Using particle filters to learn dynamical systems
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Dynamical systems are everywhere!

Some of the dynamical systems we have been working with,
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We first have to learn the models. Then we can use them.
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. Learning dynamical models
a) Maximum Likelihood (ML) identification (very brief)
b) Bayesian identification ((P)MCMC)
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The sequential Monte Carlo samplers are fundamental to both the
maximum likelihood and the Bayesian approaches.
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Probabilistic models of dynamical systems

Basic representation: Two discrete-time stochastic processes,
o {x;}>1 representing the state of the system.
o {y;}+>1 representing the measurements from the sensors.

The probabilistic model is described using two (f and g) probability
density functions (PDFs):

X1 | e~ fo(xn | X u),
e | xe ~ go(yr | xt).-

Model = PDF

This type of model is referred to as a state space model (SSM) or a
hidden Markov model (HMM).
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State inference in dynamical systems 5(23)

Aim: Compute a probabilistic representation of our knowledge of the
state, based on information that is present in the measurements.

The filtering PDF

p(xt | yit),

provides a representation of the uncertainty about the state at time ¢,
given all the measurements up to time t. Measurement update

measurement model prediction PDF

—N— ——
gy x)  plx|yr—)
p(ye | y1:4-1)

p(xe | y1e) =

Time update

plxe [ya1) = [ x| xio) ploica | i) dvios.

dynamical model filtering PDF
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State inference — simple special case

Consider the following special case (Linear Gaussian State Space
(LGSS) model)

Xi+1 = Axy + Buy + vy, Uy ~ N(O, Qr),
Yyt = Cxt + Du; + e, et ~ N(0,Ry).
or, equivalently,

Xep1 | X~ f(xer | x0) = N(xep1 | Axe + Buy, Qp),
Ve | x ~ g(yi | x1) = N(yr | Cxt + Duy, Ry).

It is now straightforward to show that the solution to the time update
and measurement update equations is given by the Kalman filter,

p(xe | yae) = N (xe | Xy, Py,

p(xes1 | y1e) = N (X1 | Bepape Prgage)-
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State inference — interesting case

Obvious question: what do we do in an interesting case, for
example when we have a nonlinear model with non-Gaussian noise?

1. Need a general representation of the filtering PDF
2. Try to solve the equations

Sy | xo)p(xe | yrie—1)
p(ye | y1:-1)

p(x¢ | y1e-1) = /f(xt | ) p(Xe—1 | yr—1)dxe—1,

p(xi | y1) =

as accurately as possible.
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The particle filter

The particle filter provides an approximation of the filtering PDF
p(x: | y1.¢), when the state evolves according to an SSM,
X1 | xe ~ fe(xi | xe),
ye | xe~ &e(ye | xt),
x1 ~ p(xq).

The particle filter main’gains an empirical distribution made up of N
samples (particles) {x:}¥ ; and corresponding weights {w:}Y |

N .
PN (x| i) = Zwiéxi(xt).
=1

1

“Think of each particle as one simulation of the system state. Only
keep the good ones.”
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The particle filter - Very brief history

The particle filter has been around for roughly 20 years.

The use of particle methods for nonlinear system identification
started to take off some 5 years ago.

Now this is a very active problem (and solution) within many fields.

->| Resampling |—>-| Propagation —-| Weighting |—
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The particle filter — toy problem

Consider a toy 1D localization problem.

Dynamic model:
Xt+1 = Xt + uy + vy,
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where x; denotes position, u; denotes velocity
(known), v; ~ N(0,5) denotes an unknown
disturbance.
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Measurements:
ye = h(x;) +ex
where (-) denotes the world model (here the
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The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,
Thomas Schon, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear

state-space models. /EEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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The particle filter — toy problem
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The particle filter

| Resampling | Propagation | Weighting |—

1. Resampling: {x}_,wi }Y, — {¥ |, 1/N}Y .
2. Propagation: xi ~ g;(x; | ¥_,).
3. Weighting: wi = W;(xi, ;).

The result is a new weighted set of particles {xi, wi}f\i , targeting
p(xt [ Y1)

A systematic way of obtaining approximations that converge

Xiao-Li Hu, Thomas B. Schén and Lennart Ljung. A basic convergence result for particle filtering. /EEE Transactions on
Signal Processing, 56(4):1337-1348, April 2008.
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Example — indoor localization

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Ask me later if you want to see a movie of the result.
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Learning nonlinear dynamical systems from data

A state space model (SSM) consists of a Markov process {x; }>1
and a measurement process {y; }+>1, related according to

X1 | X0~ fe(xeen | i), Xepr | X~ for (X | xe),
e | xe ~ gy | xr), ye | xe ~ go(yr | x1),
x1 ~ p(xy). x1 ~ po(x1).
We observe

yl:T é {yll- . -/yT};

(leaving the latent variables x{.7 unobserved).

