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Goal of the course

The goal of this course is to introduce the sequential
Monte Carlo (SMC) method and to hint at its (surprisingly)

general applicability.

SMC is introduced as a solution to the state inference problem in
nonlinear dynamical systems, focusing on the particle filter.

After this course you should be able to derive your own SMC
algorithms allowing you to solve inference problems using SMC.
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SMC – (abstract) problem formulation

The distribution of interest, π(x) is called target distribution.

Problem formulation: Sample sequentially from a se-
quence of target distributions {πt(x1:t)}t≥1 of increasing di-
mension, where

πt(x1:t) =
γt(x1:t)

Zt
,

such that γt(xt) : Xt → R+ is known pointwise and Zt =∫
π(x1:t)dx1:t is computationally challenging.

1. Approximate the normalizing constant Zt.

2. Compute integrals
∫
ϕ(xt)πt(xt)dxt.

Important question: How general is this formulation?
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SMC – underlying idea (abstract)

Idea underlying SMC: At each time t SMC delivers a set of N
weighted samples (particles) {wit, xit}Ni=1, approximating the target
distribution

π̂t(·) =

N∑
i=1

witδxi1:t
(·).

This empirical distribution converge asymptotically (N →∞) to
πt for any function ϕ,

N∑
i=1

witϕ(xi1:t)→
∫
ϕ(xt)πt(x1:t)dxt︸ ︷︷ ︸
Eπt(x1:t)[ϕ(x1:t)]

.

As a byproduct SMC also produce an unbiased estimate of the
normalizing constants.
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Model – data – inference algorithm

In solving problems we have to make assumptions and a model
will to a large extent capture many of these assumptions.

A model is a compact and interpretable representation of the data
that is observed.

Using models to solve problems requires three key ingredients;

1. Data: Measurements from the system we are interested in.

2. Model: We use probabilistic models, allowing us to employ
probability theory to represent and systematically work with
the uncertainty that is inherent in most data.

3. Inference algorithm: The key topic of this course is SMC
(introduced via the particle filter).
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Particle filter – introductory example (I/III)

Consider a toy 1D localization problem.
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0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

Posit ion x

A
lt
it
u
d
e

Dynamic model:

xt+1 = xt + ut + vt,

where xt denotes position, ut denotes
velocity (known), vt ∼ N (0, 5) denotes an
unknown disturbance.

Measurements:

yt = h(xt) + et.

where h(·) denotes the world model (here
the terrain height) and et ∼ N (0, 1)
denotes an unknown disturbance.

The same idea has been used in many applications, see e.g.

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized particle filters for mixed
linear/nonlinear state-space models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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Particle filter – introductory example (II/III)

Task: Find the state xt based on a set of measurements
y1:t , {y1, . . . , yt} by computing the filter PDF p(xt | y1:t).

The particle filter (PF) maintains an approximation according to

p̂(xt | y1:t) =

N∑
i=1

witδxit(xt),

that converge to the true filtering distribution as N →∞.

For intuition: Think of each particle as one simulation of the
system state (in this example the horizontal position) and only
keep the good ones.

6 / 60 thomas.schon@it.uu.se Chalmers Machine Learning Summer School, April 16, 2015.

mailto:thomas.schon@it.uu.se


Particle filter – introductory example (III/III)

Highlights two key
capabilities of the PF:

1. Automatically
handles an
unknown and
dynamically
changing number
of hypotheses.

2. Work with
nonlinear/non-
Gaussian
models.
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Important message!

Given the computational tools we have today it is often
rewarding to resist the linear Gaussian convenience!!
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Outline

1. Motivation and (a hopefully) intuitive introduction.

2. State inference in nonlinear state space models

3. Monte Carlo methods

a) The idea
b) Importance sampling

4. Deriving a first particle filter (PF)

5. Generic SMC sampler

6. Some of our current research activities (if there is time)
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The nonlinear SSM

