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Dynamical systems are everywhere! 2(26)

Some of the dynamical systems we have been working with,

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

Dynamical systems are everywhere!

Examples of systems I have been working with

Create new probabilistic models of dynamical systems and automatically learn these 
models from data.

Use the models to automatically understand and control various systems.

We first have to learn the models. Then we can use them.
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Outline 3(26)

1. Probabilistic models of dynamical systems

2. State inference
3. Sequential Monte Carlo (SMC), the particle filter

a) Key idea
b) indoor localization example

4. Particle MCMC (very brief)

5. Inference in probabilistic graphical models

Thomas Schön (user.it.uu.se/ thosc112), Sequential Monte Carlo methods and their use in graphical models

Department of Linguistics and Philology, Uppsala University, June 13, 2014.



Probabilistic models of dynamical systems 4(26)

Basic representation: Two discrete-time stochastic processes,

• {xt}t≥1 representing the state of the system.

• {yt}t≥1 representing the measurements from the sensors.

The probabilistic model is described using two (f and g) probability
density functions (PDFs):

xt+1 | xt ∼ fθ(xt+1 | xt, ut),
yt | xt ∼ gθ(yt | xt).

Model = PDF

This type of model is referred to as a state space model (SSM) or a
hidden Markov model (HMM).
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An example of a state space model – toy problem 5(26)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.
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State inference in dynamical systems 6(26)

Aim: Compute a probabilistic representation of our knowledge of the
state, based on information that is present in the measurements.

The filtering PDF

p(xt | y1:t),

provides a representation of the uncertainty about the state at time t,
given all the measurements up to time t. Measurement update

p(xt | y1:t) =

measurement model︷ ︸︸ ︷
g(yt | xt)

prediction PDF︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
.

Time update

p(xt | y1:t−1) =
∫

f (xt | xt−1)︸ ︷︷ ︸
dynamical model

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering PDF

dxt−1.
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State inference – interesting case 7(26)

Obvious question: what do we do in an interesting case, for
example when we have a nonlinear model with non-Gaussian noise?

1. Need a general representation of the filtering PDF

2. Try to solve the equations

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =
∫

f (xt | xt−1)p(xt−1 | y1:t−1)dxt−1,

as accurately as possible.
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The particle filter 8(26)

The particle filter provides an approximation of the filtering PDF
p(xt | y1:t), when the state evolves according to an SSM,

xt+1 | xt ∼ ft(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

The particle filter maintains an empirical distribution made up of N
samples (particles) {xi

t}N
i=1 and the corresponding weights {wi

t}N
i=1

p̂N(xt | y1:t) =
N

∑
i=1

wi
tδxi

t
(xt).

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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The particle filter – toy problem 9(26)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.

The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear
state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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The particle filter – toy problem 10(26)

Highlights two key
capabilities of the PF:

1. Automatically
handles an unknown
and dynamically
changing number of
hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.
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The particle filter 11(26)

1. Resampling: {xi
t−1, wi

t−1}N
i=1 → {x̃i

t−1, 1/N}N
i=1.

2. Propagation: xi
t ∼ qt(xt | x̃i

t−1).

3. Weighting: wi
t = Wt(xi

t, yt).

The result is a new weighted set of particles {xi
t, wi

t}N
i=1 targeting

p(xt | y1:t).

A systematic way of obtaining approximations that converge
Xiao-Li Hu, Thomas B. Schön and Lennart Ljung. A basic convergence result for particle filtering. IEEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.
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The particle filter - very brief history 12(26)

The particle filter has been around for roughly 20 years.

The use of particle methods for nonlinear system identification
started to take off some 5 years ago.

Now this is a very active problem (and solution) within many fields.
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Example – indoor localization 13(26)

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio

Show movie!
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Particle MCMC 14(26)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1:T | θ, y1:T) invariant.

This Markov kernel is then used in a standard MCMC algorithm
(e.g. Gibbs, results in the Particle Gibbs (PG)).

Original paper
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.