Identification problem: Find f, g, 1 (or ) based on y;.r.

Thomas Schon (user.it.uu.se/ thosc112), Using particle filters to learn dynamical systems
Mathematical and numerical modeling in finance, Institute Mittag-Leffler, June 10, 2014.

14(23)



Strategies for inference in latent variable models 1523

Alternate between updating 6 and updating x1.7.

Frequentists:
e Find Oy = arg max ps(y1.7).
0

e Use e.g. the expectation maximization (EM) algorithm.

Bayesians:

e Findp(0 | y1.7).
e Use e.g. Gibbs or Metropolis-Hastings sampling.
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Maximum likelihood — nonlinear SSMs

Maximum likelihood (ML) amounts to solving,

~ML

T
6" = argmax logpy(y1.r) = argmax Zlogpg(yt | y1:-1),
0 0 t=1

where

X1 \ Xt Nfe,t(xt+1 \ xt),
Ye | xe ~ go(yr | x1),
x1 ~ pp(x1).

Can be solved by combining the Expectation Maximization (EM)
algorithm with a particle smoother.

Thomas B. Schén, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.

Thomas Schon (user.it.uu.se/ thosc112), Using particle filters to learn dynamical systems
Mathematical and numerical modeling in finance, Institute Mittag-Leffler, June 10, 2014.



Problem formulation — Bayesian

Consider a Bayesian SSM (6 is now a random variable with a prior
density p(0))
Xpp1 | xe ~ for(xiin | i),
Yt | Xt ~ ge,t(yt | Xt),
x1p ~ pe(x1),
0~ p(6).
Identification problem: Compute the posterior p(6, x1.7 | y1.7), or
one of its marginals.

The key challenge is that there is no closed form expression
available for the posterior.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.

Fredrik Lindsten and Thomas B. Schon, Back d si i hods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.
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Gibbs sampler for SSMs

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain.

Gibbs sampling (blocked) for SSMs amounts to iterating
e Draw 0[m] ~ p(0 | xy.7[m — 1], y1.7),

e Draw xy.r[m]| ~ p(x1.7 | 0]m], y1.1).

The above procedure results in a Markov chain,

{0[m], x1.7[m]}, 51

with p(6, x1.7 | yr) as its stationary distribution!
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Gibbs sampler for a general SSM

What would a Gibbs sampler for a general nonlinear/non-Gaussian
SSM look like?

e Draw O[m] ~ p(0 | x1.7[m — 1], y1.7); OK!
o Draw xy.7[m| ~ p(x1.7 | 0[m], y1.1). Hard!

[Problem: p(x1.7 | 0[m], y1.7) not available!

Idea: Approximate p(xi.r | 6[m],y1.r) using a sequential
Monte Carlo method!
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Example — semiparametric Wiener model

(n <

zZ
w— £ = s() —=(&)—w

Parametric LGSS and a nonparametric static nonlinearity:

X1 = (A B) (xi) + 01, v~ N(0,Q),

— \U
r
Zt = Cxt.
v = g(z) +ey, et ~ N(0,R).
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Example — semiparametric Wiener model
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Bode diagram of the 4th-order linear system.
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Static nonlinearity (non-monotonic), estimated
mean (dashed black), true (black) and the 99%
credibility intervals (blue).

identification.

Fredrik Lindsten, Thomas B. Schon and Michael I. Jordan. Bay
Automatica, 49(7): 2053-2063, July 2013.
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Conclusions

Probabilistic models of dynamical systems.

Sequential Monte Carlo introduced via the particle filter.
EM-PS for ML learning in nonlinear SSMs.
PMCMC for Bayesian learning in nonlinear SSMs.

There is a lot of interesting research that remains to be done!!
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