A state space model (SSM) consists of a Markov process {xt}t≥1
that is indirectly observed via a measurement process {yt}t≥1,

xt+1 |xt ∼ fθ(xt+1 |xt, ut),
yt |xt ∼ gθ(yt |xt, ut),

x1 ∼ µθ(x1),
(θ ∼ p(θ)),

xt+1 = aθ(xt, ut) + vθ,t,

yt = cθ(xt, ut) + eθ,t,

x1 ∼ µθ(x1),
(θ ∼ p(θ)),

where xt ∈ Rnx denotes the state, ut ∈ Rnu denotes a known
deterministic input signal, yt ∈ Rny denotes the observed
measurement and θ ∈ Θ ⊆ Rnθ denotes any unknown (static)
parameters.
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SSM as a probabilistic graphical model

x1 x2 x3
. . .

xT

y1 y2 y3 yT

Figure: Graphical model for the SSM. Each stochastic variable is encoded
using a node, where the nodes that are filled (gray) corresponds to
variables that are observed and nodes that are not filled (white) are
latent variables. The arrows pointing to a certain node encodes which
variables the corresponding node are conditioned upon.

The SSM is an instance of a (directed) graphical model called
Bayesian network or belief network.
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The nonlinear SSM

State inference referes to the problem of finding information
about the state(s) xk:l based on the available measurements y1:t.

State inference in nonlinear SSMs is indeed one special case of the
general problem of:

Sampling sequentially from a sequence of target distributions
{πt(x1:t)}t≥1 of increasing dimension, such that

πt(x1:t) =
γt(x1:t)

Zt
,

where γt(xt) : Xt → R+ is known pointwise and Zt is unknown.

For example: πt(x1:t) = p(x1:t | y1:t), γt(x1:t) = p(x1:t, y1:t),
Zt = p(y1:t)
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Using SMC to infere SSMs

Recall: The sequence of target distributions {π(x1:t)}t≥1
can be constructed in many different ways, explaining the
generality and success of SMC.

The most basic construction arise from the SSM, where sequential
structure of the target is inherent in the problem formulation.

π1(x1) = p(x1 | y1), Z1 = p(y1),

π2(x1:2) = p(x1:2 | y1:2), Z2 = p(y1:2),

...
...

πt(x1:t) = p(x1:t | y1:t), Zt = p(y1:t),
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Our focus – the nonlinear filtering problem

State filtering problem: Recover information about the current
state xt based on the available measurements y1:t, when

xt+1 |xt ∼ f(xt+1 |xt),
yt |xt ∼ g(yt |xt),

x1 ∼ µ(x1).

Strategy: Compute (an approximation of) the filtering PDF
p(xt | y1:t).
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Basics – probability

Let a and b be continuous random variables.

• Conditional probability:

p(a, b) = p(a | b)p(b)

• Marginalization (integrate out a variable)

p(a) =

∫
p(a, b)db

• Bayes’ rule:

p(a | b) =
p(b | a)p(a)

p(b)

The Markov property: p(xt+1 |x1, . . . , xt) = p(xt+1 |xt).
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The sequence of target distributions

The measurement update

p(xt | y1:t) =

measurement︷ ︸︸ ︷
g(yt |xt)

prediction pdf︷ ︸︸ ︷
p(xt | y1:t−1)

p(yt | y1:t−1)
,

and time update

p(xt | y1:t−1) =

∫
f(xt |xt−1)︸ ︷︷ ︸

dynamics

p(xt−1 | y1:t−1)︸ ︷︷ ︸
filtering pdf

dxt−1.

Alternatively we can of course combine the two:

p(xt | y1:t) =
g(yt |xt)

∫
f(xt |xt−1)p(xt−1 | y1:t−1)dxt−1

p(yt | y1:t−1)
.
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Why do we need Monte Carlo methods?

In solving inference problems we are typically faced with various
integration problems, which tend to be intractable and live in large
dimensional spaces.

For example expectation arising in obtaining a point estimate. A
commonly used point estimate is the conditional mean

x̂t | t = E [xt | y1:t] =

∫
xtp(xt | y1:t)dxt.

