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Background – graphical models (I/II)

A probabilistic graphical model (PGM) is a probabilistic model
where a graph G = (V, E) represents the conditional independency
structure between random variables,

1. a set of vertices V (nodes) represents the random variables

2. a set of edges E containing elements (i, j) ∈ E connecting a
pair of nodes (i, j) ∈ V × V

x0 x1 x2
. . .

xT

y1 y2 yT

p(x0:T , y1:T ) = p(x0)

T∏
t=1

p(xt |xt−1)
T∏
t=1

p(yt |xt).
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Background – graphical models (II/II)

For an undirected graphical model (Markov random field), the joint
PDF over all the involved random variables is

p(XV) =
1

Z

∏
C∈C

ψC(XC),

where C is the set of cliques in G, and Z =
∫ ∏

C∈C ψC(XC)dXV .

x1 x2

x3

x4

x5 x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5

Undirected graph

Example of a factor graph making
interactions explicit,

p(x1:5) = 1
Z

∏5
i=1 ψi(·).
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Background – sequential Monte Carlo

Approximate a sequence of probability distributions on a sequence
of probability spaces of increasing dimension.

Let {γk(x1:k)}k≥1 be a sequence of unnormalised densities and

γ̄k(x1:k) =
γk(x1:k)

Zk

Approximates

γ̄k(x1:k) ≈
N∑
i=1

wik∑N
l=1w

l
k

δxi1:k
(x1:k).

Ex. (state space model (SSM))

γ̄k(x1:k) = p(x1:k | y1:k), γk(x1:k) = p(x1:k, y1:k),

Zk = p(y1:k).
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Sequential Monte Carlo – particle filter

The particle filter provides an approximation p(x1:t | y1:t), when the
state evolves according to an SSM,

xt+1 |xt ∼ fθ(xt+1 |xt),
yt |xt ∼ gθ(yt |xt),

x1 ∼ µθ(x1).

The particle filter maintains an empirical distribution made up of N
samples (particles) {xi1:t}Ni=1 and corresponding weights {wi1:t}Ni=1

p̂(x1:t | y1:t) =

N∑
i=1

witδxi1:t
(x1:t).

“Think of each particle as one simulation of the system state.
Keep the ones that best explains the measurements.”
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The particle filter – toy problem

Consider a toy 1D localization problem.
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Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes
velocity (known), vt ∼ N (0, 5) denotes an
unknown disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here
the terrain height) and et ∼ N (0, 1)
denotes an unknown disturbance.

The same idea has been used for the Swedish fighter JAS 39 Gripen. Details are
available in,

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed
linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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The particle filter – toy problem

Highlights two key
capabilities of the PF:

1. Automatically
handles an
unknown and
dynamically
changing number
of hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.
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Application example – indoor localization

Aim: Compute the position of a person moving around indoors
using sensors (inertial, magnetometer and radio) located in an ID
badge and a map.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio

Show movie
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Sequential Monte Carlo – particle filter

SMC = resampling + sequential importance sampling

Given, {xi1:t−1, wit−1}Ni=1, repeat for i = 1, . . . , N :

1. Resampling: P
(
x̌i1:t−1 = xj1:t−1

)
= wjt−1/

∑
l w

l
t−1.

2. Propagation: xit ∼ fθ(xt | x̌i1:t−1) and xi1:t = {x̌i1:t−1, xit}.

3. Weighting: wit = Wt(x
i
t) = gθ(yt |xt).
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(a hopefully) intuitive preview

SMC samplers are used to approximate a sequence of probability
distributions on a sequence of probability spaces.

Using an artificial sequence of intermediate target distributions for
an SMC sampler is a powerful (and quite possibly underutilised)
idea.

Key idea: Perform and make use of various decompositions of
graphical models to design SMC inference methods.
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Outline

1. Background – graphical models

2. Background – sequential Monte Carlo

3. Example – from information theory

4. SMC for general graphical models

5. Particle MCMC (very brief)

6. Example – Markov random field

7. Conclusions

“Standard SMC samplers using a non-standard construction
of the intermediate target distributions.”
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Information theory – 2D channel capacity

Example borrowed from:
M. Molkaraie and H.-A. Loeliger, Monte Carlo algorithms for the partition function and information rates of
two-dimensional channels, IEEE Transactions on Information Theory, 59(1): 495–503, 2013.

2D binary-input channel with the constraint that no two
horizontally or vertically adjacent variables may be both be equal
to 1.

· · · · · · · · · · · · · · ·
· · · 0 1 0 · · ·
· · · 0 0 1 · · ·
· · · 0 1 0 · · ·
· · · · · · · · · · · · · · ·

Of interest in magnetic and optical storage solutions.

