
Linköping studies in science and technology. Thesis.
No. 1652

Licentiate’s Thesis

Sequential Monte Carlo for inference
in nonlinear state space models

Johan Dahlin

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

Division of Automatic Control
Department of Electrical Engineering

Linköping University, SE-581 83 Linköping, Sweden
http://www.control.isy.liu.se

johan.dahlin@isy.liu.se

Linköping 2014

This is a Swedish Licentiate’s Thesis.
Swedish postgraduate education leads to a Doctor’s degree and/or a Licentiate’s degree.

A Doctor’s degree comprises 240 ECTS credits (4 years of full-time studies).
A Licentiate’s degree comprises 120 ECTS credits,

of which at least 60 ECTS credits constitute the Licentiate’s thesis.

Linköping studies in science and technology. Thesis.
No. 1652

Sequential Monte Carlo for inference in nonlinear state space models
Johan Dahlin

johan.dahlin@isy.liu.se
www.control.isy.liu.se

Department of Electrical Engineering
Linköping University
SE-581 83 Linköping

Sweden

ISBN 978-91-7519-369-4 ISSN 0280-7971 LIU-TEK-LIC-2014:85

Copyright © 2014 Johan Dahlin

Printed by LiU-Tryck, Linköping, Sweden 2014

Denna avhandling tillägnas min familj!

Abstract
Nonlinear state space models (SSMs) are a useful class of models to describe many
different kinds of systems. Some examples of its applications are to model; the
volatility in financial markets, the number of infected persons during an influenza
epidemic and the annual number of major earthquakes around the world. In this
thesis, we are concerned with state inference, parameter inference and input design
for nonlinear SSMs based on sequential Monte Carlo (SMC) methods.

The state inference problem consists of estimating some latent variable that is
not directly observable in the output from the system. The parameter inference
problem is concerned with fitting a pre-specified model structure to the observed
output from the system. In input design, we are interested in constructing an
input to the system, which maximises the information that is available about the
parameters in the system output. All of these problems are analytically intractable
for nonlinear SSMs. Instead, we make use of SMC to approximate the solution to
the state inference problem and to solve the input design problem. Furthermore,
we make use of Markov chain Monte Carlo (MCMC) and Bayesian optimisation
(BO) to solve the parameter inference problem.

In this thesis, we propose new methods for parameter inference in SSMs using both
Bayesian and maximum likelihood inference. More specifically, we propose a new
proposal for the particle Metropolis-Hastings algorithm, which includes gradient
and Hessian information about the target distribution. We demonstrate that the
use of this proposal can reduce the length of the burn-in phase and improve the
mixing of the Markov chain.

Furthermore, we develop a novel parameter inference method based on the com-
bination of BO and SMC. We demonstrate that this method requires a relatively
small amount of samples from the analytically intractable likelihood, which are
computationally costly to obtain. Therefore, it could be a good alternative to
other optimisation based parameter inference methods. The proposed BO and
SMC combination is also extended for parameter inference in nonlinear SSMs with
intractable likelihoods using approximate Bayesian computations. This method is
used for parameter inference in a stochastic volatility model with α-stable returns
using real-world financial data.

Finally, we develop a novel method for input design in nonlinear SSMs which
makes use of SMC methods to estimate the expected information matrix. This
information is used in combination with graph theory and convex optimisation to
estimate optimal inputs with amplitude constraints. We also consider parameter
estimation in ARX models with Student-t innovations and unknown model orders.
Two different algorithms are used for this inference: reversible Jump Markov chain
Monte Carlo and Gibbs sampling with sparseness priors. These methods are used
to model real-world EEG data with promising results.

v

Populärvetenskaplig sammanfattning
Den värld som vi lever i är fylld av olika typer av system som kan beskrivas med
matematiska modeller. Med hjälp av dessa modeller kan vi skapa oss en bättre
förståelse av hur dessa system påverkas av sin omgivning, samt förutsäga hur de
kommer att utvecklas över tid. Exempelvis kan man konstruera modeller av vädret
baserad på kunskap om fysik samt tidigare års väder. Dessa modeller kan sedan
användas för att exempelvis förutsäga om det kommer att regna imorgon. En
annan typ av modeller kan användas för att prissätta olika typer av finansiella
kontrakt, baserat på tidigare utfall och ekonomisk teori. Ett tredje exempel är
modeller för att förutsäga antalet framtida jordbävningar i världen, givet historisk
data och några modellantaganden.

Det som är gemensamt för dessa exempel är att de alla beskriver icke-linjära
dynamiska system, alltså system som utvecklas över tid. I denna avhandling är
vi intresserade av att bygga icke-linjära tillståndsmodeller av dynamiska system
med hjälp av datadrivna statistiska inferensmetoder. Med hjälp av dessa modeller
och metoder är det möjligt att kombinera teoretiska kunskaper som beskrivs av
en modellstruktur med observationer från systemet. Den senare informationen
kan användas för att bestämma värdet på några okända parametrar i modellen,
detta kallas även för parameterskattning. Ett annat vanligt förekommande problem
är tillståndsskattning, där vi vill bestämma värdet på någon dynamisk storhet i
systemet som inte kan observeras direkt. Det huvudsakliga problemet med detta
angreppssätt är att inget av dessa skattningsproblem kan lösas exakt med hjälp
av analytiska metoder.

Istället nyttjar vi approximativa metoder som baseras på statistiska simuleringer
för att lösa problemen. Så kallade sekventiella Monte Carlo-metoder används för
att approximera lösningen till tillståndsskattningsproblemet. Detta görs med hjälp
av en dator som simulerar en stor mängd hypoteser (även kallade partiklar) om hur
systemet fungerar. De hypoteser som stämmer väl överens med det verkliga obser-
verade beteendet sparas och förfinas i nästkommande steg. De övriga hypoteserna
tas bort från simuleringen för att fokusera beräkningskraften på de hypoteser som
har relevans enligt den observerade informationen. Parameterskattningsproblemet
kan lösas approximativt med liknande metoder som även de bygger på simulering.

I denna avhandling arbetar vi främst med att försöka förbättra parameterskatt-
ningsmetoder som bygger på partikel Markovkedje-Monte Carlo (MCMC) och Bay-
esiansk optimering. De förbättringar som vi föreslår leder till att skattningarna kan
beräknas snabbare än tidigare genom att bättre ta tillvara på den information som
finns i det observerade datamaterialet. Dessa metoder används för att exempelvis
prissätta finansiella optioner. Vi föreslår även en ny algoritm för att skapa insig-
naler till system så att observationerna som erhålls från systemet, innehåller så
mycket information som möjligt om de okända parametrarna. Slutligen demonstre-
rar vi hur man kan använda MCMC-metoder för parameterskattning i modeller
som kan användas för att beskriva EEG-signaler.

vii

Acknowledgments
I could never have written my thesis without the help, love and support from all
the people around me, now and in the past. I will now spend a few lines to express
my gratitude to some of the special people that have helped me along the way.

