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Dynamical systems are everywhere! 2(40)

Some of the dynamical systems we have been working with,

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

Dynamical systems are everywhere!

Examples of systems I have been working with

Create new probabilistic models of dynamical systems and automatically learn these 
models from data.

Use the models to automatically understand and control various systems.

We first have to learn the models. Then we can use them.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Outline 3(40)

1. Probabilistic models of dynamical systems
2. State inference
3. Sequential Monte Carlo (SMC), the particle filter

a) Key idea
b) indoor localization example
c) UAV localization example

4. Learning dynamical models
a) Maximum Likelihood (ML) identification (very brief)
b) Bayesian identification ((P)MCMC)
c) Particle Gibbs with ancestor sampling (PG-AS)

The sequential Monte Carlo samplers are fundamental to both the
maximum likelihood and the Bayesian approaches.
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Probabilistic models of dynamical systems 4(40)

Basic representation: Two discrete-time stochastic processes,

• {xt}t≥1 representing the state of the system.

• {yt}t≥1 representing the measurements from the sensors.

The probabilistic model is described using two (f and g) probability
density functions (PDFs):

xt+1 | xt ∼ fθ(xt+1 | xt, ut),
yt | xt ∼ gθ(yt | xt).

Model = PDF

This type of model is referred to as a state space model (SSM) or a
hidden Markov model (HMM).

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



State inference in dynamical systems (I/III) 5(40)

Aim: Compute a probabilistic representation of our knowledge of the
state, based on information that is present in the measurements.

The filtering PDF

p(xt | y1:t),

provides a representation of the uncertainty about the state at time t,
given all the measurements up to time t.

The obvious question is now, how do we compute this object?

p(xt | y1:t) = p(xt | yt, y1:t−1) =
p(yt | xt, y1:t−1)p(xt | y1:t−1)

p(yt | y1:t−1)

=
g(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



State inference in dynamical systems (II/III) 6(40)

Apparently we need an expression also for the prediction PDF

p(xt | y1:t−1).

Using marginalization we have

p(xt | y1:t−1) =
∫

p(xt, xt−1 | y1:t−1)dxt−1

=
∫

p(xt | xt−1, y1:t−1)︸ ︷︷ ︸
f (xt|xt−1)

p(xt−1 | y1:t−1)dxt−1.

Hence, the prediction PDF is given by

p(xt | y1:t−1) =
∫

f (xt | xt−1)p(xt−1 | y1:t−1)dxt−1.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



State inference in dynamical systems (III/III) 7(40)

We have now showed that for the nonlinear SSM

xt+1 | xt ∼ f (xt+1 | xt),
yt | xt ∼ gθ(yt | xt).

the uncertain information that we have about the state is captured by
the filtering PDF, which we compute sequentially using a
measurement update

p(xt | y1:t) =

measurement model︷ ︸︸ ︷
g(yt | xt)

prediction PDF︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)

and a time update

p(xt | y1:t−1) =
∫

f (xt | xt−1)︸ ︷︷ ︸
dynamical model

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering PDF

dxt−1.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



State inference – simple special case 8(40)

Consider the following special case (Linear Gaussian State Space
(LGSS) model)

xt+1 = Axt + But + vt, vt ∼ N (0, Qt),
yt = Cxt + Dut + et, et ∼ N (0, Rt).

or, equivalently,

xt+1 | xt ∼ f (xt+1 | xt) = N (xt+1 | Axt + But, Qt),
yt | xt ∼ g(yt | xt) = N (yt | Cxt + Dut, Rt).

It is now straightforward to show that the solution to the time update
and measurement update equations is given by the Kalman filter,

p(xt | y1:t) = N (xt | x̂t|t, Pt|t),

p(xt+1 | y1:t) = N (xt+1 | x̂t+1|t, Pt+1|t).

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



State inference – interesting case 9(40)

Obvious question: what do we do in an interesting case, for
example when we have a nonlinear model with non-Gaussian noise?

1. Need a general representation of the filtering PDF

2. Try to solve the equations

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =
∫

f (xt | xt−1)p(xt−1 | y1:t−1)dxt−1,

as accurately as possible.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.
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The particle filter 11(40)

The particle filter provides an approximation of the filtering PDF
p(xt | y1:t), when the state evolves according to an SSM,

xt+1 | xt ∼ ft(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

The particle filter maintains an empirical distribution made up of N
samples (particles) {xi

t}N
i=1 and corresponding weights {wi

t}N
i=1

p̂N(xt | y1:t) =
N

∑
i=1

wi
tδxi

t
(xt).

“Think of each particle as one simulation of the system state. Only
keep the good ones.”

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



The particle filter - Very brief history 12(40)

The particle filter has been around for roughly 20 years.

The use of particle methods for nonlinear system identification
started to take off some 5 years ago.

