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beyond
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Dynamical systems are everywhere! 2(44)

Some of the dynamical systems we have been working with,

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

Dynamical systems are everywhere!

Examples of systems I have been working with

Create new probabilistic models of dynamical systems and automatically learn these 
models from data.

Use the models to automatically understand and control various systems.

We first have to learn the models. Then we can use them.
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Learning nonlinear dynamical systems from data 3(44)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ f t(xt+1 | xt),
yt | xt ∼ gt(yt | xt),

x1 ∼ µ(x1).

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1).

We observe

y1:T , {y1, . . . , yT},

(leaving the latent variables x1:T unobserved).

Learning problem: Find f , g, µ (or θ) based on y1:T.
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Strategies for inference in latent variable models 4(44)

Alternate between updating θ and updating x1:T.

Frequentists:

• Find θ̂ML = arg max
θ

pθ(y1:T).

• Use e.g. the expectation maximization (EM) algorithm.

Bayesians:

• Find p(θ | y1:T).

• Use e.g. Gibbs sampling.

Frequentists + Bayesians:

• Use e.g. particle Gibbs together with stochastic approx. EM.
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Outline 5(44)

1. Maximum Likelihood (ML) learning
a) Problem formulation
b) EM and a particle smoother

2. Bayesian learning
a) Problem formulation
b) Gibbs sampling

3. Sequential Monte Carlo (SMC)

4. Particle Gibbs with ancestor sampling (PGAS)

5. SMC and PGAS for graphical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Problem formulation – ML 6(44)

A state space model (SSM) consists of a Markov process {xt}t≥1
and a measurement process {yt}t≥1, related according to

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1).

Learning problem: Find θ based on y1:T.

ML amounts to solving,

θ̂
ML

= arg max
θ

log pθ(y1:T)

where the log-likelihood function is given by

log pθ(y1:T) =
T

∑
t=1

log pθ(yt | y1:t−1)
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EM – the algorithm 7(44)

Algorithm 1 EM – learning nonlinear dynamical systems

1. Initialise: Set i = 1 and choose an initial θ1.
2. While not converged do:

(a) Expectation (E) step: Compute

Q(θ, θi) = Eθi [log pθ(x1:T, y1:T) | y1:T]

=
∫

log pθ(x1:T, y1:T) pθi(x1:T | y1:T)︸ ︷︷ ︸dx1:T

using PS (backward simulation or ancestor sampling).

(b) Maximization (M) step: Compute θi+1 = arg max
θ∈Θ

Q(θ, θi)

(c) i← i + 1

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models. Automatica,
47(1):39-49, January 2011.
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Problem formulation – Bayesian 8(44)

Consider a Bayesian SSM (θ is now a r.v. with a prior density p(θ))

xt+1 | xt ∼ fθ,t(xt+1 | xt),
yt | xt ∼ gθ,t(yt | xt),

x1 ∼ µθ(x1),
θ ∼ p(θ).

Learning problem: Compute the posterior p(θ, x1:T | y1:T), or one
of its marginals.

Key challenge: There is no closed form expression available.
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Gibbs sampler for SSMs (I/II) 9(44)

Aim: Compute p(θ, x1:T | y1:T).

MCMC: Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T),

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T).

The above procedure results in a Markov chain,

{θ[m], x1:T[m]}m≥1

with p(θ, x1:T | yT) as its stationary distribution!
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Gibbs sampler for SSMs (II/II) 10(44)

Aim: Compute p(θ, x1:T | y1:T).

MCMC: Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T); OK!

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T). Hard!

Problem: p(x1:T | θ[m], y1:T) not available!

Idea: Approximate p(x1:T | θ[m], y1:T) using a sequential
Monte Carlo method!
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Outline 11(44)

1. Maximum Likelihood (ML) learning
a) Problem formulation
b) Solution using EM and a particle smoother

2. Bayesian learning
a) Problem formulation
b) Gibbs sampling

3. Sequential Monte Carlo (SMC)

4. Particle Gibbs with ancestor sampling (PGAS)

5. SMC and PGAS for graphical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.

Thomas Schön (user.it.uu.se/ thosc112), Ancestor sampling in state space models and beyond

Seminar at the Department of Statistics, University of Oxford, UK, February 21, 2014.