First and foremost, I would like to acknowledge the help and support from my su-
pervisors. My main supervisor Prof. Thomas Schön has always provided me with
encouragement, ideas, new people to meet, new opportunities to grab and chal-
lenges to help me grow. Also, my co-supervisor Dr. Fredrik Lindsten has always
been there for me with answers to my questions, explanations to my problems
and ideas/suggestions for my work. I am most impressed by your enthusiasm and
dedication in the roles as supervisors. I think that you both have surpassed what
can be expected from a supervisor and for this I am extremely grateful. I could
never have done this without you! Thank you for your support and all our time
running together in Stanley park, Maastricht, Warwick and Söderköping!

Furthermore, to be able to write a good thesis you require a good working envi-
ronment. Prof. Svante Gunnarsson and Ninna Stensgård are two very important
persons in this effort. Thank you for all your kindness, support and helpfulness
in all matters; small and large. I would also like to acknowledge Dr. Henrik Tide-
felt and Dr. Gustaf Hendeby for constructing and maintaining the LATEX-template
in which this thesis is written. My brother Fredrik Dahlin, Lic. Joel Kronander,
Jonas Linder, Dr. Fredrik Lindsten, Prof. Thomas Schön, Andreas Svensson, Patri-
cio Valenzuela and Johan Wågberg have all helped with proof-reading and with
suggestions to improve the thesis. All remaining errors are entirely my own.

I am most grateful for the financial support from the project Probabilistic modelling
of dynamical systems (Contract number: 621-2013-5524) funded by the Swedish
Research Council.

Another aspect of the atmosphere at work is all my wonderful colleagues. Espe-
cially, my room mate Lic. Michael Roth, who helps with his experience and advice
about balancing life as a PhD student. Thank you for sharing the room with me
and watering our plants while I am away! I would also like to thank Jonas Linder
for all our adventures and our nice friendship together both at and outside of work.
Manon Kok and I started in the group at the same time and have helped eachother
over the years. Thank you for your positive attitude and for always being open
for discussions. Also, I would like to acknowledge the wonderful BBQs and other
funny things that Lic. Sina Khoshfetrat Pakazad arranges and lets me participate
in!

Furthermore, I would like to thank my remaining friends and colleagues at the
group. Especially, (without any specific ordering) Dr. Christian Lyzell, Lic. Ylva
Jung, Isak Nielsen, Hanna Nyquist, Dr. Daniel Petersson, Clas Veibäck and Dr.
Emre Özkan for all the funny things that we have done together. This includes
everything from beer tastings, wonderful food in France and fitting as many of RTs
PhD students into a jacuzzi as possible to hitting some shallows on open sea with

ix

x Acknowledgments

a canoe, cross country skiing in Chamonix and eating food sitting on the floor in
a Japanese restaurant with screaming people everywhere. You have given me the
most wonderful memories and times!

I have also had the benefit of working with a lot of talented and enthusiastic re-
searchers during my time in academia. I would first like to thank all my fellow
students at Teknisk Fysik, Umeå University for a wonderful time as an under-
graduate student. Also, Prof. Anders Fällström, Dr. Konrad Abramowicz, Dr. Ulf
Holmberg and Dr. Sang Hoon Lee have inspired, supported and encouraged me to
pursue a PhD degree, something I have not (a.s.) regretted!

Also, my wonderful (former) colleagues at the Swedish Defence Research Agency
(FOI) have supported and encouraged me to continue climbing the educational
ladder. Thank you, Dr. Pontus Svensson, Dr. Fredrik Johansson, Dr. Tove Gustavi
and Christian Mårtensson. Finally, I would like to thank all my co-authors during
my time at Linköping University for some wonderful and fruitful collaborations:
Daniel Hultqvist, Lic. Daniel Jönsson, Lic. Joel Kronander, Dr. Fredrik Lindsten,
Cristian Rojas, Dr. Jakob Roll, Prof. Thomas Schön, Fredrik Svensson, Dr. Jonas
Unger, Patricio Valenzuela, Prof. Mattias Villani and Dr. Adrian Wills.

Furthermore, Lic. Joel Kronander and Dr. Jonas Unger have helped me with the
images from the computer graphics application in the introduction. Prof. Mattias
Villani together with Stefan Laséen and Vesna Crobo at Riksbanken helped with
the economics application and made the forecasts from RAMSES II.

Finally, I am most grateful to my loving family and close relatives for their support
all the way from childhood until now and beyond. I love you all every much! Also,
my friends are always a great source for support, inspiration and encouragement
both at work and in life! My life would be empty and meaningless without you
all! I hope that we all can spend some more time now when my thesis is done
and when new challenges awaits! Because, what would life be without challenges,
meeting new people and spending time with your loved ones. Empty.

Linköping, May 2014
Johan Dahlin

Contents

Notation xv

I Background

1 Introduction 3
1.1 Examples of applications . 4

1.1.1 Predicting GDP growth . 5
1.1.2 Rendering photorealistic images 7

1.2 Thesis outline and contributions 9
1.3 Publications . 14

2 Nonlinear state space models and statistical inference 17
2.1 State space models and inference problems 17
2.2 Some motivating examples . 19

2.2.1 Linear Gaussian model . 19
2.2.2 Volatility models in econometrics and finance 19
2.2.3 Earthquake count model in geology 24
2.2.4 Daily rainfall models in meteorology 26

2.3 Maximum likelihood parameter inference 28
2.4 Bayesian parameter inference . 32

3 State inference using particle methods 37
3.1 Filtering and smoothing recursions 37
3.2 Monte Carlo and importance sampling 39
3.3 Particle filtering . 41

3.3.1 The auxiliary particle filter 43
3.3.2 State inference using the auxiliary particle filter 46
3.3.3 Statistical properties of the auxiliary particle filter 49
3.3.4 Estimation of the likelihood and log-likelihood 51

3.4 Particle smoothing . 53
3.4.1 State inference using the particle fixed-lag smoother 55
3.4.2 Estimation of additive state functionals 59

xi

xii Contents

3.4.3 Statistical properties of the particle fixed-lag smoother . . . 63
3.5 SMC for Image Based Lighting . 64

4 Parameter inference using sampling methods 69
4.1 Overview of computational methods for parameter inference 69

4.1.1 Maximum likelihood parameter inference 70
4.1.2 Bayesian parameter inference 70

4.2 Metropolis-Hastings . 71
4.2.1 Statistical properties of the MH algorithm 76
4.2.2 Proposals using Langevin and Hamiltonian dynamics 78

4.3 Particle Metropolis-Hastings . 83
4.4 Bayesian optimisation . 85

4.4.1 Gaussian processes as surrogate functions 88
4.4.2 Acquisition rules . 93
4.4.3 Gaussian process optimisation 96

5 Concluding remarks and future work 103
5.1 Summary of the contributions . 103
5.2 Outlook and future work . 104

5.2.1 Particle Metropolis-Hastings 104
5.2.2 Gaussian process optimisation using the particle filter . . . 105
5.2.3 Input design in SSMs . 106

5.3 Source code and data . 106

Bibliography 107

II Publications

A PMH using gradient and Hessian information 121
1 Introduction . 124
2 Particle Metropolis-Hastings . 126

2.1 MH sampling with unbiased likelihoods 126
2.2 Constructing the first and second order proposals 127
2.3 Properties of the first and second order proposals 128

