
Ancestor sampling in state space models,
graphical models and beyond

“Ancestor sampling is a way of exploiting backward simulation ideas
without needing an explicit backward pass.”

Thomas Schön

Division of Systems and Control
Department of Information Technology
Uppsala University, Sweden

Joint work with (alphabetical order): Michael I. Jordan (UC Berkeley), Fredrik Lindsten
(University of Cambridge) and Christian A. Naesseth (Linköping University).
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Outline 2(31)

1. Bayesian learning
a) Problem formulation
b) Gibbs sampling

2. Sequential Monte Carlo (SMC)

4. Particle Gibbs with ancestor sampling (PGAS)

5. SMC and PGAS for graphical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Problem formulation – Bayesian 3(31)

Consider a Bayesian SSM (θ is now a r.v. with a prior density p(θ))

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1),
θ ∼ p(θ).

Learning problem: Compute the posterior p(θ, x1:T | y1:T), or one
of its marginals.

Key challenge: There is no closed form expression available.
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Gibbs sampler for SSMs (I/II) 4(31)

Aim: Compute p(θ, x1:T | y1:T).

MCMC: Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T),

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T).

The above procedure results in a Markov chain,

{θ[m], x1:T[m]}m≥1

with p(θ, x1:T | yT) as its stationary distribution!
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Gibbs sampler for SSMs (II/II) 5(31)

Aim: Compute p(θ, x1:T | y1:T).

MCMC: Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T); OK!

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T). Hard!

Problem: p(x1:T | θ[m], y1:T) not available!

Idea: Approximate p(x1:T | θ[m], y1:T) using a sequential
Monte Carlo method!
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Sequential Monte Carlo (SMC) 6(31)

Approximate a sequence of probability distributions on a sequence
of probability spaces of increasing dimension.

Let {γθ,t(x1:t)}t≥1 be a sequence of unnormalized densities and

γ̄θ,t(x1:t) =
γθ,t(x1:t)

Zθ,t

Ex. (SSM)

γ̄θ,t(x1:t) = pθ(x1:t | y1:t), γθ,t(x1:t) = pθ(x1:t, y1:t),

Zθ,t = pθ(y1:t).
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SMC – solving a toy problem 7(31)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.

The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear
state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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SMC – solving a toy problem 8(31)

Highlights two key
capabilities of SMC:

1. Automatically
handles an unknown
and dynamically
changing number of
hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.

p(xt | y1:t) ≈
N

∑
i=1

wi
tδxi

t
(xt)
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Sequential Monte Carlo (SMC) 9(31)

SMC = resampling + sequential importance sampling

1. Resampling: P(ai
t = j) = wj

t−1/ ∑l wl
t−1.

2. Propagation: xi
t ∼ rθ,t(xt | xai

t
1:t−1) and xi

1:t = {x
ai

t
1:t−1, xi

t}.

3. Weighting: wi
t = Wθ,t(xi

1:t) =
γθ,t(xi

1:t)

γθ,t−1(xi
1:t−1)rθ,t(xi

t|xi
1:t−1)

.

The result is a new weighted set of particles {xi
1:t, wi

t}N
i=1.
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Outline 10(31)

1. Bayesian learning
a) Problem formulation
b) Gibbs sampling

2. Sequential Monte Carlo (SMC)

3. Particle Gibbs with ancestor sampling (PGAS)

4. SMC and PGAS for graphical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Recall – Gibbs sampler for SSMs 11(31)

Aim: Compute p(θ, x1:T | y1:T).

MCMC: Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T); OK!

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T). Hard!

Problem: p(x1:T | θ[m], y1:T) not available!

Idea: Approximate p(x1:T | θ[m], y1:T) using a sequential
Monte Carlo method!
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Sampling based on SMC 12(31)

With P(x?1:T = xi
1:T) ∝ wi

T we get, x?1:T
approx.∼ p(x1:T | θ, y1:T).
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Problems and a solution 13(31)

Problems with this approach,

• Based on a PF⇒ approximate sample.

• Does not leave p(x1:T | θ, y1:T) invariant!

• Relies on large N to be successful.

• A lot of wasted computations.

To get around these problems,

Use a conditional particle filter (CPF). One pre-specified
reference trajectory is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Markov chain Monte Carlo (PMCMC) 14(31)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1:T | θ, y1:T) invariant.

This Markov kernel is then used in a standard MCMC algorithm
(e.g. Gibbs, results in the Particle Gibbs (PG)).