Sequential Monte Carlo (SMC) 12(44)

Approximate a sequence of probability distributions on a sequence
of probability spaces of increasing dimension.

Let {γθ,t(x1:t)}t≥1 be a sequence of unnormalized densities and

γ̄θ,t(x1:t) =
γθ,t(x1:t)

Zθ,t

Ex. (SSM)

γ̄θ,t(x1:t) = pθ(x1:t | y1:t), γθ,t(x1:t) = pθ(x1:t, y1:t),

Zθ,t = pθ(y1:t).

Thomas Schön (user.it.uu.se/ thosc112), Ancestor sampling in state space models and beyond

Seminar at the Department of Statistics, University of Oxford, UK, February 21, 2014.



SMC – solving a toy problem 13(44)

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes velocity
(known), vt ∼ N (0, 5) denotes an unknown
disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here the
terrain height) and et ∼ N (0, 1) denotes an
unknown disturbance.

The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are available in,

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed linear/nonlinear
state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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SMC – solving a toy problem 14(44)

Highlights two key
capabilities of SMC:

1. Automatically
handles an unknown
and dynamically
changing number of
hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.

p(xt | y1:t) ≈
N

∑
i=1

wi
tδxi

t
(xt)
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Sequential Monte Carlo (SMC) 15(44)

SMC = resampling + sequential importance sampling

1. Resampling: P(ai
t = j) = wj

t−1/ ∑l wl
t−1.

2. Propagation: xi
t ∼ rθ,t(xt | xai

t
1:t−1) and xi

1:t = {x
ai

t
1:t−1, xi

t}.

3. Weighting: wi
t = Wθ,t(xi

1:t) =
γθ,t(xi

1:t)

γθ,t−1(xi
1:t−1)rθ,t(xi

t|xi
1:t−1)

.

The result is a new weighted set of particles {xi
1:t, wi

t}N
i=1.
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Sequential Monte Carlo (SMC) 16(44)

Algorithm SMC (each step is for i = 1, . . . N)

1. Initialize (t = 1):
(a) Draw xi

1 ∼ rθ,1(xi
1).

(b) Set wi
1 = Wθ,1(xi

1).

2. For t = 2 to T do:
(a) Draw ai

t ∼ Cat({wj
t}N

j=1).

(b) Draw xi
t ∼ rθ,t(xt | xai

t
1:t−1) and set xi

1:t = {x
ai

t
1:t−1, xi

t}.
(c) Set wi

t = Wθ,t(xi
1:t).
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SMC suffers from path degeneracy (illustration) 17(44)
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SMC application example – indoor localization 18(44)

Aim: Compute the position of a person moving around indoors using
sensors (inertial, magnetometer and radio) located in an ID badge
and a map.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion
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Show movie
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Outline 19(44)

1. Maximum Likelihood (ML) learning
a) Problem formulation
b) Solution using EM and a particle smoother

2. Bayesian learning
a) Problem formulation
b) Gibbs sampling

3. Sequential Monte Carlo (SMC)

4. Particle Gibbs with ancestor sampling (PGAS)

5. SMC and PGAS for graphical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Recall – Gibbs sampler for SSMs 20(44)

Aim: Compute p(θ, x1:T | y1:T).

MCMC: Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T); OK!

• Draw x1:T[m] ∼ p(x1:T | θ[m], y1:T). Hard!

Problem: p(x1:T | θ[m], y1:T) not available!

Idea: Approximate p(x1:T | θ[m], y1:T) using a sequential
Monte Carlo method!

Thomas Schön (user.it.uu.se/ thosc112), Ancestor sampling in state space models and beyond

Seminar at the Department of Statistics, University of Oxford, UK, February 21, 2014.



Sampling based on SMC 21(44)

With P(x?1:T = xi
1:T) ∝ wi

T we get, x?1:T
approx.∼ p(x1:T | θ, y1:T).
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Problems and a solution 22(44)

Problems with this approach,

• Based on a PF⇒ approximate sample.

• Does not leave p(x1:T | θ, y1:T) invariant!

• Relies on large N to be successful.

• A lot of wasted computations.