3 Estimation of likelihoods, gradients, and Hessians 129
3.1 Auxiliary particle filter . 129
3.2 Estimation of the likelihood 130
3.3 Estimation of the gradient 131
3.4 Estimation of the Hessian 132
3.5 Accuracy of the estimated gradients and Hessians 134
3.6 Resulting SMC algorithm 135

4 Numerical illustrations . 135
4.1 Estimation of the log-likelihood and the gradient 135
4.2 Burn-in and scale-invariance 138
4.3 The mixing of the Markov chains at stationarity 140

5 Discussion and future work . 143

Contents xiii

Bibliography . 145

B Particle filter-based GPO for parameter inference 149
1 Introduction . 152
2 Maximum likelihood estimation with a surrogate cost function . . 153
3 Estimating the log-likelihood . 154

3.1 The particle filter . 154
3.2 Estimation of the likelihood 155
3.3 Estimation of the log-likelihood 156

4 Modelling the surrogate function 156
4.1 Gaussian process model . 157
4.2 Updating the model and the hyperparameters 158
4.3 Example of log-likelihood modelling 158

5 Acquisition rules . 158
5.1 Expected improvement . 160

6 Numerical illustrations . 160
6.1 Implementation details . 161
6.2 Linear Gaussian state space model 161
6.3 Nonlinear stochastic volatility model 164

7 Conclusions . 164
Bibliography . 165

C Approximate inference in SSMs with intractable likelihoods using GPO 167
1 Introduction . 170
2 An intuitive overview . 171
3 Estimating the posterior distribution 172

3.1 State inference . 172
3.2 Estimation of the log-likelihood 174

4 Gaussian process optimisation . 174
4.1 Constructing the surrogate function 174
4.2 The acquisition rule . 176

5 Putting the algorithm together . 176
6 Numerical illustrations . 177

6.1 Inference in α-stable data 177
6.2 Linear Gaussian model . 181
6.3 Stochastic volatility model with α-stable returns 181

7 Conclusions and outlook . 184
Bibliography . 186
A α-stable distributions . 188

A.1 Definitions . 188
A.2 Simulating random variables 189
A.3 Parameter estimation . 191

D A graph/particle-based method for experiment design 193
1 Introduction . 196
2 Problem formulation . 197

xiv Contents

3 New input design method . 198
3.1 Graph theoretical input design 199
3.2 Estimation of the score function 201
3.3 Monte Carlo-based optimisation 203
3.4 Summary of the method . 204

4 Numerical examples . 205
4.1 Linear Gaussian state space model 205
4.2 Nonlinear growth model . 206

5 Conclusion . 207
Bibliography . 208

E Hierarchical Bayesian approaches for robust inference in ARX models 211
1 Introduction . 214
2 Hierarchical Bayesian ARX Models 215

2.1 Student’s t distributed innovations 215
2.2 Parametric model order . 216
2.3 Automatic relevance determination 216

3 Markov chain Monte Carlo . 217
4 Posteriors and proposal distributions 218

4.1 Model order . 218
4.2 ARX coefficients . 219
4.3 ARX coefficients variance 220
4.4 Latent variance variables 220
4.5 Innovation scale parameter 221
4.6 Innovation DOF . 221

5 Numerical illustrations . 222
5.1 Average model performance 222
5.2 Robustness to outliers and missing data 224
5.3 Real EEG data . 226

6 Conclusions and Future work . 228
Bibliography . 229

Notation

Probability

Notation Meaning
a.s.−→ Almost sure convergence.
d−→ Convergence in distribution.
p−→ Convergence in probability.

δz(dx) Dirac point mass located at x = z.
P,E,V Probability, expectation and covariance operators.
∼ Sampled from or distributed according to.

Statistical distributions

Notation Meaning
A(α, β, γ, η) α-stable distribution

with stability α, skewness β, scale γ and location η.
B(p) Bernoulli distribution with success probability p.
N (µ, σ2) Gaussian (normal) dist. with mean µ and variance σ2

G(α, β) Gamma distribution with rate α and shape β.
IG(α, β) Inverse Gamma distribution with rate α and shape β.
P(λ) Poisson distribution with mean λ.
U(a, b) Uniform distribution on the interval [a, b].

xv

xvi Notation

Operators and other symbols

Notation Meaning
Id d× d identity matrix.
, Definition.

diag(v) Diagonal matrix with the vector v on the diagonal.
∇f(x) Gradient of f(x).
∇2f(x) Hessian of f(x).

I Indicator function.
det(A), |A| Matrix determinant of A.

A−1 Matrix inverse of A.
tr(A) Matrix trace of A.
A> Matrix transpose of A.

v2 = vv> Outer product of the vector v.
an:m Sequence {an, an+1, . . . , am−1, am}, for m > n.

sign(x) Sign of x.
supp(f) Support of the function f , {x : f(x) > 0}.

Statistical quantities

Notation Meaning
I(θ) Expected information matrix evaluated at θ.
L(θ) Likelihood function evaluated at θ.
`(θ) Log-likelihood function evaluated at θ.
θ̂ML Maximum likelihood parameter estimate.
J (θ) Observed information matrix evaluated at θ.
θ̂ Parameter estimate.

p(θ|y1:T) Parameter posterior distribution.
p(θ) Parameter prior distribution.
θ Parameter vector, θ ∈ Θ ⊆ Rd.
S(θ) Score function evaluated at θ.

Algorithmic quantities

Notation Meaning

a
(i)
t

Ancestor of particle i at time t.
Z Normalisation constant.
x

(i)
t

Particle i at time t.
Rθ(xt|x0:t−1, yt) Particle proposal kernel.
Wθ(xt, xt−1) Particle weighting function.

q(θ) Proposal distribution.
π(θ) Target distribution.
γ(θ) Unnormalised target distribution.

w
(i)
t , w̃

(i)
t

Un- and normalised weight of particle i at time t.

Notation xvii

Abbreviations

Abbreviation Meaning
a.s. Almost surely (with probability 1).
ABC Approximate Bayesian computations.
ACF Autocorrelation function.
AIS Adaptive importance sampling.
APF Auxiliary particle filter.
AR(p) Autoregressive process of order p.
ARD Automatic relevance determination.

ARCH(p) AR conditional heteroskedasticity process of order p.
ARX(p) Autoregressive exogenous process of order p.
BIS Bidirectional importance sampling.
BO Bayesian optimisation.
bPF Bootstrap particle filter.
BRDF Bidirectional reflectance distribution function.
CDF Cumulative distribution function.
CLT Central limit theorem.
CPI Consumer price index.

DSGE Dynamic stochastic general equilibrium.
EB Empirical Bayes.
EEG Electroencephalography.
EI Expected improvement.
EM Environment map.
ESS Effective sample size.
faPF Fully-adapted particle filter.

FFBSm Forward-filtering backward-smoothing.
FFBSi Forward-filtering backward-simulation.
FL Fixed-lag (particle smoother).

GARCH(p,q) Generalised ARCH process of order (p, q).
GPO Gaussian process optimisation.
GPU Graphical processing unit.
HMM Hidden Markov model.
IACT Integrated autocorrelation time.
IBL Image-based lightning.
IID Independent and identically distributed.
IS Importance sampling.

KDE Kernel density estimate/estimator.
LGSS Linear Gaussian state space.
LTE Light transport equation.

