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Dynamical systems are everywhere!

Some of the dynamical systems we have been working with,
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We first have to learn the models. Then we can use them.
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1. Probabilistic models of dynamical systems

2. State inference
3. Sequential Monte Carlo (SMC), the particle filter
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4. Learning dynamical models
a) Maximum Likelihood (ML) identification (very brief)
b) Bayesian identification ((P)MCMC)
c) Particle Gibbs with ancestor sampling (PG-AS)
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The sequential Monte Carlo samplers are fundamental to both the
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Probabilistic models of dynamical systems

Basic representation: Two discrete-time stochastic processes,
o {x;}>1 representing the state of the system.
o {y;}+>1 representing the measurements from the sensors.

The probabilistic model is described using two (f and g) probability
density functions (PDFs):

X1 | e~ fo(xn | X u),
e | xe ~ go(yr | xt).-

Model = PDF

This type of model is referred to as a state space model (SSM) or a
hidden Markov model (HMM).
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State inference in dynamical systems (l/lll)

Aim: Compute a probabilistic representation of our knowledge of the
state, based on information that is present in the measurements.

The filtering PDF

p(xt | Y1),

provides a representation of the uncertainty about the state at time ¢,
given all the measurements up to time ¢.

The obvious question is now, how do we compute this object?

p(yt ’ xt,ylzt—l)P(xt | ylzt—l)
Pyt | y1:e—1)

p(xt | y1e) = p(xt | Yo, y1-1) =

_ gy [ xe)p(x: | ylzt—l)_
Pyt | y1:-1)
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State inference in dynamical systems (Il/lll)

Apparently we need an expression also for the prediction PDF
p(xt | yre—1)-
Using marginalization we have
p(xt | y1e-1) = / p(xe, X1 | Yre—1)dxe 1

= / p(xe | X1, Y1) p(xe—1 | yre—1)dxe—1.
falie)

Hence, the prediction PDF is given by

plxt [ yra1) = [ | x0)p(xion | yraa)dvios.
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State inference in dynamical systems (lll/1ll)

We have now showed that for the nonlinear SSM

Xt41 | Xt Nf(xt+1 \ xt),
Ye | xe ~ go(ys | xi)-

the uncertain information that we have about the state is captured by
the filtering PDF, which we compute sequentially using a
measurement update

measurement model prediction PDF

Sy [ xe)  p(x | yie—1)
P | yi-1)

p(xt | y14) =

and a time update

p(xe | yre—1) = /f(xt \ xt—lz p(xe1 | yr—1) dwp_q.

dynamical model filtering PDF
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State inference — simple special case

Consider the following special case (Linear Gaussian State Space
(LGSS) model)

Xi+1 = Axy + Buy + vy, Uy ~ N(O, Qr),
Yyt = Cxt + Du; + e, er ~ N(0,Ry).
or, equivalently,

Xep1 | X~ f(xer | x0) = N(xep1 | Axe + Buy, Qp),
Ve | x ~ g(yi | x1) = N(yr | Cxt + Duy, Ry).

It is now straightforward to show that the solution to the time update
and measurement update equations is given by the Kalman filter,

p(xe | yae) = N (xe | Xy, Py,

p(xes1 | y1e) = N (X1 | Bepape Prgage)-
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State inference — interesting case

Obvious question: what do we do in an interesting case, for
example when we have a nonlinear model with non-Gaussian noise?

1. Need a general representation of the filtering PDF
2. Try to solve the equations

Sy | xo)p(xe | yrie—1)
p(ye | y1:i-1)

p(x¢ | y1e-1) = /f(xt | ) p(Xe—1 | yr—1)dxe—1,

p(xi | y1) =

as accurately as possible.
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The particle filter

The particle filter provides an approximation of the filtering PDF
p(x: | y1.¢), when the state evolves according to an SSM,
X1 | xe ~ fr(xi | xe),
ye | xe~ &e(ye | xi),
x1 ~ p(xq).

The particle filter main’gains an empirical distribution made up of N
samples (particles) {x:}¥ ; and corresponding weights {w:}Y |

N .
PN (x| i) = Zwiéxi(xt).
=1

1

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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The particle filter - Very brief history

The particle filter has been around for roughly 20 years.

The use of particle methods for nonlinear system identification
started to take off some 5 years ago.

Now this is a very active problem (and solution) within many fields.

->| Resampling |—>-| Propagation —-| Weighting |—
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The particle filter — toy problem

Consider a toy 1D localization problem.

Dynamic model:
Xt+1 = Xt + uy + vy,

=)

=)
=3
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where x; denotes position, u; denotes velocity
(known), v; ~ N(0,5) denotes an unknown
disturbance.

o N
S o

Altitude

Measurements:
ye = h(x;) +ex
where (-) denotes the world model (here the

@ % & &% o lemainheight)ande ~ A(0,1) denotes an
Position & unknown disturbance.

