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Nonlinear system identification

A state space model (SSM) consists of a Markov process {xt}t≥1

that is indirectly observed via a measurement process {yt}t≥1,

xt+1 |xt ∼ fθ,t(xt+1 |xt, ut),
yt |xt ∼ gθ,t(yt |xt, ut),

x1 ∼ µθ(x1),

(θ ∼ π(θ)).

xt+1 = aθ(xt, ut) + vθ,t,

yt = cθ(xt, ut) + eθ,t,

x1 ∼ µθ(x1),

(θ ∼ π(θ)).

We observe

y1:T , {y1, . . . , yT }, and possibly u1:T , {u1, . . . , uT }.

(leaving the latent variables x1:T unobserved).

Identification problem: Find θ based on y1:T (and u1:T ).
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Two commonly used problem formulations

Maximum likelihood (ML) formulation – model the unknown
parameters as a deterministic variable and solve

θ̂ML = arg max
θ∈Θ

pθ(y1:T ).

Bayesian formulation – model the unknown parameters as a
random variable θ ∼ π(θ) and compute

p(θ | y1:T ) =
pθ(y1:T )π(θ)

p(y1:T )
,

where pθ(y1:T ) = p(y1:T | θ).
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Central object – the likelihood

The central object in both formulations is the likelihood

pθ(y1:T ) =

T∏
t=1

pθ(yt | y1:t−1).

The likelihood is computed by marginalizing the joint density
pθ(x1:T , y1:T ) w.r.t. the state sequence x1:T

pθ(y1:T ) =

∫
pθ(x1:T , y1:T )dx1:T =

T∏
t=1

∫
gθ(yt |xt)pθ(xt | y1:t−1)dxt.

Key challenge: How to deal with the latent states.

Our solution: Sequential Monte Carlo (SMC) including particle
filters/smoothers.
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Micro: MCMC – AR(1) example (I/II)

One realisation from x[k + 1] = 0.8x[k] + v[k] where
v[k] ∼ N (0, 1). Initialise in x[0] = −40.
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This will eventually
generate samples from the
following stationary
distribution:

πs(x) = N
(
x

∣∣∣∣ 0, 1

1− 0.82

)
as t→∞.
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Micro: MCMC – AR(1) example (II/II)
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The true stationary distribution is showed in black and the
empirical histogram obtained by simulating the Markov chain
x[k + 1] = 0.8x[k] + v[k] is plotted in gray.

The initial 1 000 samples are discarded (burn-in).
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mailto:thomas.schon@it.uu.se


Micro: MCMC

In the example, the Markov chain was fully specified and the
stationary distribution could be expressed in closed form.

Not possible in the situations we are interested in, but we can
(since 2010) find a Markov chain that has the target distribution
(e.g. p(θ | y1:T )) as its stationary distribution.

Two constructive ways of doing this are:

1. Metropolis Hastings (MH) algorithm

2. Gibbs sampling

Markov chain Monte Carlo (MCMC) methods allow us to generate
samples from a target distribution by simulating a Markov chain
which has the target distribution as its stationary distribution.
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Outline

1. Problem formulation

2. Micro – MCMC

3. Sketching identification strategies for nonlinear SSMs

a. Marginalization
b. Data augmentation

4. Sequential Monte Carlo (SMC)

5. Using SMC as a proposal mechanism within MCMC

6. A nontrivial example

7. The nonlinear SSM is just a special case...
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Identification strategies

The two identification strategies we are concerned with are:

• Marginalization Deal with the states by marginalizing them
out.

• Data augmentation Deal with the states by treating them as
auxiliary variables to be estimated along with the parameters.

Marginalization Data augmentation
ML Direct optimization Expectation Maximization

Bayesian Metropolis Hastings Gibbs sampling
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Identification strategy – marginalization

Deal with the states by marginalizing them out.

1. Direct optimization work directly with the optimization
problem

θ̂ML = arg max
θ∈Θ

T∏
t=1

∫
gθ(yt |xt)pθ(xt | y1:t−1)dxt.

Cannot be solved in closed form, use iterative numerical methods

θk+1 = θk + αksk.

The search direction is typically computed according to

sk = Hkgk, gk = ∇θpθ(y1:T )
∣∣
θ=θk

.

SMC used to approximate the cost function and its derivative(s).
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Identification strategy – marginalization

2. Metropolis Hastings (MH) is an MCMC method that
produce a sequence of random variables {θ[m]}m≥1 by iterating

1. Propose a new sample θ′

θ′ ∼ q(· | θ[m]).

2. Accept the new sample with probability

α = min

(
1,

pθ′(y1:T )π(θ′)

pθ[m](y1:T )π(θ[m])

q(θ[m] | θ′)
q(θ′ | θ[m])

)

The above procedure results in a Markov chain {θ[m]}m≥1

with p(θ | yT ) as its stationary distribution!