MCMC Markov chain Monte Carlo.
MH Metropolis-Hastings.
MIS Multiple importance sampling.
ML Maximum likelihood.
MLE Maximum likelihood estimator.
MLT Metropolis light transport.
MSE Mean square error.

xviii Notation

Abbreviations (cont.)

Abbreviation Meaning
PD Positive definite.
PDF Probability density function.
PMF Probability mass function.
PF Particle filter.
PG Particle Gibbs.
PI Probability of improvement.

PMCMC Particle Markov chain Monte Carlo.
PMH Particle Metropolis-Hastings.
PMH0 Marginal particle Metropolis-Hastings.
PMH1 PMH using first order information
PMH2 PMH using first and second order information
PS Particle smoother.

RJ-MCMC Reversible jump Markov chain Monte Carlo.
RTS Rauch-Tung-Stribel.
RW Random walk.
SIS Sequential importance sampling.
SIR Sequential importance sampling and resampling.
SLLN Strong law of large numbers.
SMC Sequential Monte Carlo.
SPSA Simultaneous perturbation stochastic approximation.
SSM State space model.
UCB Upper confidence bound.

Part I

Background

1
Introduction

Science is the art of collecting and organising knowledge about the universe by
tested explanations and validated predictions. Therefore, modelling the world
using observations and statistical inference is an integral part of the scientific
method. The resulting statistical models can be used to describe certain observed
phenomena or to predict new phenomena and future behaviours. An example of the
former is to discover new physical models by generalising from observed data using
induction. Examples of prediction applications are to validate scientific theories
or to forecast the future GDP of Sweden, the probability of rainfall tomorrow and
the number of earthquakes during the coming year. We discuss some of the details
of these problems in the following chapters.

This thesis is concerned with building dynamical models from recorded observations,
i.e. models of systems that evolves over time. The observations are combined with
past experiences and established scientific theory to build models using statistical
tools. Here, we limit ourselves to discussing nonlinear state space models (SSMs),
where most of the structure is known beforehand except a few parameters. A fairly
general class of SSMs can be expressed as

xt+1|xt ∼ fθ(xt+1|xt),
yt|xt ∼ gθ(yt|xt),

where xt and yt denotes an unobserved (latent) state and an observation from
the system at time t. Here, fθ(xt+1|xt) and gθ(yt|xt) denotes two Markov kernels
parametrised by an unknown static real-valued parameter vector θ. Applications
of this class of SSMs can be found in almost all of the natural sciences and most of
the social sciences. Some specific examples are biology (Wilkinson, 2011), control
(Ljung, 1999), epidemiology (Keeling and Rohani, 2008) and finance (Tsay, 2005;
Hull, 2009).

3

4 1 Introduction

The procedure to determine the parameter vector θ from the observations y1:T is
referred to as parameter inference and this problem is analytically intractable for
nonlinear SSMs. Another related problem is the state inference problem, where we
would like to determine the value of xt given the information in the observations
y1:T or y1:t. This problem is also analytically intractable for most SSMs.

Instead, we make use of statistical simulation methods to estimate the parameters
and states. As the name suggests, these methods are based on simulating many
(often thousands or millions) of hypotheses referred to as particles. The particles
that match the recorded observations are retained and the others are discarded.
This procedure can be repeated in a sequential manner, where the solution of the
problem is obtained as the solution to many subproblems.

This idea is the basis for the sequential Monte Carlo (SMC) methods that are an
integral part of the methods that we consider for state inference in SSMs. For
example, the marginal filtering distribution pθ(xt|y1:t) can be approximated by an
empirical distribution,

p̂θ(dxt|y1:t) =
N∑
i=1

w̃
(i)
t δ

x
(i)
t

(dxt),

where x(i)
t and w̃(i)

t denotes the particle i and its corresponding (normalised) weight
obtained from the SMC algorithm. Here, δz(dx) denotes a Dirac point mass lo-
cated at x = z. The empirical distribution summarises all the information that
is contained within the data about the value of the latent state at some time t.
This information can then be used by other methods for solving the parameter
inference problem in SSMs.

The number of particles N in the SMC method controls both the accuracy of the
empirical distributions and the computational cost. That is, a high accuracy re-
quires many particles which incurs a high computational cost and this results in a
trade-off between accuracy and speed. Also, we make use of the SMC algorithm
within some iterative parameter inference methods to solve the state inference
problem at each iteration. Therefore, we would like to limit the number of itera-
tions required by the parameter inference methods to obtain an accurate parameter
estimate with a reasonable computational cost.

These ideas are the two main themes of this thesis. The first theme is to propose
some developments to improve the efficiency of existing parameter inference meth-
ods based on SMC algorithms. The second theme is to extend some of the current
methods for linear SSMs to nonlinear SSMs by making use of SMC algorithms.
We return to the contributions of this thesis in Section 1.2.

1.1 Examples of applications
In this section, we give two examples of problems in which computational statisti-
cal methods based on the SMC algorithm are useful. In the first example, we use a

1.1 Examples of applications 5

model to forecast the future development of the Swedish economy given past expe-
rience and economical theory. In the second example, we use a model constructed
from the physics of light transport to render photorealistic images.

1.1.1 Predicting GDP growth
The economy of a country is a complex system with an emergent behaviour de-
pending on the actions of many interacting heterogeneous agents. In an economy,
these agents correspond to consumers, companies, banks, politicians, governmental
agencies, other countries, etc. As such, these agents may or may not act rationally
to their situation and could therefore be difficult to model on an individual level.

As a result, economical models mostly deal with the aggregated behaviour of
many homogeneous agents, i.e. rational utility maximising agents with a common
valuation of goods and services. These models can be used to produce forecasts,
to gain understanding about the current situation in the economy and simulate
the result of different policy decisions. An example of this could be to study the
impact of changing the repo rate on the unemployment level and the GDP growth
of the economy.

For this purpose, many central banks are today using dynamic stochastic general
equilibrium (DSGE) models (An and Schorfheide, 2007; Del Negro and Schorfheide,
2004) for modelling the economy of a country. The outputs from these models
are various macroeconomic quantities, such as GDP growth, unemployment rate,
inflation, etc. The general structure is given by economic theory, but there are
some unknown parameters that needs to be inferred from data.

Riksbanken (the Swedish central bank) has developed a DSGE model called the
Riksbank Aggregate Macromodel for Studies of the Economy of Sweden II (RAM-
SES II) (Adolfson et al., 2013, 2007a) to model the Swedish economy. Essentially,
RAMSES II is a nonlinear SSM with 12 outputs, about 40 latent states and about
65 unknown parameters.

For computational convenience, only the log-linearised version of the full model is
considered in most of the analysis. Consequently, Kalman filtering methods can
be used to solve the state inference problem. The parameter inference problem is
solved using a Metropolis-Hastings (MH) algorithm, where the proposal is a mul-
tivariate Gaussian distribution with the covariance matrix given by the inverse of
the observed information matrix at the posterior mode. The information matrix
is estimated using Quasi-Newton optimisation algorithms such as the BFGS algo-
rithm (Nocedal and Wright, 2006). For more details, see Adolfson et al. (2007b).

