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Dynamical systems are everywhere!

Some of the dynamical systems we have been working with,
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We first have to learn the models. Then we can use them.
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Outline

1. Probabilistic models of dynamical systems
2. State inference

3. Sequential Monte Carlo (SMC), the particle filter
a) Key idea
b) indoor localization example

4. Particle MCMC (very brief)
5. Inference in probabilistic graphical models
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Probabilistic models of dynamical systems

Basic representation: Two discrete-time stochastic processes,
o {x;}>1 representing the state of the system.
o {y;}+>1 representing the measurements from the sensors.

The probabilistic model is described using two (f and g) probability
density functions (PDFs):

Xevt | X~ folxn | xe,ue),
e | xe ~ go(yr | xt)-

Model = PDF

This type of model is referred to as a state space model (SSM) or a
hidden Markov model (HMM).
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An example of a state space model — toy problem 5.

Consider a toy 1D localization problem.

Dynamic model:
X1 = Xp + U + 04,
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where x; denotes position, u; denotes velocity
(known), v ~ N(0,5) denotes an unknown
disturbance.
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Altitude

Measurements:
Y = h(xt) =+ ey.

where (+) denotes the world model (here the
s 5 5 o % 00 terrain height) and ¢; ~ A/(0,1) denotes an
Position « unknown disturbance.
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State inference in dynamical systems 6(26)

Aim: Compute a probabilistic representation of our knowledge of the
state, based on information that is present in the measurements.

The filtering PDF

p(xt | yit),

provides a representation of the uncertainty about the state at time ¢,
given all the measurements up to time t. Measurement update

measurement model prediction PDF

—N— ——
gy [ x)  plxi|yri—1)
p(ye | y1:4-1)

p(xe | y1e) =

Time update

p(xe | yra—1) = / LOe [ xe1) plaxe—y | yr—1) dxa.

dynamical model filtering PDF
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State inference — interesting case

Obvious question: what do we do in an interesting case, for
example when we have a nonlinear model with non-Gaussian noise?

1. Need a general representation of the filtering PDF
2. Try to solve the equations

Sy | x)p(xt | yr:—1)
p(ye | y1:4-1)

p(x¢ | y1e-1) = /f(xt | x—1)p(xXe—1 | yre—1)dxe—1,

p(xi | y1) =

as accurately as possible.
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The particle filter

The particle filter provides an approximation of the filtering PDF
p(x: | y1.¢), when the state evolves according to an SSM,
X1 | X~ fr(xe | x),
ye | xe~ ge(ye | xe),
x1 ~ p(xq).

The particle filter maintains an empirical distribution made up of N
samples (particles) {x;}I¥ , and the corresponding weights {w} }Y

N .
PN (x| 1) = Zwiéxi(xt).
=1

1

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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The particle filter — toy problem

Consider a toy 1D localization problem.

Dynamic model:
Xt+1 = Xt + uy + vy,
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where x; denotes position, u; denotes velocity
(known), v; ~ N(0,5) denotes an unknown
disturbance.
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Altitude

Measurements:
ye = h(x;) +ex
where (-) denotes the world model (here the

@ % & &% o lemainheight)ande ~ A(0,1) denotes an
Position & unknown disturbance.
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The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,
Thomas Schon, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear

state-space models. /EEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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The particle filter — toy problem
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The particle filter

| Resampling | Propagation | Weighting |—

1. Resampling: {x}_,wi }Y, — {¥ |, 1/N}Y .
2. Propagation: xi ~ g;(x; | ¥_,).
3. Weighting: wi = W;(xi, ;).

The result is a new weighted set of particles {xi, wi}f\i , targeting
p(xt [ Y1)

A systematic way of obtaining approximations that converge

Xiao-Li Hu, Thomas B. Schén and Lennart Ljung. A basic convergence result for particle filtering. /EEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.

Thomas Schon (user.it.uu.se/ thosc112), Sequential Monte Carlo methods and their use in graphical models
Department of Linguistics and Philology, Uppsala University, June 13, 2014.



The particle filter - very brief history

The particle filter has been around for roughly 20 years.

The use of particle methods for nonlinear system identification
started to take off some 5 years ago.

Now this is a very active problem (and solution) within many fields.

->| Resampling |—>-| Propagation —-| Weighting |—
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Example — indoor localization

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Show movie!
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Particle MCMC

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1.7 | 6, y1.7) invariant.

This Markov kernel is then used in a standard MCMC algorithm
(e.g. Gibbs, results in the Particle Gibbs (PG)).

Original paper

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.

