orders, segmentations (clustering), etc.

DP model example from Johan Wågberg.

each measurement to the clusters. If the point gets assigned to one of the proposal parameters settings,
the parameters are kept and a new cluster is introduced. Otherwise all proposals are thrown away and
new ones are sampled for the next data point. The second part of the inference algorithm, requires us to
sample line parameters given the points that are assigned to it. For this we currently use a slice sampler
that is initialized with a valid parameter setting and then run for a fixed number of iterations before a
sample is accepted as the new parameter value.

4 Results

A point cloud was generated by simulating a robot driving around a room with a laser scanner collecting
range measurements from 20 positions with 20 measurements at each location. This gives a total of 400
points in the point cloud. The shape o↵ the room together with the robot trajectory and measurements
can be seen in Figure 1. Most objects in the room consists of straight lines and should fit out model well.
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Figure 1: A robot driving around a room with a laser scanner was simulated to generate the point cloud.
The robot took measurements from 20 positions and collecting 20 measurements at each location. This
gives a point cloud of a total of 400 points. The red dots are the points of the point cloud, the red line
the trajectory of the robot and the light gray lines the laser beams from the laser scanner.

The same point cloud was used for both parameterizations of the line segments.

3

Figure 4: Semi transparent plot of the lines with at least 5 points associated to them in 100 consecutive
iterations of the Gibbs sampler taken after convergence.

4.2 Endpoint Parametrization

Figure 5: Current state of the Gibbs sampler.

5
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Bayesian nonparametric dynamical models 32(36)

New result: We have been able to construct and learn a Gaussian
process (GP) state space model

f (xt) ∼ GP(mθx(xt), kθx(xt, x′t)),
xt+1 | ft ∼ N (xt+1 | ft, Q),

yt | xt ∼ p(yt | xt, θy).

Key idea: Marginalize out the function f .

Problem: Renders the model non-Markovian. Solution: PG-AS
Roger Frigola, Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen, Bayesian inference and learning in Gaussian
process state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS) 26, Lake
Tahoe, NV, USA, December 2013. (accepted for publication)

Ongoing work: Construct and learn
• models based on the Dirichlet process to automatically capture

segmented data,
• change-point models based on the GP-SSM.
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Stochastic approximation EM 33(36)

Assume for the time being that we can sample from pθ(x1:T | y1:T).

Stochastic approximation EM (SAEM): Replace the E-step with,

Q̂m(θ) = Q̂m−1(θ) + γm

(
1
M

M

∑
j=1

log pθ(x̃
j
1:T, y1:T)− Q̂m−1(θ)

)
,

where x̃j
1:T

i.i.d.∼ pθ(x1:T | y1:T) for j = 1, . . . , M.

SAEM converges to a maximum of pθ(y1:T) for any M ≥ 1
under standard stochastic approximation conditions.

B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm, The
Annals of Statistics, 27:94-128, 1999.
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Stochastic approximation EM using CPF-AS 34(36)

• Bad news: We cannot sample from pθ(x1:T | y1:T).

• Good news: It is enough to sample from a uniformly ergodic
Markov kernel, leaving pθ(x1:T | y1:T) invariant.

We can use CPF-AS to sample the states!

Results in an interesting and useful combination of frequentist and
Bayesian ideas. We will see more combinations like this in the future.

Fredrik Lindsten. An efficient stochastic approximation EM algorithm using conditional particle filters. Proceedings of
the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.
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• EM-PS for ML learning in nonlinear SSMs.
• Conditional particle filters (CPF) are useful for identification!
• CPF-AS defines a kernel on XT leaving pθ(x1:T | y1:T) invariant.
• CPF-AS consists of two parts:

• Conditioning: Ensures correct stationary distribution for any N.
• Ancestor sampling: Mitigates path degeneracy and enables

movement around the conditioned path.
• Both Bayesian (PG-AS) and maximum likelihood inference

(SAEM-AS) works with very few particles!

• We are working on a book project,
Thomas B. Schön and Fredrik Lindsten, Computational learning in
dynamical systems, 2013.

Send me an e-mail if you are interested in a draft.
• Course: users.isy.liu.se/rt/schon/course_CIDS.html

Thomas Schön, Nonlinear system identification enabled via sequential Monte Carlo

Uppsala University Machine Learning seminar series, September 18, 2013.
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Forthcoming book
Thomas B. Schön and Fredrik Lindsten, Computational learning in dynamical systems, 2013.

Novel introduction of PMCMC (very nice paper!)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

Self-contained introduction to BS and AS (not limited to SSMs)
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.

PG-AS (and the Wiener identification example)
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.

Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan. Bayesian semiparametric Wiener system
identification. Automatica, 2013, 49(): 2053-2063.

ML identification of nonlinear SSMs (and Wiener example)
Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models.
Automatica, 47(1):39-49, January 2011.

Adrian Wills, Thomas B. Schön, Lennart Ljung and Brett Ninness. Identification of Hammerstein-Wiener Models.
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Bayesian inference using Gaussian processes
Roger Frigola, Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen, Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. In Advances in Neural Information Processing
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MATLAB code is available from our web-site.Thomas Schön, Nonlinear system identification enabled via sequential Monte Carlo
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