In Chapters 3 and 4, we discuss alternative methods that could solve the state and
parameter inference problem in the original nonlinear version of RAMSES II. For
related treatments using SMC and MCMC in combination with DSGE models, see
Flury and Shephard (2011), Fernández-Villaverde and Rubio-Ramírez (2007) and
Amisano and Tristani (2010).

In Figure 1.1, we give an example of how the RAMSES II model can be used for
forecasting the changes in GDP, the consumer price index with fixed interest rates

6 1 Introduction

−
4

−
2

0
2

4

Date

Q
u

a
rt

e
rl

y
 G

D
P

 g
ro

w
th

 (
%

)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

0
2

4
6

8
1

0

Date

R
e

p
o

 r
a

te
 (

%
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

−
2

0
2

4
6

8

Date

A
n

n
u

a
l
c
h

a
n

g
e

 i
n

 C
P

IF
 (

%
)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

−
4

0
−

2
0

0
2

0
4

0

Date

U
n

e
m

p
lo

y
m

e
n

t
g

a
p

 (
%

)

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

Figure 1.1: The quarterly GDP growth (green), the repo rate (red), the annual
change in the CPIF (blue) and unemployment gap (orange). The historical
data is presented for each variable up until the dotted vertical lines. The
predicted means are presented with the 50%, 70%, 90% and 95% credibility
intervals (from lighter to darker gray). The published forecasts from Riks-
banken are presented as crosses. The data and predictions are obtained by
the courtesy of Riksbanken.

1.1 Examples of applications 7

(CPIF) inflation, the repo rate and the unemployment gap1 in Sweden. We first
make use of some historical data (up until the dotted vertical line) to estimate the
parameters and the latent states. The resulting model is then used to forecast the
predictive posterior mean (solid lines) with some credibility intervals (gray areas).
These predictive means are used by Riksbanken together with experts and other
models to construct forecasts of the economy. This forecast is presented by crosses
and differs from the output of the RAMSES II model.

1.1.2 Rendering photorealistic images
To simulate light transport, we make use of a geometrical optics model, developed
during centuries of research in the field of physics (Hecht, 2013). By the use of
this models, we can simulate how light behaves in different environments and make
use of this to render images. A popular related application is to add objects into
an image or video sequence that were not present when the scene was captured.
In this section, we shortly discuss how to do this using the so-called image-based
lighting (IBL) method (Debevec, 1998; Pharr and Humphreys, 2010).

To make use of the IBL method, we require an panoramic image of the real scene
captured using a high dynamic range (HDR) camera. This type of camera can
record much larger variations in brightness than a standard camera, which are
needed to capture all the different light sources within the scene. The resulting
image is referred to as an environment map (EM). In IBL, this panoramic im-
age serves as the source of illumination when rendering images, allowing the real
objects to cast shadows and interact with the virtual objects. Secondly, we need
geometrical models of the objects that we would like to add into the scene. Finally,
we require a mathematical description of the optical properties of the materials in
these objects to be able to simulate how the light scatters over their surfaces.

The IBL method combines all of this information using the light transport equation
(LTE), which is a physical model of how light rays propagates through space and
reflects off surfaces. The LTE model cannot be solved analytically, but it can be
approximated using methods related to SMC algorithms. To see how this can be
done, consider a cartoon of the setup presented in Figure 1.2. In the first step, a
set of light rays originating from a pixel in the image plane is generated. We then
track how these rays bounces around in the scene until they finally hit the EM.
The colours and brightnesses of the EM in these locations are recorded and used
to compute the resulting colour and brightness of the pixel in the image plane.
This approach is repeated for all the pixels in the image plane.

However in the real world, there are infinitely many rays that bounces around in the
scene before they hit the pixels in the image plan. As a result, it is computationally
infeasible to simulate all the light rays and all the bounces in the scene. Instead,
there are methods to select only the light rays which contributes the most to

1The unemployment gap is the amount (in percent) that the GDP must increase to be able
to achieve full employment of the work force. The decrease of the unemployment gap is an
important aim of financial policy making and can be achieved (in Keynesian economic theory)
by increasing public spending or lowering taxes.

8 1 Introduction

Figure 1.2: The basic setup of ray tracing underlying photorealistic image
synthesis. The colour and brightness of a pixel in the image plane is deter-
mined by the EM, the geometry of the scene and the optical properties of the
objects.

Figure 1.3: The scene before (left) and after (right) the rendering using a
version of the IBL method. The image is taken from Unger et al. (2013) and
is used with courtesy of the authors.

1.2 Thesis outline and contributions 9

the brightness and colour each pixel in the image plane. This can be done in
a similar manner to the methods discussed later in Section 4.2 resulting in the
Metropolis light transport (MLT) algorithm (Veach and Guibas, 1997). The basis
for these methods is to solve the LTE problem by simulating different hypotheses
and improving them in analogue with SMC methods. That is, light rays that hit
bright areas of the EM are kept and modified, whereas rays that does hit the EM
in dim regions or bounces around too long are discarded.

Note that, it can take several days to render a single image using the IBL algorithm,
even when only allowing for a few bounces and light rays per pixel in the image
plane. This problem grows even further when we would like to render a sequence of
images. A possible solution could be to start from the solution from the previous
frame and adapt it to the new frame. If the EMs are similar, this could lead to a
decrease in the total computational cost. We return to this idea in Section 3.5.

In Figure 1.3, we present an example from Unger et al. (2013) of a scene before
(left) and after (right) it is rendered in a computer by the use of the IBL method
and the methods discussed in Section 4.2. Note that, in the final result we have
added several photorealistic objects into the scene such as the sofa, the table
and have also changed the floor in the room. These methods are used in many
entertainment applications to create special effects and to modify scenes in post
production. Furthermore, they are useful in rendering images of scenes that are
difficult or costly to build in the real-world. Some well-known companies (such as
IKEA and Volvo) make use of these methods for digital design and advertisements
as a cost effective alternative to traditional photography.

1.2 Thesis outline and contributions
This thesis is divided into two parts. In Part I, we give some examples of mod-
els and applications together with an introduction to the different computational
inference methods that are used. In Part II, we present edited versions of some
published peer-reviewed papers and unpublished technical reports.

Part I - Background
In this part, we begin by introducing the SSM and provide some additional ex-
amples of its real-world applications in Chapter 2. Furthermore, we introduce
two different statistical paradigms for parameter inference problems in SSMs: the
maximum likelihood (ML) based approach and the Bayesian approach. Finally,
we discuss why computational methods are required for estimating the solution to
these problems.

In Chapter 3, we review the state inference problem in SSMs and discuss the
use of SMC methods for approximating the solution to these problems. We also
discuss the use of SMC algorithms for other classes of models, which includes the
computer graphics example discussed in Section 1.1.2.

Chapter 4 is devoted to discussing the parameter inference problem for nonlinear

10 1 Introduction

SSMs. We begin by giving an overview of different parameter inference methods
and then discuss Markov chain Monte Carlo (MCMC) and Bayesian optimisation
(BO) in more detail. The former can be used for Bayesian parameter inference and
the latter can be used for ML or maximum a posteriori (MAP) based parameter
inference.

We conclude Part I by Chapter 5 which contains a summary of the contributions of
the thesis together with some general conclusions and possible avenues for future
work.