I
=3

|
I
|
|
I
50 |
|
|
|
|
|

The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,
Thomas Schon, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear

state-space models. /EEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



The particle filter — toy problem
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The particle filter

| Resampling | Propagation | Weighting |—

1. Resampling: {x}_,wi }Y, — {¥ |, 1/N}Y .
2. Propagation: xi ~ g;(x; | ¥_,).
3. Weighting: wi = W;(xi, ;).

The result is a new weighted set of particles {xi, wi}f\i , targeting
p(xt [ Y1)

A systematic way of obtaining approximations that converge

Xiao-Li Hu, Thomas B. Schén and Lennart Ljung. A basic convergence result for particle filtering. /EEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Example 1 — indoor localization

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Show movie
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Example 2 — UAV localization (l/lll)

Aim: Compute the position and orientation of a helicopter by
exploiting the information present in Google maps images of the
operational area.

Sensor fusion
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Example 2 — UAV localization (ll/1ll)

Map over the operational Manually classified map with
environment obtained from grass, asphalt and houses as pre-
Google Earth. specified classes.

L

Superpixels classified as grass, ~ Three circular regions used for
asphalt or house computing class histograms

Image from on-board camera Extracted superpixels
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Example 2 — UAV localization (lll/lll)

Show movie

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Térnqvist, Thomas B. Schén, Fredrik Gustafsson, Geo-referencing
for UAV Navig using | Classication. Proceedings of the International Conference on Robotics and
Automation (ICRA), Anchorage, Alaska, USA, May 2010.
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Learning nonlinear dynamical systems from data 2140

A state space model (SSM) consists of a Markov process {x; }>1
and a measurement process {y; }+>1, related according to

X1 | X0~ fe(xeen | i), Xepr | X0~ for(Xes | xe),
e | xe ~ gy | xr), ye | xe ~ go(yr | x1),
x1 ~ p(xy). x1 ~ po(x1).
We observe

yl:T é {yll- . -/yT};

(leaving the latent variables x{.7 unobserved).

Identification problem: Find f, g, 1 (or ) based on y;.r.

Thomas Schén (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
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Strategies for inference in latent variable models

Alternate between updating 6 and updating x1.7.

Frequentists:
e Find Oy = arg max ps(y1.7).
0

e Use e.g. the expectation maximization (EM) algorithm.

Bayesians:
e Findp(0 | y1.7).
e Use e.g. Gibbs or Metropolis-Hastings sampling.

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Maximum likelihood — nonlinear SSMs

Maximum likelihood (ML) amounts to solving,

~ML

T
6" = argmax logpy(y1.r) = argmax Zlogpg(yt | y1:-1),
0 0 t=1

where

X1 \ Xt Nfe,t(xt+1 \ xt),
Ye | xe ~ go(yr | x1),
x1 ~ pp(x1).

Can be solved by combining the Expectation Maximization (EM)
algorithm with a particle smoother.

Thomas B. Schén, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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Problem formulation — Bayesian

Consider a Bayesian SSM (6 is now a random variable with a prior
density p(6))
X1 \ Xt Nfe,t(xt+1 \ xt),
Yt | xp ~ ge,t(yt | xt),
X1~ }49(361),
0~ p(6).

Identification problem: Compute the posterior p(6, x1.7 | y1.1), or
one of its marginals.

The key challenge is that there is no closed form expression
available for the posterior.

Fredrik Lindsten and Thomas B. Schon, Back d si i hods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.
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Gibbs sampler for SSMs

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain.

Gibbs sampling (blocked) for SSMs amounts to iterating
e Draw 0[m] ~ p(0 | xy.7[m — 1], y1.7),

e Draw xy.r[m]| ~ p(x1.7 | 0]m], y1.1).

The above procedure results in a Markov chain,

{0[m], x1.7[m]}, 51

with p(6, x1.7 | yr) as its stationary distribution!

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
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Gibbs sampler for a general SSM

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

e Draw O[m] ~ p(0 | x1.7[m — 1], y1.7); OK!
o Draw xy.7[m| ~ p(x1.7 | 0[m], y1.1). Hard!

[Problem: p(x1.7 | 0[m], y1.7) not available!

Idea: Approximate p(xi.r | 6[m],y1.r) using a sequential
Monte Carlo method!

Thomas Schén (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Sampling based on the PF (I/ll)

State
i
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T
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Time
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Sampling based on the PF (ll/1l)

ppro.

With P(x}. = x| 1) o w’. we get, x] 7 ARl p(x17 | 0,y1.7)-

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
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Problems

Problems with this approach,
e Based on a PF = approximate sample.

Does not leave p(6, x1.7 | y1.7) invariant!

Relies on large N to be successful.

A lot of wasted computations.

To get around these problems,

Use a conditional particle filter (CPF). One pre-specified
path is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Markov Chain Monte Carlo (PMCMC)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1.7 | 6, y1.7) invariant.

