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A first example - automotive sensor fusion
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The sensor fusion problem

• Inertial sensors
• Camera
• Barometer

• Inertial sensors
• Radar
• Barometer
• Map

• Inertial sensors
• Cameras
• Radars
•Wheel speed sensors
• Steering wheel sensor

• Inertial 
sensors
• Ultra-

wideband

Might all seem to be very different problems at first sight. However, the same 
strategy can be used in dealing with all of these applications.

How do we  combine the information from the different sensors?
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Outline

Sensor fusion

1. Dynamical systems
2. Sensors
3. World model
4. “Surrounding infrastructure”

Application examples

1. Vehicle motion estimation using night vision
2. Fighter aircraft navigation
3. Autonomous helicopter landing
4. Helicopter pose estimation using a map
5. Indoor positioning using a map
6. Indoor human motion estimation
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1. Dynamical systems - probabilistic models

We model a dynamical system using probability density functions (PDFs)

Dynamics

Measurements

Initial state

Known inputState

Measurements

Static 
parameters

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut),

x1 ⇠ µ✓(x1).

“The present state of a dynamical system depends on its history.”

The state process is hidden (latent) and it is observed indirectly via the measurement process.

Often referred to as a state space model (SSM) or a hidden Markov model (HMM).

Model = PDF

We are dealing with dynamical systems! 

ẋ = f(x, u, ✓)
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2. Perception - sensors

The dynamical systems must be able to perceive their own (and others’) 
motion, as well as the surrounding world.

This requires sensors.

Vision 

Long-range Radar 

Mid-range radar 

Vision + Radar Fusion 

Traditionally each sensor has been associated with its own field, this is now changing. Hence, you 
should not be afraid to enter and learn new fields!

Sensor fusion is multi-disciplinary
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3. World model

The dynamical systems exist in a context. 

This requires a world model.

Situational awareness and road prediction for trajectory control applications 25
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Fig. 6 The filled circle at position (201,201) in the occupancy grid map in Fig. (a) is the ego
vehicle, the + are the radar observations obtained at this time sample, the black squares are the
two leading vehicles that are currently tracked. Fig. (b) shows a zoom of the OGM in front of the
ego vehicle. The gray-level in the figure indicates the probability of occupancy, the darker the grid
cell, the more likely it is to be occupied. The shape of the road is given as solid and dashed lines,
calculated as described in Section 4. The camera view from the ego vehicle is shown in Fig. (c), the
concrete walls, the guardrail and the pillar of the bridge are interesting landmarks. Furthermore,
the two tracked leading vehicles are clearly visible in the right lane.

Valuable (indeed often necessary) source of 
information in computing situational awareness.

We will see two different uses of world models: 

• Pre-existing world models, e.g., various maps

• Build world models on-line
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4. The “surrounding infrastructure”

Besides models for dynamics, sensors and world, a successful sensor fusion solution heavily 
relies on a well functioning “surrounding infrastructure”.

This includes for example:

• Time synchronization of the measurements from the different sensors

• Mounting of the sensors and calibration

• Computer vision, radar processing

• Etc...

Relative pose calibration:

Compute the relative translation and rotation of the 
camera and the inertial sensors that are rigidly connected.

An example:

Jeroen D. Hol, Thomas B. Schön and Fredrik Gustafsson. Modeling and Calibration 
of Inertial and Vision Sensors. International Journal of Robotics Research (IJRR), 
29(2):231-244, February 2010.
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Sensor fusion

World model

Inference (learning)

Dynamic model

Sensor model

...

Sensors Sensor fusion

...

Applications

Definition (sensor fusion)

Sensor fusion is the process of using information from several different sensors to infer 
(learn) what is happening (this typically includes states of various dynamical systems and 
various static parameters).

Situational 
awareness
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The inference problem amounts to combining the knowledge we have from the models 
(dynamic, world, sensor) and from the measurements.

The aim is to compute

and/or some of its marginal densities,

These densities are then commonly used to form point estimates, maximum likelihood 
or Bayesian.

Inference

p(x1:t, ✓ | y1:t)

p(xt | y1:t)
p(✓ | y1:t)

• Everything we do rests on a firm foundation of probability theory and mathematical statistics.

• If we have the wrong model, there is no estimation/learning algorithm that can help us.
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Inference - the filtering problem

p(xt | y1:t) =

z }| {
p(yt | xt)

z }| {
p(xt | y1:t�1)

p(yt | y1:t�1)

p(xt+1 | y1:t) =
Z

p(xt+1 | xt)| {z } p(xt | y1:t)| {z } dxt

sensor model prediction density

filtering densitydynamical model

In the application examples these equations are solved using particle filters (PF), Rao-Blackwellized 
particle filters (RBPF), extended Kalman filters (EKF) and various optimization based approaches.
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Situational awareness and road prediction for trajectory control applications 25
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Fig. 6 The filled circle at position (201,201) in the occupancy grid map in Fig. (a) is the ego
vehicle, the + are the radar observations obtained at this time sample, the black squares are the
two leading vehicles that are currently tracked. Fig. (b) shows a zoom of the OGM in front of the
ego vehicle. The gray-level in the figure indicates the probability of occupancy, the darker the grid
cell, the more likely it is to be occupied. The shape of the road is given as solid and dashed lines,
calculated as described in Section 4. The camera view from the ego vehicle is shown in Fig. (c), the
concrete walls, the guardrail and the pillar of the bridge are interesting landmarks. Furthermore,
the two tracked leading vehicles are clearly visible in the right lane.