Monte Carlo methods provides computational solutions where
the distributions of interest are approximated by a large number of
N random samples called particles.

Monte Carlo methods respects the model and the expressions we
are trying to approximate.
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The Monte Carlo idea (I/II)

(Very) restrictive assumption: Assume that we have N
samples {xi}Ni=1 from the target density π(x),

π̂(x) =

N∑
i=1

1

N
δxi(x)

Allows for the following approximation of the integral,

E [ϕ(x)] =

∫
ϕ(x)π(x)dx ≈

∫
ϕ(x)

N∑
i=1

1

N
δxi(x)dx =

1

N

N∑
i=1

ϕ(xi)

”

∫
+ δ →

∑
”
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The Monte Carlo idea (II/II)

The integral

I(ϕ(x)) , E [ϕ(x)] =

∫
ϕ(x)π(x)dx.

is approximated by

ÎN (ϕ(x)) =
1

N

N∑
i=1

ϕ(xi).

The strong law of large numbers tells us that

ÎN (ϕ(x))
a.s.−→ I(ϕ(x)), N →∞,

and the central limit theorem state that
√
N
(
ÎN (ϕ(x))− I(ϕ(x))

)
σϕ

d−→ N (0, 1) , N →∞.
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The Monte Carlo idea – toy illustration

π(x) = 0.3N (x | 2, 2) + 0.7N (x | 9, 19)

5 000 samples 50 000 samples

Obvious problem: In general we are not able to directly sample
from the density we are interested in.
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Importance sampling – problem and idea

Importance sampling can be used to evaluate integrals of the form

I(ϕ(x)) = E [ϕ(x)] =

∫
ϕ(x)π(x)dx,

where it is hard to generate samples from the target density π(x).

Note that: ∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)

q(x)
q(x)dx.

Idea: Chose the proposal density q(x) such that it is easy to
generate samples from it and compensate for the mistmatch
between the target and the proposal.
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Importance sampling (I/II)

Problem: Generate samples distributed according to

π(x) =
γ(x)

Z
, where Z =

∫
γ(x)dx.

Equivalent formulation using a proposal density q(x)

π(x) =
w(x)q(x)

Z
, where Z =

∫
w(x)q(x)dx.

where the so-called importance weight is given by

w(x) =
γ(x)

q(x)
.
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Importance sampling (II/II)

We are free to chose the proposal density as long as
γ(x) > 0⇒ q(x) > 0.

1. Draw N samples xi ∼ q(x), i = 1, . . . , N .

2. Insert the Monte Carlo appr. q̂(x) = 1
N

∑N
i=1 δxi(x) into

π(x) =
w(x)q(x)

Z
, where Z =

∫
w(x)q(x)dx

results in

π̂(x) =
N∑
i=1

wiδxi(x), Ẑ =
1

N

N∑
i=1

w(xi),

where

wi =
w(xi)∑N
i=1w(xi)

, w(xi) =
γ(xi)

q(xi)
.
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Importance sampling (IS)

Algorithm 1 Importance sampler (IS)

1. Sample xi ∼ q(x).
2. Compute the weights w(xi) = γ(xi)/q(xi).
3. Normalize the weights wi = w(xi)/

∑N
j=1w(xj).

Each step is carried out for i = 1, . . . , N .

The convergence of the resulting approximation
π̂(x) =

∑N
i=1w

iδxi(x) is since long well established.

Sampling from a user-chosen proposal distribution q is
corrected for by the weights, which accounts for the
discrepancy between the proposal q and the target π.
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The importance of a good proposal density

q1(x) = N (5, 20) (dashed curve) q2(x) = N (1, 20) (dashed curve)

50 000 samples used in both simulations.