SMC used to approximate the likelihood pθ(y1:T ) in the
acceptance probability.
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Identification strategy – data augmentation

Deal with the states by treating them as auxiliary variables to be
estimated along with the parameters.

Intuitively: Alternate between updating θ and x1:T .

1. Expectation Maximization (EM)
(E) Compute a conditional expectation

Q(θ, θ[k]) ,
∫

log pθ(x1:T , y1:T ) pθ[k](x1:T | y1:T )︸ ︷︷ ︸ dx1:T .

(M) Maximize Q(θ, θ[k]) w.r.t. θ

θ[k + 1] = arg max
θ

Q(θ, θ[k]).

SMC is used to approximate the JSD pθ[k](x1:T | y1:T ).
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Identification strategy – data augmentation

2. Gibbs sampling aim at compute p(θ, x1:T | y1:T ).

Gibbs sampling (blocked) for SSMs amounts to iterating

• Draw θ[m] ∼ p(θ |x1:T [m− 1], y1:T ),

• Draw x1:T [m] ∼ p(x1:T | θ[m], y1:T ).

The above procedure results in a Markov chain,

{θ[m], x1:T [m]}m≥1

with p(θ, x1:T | yT ) as its stationary distribution!

SMC is used to generate a state sequence x1:T [m] from
p(x1:T | θ[m], y1:T ).
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Sequential Monte Carlo (SMC)

The particle filter provides an approximation p(x1:t | y1:t), when the
state evolves according to an SSM,

xt+1 |xt ∼ fθ(xt+1 |xt),
yt |xt ∼ gθ(yt |xt),

x1 ∼ µθ(x1).

The particle filter maintains an empirical distribution made up N
samples (particles) and corresponding weights

p̂(x1:t | y1:t) =
N∑
i=1

witδxi1:t
(x1:t).

“Think of each particle as one simulation of the system state.
Only keep the good ones.”
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Particle filter

SMC = resampling + sequential importance sampling

1. Resampling: P
(
ait = j

)
= w̄jt−1/

∑
l w̄

l
t−1.

2. Propagation: xit ∼ fθ(xt |x
ait
1:t−1) and xi1:t = {xa

i
t

1:t−1, x
i
t}.

3. Weighting: w̄it = Wt(x
i
t) = gθ(yt |xt).

The ancestor indices {ait}Ni=1 are very useful auxiliary variables!
They make the stochasticity of the resampling step explicit.
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Sequential Monte Carlo (SMC)

Let

xt , {x1
t , . . . , x

N
t }, at , {a1

t , . . . , a
N
t }

denote all particles and ancestor indices generated at time t.

The SMC algorithm generats a single realization of a collection of
random variables

{x1:T ,a2:T } ∈ XNT × {1, . . . , N}N(T−1)

distributed according to

ψ(x1:T ,a2:T ) ,
N∏
i=1

q1(xi1)

T∏
t=2

N∏
i=1

Mt(a
i
t, x

i
t),

where

Mt(at, xt) =
w̄att−1∑
l w̄

l
t−1

ft(xt |xat1:t−1).
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The particle system degenerates (illustration)

Clearly motivates the need
for particle smoothers.

Self-contained introduction to particle smoothing using BS and AS
Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.

19 / 32 thomas.schon@it.uu.se Seminar at the Division of Automatic Control, Linköping University, Oct. 23, 2014.
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Using SMC within MCMC (PMCMC)

Particle MCMC (PMCMC) is a systematic way of combining SMC
and MCMC.

Intuitively: SMC is used as a high-dimensional proposal
mechanism on the space of state trajectories XT .

A bit more precise: Construct a Markov chain with p(θ | y1:T ) as
its stationary distribution.

Pioneered by the work
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.
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Reminder – identification strategies

Marginalization Data augmentation
ML Direct optimization Expectation Maximization

Bayesian Metropolis Hastings Metropolis Hastings Gibbs sampling

Iterating the two steps below will results in a Markov chain
{θ[m]}m≥1 with p(θ | yT ) as its stationary distribution.

1. Propose a new sample θ′ according to θ′ ∼ q(· | θ[m]).

2. Accept the new sample with probability

α = min

(
1,

pθ′(y1:T )π(θ′)

pθ[m](y1:T )π(θ[m])

q(θ[m] | θ′)
q(θ′ | θ[m])

)
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Using unbiased likelihood within MH

Fact (non-trivial): SMC produce an unbiased estimate of the
likelihood!

p̂θ(y1:T ) = p̂θ(y1)

T∏
t=2

p̂θ(yt | y1:t−1) =

T∏
t=1

(
1

N

N∑
i=1

w̄it

)
.

Intuitive idea: What about using this estimate within MH?!
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The extended target distribution

Introduce an auxiliary variable

u = (x1:T ,a2:T ), u ∼ ψ(u | θ).