The story I am telling

1. We are dealing with dynamical systems 

This requires a dynamical model.

2. The dynamical systems exist in a context. 

This requires a world model.

3. The dynamical systems must be able to perceive their own (and 
others’) motion, as well as the surrounding world.

This requires sensors and sensor models.

4. We must be able to transform the information from the sensors into knowledge 
about the dynamical systems and their surrounding world.

This requires sensor fusion.
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Outline

Sensor fusion

1. Dynamical systems
2. Sensors
3. World model
4. “Surrounding infrastructure”

Application examples

1. Vehicle motion estimation using night vision
2. Fighter aircraft navigation
3. Autonomous helicopter landing
4. Helicopter pose estimation using a map
5. Indoor positioning using a map
6. Indoor human motion estimation
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1. Vehicle motion estimation using night vision

Aim: Show how images from an infrared (IR) camera can be used to obtain better estimates of 
the ego-vehicle motion and the road geometry in 3D.

Industrial partner: Autoliv Electronics

FIR camera

Road scene, as seen with a standard camera.

Same road scene as above, seen with the IR camera 

Sensors Sensor fusion

Inertial sensors

IR camera

Wheel speeds

Steering wheel

World model

Inference (learning)

Dynamic model

Sensor model
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1. Vehicle motion estimation using night vision
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1. Vehicle motion estimation using night vision - experiments

Results using measurements recorded during night time driving on rural roads in Sweden.

Using CAN data 
and IR camera!

Only CAN data!

Showing the ego-motion estimates reprojected onto the images.

Emil Nilsson, Christian Lundquist, Thomas B. Schön, David Forslund and Jacob Roll,Vehicle Motion Estimation Using an Infrared 
Camera. Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC), Milan, Italy, August-September 2011.

Thomas B. Schön and Jacob Roll, Ego-Motion and Indirect Road Geometry Estimation Using Night Vision. Proceedings of the 
IEEE Intelligent Vehicle Symposium (IV), Xi'an, Shaanxi, China, June 2009.
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2. Fighter aircraft navigation

Sensors Sensor fusion

Pose, etc.Inertial

Radar

Inference

Dynamic model

Sensor model

Barometer

World model

Aim: Find the position, velocity and orientation of a fighter aircraft.

Industrial partner: Saab
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Particle filter - very brief introduction (I/II)

p(xt | y1:t)

xt+1 | xt ⇠ f(xt+1 | xt, ut),

yt | xt ⇠ h(yt | xt, ut),

x1 ⇠ µ(x1).

The particle filter provides an approximation of the filter PDF

when the state evolves according to an SSM

The particle filter maintains an empirical distribution made up N samples (particles) and
corresponding weights

Xiao-Li Hu, Thomas B. Schön and Lennart Ljung.  A Basic Convergence Result for Particle Filtering. IEEE Transactions on 
Signal Processing, 56(4):1337-1348, April 2008.

This approximation converge to the true filter PDF,

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�

x

i
t
(x

t

)
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The weights and the particles in 

are updated as new measurements becomes available. This approximation can for example be used 
to compute an estimate of the mean value,

Particle filter - very brief introduction (II/II)

The theory underlying the particle filter has been developed over the past two decades and the 
theory and its applications are still being developed at a very high speed. For a timely tutorial, see

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. In Oxford 
Handbook of Nonlinear Filtering, 2011, D. Crisan and B. Rozovsky (eds.). Oxford University Press. 

or my new PhD course on computational inference in dynamical systems

users.isy.liu.se/rt/schon/course_CIDS.html
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2. Fighter aircraft navigation

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-
Space Models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.
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3. Autonomous helicopter landing

Sensors Sensor fusion

Pose and 
velocity

Controller

Camera

GPS

Compass

(Inertial)

World model

Inference

Dynamic model

Sensor model

Aim: Land a helicopter autonomously using information from a camera, GPS, compass and inertial 
sensors.

Industrial partner: Cybaero
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3. Autonomous helicopter landing

The two circles mark 0.5m and 1m landing error, 
respectively. 

Dots = achieved landings
Cross = perfect landing

Results from 15 landings

Experimental helicopter

•  Weight: 5kg

•  Electric motor

Joel Hermansson, Andreas Gising, Martin Skoglund and Thomas B. Schön. Autonomous Landing of an Unmanned Aerial Vehicle. 
Reglermöte (Swedish Control Conference), Lund, Sweden, June 2010.
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3. Autonomous helicopter landing



Sensor fusion in dynamical systems - applications and research challenges
Thomas Schön, schon@isy.liu.se

DREAMS Seminar
Berkeley, CA

4. Helicopter pose estimation using a map

Aim: Compute the position and orientation of a helicopter by exploiting the information present 
in Google maps images of the operational area.