Lesson learned: It is important to be careful in selecting the
proposal density.
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Outline

1. Motivation and (a hopefully) intuitive introduction.

2. State inference in nonlinear state space models

3. Monte Carlo methods

a) The idea
b) Importance sampling

4. Deriving a first particle filter (PF)

5. Generic SMC sampler

6. Some of our current research activities (if there is time)
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Using IS for our purposes

Recall that the nonlinear filtering problem amounts to computing
the filter PDF p(xt | y1:t) when the model is given by

xt+1 |xt ∼ f(xt+1 |xt),
yt |xt ∼ g(yt |xt),

x1 ∼ µ(x1).

We have showed that the solution is

p(xt | y1:t) =
g(yt |xt)p(xt | y1:t−1)

p(yt | y1:t−1)
,

p(xt | y1:t−1) =

∫
f(xt |xt−1)p(xt−1 | y1:t−1)dxt−1.

Relevant idea: Try to solve this using importance sampling!!
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Finding a proposal

Assume (in an “induction-like” fashion) that we at time t− 1 have

p̂(xt−1 | y1:t−1) =

N∑
i=1

wit−1δxit−1
(xt−1),

allowing us to approximate the integral for p(xt | y1:t−1),

p̂(xt | y1:t−1) =

∫
f(xt |xt−1)

N∑
i=1

wit−1δxit−1
(xt−1)dxt−1

=

N∑
i=1

wit−1f(xt |xit−1).

Idea: Use p̂(xt | y1:t−1) to guide the choice of proposal in an IS
targeting the filtering PDF.
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Importance sampling reminder

Algorithm 2 Importance sampler

1. Sample xi ∼ q(x).
2. Compute the weights w(xi) = γ(xi)/q(xi).
3. Normalize the weights wi = w(xi)/

∑N
j=1w(xj).

Our proposal is

q(xt | y1:t) =

N∑
i=1

wit−1q(xt |xit−1, yt).
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Sampling from the proposal

Two step procedure to sample from mixture proposal q(xt | y1:t):

1. Select one of the components (resampling),

P
(
x̄t−1 = xit−1

∣∣∣ {xjt−1, wjt−1}Nj=1

)
= wit−1.

2. Generate a sample from that component,

xt ∼ q(xt | x̄it−1, yt).

Repeat this N times.
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Resampling (I/II)

Resampling is the procedure that (randomly) turns a weighted
set of samples {xit−1, wit−1}Ni=1 into an unweighted set of
samples {x̄it−1, 1/N}Ni=1 according to

P
(
x̄t−1 = xit−1

∣∣∣ {xjt−1, wjt−1}Nj=1

)
= wit−1.
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Resampling (II/II)
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Illustrating how resampling
works (using 7 particles).

1. Compute the
cumulative sum of the
weights.
2. Generate u ∼ U [0, 1].

Three new samples are generated in the figure above,
corresponding to sample 2, 4 and 4.
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Next step – computing the weights

Algorithm 3 Importance sampler

1. Sample xi ∼ q(x).
2. Compute the weights w(xi) = γ(xi)/q(xi).
3. Normalize the weights wi = w(xi)/

∑N
j=1w(xj).

Compute the weights

wt(x
i
t) =

g(yt |xt)p̂(xt | y1:t−1)
q(xt | y1:t)

=
g(yt |xt)

∑N
j=1w

j
t−1f(xt |xjt−1)∑N

j=1w
j
t−1q(xt |x

j
t−1)

Computational complexity: O(N2)!
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Result – A first particle filter

Algorithm 4 Bootstrap particle filter (for i = 1, . . . , N)

1. Initialization (t = 1):

(a) Sample xi1 ∼ µ(x1).

(b) Compute the weights w̄i1 = g(y1 |xi1) and normalize,
wi1 = w̄i1/

∑N
j=1 w̄

j
1.

2. for t = 2 to T do

(a) Resample {xit−1, wit−1} resulting in equally weighted particles
{x̄it−1, 1/N}.

(b) Propagate by sampling xit ∼ f(xt | x̄it−1).

(c) Weight by computing w̄it = g(yt |xit) and normalize
wit = w̄it/

∑N
j=1 w̄

j
t .
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SMC structure

The structure is the same for all SMC algorithms. For the
bootstrap PF we have,

Resampling: {xit−1, wit−1}Ni=1 → {x̄it−1, 1/N}Ni=1.