Note that,

p(θ, u | y1:T ) =
pθ,u(y1:T )ψ(u | θ)p(θ)

p(y1:T )
=
pθ,u(y1:T )ψ(u | θ)p(θ | y1:T )

p(y1:T | θ)
.

Non-trivial construction: Consider the following extended
target distribution

φ(θ, u) =
p̂θ,u(y1:T )ψ(u | θ)p(θ | y1:T )

pθ(y1:T )
,

defined on Θ× XNT × {1, . . . , N}N(T−1).
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Marginalization

Marginalize (recall strategy) out the auxiliary variables u∫
φ(θ, u)du =

p(θ | y1:T )

pθ(y1:T )

∫
p̂θ,u(y1:T )ψ(u | θ)du.

What can we do about the integral?

SMC produce an unbiased estimate of p̂θ,u(y1:T )

Eu | θ [p̂θ,u(y1:T )] =

∫
p̂θ,u(y1:T )ψ(u | θ)du = pθ(y1:T ),

Result: p(θ | y1:T ) is recovered exactly as the marginal of the
extended target distribution φ(θ, u), despite the fact that we
employ an SMC approximation of the likelihood using a finite
number of particles N .
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Particle Metropolis Hastings (PMH)

Based on the current sample (θ[m], u[m]) a new sample (θ′, u′) is
proposed according to

θ′ ∼ q(· | θ[m], u[m]), u′ ∼ ψ(· | θ′).

The probability of accepting this sample is given by

α = min

(
1,

p̂θ′,u′(y1:T )p(θ′)

p̂θ[m],u[m](y1:T )p(θ[m])

q(θ[m] | θ′, u′)
q(θ′ | θ[m], u[m])

)
.

Note: Very importantly, α does not require evaluation of ψ(u | θ′)!

Originally appeared in (different derivation)
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

and further studied in,
Johan Dahlin, Fredrik Lindsten and Thomas B. Schön, Particle Metropolis Hastings using gradient and Hessian
information, Statistics and Computing, 2014. (accepted for publication)
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Example – semiparametric Wiener model

Lut g(·) Σ

vt et

yt
zt

Parametric LGSS and a nonparametric static nonlinearity:

xt+1 =
(
A B

)︸ ︷︷ ︸
Γ

(
xt
ut

)
+ vt, vt ∼ N (0, Q),

zt = Cxt.

yt = g(zt) + et, et ∼ N (0, R).
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mailto:thomas.schon@it.uu.se


Example – semiparametric Wiener model

“Parameters”: θ = {A,B,Q, g( · ), r}.
Bayesian model specified by priors

• Conjugate priors for Γ = [A B], Q and r,

• p(Γ, Q) = Matrix-normal inverse-Wishart
• p(r) = inverse-Wishart

• Gaussian process prior on g( · ),

g( · ) ∼ GP(z, k(z, z′)).

Inference using PGAS with N = 15 particles.
T = 1 000 measurements. We ran 15 000 MCMC
iterations and discarded 5 000 as burn-in.

x1:T

y1:T

Γ Q
u1:T

g(·) r
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Example – semiparametric Wiener model

Show movie
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Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan. Bayesian semiparametric Wiener system
identification. Automatica, 49(7): 2053-2063, July 2013.
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The nonlinear SSM is just a special case...

A graphical model is a probabilistic model where a graph
G = (V, E) represents the conditional independency structure
between random variables,

1. a set of vertices V (nodes) represents the random variables

2. a set of edges E containing elements (i, j) ∈ E connecting a
pair of nodes (i, j) ∈ V

x0 x1 x2 . . . xT

y1 y2 yT

p(x0:T , y1:T ) = p(x0)

N∏
t=1

p(xt |xt−1)

N∏
t=1

p(yt |xt).
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The nonlinear SSM is just a special case...

SMC samplers are used to approximate a sequence of probability
distributions on a sequence of probability spaces.

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite

possibly underutilized) idea.

y1 y2 y3

x1 x2 x3

x4

x5

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, Thomas B. Schön, John Aston
and Alexandre Bouchard-Côté. Divide-and-Conquer with Sequential Monte Carlo. arXiv:1406.4993, June 2014.
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mailto:thomas.schon@it.uu.se


Conclusion

1. Overview of identification strategies for nonlinear SSMs.

2. Focused on marginalization today, where we made use of the
unbiased likelihood estimate p̂θ(y1:T ) from SMC within MH.

3. Powerful tools useful also outside the class of nonlinear SSMs.

A lot of interesting research that remains to be done!!

Information about a PhD course (Computational learning in
dynamical systems) on the topic is available via

user.it.uu.se/~thosc112/CIDS.html

Manuscript is also available (ask me for a draft if you want)
Thomas B. Schön and Fredrik Lindsten. Learning of dynamical systems – Particle filters and Markov chain
methods, 2014.
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