Sensors Sensor fusion

Pose
Camera

Barometer

Inertial

Inference

Dynamic model

Sensor model

World model
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4. Helicopter pose estimation using a map

Image from on-board camera Extracted superpixels Superpixels classified as grass, 
asphalt or house

Three circular regions used for 
computing class histograms

Map over the operational 
environment obtained from 

Google Earth.

Manually classified map with 
grass, asphalt and houses as pre-

specified classes.
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4. Helicopter pose estimation using a map

“Think of each particle as one simulation of the system state (in the movie, only the horizontal position is 
visualized). Only keep the good ones.”

Fredrik Lindsten, Jonas Callmer, Henrik Ohlsson, David Törnqvist, Thomas B. Schön, Fredrik Gustafsson, Geo-referencing for UAV Navigation 
using Environmental Classification. Proceedings of the International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA, May 2010.
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5. Indoor positioning using a map

Aim: Compute the position of a person moving around indoors using sensors (inertial, 
magnetometer and radio) located in an ID badge and a map.

Industrial partner: Xdin

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.

The inside of the ID badge.
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48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

5. Indoor positioning using a map

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

Sensors Sensor fusion

Position
Inertial

Radio

Inference

Dynamic model

Sensor model

Magnetometer
World model

J. Kihlberg and S. Tegelid. Map aided indoor positioning. Master’s thesis LiTH-
ISY-EX--12/4572--SE. Department of Electrical Engineering, Linköping University, 
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5. Indoor positioning using a map
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6. Indoor human motion estimation

Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements 
from inertial sensors and ultra-wideband (UWB).

Industrial partner: Xsens Technologies

Sensors Sensor fusion

Pose

Accelerometer

Gyroscope

Magnetometer

World model

Inference

Dynamic model

Sensor model

Transmitter

Receiver 1

Receiver 6

...

(17 IMU’s)

(UWB)
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Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

• Inertial measurements @ 200 Hz
• UWB measurements @ 50 Hz

6. Indoor human motion estimation - sensors

UWB - impulse radio using very short pulses (~ 1ns)

• Low energy over a wide frequency band
• High spatial resolution
• Time-of-arrival (TOA) measurements
• Mobile transmitter and 6 stationary, synchronized 
receivers at known positions.

Excellent for indoor positioning
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6. Indoor human motion estimation - experimental results

Performance evaluation using a camera-based reference system (Vicon).

RMSE: 0.6 deg. in orientation and 5 cm in position.

Jeroen Hol, Thomas B. Schön and Fredrik Gustafsson, Ultra-Wideband Calibration for Indoor Positioning. Proceedings of the IEEE 
International Conference on Ultra-Wideband (ICUWB), Nanjing, China, September 2010.

Jeroen Hol, Fred Dijkstra, Henk Luinge and Thomas B. Schön, Tightly Coupled UWB/IMU Pose Estimation. Proceedings of the IEEE 
International Conference on Ultra-Wideband (ICUWB), Vancouver, Canada, September 2009.
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6. Indoor human motion estimation - experiment



Sensor fusion in dynamical systems - applications and research challenges
Thomas Schön, schon@isy.liu.se

DREAMS Seminar
Berkeley, CA

6. Indoor human motion estimation - experiment
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Sensor fusion - research challenges

• Enable simple use of world models
• Representations, standards
• Automatic reuse of already existing world models 
(includes everything from very simple to complex 3D 
photorealistic models)
• Automatic building of world models
• Collaborative (distributed) modeling of the world

• Surrounding infrastructure - “plug-and-playing” 
• Calibration, synchronization, etc.

• New and better inference methods

• Cultural aspects, sensor fusion is by definition a multi-
disciplinary activity, collaboration and respect are important.

• Computational power is steadily increasing, enables 
us to work with richer models and better inference methods.

• Scalability, how can we leverage and use the fact that 
everyone is becoming a sensor?

Map over the 
operational 

Manually classified map 
with grass, asphalt and 

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)

p(xt+1 | y1:t) =
Z

f(xt+1 | xt)p(xt | y1:t)dxt
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Take home message

Quite a few different applications from different areas, all solved using the 
same underlying sensor fusion strategy

• Model the dynamics

• Model the sensors

• Model the world

• Solve the resulting inference problem

and, do not underestimate the “surrounding infrastructure”!

• There is a lot of interesting research that remains to be done!

• The number of available sensors is currently skyrocketing 

• The industrial utility of this technology is growing as we speak!
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Nonlinear state-space model!

Thank you for your attention!!

Joint work with (in alphabetical order): Jonas Callmer (LiU),  Andreas Eidehall (Volvo cars), David Forslund (Autoliv),  
Andreas Gising (Cybaero), Fredrik Gustafsson (LiU), Joel Hermansson (Cybaero), Jeroen Hol (Xsens), Johan 
Kihlberg (Xdin), Fredrik Lindsten (LiU), Henk Luinge (Xsens), Christian Lundquist (LiU), Johan Nordlund (Saab), 
Henrik Ohlsson (Berkeley), Jacob Roll (Autoliv), Simon Tegelid (Xdin) and David Törnqvist (LiU).