Propagation: xit ∼ f(xt | x̄i1:t−1).

Weighting: w̄it = Wt(x
i
t) = g(yt |xit) and normalize.

The result is a new weighted set of particles {xit, wit}Ni=1.
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Important “design” considerations

1. Adaptive resampling – only resample “when needed”.

2. Be careful when selecting the importance density.

3. Exploit analytically tractable sub-structures
(Rao-Blackwellization).

4. . . .
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Application – indoor localization (I/II)

Aim: Compute the position of a person moving around indoors
using sensors (inertial, magnetometer and radio) located in an ID
badge and a map.

The sensors (IMU and radio)

and the DSP are mounted

inside an ID badge.

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio

PDF for an office environment, the bright

areas are rooms and corridors (i.e. walkable

space).
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Application – indoor localization (II/II)

Show movie

Johan Kihlberg, Simon Tegelid, Manon Kok and Thomas B. Schön. Map aided indoor positioning using particle
filters. Reglermöte (Swedish Control Conference), Linköping, Sweden, June 2014.
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Targeting the JSD instead

Our derivation of the PF is rather non-standard. The reason I like
it is that it clearly shows why the resampling step is needed and
where the need for the resampling step comes from.

The more standard way of deriving the PF is by targeting the
sequence of joint smoothing densities (JSD) {p(x1:t | y1:t)}t≥1.

Enlightening derivation as well!! Shows that

SMC = SIS + Resampling
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Problems?

Can you see any problems with the algorithm producing
approximations of the JSD according to

p(x1:t | y1:t) =

N∑
i=1

witδxi1:t
(x1:t)

The resampling step remove particles with small weights and
duplicate particles with large weights.

This results in path degeneracy, which we explain using a simple
example.
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Illustration of path degeneracy (I/II)
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Illustration of path degeneracy (II/II)
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Left plot: At each point in time all particles are plotted using a black
dot and each particle is connected with its ancestor using a black line.

Right plot: The grey dots represents the p(xt | y1:t) at each point in
time. The black lines shows the particle trajectories {xi1:25}30i=1 at time
t = 25.

The right plot corresponds to the left plot with all trajectories that are

not resampled removed (all particles are still visualized using gray dots).
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Mitigating the path degeneracy problem

This implies that if we are interested in the smoothing distribution

p(x1:T | y1:T )

or some of its marginals we are forced to use different algorithms,
which leads us to particle smoothers. Backward simulation is
key here (and elsewhere!), for a self-contained tutorial, see

Fredrik Lindsten and Thomas B. Schön, Backward simulation methods for Monte Carlo statistical inference,
Foundations and Trends in Machine Learning, 6(1):1-143, 2013.
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Convergence results in one slide...

Let ϕ : X 7→ R be some test function of interest. The expectation

E [ϕ(xt) | y1:t] =

∫
ϕ(xt)p(xt | y1:t)dxt,

can be estimated by the particle filter

ϕ̂Nt ,
N∑
i=1

witϕ(xit).

The CLT governing the convergence of this estimator states

√
N
(
ϕ̂Nt − E [ϕ(xt) | y1:t]

) d−→ N (0, σ2t (ϕ)).

The likelihood estimate p̂(y1:t) =
∏t
s=1

{
1
N

∑N
i=1 w̄

i
s

}
from the

PF is unbiased, Eψ [p̂(y1:t)] = p(y1:t) for any value of N and there
are CLTs available as well.
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Outline

1. Motivation and (a hopefully) intuitive introduction.

2. State inference in nonlinear state space modelsipho

3. Monte Carlo methods

a) The idea
b) Importance sampling

4. Deriving a first particle filter (PF)

5. Generic SMC sampler

6. Some of our current research activities (if there is time)
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SMC – (abstract) problem formulation

The distribution of interest, π(x) is called target distribution.