For a self-contained introduction (focused on BS and AS),
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.
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Three SMC samplers 15(31)

Three SMC samplers leaving p(x1:T | θ, y1:T) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)
N. Whiteley, Discussion on Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society:
Series B, 72(3), 306–307, 2010.

N. Whiteley, C. Andrieu and A. Doucet, Efficient Bayesian inference for switching state-space models using
discrete particle Markov chain Monte Carlo methods, Bristol Statistics Research Report 10:04, 2010.

Fredrik Lindsten and Thomas B. Schön. On the use of backward simulation in the particle Gibbs sampler. Proc.
of the 37th Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Particle Gibbs with ancestor sampling, Journal of
Machine Learning Research (JMLR), 2014. (accepted for publication)

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.
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Conditional particle filter (CPF) 16(31)

Let x′1:T = (x′1, . . . , x′T) be a fixed reference trajectory.

• At each time t, sample only N− 1 particles in the standard way.
• Set the Nth particle deterministically: xN

t = x′t.

CPF causes us to degenerate to the something that is very similar to
the reference trajectory, resulting in slow mixing.
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CPF vs. CPF-AS – motivation 17(31)

BS is problematic for models with more intricate dependencies.

Reason: Requires complete trajectories of the latent variable in the
backward sweep.

Solution: Modify the computation to achieve the same effect as BS,
but without an explicit backwards sweep.

Implication: Ancestor sampling opens up for inference in a wider
class of models, e.g. non-Markovian SSMs, PGMs and BNP models.

Ancestor sampling is conceptually similar to backward simulation,
but instead of separate forward and backward sweeps, we achieve

the same effect in a single forward sweep.
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CPF-AS – intuition 18(31)

Let x′1:T = (x′1, . . . , x′T) be a fixed reference trajectory.
• At each time t, sample only N− 1 particles in the standard way.
• Set the Nth particle deterministically: xN

t = x′t.
• Generate an artificial history for xN

t by ancestor sampling.

CPF-AS causes us to degenerate to something that is very different
from the reference trajectory, resulting in better mixing.
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The PGAS Markov kernel 19(31)

1. Run CPF-AS(x′1:T) targeting p(x1:T | θ, y1:T).

2. Sample x?1:T with P(x?1:T = xi
1:T) ∝ wi

T.

• Maps x′1:T stochastically into x?1:T
• Implicitly defines an ergodic Markov kernel (PN

θ ) referred to as
the PGAS (particle Gibbs with ancestor sampling) kernel.

Theorem

For any number of particles N ≥ 1 and θ ∈ Θ, the PGAS kernel PN
θ

leaves p(x1:T | θ, y1:T) invariant,

p(dx?1:T | θ, y1:T) =
∫

PN
θ (x

′
1:T, dx?1:T)p(dx′1:T | θ, y1:T)
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PGAS for Bayesian learning 20(31)

Bayesian learning: Gibbs + CPF-AS = PGAS

Algorithm Particle Gibbs with ancestor sampling (PGAS)

1. Initialize: Set {θ[0], x1:T[0]} arbitrarily.
2. For m ≥ 1, iterate:

(a) Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T).

(b) Run CPF-AS(x1:T[m− 1]), targeting p(x1:T | θ[m], y1:T).

(c) Sample with P(x1:T[m] = xi
1:T) ∝ wi

T.
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Toy example – stochastic volatility (I/II) 21(31)

Consider the stochastic volatility model,

xt+1 = 0.9xt + wt, wt ∼ N (0, θ),

yt = et exp
(

1
2

xt

)
, et ∼ N (0, 1).

Let us study the ACF for the estimation error, θ̂ − E [θ | y1:T]
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Toy example – stochastic volatility (II/II) 22(31)
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Plots of the update rate of xt versus t, i.e. the proportion of iterations where
xt changes value. This provides another comparison of the mixing.

Thomas Schön (user.it.uu.se/ thosc112), Ancestor sampling in state space models, graphical models and beyond

Seminar at the Department of Statistics, University of Oxford, UK, February 21, 2014.



Using SMC in graphical models – the idea 23(31)

Constructing an artificial sequence of intermediate (auxiliary) target
distributions for an SMC sampler is a powerful (and quite possibly
underutilized) idea. For some applications, see
Alexandre Bouchard-Côté and Sriram Sankararaman and Michael I. Jordan. Phylogenetic Inference via Sequential Monte
Carlo, Systematic Biology, 61(4):579–593, 2012.