Now this is a very active problem (and solution) within many fields.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.
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The particle filter – toy problem 13(40)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.

The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear
state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



The particle filter – toy problem 14(40)

Highlights two key
capabilities of the PF:

1. Automatically
handles an unknown
and dynamically
changing number of
hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



The particle filter 15(40)

1. Resampling: {xi
t−1, wi

t−1}N
i=1 → {x̃i

t−1, 1/N}N
i=1.

2. Propagation: xi
t ∼ qt(xt | x̃i

t−1).

3. Weighting: wi
t = Wt(xi

t, yt).

The result is a new weighted set of particles {xi
t, wi

t}N
i=1 targeting

p(xt | y1:t).

A systematic way of obtaining approximations that converge
Xiao-Li Hu, Thomas B. Schön and Lennart Ljung. A basic convergence result for particle filtering. IEEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.
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Example 1 – indoor localization 16(40)

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio

Show movie

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Example 2 – UAV localization (I/III) 17(40)

Aim: Compute the position and orientation of a helicopter by
exploiting the information present in Google maps images of the
operational area.

Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

The University of British Columbia
Vancouver, Canada

2. Helicopter pose estimation using a map (I/III)

Aim: Compute the position and orientation of a helicopter by exploiting the information present 
in Google maps images of the operational area.

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Camera

Inertial

Barometer

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Example 2 – UAV localization (II/III) 18(40)

Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

The University of British Columbia
Vancouver, Canada

2. Helicopter pose estimation using a map (II/III)

Image from on-board camera Extracted superpixels Superpixels classified as grass, 
asphalt or house

Three circular regions used for 
computing class histograms

Map over the operational 
environment obtained from 

Google Earth.

Manually classified map with 
grass, asphalt and houses as pre-

specified classes.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Example 2 – UAV localization (III/III) 19(40)

Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

The University of British Columbia
Vancouver, Canada

2. Helicopter pose estimation using a map (III/III)

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson, Geo-referencing for UAV Navigation 
using Environmental Classification. Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May 2010.

Show movie
Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson, Geo-referencing
for UAV Navigation using Environmental Classication. Proceedings of the International Conference on Robotics and
Automation (ICRA), Anchorage, Alaska, USA, May 2010.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.
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Learning nonlinear dynamical systems from data 21(40)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ f t(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1).

We observe

y1:T , {y1, . . . , yT},

(leaving the latent variables x1:T unobserved).

Identification problem: Find f , g, µ (or θ) based on y1:T.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Strategies for inference in latent variable models 22(40)

Alternate between updating θ and updating x1:T.

Frequentists:

• Find θ̂ML = arg max
θ

pθ(y1:T).

• Use e.g. the expectation maximization (EM) algorithm.

Bayesians:

• Find p(θ | y1:T).

• Use e.g. Gibbs or Metropolis-Hastings sampling.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Maximum likelihood – nonlinear SSMs 23(40)

Maximum likelihood (ML) amounts to solving,

θ̂
ML

= arg max
θ

log pθ(y1:T) = arg max
θ

T

∑
t=1

log pθ(yt | y1:t−1),

where

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1).

Can be solved by combining the Expectation Maximization (EM)
algorithm with a particle smoother.

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Problem formulation – Bayesian 24(40)

Consider a Bayesian SSM (θ is now a random variable with a prior
density p(θ))

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1),
θ ∼ p(θ).

Identification problem: Compute the posterior p(θ, x1:T | y1:T), or
one of its marginals.

The key challenge is that there is no closed form expression
available for the posterior.
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Gibbs sampler for SSMs 25(40)

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain.

Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T),

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T).

The above procedure results in a Markov chain,

{θ[m], x1:T[m]}m≥1

with p(θ, x1:T | yT) as its stationary distribution!

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Gibbs sampler for a general SSM 26(40)

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T); OK!

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T). Hard!

Problem: p(x1:T | θ[m], y1:T) not available!

Idea: Approximate p(x1:T | θ[m], y1:T) using a sequential
Monte Carlo method!

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Sampling based on the PF (I/II) 27(40)

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Sampling based on the PF (II/II) 28(40)

With P(x′1:T = xi
1:T) ∝ wi

T we get, x′1:T
approx.∼ p(x1:T | θ, y1:T).

5 10 15 20 25
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time

S
ta

te

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Problems 29(40)

Problems with this approach,

• Based on a PF⇒ approximate sample.

• Does not leave p(θ, x1:T | y1:T) invariant!

• Relies on large N to be successful.

• A lot of wasted computations.

To get around these problems,

Use a conditional particle filter (CPF). One pre-specified
path is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Particle Markov Chain Monte Carlo (PMCMC) 30(40)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1:T | θ, y1:T) invariant.

This Markov kernel is then used in a standard MCMC algorithm (e.g.
Gibbs, resulting in the Particle Gibbs (PG)).