For a self-contained introduction (focused on BS and AS),
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.
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Background – graphical models (I/II) 15(26)

A graphical model is a probabilistic model where a graph
G = (V , E) represents the conditional independency structure
between random variables,

1. a set of vertices V (nodes) represents the random variables
2. a set of edges E containing elements (i, j) ∈ E connecting a

pair of nodes (i, j) ∈ V
x0 x1 x2

. . .
xN

y1 y2 yN

p(x0:T, y1:T) = µ(x0)
N

∏
t=1

f (xt | xt−1)
N

∏
t=1

g(yt | xt).
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Background – graphical models (II/II) 16(26)

For an undirected graphical model (Markov random field), the joint
PDF over all the involved random variables is

p(XV ) =
1
Z ∏

C∈C
ψC(XC),

where C is the set of cliques in G.

x1 x2

x3

x4

x1 ψ1 x2 ψ2

x3

x4

Undirected graph
Factor graph making interactions

explicit.
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Key idea 17(26)

SMC samplers are used to approximate a sequence of probability
distributions on a sequence of probability spaces.

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite possibly
underutilized) idea.

Key idea: Perform and make use of a sequential decomposition
of the graphical model.

Using this SMC sampler within a particle MCMC sampler allows us
to construct high-dimensional MCMC kernels for graphical models.
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Sequential decomposition of GMs – pictures 18(26)

The joint PDF of the set of random
variables indexed by V ,
XV , {x1, . . . , x|V|}

p(XV ) =
1
Z ∏

C∈C
ψC(XC).

x1 ψ1 x2 ψ2

x3

x4

Sequential decomposition of the above factor graph (the target
distributions are built up by adding factors at each iteration),

γ1(XL1) γ2(XL2)

x1 ψ1 x2 x1 ψ1 x2 ψ2

x3

x4
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Example – Gaussian MRF 19(26)

Consider a standard square lattice Gaussian MRF of size 10× 10,

p(XV , YV ) ∝ ∏
i∈V

e
1

2σ2
i
(xi−yi)

2

∏
(i,j)∈E

e
1

2σ2
ij
(xi−xj)

2

with latent variables XV = {x1, . . . , x100} and measurements
YV = {y1, . . . , y100} (simulated with σi = 1 and σij = 0.1).

Goal: Compute the posterior distribution p(XV | YV ).

We run four MCMC samplers:

1. Standard one-at-a-time Gibbs

2. Tree sampler (Hamze & de Freitas, 2004)

3. PGAS – fully blocked (N = 50)

4. PGAS – partially blocked (N = 50)

Thomas Schön (user.it.uu.se/ thosc112), Sequential Monte Carlo methods and their use in graphical models
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Example – Gaussian MRF 20(26)

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐

The arrows show the order in which
the factors are added.

The two block structures used by the
tree sampler and PGAS with partial
blocking.
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Example – Gaussian MRF 21(26)
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The one-step-at
-a-time Gibbs
sampler is strugg-
ling due to the
strong interactions.
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Example – Gaussian MRF 22(26)
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Gibbs sampler
Tree sampler

The tree sampler
implements an
“ideal” partially
blocked Gibbs
sampler.
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Example – Gaussian MRF 23(26)
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Gibbs sampler
PGAS w. partial blocking
Tree sampler PGAS with partial

blocking is an
approximation of the
tree sampler. Already
for relatively few
particles we obtain a
performance similar to
the “ideal” tree
sampler.
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Example – Gaussian MRF 24(26)
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Gibbs sampler
PGAS w. partial blocking
Tree sampler
PGAS

The fully blocked
PGAS performs
best, which is not
surprising, since it
samples all the
(dependent) latent
variables jointly.

The downside of
PGAS is that it is
computationally
more expensive.
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Conclusions 25(26)

• Probabilistic models of dynamical systems.

• Sequential Monte Carlo introduced via the particle filter.

• Briefely mentioned PMCMC for Bayesian inference.

• Key insight: We exploit a sequential decomposition of the
graphical model.

“Standard SMC samplers using a non-standard
construction of the intermediate target distributions”

• New mathematics looking for interesting problems (we have
already found some, maybe you have some interesting ones as
well?)

There is a lot of interesting research that remains to be done!!
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Thank you!!
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