Part II - Publications

The main part of this thesis is the compilation of five papers published in peer-
reviewed conference proceedings or as technical reports. These papers contain the
main contributions of this thesis:

• In Paper A, we develop a novel particle MCMC algorithm that combines
the Particle Metropolis-Hastings (PMH) with the Langevin dynamics. The
resulting algorithm explores the posterior distribution more efficient then
the marginal PMH algorithm, is invariant to affine transformations of the
parameter vector and reduces the length of the the burn-in. As a conse-
quence, the proposed algorithm requires less iterations, which makes it more
computationally efficient than the marginal PMH algorithm.

• In Paper B, we develop a novel algorithm for ML parameter inference by
combining ideas from BO with SMC for log-likelihood estimation. The re-
sulting algorithm is computationally efficient as it requires less samples from
the log-likelihood compared with other popular methods.

• In Paper C, we extend the combination of BO and SMC to parameter infer-
ence in nonlinear SSMs with intractable likelihoods. Computationally costly
approximate Bayesian computations (ABC) are used to approximate the
likelihood. We illustrate the proposed algorithm for parameter inference in
stochastic volatility model with α-stable returns using real-world data.

• In Paper D, we develop a novel algorithm for input design in nonlinear SSMs,
which can handle amplitude constraints on the input. The proposed method
makes use of SMC for estimating the expected information matrix. The
algorithm performs well compared with some other methods in the literature
and decreases the variance of the parameter estimates with almost an order
of magnitude.

• In Paper E, we propose two algorithms for parameter inference in ARX
models with Student-t innovations which includes automatic model order se-
lection. These methods makes use of reversible jump MCMC (RJMCMC)
and the Gibbs sampler together with sparseness priors to estimate the model
order and the parameter vector. We illustrate the use of the proposed algo-
rithm to model real-world EEG data with promising results.

1.2 Thesis outline and contributions 11

Here, we present an abstract of each paper together with an account of the contri-
bution of the author of this thesis.

Paper A

Paper A of this thesis is an edited version of,

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis-Hastings
using gradient and Hessian information. Pre-print, 2014b. arXiv:1311.0686v2.

which is a combination and development of the two earlier publications

J. Dahlin, F. Lindsten, and T. B. Schön. Second-order particle MCMC
for Bayesian parameter inference. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August 2014a. (accepted
for publication).

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis Hastings
using Langevin dynamics. In Proceedings of the 38th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Vancouver, Canada, May 2013a.

Abstract: PMH allows for Bayesian parameter inference in nonlinear state space
models by combining MCMC and particle filtering. The latter is used to esti-
mate the intractable likelihood. In its original formulation, PMH makes use of a
marginal MCMC proposal for the parameters, typically a Gaussian random walk.
However, this can lead to a poor exploration of the parameter space and an ineffi-
cient use of the generated particles.

We propose two alternative versions of PMH that incorporate gradient and Hes-
sian information about the posterior into the proposal. This information is more
or less obtained as a byproduct of the likelihood estimation. Indeed, we show
how to estimate the required information using a fixed-lag particle smoother, with
a computational cost growing linearly in the number of particles. We conclude
that the proposed methods can: (i) decrease the length of the burn-in phase, (ii)
increase the mixing of the Markov chain at the stationary phase, and (iii) make
the proposal distribution scale invariant which simplifies tuning.

Contributions and background: The author of this thesis contributed with the
majority of the work including the design, the implementation, the numerical il-
lustrations and the written presentation.

Paper B

Paper B of this thesis is an edited version of,

J. Dahlin and F. Lindsten. Particle filter-based Gaussian process op-
timisation for parameter inference. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August 2014. (accepted for
publication).

12 1 Introduction

Abstract: We propose a novel method for maximum-likelihood-based parameter
inference in nonlinear and/or non-Gaussian state space models. The method is an
iterative procedure with three steps. At each iteration a particle filter is used to
estimate the value of the log-likelihood function at the current parameter iterate.
Using these log-likelihood estimates, a surrogate objective function is created by
utilizing a Gaussian process model. Finally, we use a heuristic procedure to obtain
a revised parameter iterate, providing an automatic trade-off between exploration
and exploitation of the surrogate model. The method is profiled on two state space
models with good performance both considering accuracy and computational cost.

Contributions and background: The author of this thesis contributed with the
majority of the work including the design, the implementation, the numerical il-
lustrations and the written presentation.

Paper C

Paper C of this thesis is an edited version of,

J. Dahlin, T. B. Schön, and M. Villani. Approximate inference in state
space models with intractable likelihoods using Gaussian process opti-
misation. Technical Report LiTH-ISY-R-3075, Department of Electri-
cal Engineering, Linköping University, Linköping, Sweden, April 2014c.

Abstract: We propose a novel method for MAP parameter inference in nonlin-
ear state space models with intractable likelihoods. The method is based on a
combination of BO, SMC and SBC. SMC and ABC are used to approximate the
intractable likelihood by using the similarity between simulated realisations from
the model and the data obtained from the system. The BO algorithm is used for
the MAP parameter estimation given noisy estimates of the log-likelihood.

The proposed parameter inference method is evaluated in three problems using
both synthetic and real-world data. The results are promising, indicating that the
proposed algorithm converges fast and with reasonable accuracy compared with
existing methods.

Contributions and background: The author of this thesis contributed with the
majority of the work including the design, the implementation, the numerical
illustrations and the written presentation. This contribution resulted from the
participation in the course Bayesian learning given by Prof. Mattias Villani at
Linköping University during the autumn of 2013.

Paper D

Paper D of this thesis is an edited version of,

P. E. Valenzuela, J. Dahlin, C. R. Rojas, and T. B. Schön. A graph/particle-
based method for experiment design in nonlinear systems. In Pro-
ceedings of the 19th IFAC World Congress, Cape Town, South Africa,
August 2014. (accepted for publication).

1.2 Thesis outline and contributions 13

Abstract: We propose an extended method for experiment design in nonlinear
state space models. The proposed input design technique optimizes a scalar cost
function of the information matrix, by computing the optimal stationary probabil-
ity mass function (PMF) from which an input sequence is sampled. The feasible
set of the stationary PMF is a polytope, allowing it to be expressed as a convex
combination of its extreme points. The extreme points in the feasible set of PMFs
can be computed using graph theory.

Therefore, the final information matrix can be approximated as a convex combina-
tion of the information matrices associated with each extreme point. For nonlinear
SSMs, the information matrices for each extreme point can be computed by using
particle methods. Numerical examples show that the proposed technique can be
successfully employed for experiment design in nonlinear SSMs.

Contributions and background: This is an extension of the work presented in
Valenzuela et al. (2013) and a result of the cooperation with the Department of
Automatic Control at the Royal Institute of Technology (KTH). The author of
this thesis designed and implemented the algorithm for estimating the expected
information matrix and the Monte Carlo method for estimating the optimal input.
The corresponding sections in the paper were also written by the author of this
thesis.

Paper E

Paper E of this thesis is an edited version of,

J. Dahlin, F. Lindsten, T. B. Schön, and A.Wills. Hierarchical Bayesian
ARX models for robust inference. In Proceedings of the 16th IFAC
Symposium on System Identification (SYSID), Brussels, Belgium, July
2012b.