The channel can be described by a square lattice undirected
graphical model.
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2D channel capacity – graphical model
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The variables are binary
x`,j ∈ {0, 1} and the
interactions are pair-wise
between adjacent variables.

Factors: ψ(x`,j , xm,n) =

{
0, x`,j = xm,n = 1
1, otherwise
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2D channel capacity – graphical model

The resulting joint PDF is given by

p(XV) =
1

Z

∏
(`j,mn)∈E

ψ(x`,j , xm,n).

For a channel of dimension M ×M we can write the finite-size
noiseless capacity as

CM =
1

M2
log2 Z.

Unfortunately calculating Z exactly for these types of models is
computationally prohibitive, since the complexity is exponential in
the number of variables M2.
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2D channel capacity – undirected chain

x1 x2 x3 x4 x5 x6 Rewrite the PGM as a
high-dimensional undirected
chain by introducing a new
set of variables xk.

x1 x2 x3 x4 x5 x6

φ(xk) =

M−1∏
j=1

ψ(xj+1,k, xj,k),

ψ(xk,xk−1) =

M∏
j=1

ψ(xj,k, xj,k−1).
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2D channel capacity – SMC algorithm

x1 x2 x3 x4 x5 x6

The undirected chain results in the following joint PDF

p(XV) =
1

Z

M∏
k=1

φ(xk)

M∏
k=2

ψ(xk−1,xk).

Provides a natural sequence of target distributions for SMC!

Sequential decomposition:

γ1(x1) = φ(x1),

γk(x1:k) = γk−1(x1:k−1)φ(xk)ψ(xk−1,xk).
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2D channel capacity – 60× 60 example
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SMC

Tree sampler, Mx3

Our SMC sampler
compared to the tree
sampler by
F. Hamze and N. de Freitas, From fields to
trees, In Proceedings of the conference on
Uncertainty in Artificial Intelligence (UAI),
Banff, Canada, July, 2004.

implemented according to
M. Molkaraie and H.-A. Loeliger, Monte
Carlo algorithms for the partition function
and information rates of two-dimensional
channels, IEEE Transactions on Information
Theory, 59(1): 495–503, 2013.

For the 2D channel: fully adapted SMC sampler. To sample
exactly the xk’s we use a forward/backward algorithm.

This was just a special case, the important question is, can we do
this for a general probabilistic graphical model?! Yes!
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Using “standard” SMC for PGMs – the idea

Key idea:

• Perform a sequential decomposition of the graphical model.

• Each subgraph induces an artificial target distribution.

• Apply SMC to the sequence of artificial target distributions.

Using an artificial sequence of intermediate target distributions for
an SMC sampler is a powerful (and quite possibly underutilised)
idea.
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Sequential decomposition of PGMs – pictures

The joint PDF of the set of
random variables indexed by V,
XV , {x1, . . . , x|V|}

p(XV) =
1

Z

∏
C∈C

ψC(XC).

x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5

Example of a sequential decomposition of the above factor graph
(the target distributions are built up by adding factors at each
iteration),

γ1(XL1) γ2(XL2) γ3(XL3) ∝ p(XV)

x1 ψ1 x2 x1 ψ1 x2 ψ2

x3

x4

x1 ψ1 x2 ψ2

x3

x4

ψ3

ψ4

x5 ψ5
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Sequential decomp. of PGMs – equations

Let {ψk}Kk=1 be a sequence of factors,

ψk(XIk) =
∏
C∈Ck

ψC(XC),

where Ik ⊆ {1, . . . , |V|} is the set of indices in the domain of ψk.

The sequential decomposition is based on these factors,

γk(XLk) ,
k∏
`=1

ψ`(XI`),

where Lk ,
⋃k
`=1 I`.

By construction, LK = V and the joint PDF p(XLK ) ∝ γK(XLK ).
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SMC sampler for graphical models

Algorithm SMC sampler for graphical models

1. Initialize (k = 1): Draw Xi
L1 ∼ r1(·) and set wi1 = W1(X

i
L1).

2. For k = 2 to K do:
(a) Draw aik ∼ C({w

j
k−1}Nj=1).

(b) Draw ξik ∼ rk(·|Xai
k

Lk−1
) and set Xi

Lk
= X

ai
k

Lk−1
∪ ξik.

(c) Set wi
k = Wk(Xi

Lk
).

Also provides an unbiased estimate of the partition function!