This Markov kernel is then used in a standard MCMC algorithm (e.g.
Gibbs, resulting in the Particle Gibbs (PG)).

Three SMC samplers leaving p(x1.7 | 6, y1.7) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)

Fredrik Lindsten and Thomas B. Schon. On the use of backward simulation in the particle Gibbs sampler. Proc.
of the 37th Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)

Fredrik Lindsten, Michael |. Jordan and Thomas B. Schén, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.
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CPF vs. CPF-AS
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Conditional PF with ancestor sampling 32(40)

For any N > 2, the procedure;

(i) Run CPF-AS(x%.);

(ii) Sample P(x}. = x{.7) o w,;
defines a Markov kernel on X which leaves p(x1.7 | 0,y1.7)
invariant.

Three additional reasons for using CPF-AS:
1. Significantly improves the mixing compared to CPF.
2. The computational complexity is linear in N.
3. Opens up for non-Markovian models.

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Particle Gibbs with ancestor sampling

Bayesian identification: Gibbs + CPF-AS = PG-AS

Algorithm PG-AS: Particle Gibbs with ancestor sampling

1. Initialize: Set {0[0], x1.7[0] } arbitrarily.
2. Form > 1, iterate:
(a) Draw 0[m] ~ p(0 | x1.7[m — 1], y1.7).
(b) Run CPF-AS(xy.7[m — 1]), targeting p(x1.1 | 6[m], y1.1).

(c) Sample with P(x;.7[m] = x;.7') o wiT.

For any number of particles N > 2, the Markov chain
{6[m], x1.7[m] }n>1 has stationary distribution p(6, x1.1 | y1.1).

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Toy example — stochastic volatility (I/11)

Consider the stochastic volatility model,
xi1 = 0.9x; + wy, wy ~ N(0,0),
1
Yy = erexp (Ext) , ey ~ N(O,l)

Let us study the ACF for the estimation error, 0—FE CARZEY
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Toy example — stochastic volatility (I/11)

Consider the stochastic volatility model,
xi1 = 0.9x; + wy, wy ~ N(0,0),
1
Yy = erexp (Ext) , ey ~ N(O,l)

Let us study the ACF for the estimation error, 0—E CARZEY
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Toy example — stochastic volatility (lI/1l)

PG-AS, T = 1000

——N=5
—N=20
——N=100

——N=1000

PG, T = 1000
1 1
0.8F 08
.06
Z
0.4r
0.2
Ob oo TS —
0 50 100 150 200
Lag

Some observations:

Lag

o We want the ACF to decay to zero as rapidly as possible (indicates good

mixing in the PG sampler).

o Note the superior mixing of PG-AS compared to PG-CPF (already for just

N = 5 particles!).
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Example — semiparametric Wiener model (I/lll) 36(40)

(n <

zZ
w— £ = s() —=(&)—w

Parametric LGSS and a nonparametric static nonlinearity:

X1 = (A B) (it) + o, v ~N(0,0),
N—— t
r
Zr = Cxt.
v = g(z) +ey, et ~ N(0,R).
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Example — semiparametric Wiener model (llI/1ll) 37(40)

Everything is learned from the data, by introducing the possibility to
switch specific model components on and off.

“Parameters™: 0 = {A,B,Q,J,g(-),r}. 0

Bayesian model specified by priors @
e Sparseness prior (ARD) on I' = [A B], G @

e Inverse-Wishart prior on Q and r

e Gaussian process prior on g(+), @
8(-) ~ GP(z,k(z2)).
Inference using PG-AS with N = 15 particles. @
T = 1000 measurements. We ran 15000 MCMC
iterations and discarded 5000 as burn-in. @ e

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
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Example — semiparametric Wiener model (l1I/1lI)

38(40)

Show movie
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Static nonlinearity (non-monotonic), estimated
mean (dashed black), true (black) and the 99%
credibility intervals (blue).

identification.

Fredrik Lindsten, Thomas B. Schon and Michael I. Jordan. Bay
Automatica, 49(7): 2053-2063, July 2013.

ic Wiener sy
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Conclusions

Probabilistic models of dynamical systems.

Sequential Monte Carlo introduced via the particle filter.
EM-PS for ML learning in nonlinear SSMs.

PG-AS for Bayesian learning in nonlinear SSMs.

The conditional particle filter defines a kernel on X leaving
po(x1.7 | y1.7) invariant.

There is a lot of interesting research that remains to be done!!

o We are working on a book project,
Thomas B. Schén and Fredrik Lindsten, Computational learning in
dynamical systems, 2013.
Send me an e-mail if you are interested in a draft.

e PhD course: user.it.uu.se/~thosc112/CIDS.html

Thomas Schon (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
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Thomas B. Schén and Fredrik Lindsten, Computational learning in dynamical systems, 2013.

Novel introduction of PMCMC (very nice paper!)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

Self-contained introduction to BS and AS (not limited to SSMs)

Fredrik Lindsten and Thomas B. Schon, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.
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