Abstract: Gaussian innovations are the typical choice in most ARX models but us-
ing other distributions such as the Student-t could be useful. We demonstrate that
this choice of distribution for the innovations provides an increased robustness to
data anomalies, such as outliers and missing observations. We consider these mod-
els in a Bayesian setting and perform inference using numerical procedures based
on MCMC methods. These models include automatic order determination by two
alternative methods, based on a parametric model order and a sparseness prior,
respectively. The methods and the advantage of our choice of innovations are il-
lustrated in three numerical studies using both simulated data and real EEG data.

Contributions and background: The author of this thesis contributed to parts of
the the implementation, generated most of the numerical illustrations and wrote
the sections covering the numerical illustrations and the conclusions in the paper.
The EEG data was kindly provided by Eline Borch Petersen and Thomas Lunner
at Eriksholm Research Centre, Oticon A/S, Denmark.

14 1 Introduction

1.3 Publications
Published work of relevance to this thesis are listed below in reverse chronological
order. Items marked with ? are included in Part II of this thesis.

? J. Dahlin, T. B. Schön, and M. Villani. Approximate inference in state
space models with intractable likelihoods using Gaussian process opti-
misation. Technical Report LiTH-ISY-R-3075, Department of Electri-
cal Engineering, Linköping University, Linköping, Sweden, April 2014c.

? J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis-Hastings
using gradient and Hessian information. Pre-print, 2014b. arXiv:1311.0686v2.

? J. Dahlin and F. Lindsten. Particle filter-based Gaussian process op-
timisation for parameter inference. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August 2014. (accepted for
publication).

J. Dahlin, F. Lindsten, and T. B. Schön. Second-order particle MCMC
for Bayesian parameter inference. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August 2014a. (accepted
for publication).

? P. E. Valenzuela, J. Dahlin, C. R. Rojas, and T. B. Schön. A graph/particle-
based method for experiment design in nonlinear systems. In Pro-
ceedings of the 19th IFAC World Congress, Cape Town, South Africa,
August 2014. (accepted for publication)

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis Hastings
using Langevin dynamics. In Proceedings of the 38th International
Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Vancouver, Canada, May 2013a.

? J. Dahlin, F. Lindsten, T. B. Schön, and A. Wills. Hierarchical Bayesian
ARX models for robust inference. In Proceedings of the 16th IFAC
Symposium on System Identification (SYSID), Brussels, Belgium, July
2012b.

Other published works related to but not included in the thesis are:

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger.
Real-time Video Based Lighting Using GPU Raytracing. In Proceed-
ings of the 2014 European Signal Processing Conference (EUSIPCO),
Lisbon, Portugal, September 2014a. (submitted, pending review).

J. Kronander, T. B. Schön, and J. Dahlin. Backward sequential Monte
Carlo for marginal smoothing. In Proceedings of the 2014 IEEE Statis-
tical Signal Processing Workshop (SSP), Gold Coast, Australia, July
2014b. (accepted for publication).

1.3 Publications 15

D. Hultqvist, J. Roll, F. Svensson, J. Dahlin, and T. B. Schön. Detec-
tion and positioning of overtaking vehicles using 1D optical flow. In
Proceedings of the IEEE Intelligent Vehicles (IV) Symposium, Dear-
born, MI, USA, June 2014. (accepted for publication).

J. Dahlin and P. Svenson. Ensemble approaches for improving commu-
nity detection methods. Pre-print, 2013. arXiv:1309.0242v1.

J. Dahlin, F. Lindsten, and T. B. Schön. Inference in Gaussian models
with missing data using Equalisation Maximisation. Pre-print, 2013b.
arXiv:1308.4601v1.

J. Dahlin, F. Johansson, L. Kaati, C. Mårtensson, and P. Svenson.
A Method for Community Detection in Uncertain Networks. In Pro-
ceedings of International Symposium on Foundation of Open Source
Intelligence and Security Informatics 2012, Istanbul, Turkey, August
2012a.

J. Dahlin and P. Svenson. A Method for Community Detection in
Uncertain Networks. In Proceedings of 2011 European Intelligence
and Security Informatics Conference, Athens, Greece, August 2011.

2
Nonlinear state space models

and statistical inference

In this chapter, we introduce the SSM and give some motivating examples of
different applications in which the model is used. We also review ML inference
and Bayesian inference in connection with SSMs. Interested readers are referred
to Douc et al. (2014), Cappé et al. (2005), Ljung (1999), Shumway and Stoffer
(2010) and Brockwell and Davis (2002), for more detailed accounts of the topics
covered here.

2.1 State space models and inference problems
An SSM or hidden Markov model (HMM) consists of a pair of discrete-time stochas-
tic processes1 x0:T , {xt}Tt=0 and y1:T , {yt}Tt=1. Here, xt ∈ X ∈ Rn denotes the
latent state and yt ∈ Y ∈ Rm denotes the observation obtained from the system
at time t.

The latent state is modelled as a Markov chain with initial state x0 ∼ µ(x0) and the
transition kernel fθ(xt+1|xt, ut). Furthermore, we assume that the observations are
mutually independent given the latent states and have the conditional observation
density gθ(yt|xt, ut). In both kernels, θ ∈ Θ ⊆ Rd denotes the static parameter
vector of the Markov kernel and ut denotes a known input to the system. With
these definitions, we can write the SSM on the compact form

x0 ∼ µ(x0), (2.1a)
xt+1|xt ∼ fθ(xt+1|xt, ut), (2.1b)
yt|xt ∼ gθ(yt|xt, ut), (2.1c)

1In this thesis, we do not make any difference in notation between a random variable and its
realisation. This is done to ease the notation.

17

18 2 Nonlinear state space models and statistical inference

· · · xt−1 xt xt+1 · · ·

· · · yt−1 yt yt+1 · · ·

Figure 2.1: Graphical model of an SSM with latent process (red) and observed
process (blue).

which we make use of in this thesis. This is a fairly general class of models and
can be used to model both nonlinear and non-Gaussian systems.

Another popular description of stochastic models like the class of SSMs is graphical
model (Murphy, 2012; Bishop, 2006). The corresponding graphical representation
of an SSM is depicted in Figure 2.1, where the latent state process is presented
in red and the observed process in blue. From this graphical model, we see that
the state xt is only dependent on the last state xt−1 due to the Markov property
inherent in the model. That is, all the information about the past is summarised in
the state at time t−1. Also, we see that the observations are mutually independent
given the states, as there are no arrows directly between two observations.

In this thesis, we are interested in two different inference problems connected to
SSMs: (i) the state inference problem and (ii) the parameter inference problem.
The first problem is to infer the density of the latent state process given the
observations and the model. If we are interested in the current state given all the
observations up until now, we would like to estimate the marginal filtering density
pθ(xt|y1:t). We return to this and other related problems in Chapter 3. There, we
define the problem in mathematical terms and present numerical methods designed
to approximate the filtering and smoothing densities.

The second problem is to infer the values of the parameter θ given the set of ob-
servations y1:T and the model structure encoded by the Markov transition kernels
fθ(xt+1|xt) and gθ(yt|xt). It turns out that we have to solve the state inference
problem as a part of the parameter inference problem. We later return to the
mathematical formulation of this problem in the ML setting in Section 2.3 and in
the Bayesian setting in Section 2.4. These problems are analytically intractable
and cannot be computed in closed-form. Therefore, we present computational
methods based on sampling methods for parameter inference in Chapter 4.