Problem formulation: Sample sequentially from a se-
quence of target distributions {πt(x1:t)}t≥1 of increasing di-
mension, where

πt(x1:t) =
γt(x1:t)

Zt
,

such that γt(xt) : Xt → R+ is known pointwise and Zt =∫
π(x1:t)dx1:t is computationally challenging.

So far we have seen that this formulation includes nonlinear SSMs,
but the important question of the generality of formulation
remains.
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SMC

SMC is used to simulate from a sequence of probability
distributions on a sequence of probability spaces of increasing
dimension.

The target πt(x1:t) is a PDF on the product space

Xt = X1 × X2 × · · · × Xt.

SMC approximates the sequence of distributions π1, π2, . . . , πt
using a set of N weighted particles,

π̂t(·) =

N∑
i=1

witδxi1:t
(·).
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SMC in words

Resampling: Focus the computation on the promising parts
of the state space by pruning particles of low weight, while
preserving the asymptotic guarantees of importance sampling.

Propagation: Sample a new successor state and append it to
the earlier to form a sample from the tth product space.

Weighting: The weights corrects for the discrepancy between
the proposal qt and the target πt.

Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing. In Crisan, D. and
Rozovskii, B., editors, The Oxford Handbook of Nonlinear Filtering. Oxford University Press.

48 / 60 thomas.schon@it.uu.se Chalmers Machine Learning Summer School, April 16, 2015.

Weighting Resampling Propagation Weighting Resampling

mailto:thomas.schon@it.uu.se


Generic SMC sampler

Algorithm 5 Generic SMC sampler (for i = 1, . . . , N)

1. Initialization (t = 1):

(a) Sample xi1 ∼ q1(x1).

(b) Compute the weights w̄i1 = γ(xi1)/q1(x
i
1) and normalize,

wi1 = w̄i1/
∑N

j=1 w̄
j
1.

2. for t = 2 to T do

(a) Resample {xi1:t−1, wit−1} resulting in equally weighted
particles {x̄i1:t−1, 1/N}.

(b) Propagate by sampling xit ∼ qt(xt | x̄i1:t−1) and set
xi1:t = (x̄i1:t−1, x

i
t).

(c) Weight by computing w̄it = γt(x1:t)
γt−1(x1:t−1)qt(xt |x1:t−1)

and

normalize wit = w̄it/
∑N

j=1 w̄
j
t .
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Generality of SMC

The sequence of target distributions {πt(x1:t)}t≥1 can be
constructed in many different ways!

Two concrete examples:

1. When variables are not defined on product spaces, π : X→ R+

we can introduce an artificial sequence of (auxiliary) distributions,
where we are only interested in one of the marginals.
Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the Royal
Statistical Society: Series B, 68(3):411-436.

2. Inference in probabilistic graphical models (PGM) is possible via
such a sequence of auxiliary distributions. SMC provide consistent
estimates and an unbiased estimate of the partition
(normalization) constant (also for loopy PGMs!).
Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.
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Sequential Monte Carlo samplers

Suppose that the density of interest is defined over a space which
is not a product space, say π : X→ R+.

Key idea: Introduce auxiliary variables and transform this into a
setup suitable for SMC using a sequence of auxiliary distributions.
Typically we will only be interested in one of the marginals.
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Sequential Monte Carlo samplers

Introduce a sequence of distributions

πt(x1:t) = π(x)

t−1∏
s=1

Ls(xs |xs+1),

defined on the product space

Xt = X1 × X2 × · · · × Xt.

Ls is a user-chosen backward kernel (e.g., an MCMC kernel).

πt(x1:t) admits π(x) as a marginal by construction, effectively
allowing it to be used as a surrogate for the actual target π(x).
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Using SMC within MCMC (PMCMC)

Particle MCMC (PMCMC) is a systematic way of combining SMC
and MCMC.

Intuitively: SMC is used as a high-dimensional proposal
mechanism on the space of state trajectories XT .

A bit more precise (SSM special case): Construct a Markov
chain with p(θ | y1:T ) (or p(θ, x1:T | y1:T )) as its stationary
distribution.