Pierre Del Moral, Arnaud Doucet and Ajay Jasra. Sequential Monte Carlo samplers, Journal of the Royal Statistical Society:
Series B, 68(3):411–436, 2006.

Key idea: Perform and make use of a sequential decomposition of
the probabilistic graphical model (PGM).

Defines a sequence of intermediate (auxiliary) target distributions
defined on an increasing sequence of probability spaces.

Target this sequence using SMC.
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Sequential decomposition of PGMs – pictures 24(31)

The joint PDF of the set of random
variables indexed by V ,
XV , {x1, . . . , x|V|}

p(XV ) =
1
Z ∏

C∈C
ψC(XC).

x1 ψ1 x2 ψ2

x3

x4

Sequential decomposition of the above factor graph (the target
distributions are built up by adding factors at each iteration),

γ1(XL1) γ2(XL2)

x1 ψ1 x2 x1 ψ1 x2 ψ2

x3

x4
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Sequential decomposition of PGMs – equations 25(31)

Let {ψk}K
k=1 be a sequence of factors,

ψk(XIk) = ∏
C∈Ck

ψC(XC),

where Ik ⊆ {1, . . . , |V|}.
The sequential decomposition is based on these factors,

γk(XLk) ,
k

∏
`=1

ψ`(XI`),

where Lk ,
⋃k

`=1 I`.
By construction, LK = V and the joint PDF p(XLK) ∝ γK(XLK).
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SMC sampler for PGMs 26(31)

Algorithm SMC sampler for PGMs

1. Initialize (k = 1): Draw Xi
L1
∼ r1(·) and set wi

1 = W1(Xi
L1
).

2. For k = 2 to K do:
(a) Draw ai

k ∼ Cat({wj
k−1}

N
j=1).

(b) Draw ξi
k ∼ rk(·|X

ai
k
Lk−1

) and set Xi
Lk

= X
ai

k
Lk−1
∪ ξi

k.

(c) Set wi
k = Wk(Xi

Lk
).

Also provides an estimate of the partition function!

Problem: SMC is not enough since:
1. It does not solve the parameter learning problem.
2. The quality of the marginals p(XLk) deteriorates for k� K.

Solution: Use PGAS.
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Example – Gaussian MRF (I/II) 27(31)

Consider a standard squared lattice Gaussian MRF of size 10× 10,

p(XV , YV ) ∝ ∏
i∈V

e
1

2σ2
i
(xi−yi)

2

∏
(i,j)∈E

e
1

2σ2
ij
(xi−xj)

2

Four MCMC samplers:
1. PGAS – fully blocked
2. PGAS – partially blocked
3. Standard one-at-a-time

Gibbs
4. Tree sampler (Hamze &

de Freitas, 2004)

The arrows show the order in
which the factors are added.

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
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Example – Gaussian MRF (II/II) 28(31)
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Using SMC in graphical models 29(31)

We have introduced several SMC-based inference methods for
PGMs of arbitrary topologies with discrete or continuous variables.

The sequential decomposition is not unique and its form will affect
• accuracy
• computational efficiency
• simplicity of implementation

Details and a loopy, non-Gaussian and non-discrete PGM example,

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical models.
Preprint at arXiv:1402:0330, February, 2014.
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Conclusions 30(31)

• Think of the PGAS kernel as a component that can be used in
different inference algorithms.
• Not at all limited to SSMs. Particularly useful for models with

more complex dependencies, such as
• Non-Markovian models
• Bayesian nonparametric models
• Probabilistic graphical models

• PGAS is built upon two main ideas
1. Conditioning the underlying SMC sampler on a reference

trajectory ensures the correct stationary distribution for any N.
2. Ancestor sampling causes degeneration to different

trajectories, drastically improving the mixing of the sampler.

There is a lot of interesting research that remains to be done!!
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Some references 31(31)

Novel introduction of PMCMC (given us lots of inspiration)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

Forthcoming book
Thomas B. Schön and Fredrik Lindsten, Learning of dynamical systems – Particle filters and Markov chain
methods, 2014 (or 2015...).

Self-contained introduction to BS and AS (not limited to SSMs)
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.

PGAS
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Particle Gibbs with ancestor sampling, Journal of
Machine Learning Research (JMLR), 2014. (accepted for publication)

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.

SMC methods for graphical models
Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Preprint at arXiv:1402:0330, February, 2014.

Some MATLAB code is available from the web-site.
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