To get around these problems,

Use a conditional particle filter (CPF). One pre-specified
reference trajectory is retained throughout the sampler.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal of the
Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle Markov chain Monte Carlo (PMCMC) 23(44)

The idea underlying PMCMC is to make use of a certain SMC
sampler to construct a Markov kernel leaving the joint smoothing
distribution p(x1:T | θ, y1:T) invariant.

This Markov kernel is then used in a standard MCMC algorithm
(e.g. Gibbs, results in the Particle Gibbs (PG)).

For a self-contained introduction (focused on BS and AS),
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference, Foundations
and Trends in Machine Learning, 6(1):1-143, 2013.
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Three SMC samplers 24(44)

Three SMC samplers leaving p(x1:T | θ, y1:T) invariant:

1. Conditional particle filter (CPF)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

2. CPF with backward simulation (CPF-BS)
N. Whiteley, Discussion on Particle Markov chain Monte Carlo methods, Journal of the Royal Statistical Society:
Series B, 72(3), 306–307, 2010.

N. Whiteley, C. Andrieu and A. Doucet, Efficient Bayesian inference for switching state-space models using
discrete particle Markov chain Monte Carlo methods, Bristol Statistics Research Report 10:04, 2010.

Fredrik Lindsten and Thomas B. Schön. On the use of backward simulation in the particle Gibbs sampler. Proc.
of the 37th Internat. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 2012.

3. CPF with ancestor sampling (CPF-AS)
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Particle Gibbs with ancestor sampling,
arXiv:1401.0604, 2014.

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.
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Conditional particle filter (CPF) 25(44)

Let x′1:T = (x′1, . . . , x′T) be a fixed reference trajectory.

• At each time t, sample only N− 1 particles in the standard way.
• Set the Nth particle deterministically: xN

t = x′t.

CPF causes us to degenerate to the something that is very similar to
the reference trajectory, resulting in slow mixing.
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CPF vs. CPF-AS – motivation 26(44)

BS is problematic for models with more intricate dependencies.

Reason: Requires complete trajectories of the latent variable in the
backward sweep.

Solution: Modify the computation to achieve the same effect as BS,
but without an explicit backwards sweep.

Implication: Ancestor sampling opens up for inference in a wider
class of models, e.g. non-Markovian SSMs, PGMs and BNP models.

Ancestor sampling is conceptually similar to backward simulation,
but instead of separate forward and backward sweeps, we achieve

the same effect in a single forward sweep.
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CPF-AS – intuition 27(44)

Let x′1:T = (x′1, . . . , x′T) be a fixed reference trajectory.
• At each time t, sample only N− 1 particles in the standard way.
• Set the Nth particle deterministically: xN

t = x′t.
• Generate an artificial history for xN

t by ancestor sampling.

CPF-AS causes us to degenerate to something that is very different
from the reference trajectory, resulting in better mixing.
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CPF-AS – algorithm 28(44)

Algorithm CPF-AS, conditioned on x′1:T

1. Initialize (t = 1):
(a) Draw xi

1 ∼ rθ,1(xi
1), for i = 1, . . . , N− 1.

(b) Set xN
1 = x′1.

(c) Set wi
1 = Wθ,1(xi

1).

2. For t = 2 to T do:
(a) Draw ai

t ∼ Cat({wj
t}N

j=1), for i = 1, . . . , N− 1.

(b) Draw xi
t ∼ rθ,t(xt | xai

t
1:t−1), for i = 1, . . . , N− 1.

(c) Set xN
t = x′t.

(d) Draw aN
t with P(aN

t = i) ∝ wi
t−1

γθ,T(xi
1:t−1,x′t:T)

γθ,t−1(xi
1:t−1)

.

(e) Set xi
1:t = {x

ai
t

1:t−1, xi
t} and wi

t = Wθ,t(xi
1:t).
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The PGAS Markov kernel 29(44)

1. Run CPF-AS(x′1:T) targeting p(x1:T | θ, y1:T).

2. Sample x?1:T with P(x?1:T = xi
1:T) ∝ wi

T.

• Maps x′1:T stochastically into x?1:T
• Implicitly defines an ergodic Markov kernel (PN

θ ) referred to as
the PGAS (particle Gibbs with ancestor sampling) kernel.