For a self-contained introduction (focused on BS and AS),

Fredrik Lindsten and Thomas B. Schon, Back d si i hods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.
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Background — graphical models (I/ll)

A graphical model is a probabilistic model where a graph
G = (V, &) represents the conditional independency structure
between random variables,
1. a set of vertices V (nodes) represents the random variables
2. aset of edges & containing elements (i,j) € £ connecting a
pair of nodes (i,j) € V
X2 XN

X X1
O—0O—O

A Y2 YN

Vv

N
7

p(xo.7, y1:7) = p(x0 Hf(xtlxt 1 H (ye | xt).
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Background — graphical models (ll/ll)

For an undirected graphical model (Markov random field), the joint
PDF over all the involved random variables is

pOxv) = 5 [T we(Xe),

ceC

where C is the set of cliques in G.

()
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Factor graph making interactions

Undirected graph explicit.
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Key idea

SMC samplers are used to approximate a sequence of probability
distributions on a sequence of probability spaces.

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite possibly
underutilized) idea.

Key idea: Perform and make use of a sequential decomposition
of the graphical model.

Using this SMC sampler within a particle MCMC sampler allows us
to construct high-dimensional MCMC kernels for graphical models.
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Sequential decomposition of GMs — pictures

The joint PDF of the set of random
variables indexed by V),

XV é {x1, ey X|V|}

(x2)
1
p(Xy) = Z [T ycXo).

CeC

Sequential decomposition of the above factor graph (the target
distributions are built up by adding factors at each iteration),

71 (Xg,) 72(Xe,)
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Example — Gaussian MRF

Consider a standard square lattice Gaussian MRF of size 10 x 10,

L Xi ,‘2 1 (xl x')z
p(Xy,Yy) o[ Je* 7 ) I e

ey (ij)e€

with latent variables Xy = {x1, ..., X100} and measurements
Yy = {y1, ..., Y100} (simulated with o; = 1 and ¢;; = 0.1).
Goal: Compute the posterior distribution p(Xy | Yy).
We run four MCMC samplers:

1. Standard one-at-a-time Gibbs

2. Tree sampler (Hamze & de Freitas, 2004)

3. PGAS — fully blocked (N = 50)

4. PGAS - partially blocked (N = 50)
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Example — Gaussian MRF

The two block structures used by the
tree sampler and PGAS with partial
blocking.

The arrows show the order in which
the factors are added.
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Example — Gaussian MRF

—— Gibbs sampler

0.8
The one-step-at
061 -a-time Gibbs

[T
g sampler is strugg-
041 ling due to the
02 strong interactions.
0,
0 50 100 150 200 250 300

Lag
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Example — Gaussian MRF

1t ——— Gibbs sampler
Tree sampler
0.8
0.6
TR
(©]
<<
0.4r
0.2r
0 L
0 50 100 150 200 250 300

Lag

The tree sampler
implements an
“ideal” partially
blocked Gibbs
sampler.
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Example — Gaussian MRF

1t ——— Gibbs sampler
—— PGAS w. partial blocking
Tree sampler PGAS with partial
0.8 blocking is an
approximation of the
0.6f
o tree sampler. Already
< 04l for relatively few
particles we obtain a
02k performance similar to
the “ideal” tree
of sampler.
0 50 100 150 200 250 300

Lag
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Example — Gaussian MRF

] ——— Gibbs sampler The fully blocked
—— PGAS w. partial blocking
Tree sampler PGAS pgrforms
0.8 ——— PGAS best, which is not

surprising, since it
samples all the
(dependent) latent
variables jointly.

ACF

The downside of
PGAS is that it is
computationally

more expensive.

0 50 100 150 200 250 300
Lag

Thomas Schon (user.it.uu.se/ thosc112), Sequential Monte Carlo methods and their use in graphical models
Department of Linguistics and Philology, Uppsala University, June 13, 2014.



Conclusions

e Probabilistic models of dynamical systems.

e Sequential Monte Carlo introduced via the particle filter.

e Briefely mentioned PMCMC for Bayesian inference.

o Key insight: We exploit a sequential decomposition of the
graphical model.

“Standard SMC samplers using a non-standard
construction of the intermediate target distributions”

o New mathematics looking for interesting problems (we have
already found some, maybe you have some interesting ones as
well?)

There is a lot of interesting research that remains to be done!!
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Particle Gibbs with ancestor sampling (PGAS)

Fredrik Lindsten, Michael |. Jordan and Thomas B. Schn. Particle Gibbs with ancestor sampling. Journal of
Machine Learning Research (JMLR), 2014. (accepted for publication)
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Thank you!!

Thomas Schon (user.it.uu.se/ thosc112), Sequential Monte Carlo methods and their use in graphical models
Department of Linguistics and Philology, Uppsala University, June 13, 2014.



	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	anm0: 
	0.EndLeft: 
	0.StepLeft: 
	0.PlayPauseLeft: 
	0.PlayPauseRight: 
	0.StepRight: 
	0.EndRight: 
	0.Minus: 
	0.Reset: 
	0.Plus: 