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.

Fredrik Lindsten, Michael I. Jordan and Thomas B. Schön. Particle Gibbs with ancestor sampling. Journal of
Machine Learning Research (JMLR), 15:2145-2184, June 2014.
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Goal of the course

The goal of this course is to introduce the sequential
Monte Carlo (SMC) method and to hint at its (surprisingly)

general applicability.

SMC is introduced as a solution to the state inference problem in
nonlinear dynamical systems, focusing on the particle filter.

After this course you should be able to derive your own SMC
algorithms allowing you to solve inference problems using SMC.
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Some of our current research activities

Joint work with (alphabetical order):

Christian A. Naesseth (Linköping University), John Aston
(University of Cambridge), Alexandre Bouchard-Côté (University
of British Columbia). Johan Dahlin (Linköping University), Liang
Dai (Uppsala University), Adam M. Johansen (University of
Warwick), Michael I Jordan (UC Berkeley), Bonnie Kirkpatrick
(University of Miami), Fredrik Lindsten (University of
Cambridge), Andreas Svensson (Uppsala University) and Johan
Wågberg (Uppsala University).
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Marginalizing hyperparameters in GPs

The hyperparameters encountered in the GP prior are often
unknown, but they can still have a great influence on the posterior.

We offer a Bayesian approach, where the hyperparameters are
marginalized (i.e. integrated out) using SMC.
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Andreas Svensson, Johan Dahlin and Thomas B. Schön. Marginalizing Gaussian process hyperparameters using
sequential Monte Carlo, Preprint, arXiv:1502.01908, February, 2015.
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Nonlinear system identification

xt+1 |xt ∼ fθ(xt+1 |xt, ut),
yt |xt ∼ gθ(yt |xt, ut),

x1 ∼ µθ(x1),
(θ ∼ p(θ)).

xt+1 = aθ(xt, ut) + vθ,t,

yt = cθ(xt, ut) + eθ,t,

x1 ∼ µθ(x1),
(θ ∼ p(θ)).

Maximum likelihood

θ̂ML = arg max
θ∈Θ

pθ(y1:T ).

Bayesian

p(θ | y1:T ) =
p(y1:T | θ)p(θ)

p(y1:T )
.

SMC provides a systematic way of exploring the state space.

Thomas B. Schön, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth, Andreas Svensson and
Liang Dai. Sequential Monte Carlo methods for system identification. Preprint, arXiv:1503.06058, March 2015.
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Inference in probabilistic graphical models

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite

possibly underutilized) idea.

y1 y2 y3

x1 x2 x3

x4

x5

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Fredrik Lindsten, Adam M. Johansen, Christian A. Naesseth, Bonnie Kirkpatrick, Thomas B. Schön, John Aston
and Alexandre Bouchard-Côté. Divide-and-Conquer with Sequential Monte Carlo. arXiv:1406.4993, June 2014.
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SMC in high dimensions

The bootstrap PF suffers
from weight collapse in
high-dimensional settings.

This degeneracy can be
reduced by using so-called
fully adapted proposals. · · ·

· · ·

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

k − 1 k k + 1

We can mimic the efficient fully adapted proposals for arbitrary
latent spaces and structures in high-dimensional models.

Approximations the proposal distribution and use a nested
coupling of multiple SMC samplers and backward simulators.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Nested sequential Monte Carlo. Preprint,
arXiv:1502.02536, February, 2015.
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Conclusions

1. SMC approximates a sequence of probability distributions on a
sequence of probability spaces of increasing dimension.

2. (Hopefully) conveyed the intuition underlying SMC.

3. SMC is applicable to many problems, not just SSMs via PF.

Exercises for the SMC module are available here,

user.it.uu.se/~thosc112/courses.html

Manuscript is also available (ask me for a draft if you want)
Thomas B. Schön and Fredrik Lindsten. Learning of dynamical systems – Particle filters and Markov chain
methods, 2015.

Fast moving research area offering lots of opportunities!
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