Theorem

For any number of particles N ≥ 1 and θ ∈ Θ, the PGAS kernel PN
θ

leaves p(x1:T | θ, y1:T) invariant,

p(dx?1:T | θ, y1:T) =
∫

PN
θ (x

′
1:T, dx?1:T)p(dx′1:T | θ, y1:T)
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PGAS for Bayesian learning 30(44)

Bayesian learning: Gibbs + CPF-AS = PGAS

Algorithm Particle Gibbs with ancestor sampling (PGAS)

1. Initialize: Set {θ[0], x1:T[0]} arbitrarily.
2. For m ≥ 1, iterate:

(a) Draw θ[m] ∼ p(θ | x1:T[m− 1], y1:T).

(b) Run CPF-AS(x1:T[m− 1]), targeting p(x1:T | θ[m], y1:T).

(c) Sample with P(x1:T[m] = xi
1:T) ∝ wi

T.
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Toy example – stochastic volatility (I/II) 31(44)

Consider the stochastic volatility model,

xt+1 = 0.9xt + wt, wt ∼ N (0, θ),

yt = et exp
(

1
2

xt

)
, et ∼ N (0, 1).

Let us study the ACF for the estimation error, θ̂ − E [θ | y1:T]
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Toy example – stochastic volatility (II/II) 32(44)
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Plots of the update rate of xt versus t, i.e. the proportion of iterations where
xt changes value. This provides another comparison of the mixing.
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Two more PGAS application examples 33(44)

1. A Gaussian process state space model (GP-SSM)

f (xt) ∼ GP(mθx(xt), kθx(xt, x′t)),
xt+1 | ft ∼ N (xt+1 | ft, Q),

yt | xt ∼ p(yt | xt, θy).

Key idea: Marginalize out the function f using PGAS.
Roger Frigola, Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen, Bayesian inference and learning in Gaussian
process state-space models with particle MCMC. In Advances in Neural Information Processing Systems (NIPS) 26, Lake
Tahoe, NV, USA, December 2013.

2. ML learning using PGAS + stochastic approximation EM (PSAEM)

Q̂m(θ) = Q̂m−1(θ) + γm

(
log pθ(x1:T[m], y1:T)− Q̂m−1(θ)

)
F. Lindsten, An efficient stochastic approximation EM algorithm using conditional particle filters, Proceedings of the
38th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canadan, May 2013.

Thomas Schön (user.it.uu.se/ thosc112), Ancestor sampling in state space models and beyond

Seminar at the Department of Statistics, University of Oxford, UK, February 21, 2014.



Outline 34(44)

1. Maximum Likelihood (ML) learning
a) Problem formulation
b) Solution using EM and a particle smoother

2. Bayesian learning
a) Problem formulation
b) Gibbs sampling

3. Sequential Monte Carlo (SMC)

4. Particle Gibbs with ancestor sampling (PGAS)

5. SMC and PGAS for graphical models

The sequential Monte Carlo samplers are fundamental to both the
ML and the Bayesian approaches.
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Using SMC in graphical models – the idea 35(44)

Constructing an artificial sequence of intermediate (auxiliary) target
distributions for an SMC sampler is a powerful (and quite possibly
underutilized) idea. For some applications, see
Alexandre Bouchard-Côté and Sriram Sankararaman and Michael I. Jordan. Phylogenetic Inference via Sequential Monte
Carlo, Systematic Biology, 61(4):579–593, 2012.

Pierre Del Moral, Arnaud Doucet and Ajay Jasra. Sequential Monte Carlo samplers, Journal of the Royal Statistical Society:
Series B, 68(3):411–436, 2006.

Key idea: Perform and make use of a sequential decomposition of
the probabilistic graphical model (PGM).

Defines a sequence of intermediate (auxiliary) target distributions
defined on an increasing sequence of probability spaces.