Three SMC samplers leaving p(x1:T | θ, y1:T) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)
Fredrik Lindsten and Thomas B. Schön. On the use of backward simulation in the particle Gibbs sampler. Proc.
of the 37th Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



CPF vs. CPF-AS 31(40)

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.
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Conditional PF with ancestor sampling 32(40)

Theorem
For any N ≥ 2, the procedure;

(i) Run CPF-AS(x?1:T);

(ii) Sample P(x′1:T = xi
1:T) ∝ wi

T;

defines a Markov kernel on XT which leaves p(x1:T | θ, y1:T)
invariant.

Three additional reasons for using CPF-AS:

1. Significantly improves the mixing compared to CPF.

2. The computational complexity is linear in N.

3. Opens up for non-Markovian models.

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Particle Gibbs with ancestor sampling 33(40)

Bayesian identification: Gibbs + CPF-AS = PG-AS

Algorithm PG-AS: Particle Gibbs with ancestor sampling

1. Initialize: Set {θ[0], x1:T[0]} arbitrarily.
2. For m ≥ 1, iterate:

(a) Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T).

(b) Run CPF-AS(x1:T[m− 1]), targeting p(x1:T | θ[m], y1:T).

(c) Sample with P(x1:T[m] = x1:T
i) ∝ wi

T.

For any number of particles N ≥ 2, the Markov chain
{θ[m], x1:T[m]}m≥1 has stationary distribution p(θ, x1:T | y1:T).

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Toy example – stochastic volatility (I/II) 34(40)

Consider the stochastic volatility model,

xt+1 = 0.9xt + wt, wt ∼ N (0, θ),

yt = et exp
(

1
2

xt

)
, et ∼ N (0, 1).

Let us study the ACF for the estimation error, θ̂ − E [θ | y1:T]

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.



Toy example – stochastic volatility (I/II) 34(40)

Consider the stochastic volatility model,

xt+1 = 0.9xt + wt, wt ∼ N (0, θ),

yt = et exp
(

1
2

xt

)
, et ∼ N (0, 1).

Let us study the ACF for the estimation error, θ̂ − E [θ | y1:T]
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Toy example – stochastic volatility (II/II) 35(40)
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Some observations:
• We want the ACF to decay to zero as rapidly as possible (indicates good

mixing in the PG sampler).

• Note the superior mixing of PG-AS compared to PG-CPF (already for just
N = 5 particles!).
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Example – semiparametric Wiener model (I/III) 36(40)

Lut g(·) Σ

vt et

yt
zt

Parametric LGSS and a nonparametric static nonlinearity:

xt+1 =
(
A B

)︸ ︷︷ ︸
Γ

(
xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.
yt = g(zt) + et, et ∼ N (0, R).

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters
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Example – semiparametric Wiener model (II/III) 37(40)

Everything is learned from the data, by introducing the possibility to
switch specific model components on and off.

“Parameters”: θ = {A, B, Q, δ, g(·), r}.
Bayesian model specified by priors

• Sparseness prior (ARD) on Γ = [A B],
• Inverse-Wishart prior on Q and r
• Gaussian process prior on g(·),

g(·) ∼ GP(z, k(z, z′)).

Inference using PG-AS with N = 15 particles.
T = 1 000 measurements. We ran 15 000 MCMC
iterations and discarded 5 000 as burn-in.

x1:T

y1:T

Γ

δ

Q
u1:T

g(·) r
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Example – semiparametric Wiener model (III/III) 38(40)

Show movie
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Bode diagram of the 4th-order linear system.
Estimated mean (dashed black), true (solid
black) and 99% credibility intervals (blue).
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Static nonlinearity (non-monotonic), estimated
mean (dashed black), true (black) and the 99%
credibility intervals (blue).

Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan. Bayesian semiparametric Wiener system identification.
Automatica, 49(7): 2053-2063, July 2013.
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Conclusions 39(40)

• Probabilistic models of dynamical systems.
• Sequential Monte Carlo introduced via the particle filter.
• EM-PS for ML learning in nonlinear SSMs.
• PG-AS for Bayesian learning in nonlinear SSMs.
• The conditional particle filter defines a kernel on XT leaving

pθ(x1:T | y1:T) invariant.

There is a lot of interesting research that remains to be done!!

• We are working on a book project,
Thomas B. Schön and Fredrik Lindsten, Computational learning in
dynamical systems, 2013.

Send me an e-mail if you are interested in a draft.
• PhD course: user.it.uu.se/˜thosc112/CIDS.html

Thomas Schön (user.it.uu.se/ thosc112), Learning dynamical systems using particle filters

Seminart at the Division of Scientific Computing, Uppsala University, November 20, 2013.
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Novel introduction of PMCMC (very nice paper!)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

Self-contained introduction to BS and AS (not limited to SSMs)
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.

PG-AS (and the Wiener identification example)
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