A few examples where the partition function is interesting:

1. Likelihood-based learning of parameters in the PGM.

2. Capacity calculations of a channel (information theory).

3. Free energy of a system of objects (statistical mechanics).
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Outline

1. Background – graphical models

2. Background – sequential Monte Carlo

3. Example – from information theory

4. SMC for general graphical models

5. Particle MCMC (very brief)

6. Example – Markov random field

7. Conclusions

“Standard SMC samplers using a non-standard construction
of the intermediate target distributions.”
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Using SMC within MCMC (PMCMC)

Particle MCMC (PMCMC) is a systematic way of combining SMC
and MCMC.

Intuitively: SMC is used as a high-dimensional proposal
mechanism on the space of state trajectories XT .

A bit more precise (SSM special case): Construct a Markov
chain with p(θ | y1:T ) (or p(θ, x1:T | y1:T )) as its stationary
distribution.

Pioneered by the work
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.
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Particle MCMC deals with SMC problems

Problems with SMC, it is not enough since:

1. It does not solve the parameter learning problem.

2. The quality of the marginals p(XLk) =
∫
γ̃K(XLK )dXLK\Lk

deteriorates for k � K (particle degeneracy).
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Particle MCMC deals with SMC problems

(One) solution to the two problems: Use particle Gibbs with
ancestor sampling (PGAS). Allows us to construct
high-dimensional MCMC kernels for graphical models!!

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön. Particle Gibbs with ancestor sampling. Journal of
Machine Learning Research (JMLR), 15:2145-2184, June 2014.

We do not need the details, but if you want a talk on it, see

www.newton.ac.uk/seminar/20140425104011151

This allows us to:

1. Simulate, jointly, blocks of variables using an MCMC scheme.

2. Opens up for learning unknown parameters of the model.

25 / 34 Thomas Schön Seminar at The Hebrew University of Jerusalem, Israel. Nov. 13, 2014.

www.newton.ac.uk/seminar/20140425104011151


Partial blocking

Two extremes of how to sample the variables:

1. Simulate all the latent variables XLK jointly.

2. Simulate one variable xj at a time.

With PGAS we can create algorithms that sits in between these
two extremes by simulating blocks of variables jointly (partial
blocking).

Simulate all the latent
variables XLK jointly.

Partial blocking via
PGAS.

Simulate one variable
xj at a time.
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Example – Gaussian MRF

Consider a standard square lattice Gaussian MRF of size 10× 10,

p(XV , YV) ∝
∏
i∈V

e
1

2σ2
i

(xi−yi)2 ∏
(i,j)∈E

e
1

2σ2
ij

(xi−xj)2

with latent variables XV = {x1, . . . , x100} and measurements
YV = {y1, . . . , y100} (simulated with σi = 1 and σij = 0.1).

Goal: Compute the posterior distribution p(XV |YV).

We run four MCMC samplers:

1. Standard one-at-a-time Gibbs

2. Tree sampler (Hamze & de Freitas, 2004)

3. PGAS – fully blocked (N = 50)

4. PGAS – partially blocked (N = 50)

27 / 34 Thomas Schön Seminar at The Hebrew University of Jerusalem, Israel. Nov. 13, 2014.



Example – Gaussian MRF

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐

The arrows show the order in which
the factors are added.

The two block structures used by
the tree sampler and PGAS with
partial blocking.
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Example – Gaussian MRF
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Gibbs sampler

The one-step-at
-a-time Gibbs
sampler is strugg-
ling due to the
strong interactions.
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Example – Gaussian MRF
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Gibbs sampler
Tree sampler

The tree sampler
implements an
“ideal” partially
blocked Gibbs
sampler.
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Example – Gaussian MRF
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Gibbs sampler
PGAS w. partial blocking
Tree sampler PGAS with partial

blocking is an

approximation of

the tree sampler.

Already for relatively

few particles we

obtain a performance

similar to the “ideal”

tree sampler.
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Example – Gaussian MRF
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Gibbs sampler
PGAS w. partial blocking
Tree sampler
PGAS

The fully blocked
PGAS performs
best, which is not
surprising, since it
samples all the
(dependent) latent
variables jointly.

The downside of
PGAS is that it is
computationally
more expensive.

For more challenging examples, see our papers.
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Conclusions

• Derived SMC-based inference methods for PGMs of arbitrary
topologies with discrete or continuous random variables.

• Key insight: We exploit a sequential decomposition of the
graphical model.

• Using the SMC sampler as a proposal within MCMC provides
highly useful constructions.

A lot of interesting research that remains to be done!!

Information about a PhD course (Computational learning in
dynamical systems) on the topic is available via

user.it.uu.se/~thosc112/CIDS.html

Manuscript is also available (ask me for a draft if you want)
Thomas B. Schön and Fredrik Lindsten. Learning of dynamical systems – Particle filters and Markov chain
methods, 2014.
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