Target this sequence using SMC.
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Sequential decomposition of PGMs – pictures 36(44)

The joint PDF of the set of random
variables indexed by V ,
XV , {x1, . . . , x|V|}

p(XV ) =
1
Z ∏

C∈C
ψC(XC).

x1 ψ1 x2 ψ2

x3

x4

Sequential decomposition of the above factor graph (the target
distributions are built up by adding factors at each iteration),

γ1(XL1) γ2(XL2)

x1 ψ1 x2 x1 ψ1 x2 ψ2

x3

x4
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Sequential decomposition of PGMs – equations 37(44)

Let {ψk}K
k=1 be a sequence of factors,

ψk(XIk) = ∏
C∈Ck

ψC(XC),

where Ik ⊆ {1, . . . , |V|}.
The sequential decomposition is based on these factors,

γk(XLk) ,
k

∏
`=1

ψ`(XI`),

where Lk ,
⋃k

`=1 I`.
By construction, LK = V and the joint PDF p(XLK) ∝ γK(XLK).
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SMC sampler for PGMs 38(44)

Algorithm SMC sampler for PGMs

1. Initialize (k = 1): Draw Xi
L1
∼ r1(·) and set wi

1 = W1(Xi
L1
).

2. For k = 2 to K do:
(a) Draw ai

k ∼ Cat({wj
k−1}

N
j=1).

(b) Draw ξi
k ∼ rk(·|X

ai
k
Lk−1

) and set Xi
Lk

= X
ai

k
Lk−1
∪ ξi

k.

(c) Set wi
k = Wk(Xi

Lk
).

Also provides an estimate of the partition function!

Problem: SMC is not enough since:
1. It does not solve the parameter learning problem.
2. The quality of the marginals p(XLk) deteriorates for k� K.

Solution: Use PGAS.
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Example – Gaussian MRF (I/II) 39(44)

Consider a standard squared lattice Gaussian MRF of size 10× 10,

p(XV , YV ) ∝ ∏
i∈V

e
1

2σ2
i
(xi−yi)

2

∏
(i,j)∈E

e
1

2σ2
ij
(xi−xj)

2

Four MCMC samplers:
1. PGAS – fully blocked
2. PGAS – partially blocked
3. Standard one-at-a-time

Gibbs
4. Tree sampler (Hamze &

de Freitas, 2004)

The arrows show the order in
which the factors are added.

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
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Example – Gaussian MRF (II/II) 40(44)
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Using SMC in graphical models 41(44)

We have introduced several SMC-based inference methods for
PGMs of arbitrary topologies with discrete or continuous variables.

The sequential decomposition is not unique and its form will affect
• accuracy
• computational efficiency
• simplicity of implementation

Details and a loopy, non-Gaussian and non-discrete PGM example,

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical models.
Preprint at arXiv:1402:0330, February, 2014.
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Conclusions 42(44)

• Think of the PGAS kernel as a component that can be used in
different inference algorithms.
• Not at all limited to SSMs. Particularly useful for models with

more complex dependencies, such as
• Non-Markovian models
• Bayesian nonparametric models
• Probabilistic graphical models

• PGAS is built upon two main ideas
1. Conditioning the underlying SMC sampler on a reference

trajectory ensures the correct stationary distribution for any N.
2. Ancestor sampling causes degeneration to different

trajectories, drastically improving the mixing of the sampler.

There is a lot of interesting research that remains to be done!!
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Some references (I/II) 43(44)

Novel introduction of PMCMC (given us lots of inspiration)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

Forthcoming book
Thomas B. Schön and Fredrik Lindsten, Learning of dynamical systems – Particle filters and Markov chain
methods, 2014 (or 2015...).

Self-contained introduction to BS and AS (not limited to SSMs)
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.

PGAS
Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Particle Gibbs with ancestor sampling,
arXiv:1401.0604, 2014.

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön, Ancestor sampling for particle Gibbs, Advances in
Neural Information Processing Systems (NIPS) 25, Lake Tahoe, NV, US, December, 2012.
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Some references (II/II) 44(44)

ML identification of nonlinear SSMs
F. Lindsten, An efficient stochastic approximation EM algorithm using conditional particle filters, Proceedings
of the 38th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver,
Canadan, May 2013.

Thomas B. Schön, Adrian Wills and Brett Ninness. System Identification of Nonlinear State-Space Models.
Automatica, 47(1):39-49, January 2011.

Bayesian inference in SSMs using Gaussian processes
Roger Frigola, Fredrik Lindsten, Thomas B. Schön and Carl E. Rasmussen, Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. In Advances in Neural Information Processing
Systems (NIPS) 26, Lake Tahoe, NV, USA, December 2013.

SMC methods for graphical models
Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Preprint at arXiv:1402:0330, February, 2014.

Some MATLAB code is available from the web-site.
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