2.2 Some motivating examples 19

2.2 Some motivating examples
SSMs have been successfully applied in various areas for modelling dynamical sys-
tems. In this section, we give three examples from different research fields and
connect them with the inference problems discussed in the previous section. The
first model is taken from finance, where we would like to model the real-valued
latent volatility given some stock or exchange rate data. In the second model, we
would like to make predictions of the number of annual major earthquakes. The
third model is taken from meteorology, where we would like predict the proba-
bility of rain fall during the coming days. However, we start the the well-known
linear Gaussian state space (LGSS) model, which we make use of as a benchmark
throughout the thesis.

2.2.1 Linear Gaussian model

Consider the scalar LGSS model2,

xt+1|xt ∼ N
(
x1+1;φxt + γut, σ

2
v

)
, (2.2a)

yt|xt ∼ N
(
yt;xt, σ2

e

)
, (2.2b)

where the parameter vector is θ = {φ, γ, σv, σe}. Here, φ describes the persistence
of the state and {σv, σe} controls the noise levels. In this model, we have added
an optional input u1:T to the system, which is scaled by the parameter γ. Here,
we require that φ ∈ (−1, 1) ⊂ R to obtain a stable system and that {σv, σe} ∈ R2

+
as they correspond to standard deviations.

The state inference problem can be solved exactly for this model using Kalman
filters and smoothers (Kailath et al., 2000). This is a result of that the model is
linear and only includes Gaussian kernels. Due to this property, we make use of
the model as a benchmark problem for some of the algorithms reviewed in this
thesis. Comparing the methods that we develop for the nonlinear SSMs with the
LGSS model can reveal important properties of the algorithms and help with in-
sights about how to calibrate them. The Kalman methods can also be used to
estimate the log-likelihood, the score function and the information matrix, which
are important quantities in the ML parameter inference problem discussed in Sec-
tion 2.3.

2.2.2 Volatility models in econometrics and finance
Nonlinear SSMs are often encountered in econometric and financial problems,
where we would like to e.g. model the variations in the log-returns of a stock
or an index. The log-returns are calculated by yt = log(st/st−1), where st denotes
the price of some financial asset at time t. The variations in the log-returns can
be seen as the instantaneous standard deviation and is referred to as the volatility.

2This model is also known as ARX(1) in noise, where ARX(1) denotes an exogenous autore-
gressive process of order 1.

20 2 Nonlinear state space models and statistical inference

The volatility plays an important role in the famous Black-Scholes pricing model
(Black and Scholes, 1973). In this model, the log-returns are assumed to follow
a Brownian motion with independent and identically distributed IID increments
distributed according to some Gaussian distribution N (µ, σ2), where σ denotes the
volatility. Therefore, the volatility is an important component when calculating
the price of options and other financial instrument based on the Black-Scholes
model. For a discussion of how the volatility is used for pricing options, see Hull
(2009), Björk (2004) and Glasserman (2004). For a more extensive treatment of
financial time series and alternative inference methods for volatility models, see
Tsay (2005).

In Figure 2.2, we present the closing prices and daily log-returns for the the NAS-
DAQ OMX Stockholm 30 Index during a 14 year period. Note, the large drops in
the closing prices (middle) in the period around the years 2001, 2008 and 2011 in
connection with the most recent financial crises (shocks). At these drops, we see
that the log-returns are quite volatility, as they vary much between consecutive
days. During other periods, the volatility is quite low and the log-returns does
not vary much between consecutive days. These variations in the volatility are
referred to as volatility clustering in finance.

Also, from the QQ-plots we see that the log-returns are heavy-tailed and clearly
non-Gaussian with large deviations from theoretical quantiles in the tail behaviour.
All these features (and some other) are known as stylized facts (Cont, 2001). In this
section, we present three different volatility models that tries to capture different
aspects of the observed properties of financial data. A complication is that the
resulting inference problems become more challenging as when try to capture more
and more of the stylized facts. This results in a trade-off between accuracy of the
model and the computational complexity of the resulting inference problems.

A common theme for all the models considered here, is that they are all based
on a (slowly) varying random walk-type model of the volatility. This model can
be motivated by the volatility clustering behaviour, i.e. the underlying volatility
varies slowly and gives rise to volatility clustering. Furthermore, the log-returns are
modelled as a non-stationary white noise process where the variance is determined
by the latent volatility. This corresponds quite well with the log-returns presented
in the upper part of Figure 2.2. For a more through discussion about different
volatility models, see Mitra (2011) and Kim et al. (1998).

The first model is the generalised autoregressive conditional heteroskedasticity
(GARCH) model (Bollerslev, 1986), which is a generalisation of the ARCH model
(Engle, 1982). Here, we consider the GARCH(1,1) in noise model given by

ht+1|xt, ht = α+ βx2
t + γht, (2.3a)

xt+1|xt, ht = N
(
xt+1; 0, ht+1

)
, (2.3b)

yt|xt = N
(
yt;xt, τ2

)
, (2.3c)

where the parameter vector is θ = {α, β, γ, τ} with the constraints {α, β, γ, τ} ∈

2.2 Some motivating examples 21

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

Year

D
a

ily
 l
o

g
−

re
tu

rn
s

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0
1

4
0

0

Year

D
a

ily
 c

lo
s
in

g
 p

ri
c
e

s

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

−2 0 2

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Daily log−returns

D
e

n
s
it
y

−0.10 −0.05 0.00 0.05 0.10

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Figure 2.2: Daily log-returns (upper) for the NASDAQ OMX Stockholm 30
Index from 2000-01-04 to 2014-03-14. The daily closing prices (middle), QQ-
plot of the log-returns (lower left) and histogram of the log-returns and the
kernel density estimate (KDE) (lower right) are also presented.

22 2 Nonlinear state space models and statistical inference

R4
+ and β + γ ∈ (0, 1) ⊂ R for stability. In this model, the current log-return

is taken into account when computing the volatility at the next time step. This
construction tries to capture the volatility clustering.

The second model is the Hull-White stochastic volatility (HWSV) model3 (Hull
and White, 1987) given by

xt+1|xt ∼ N
(
xt+1;µ+ φ(xt − µ), σ2

)
, (2.4a)

yt|xt ∼ N
(
yt; 0, β2 exp(xt)

)
, (2.4b)

where the parameter vector is θ = {µ, φ, σ, β} with the constraints {µ, σ, β} ∈ R3
+

and φ ∈ (−1, 1) ⊂ R for stability. There are many variants of the HWSV model
that includes correlations between the noise sources (called leverage models) and
outliers in the form of jump processes. See Chib et al. (2002) and Jacquier et al.
(2004) for more information.

One problem with HWSV is that the Gaussian observation noise in some cases
cannot fully capture the heavy-tail behaviour found in real-world data. Instead, et
is often assumed to be simulated from a Student-t distribution, which has heavier
tails than the Gaussian distribution. Another modification is to assume that et
is generated from an α-stable distribution, which can model both large outliers
in the data and non-symmetric log-returns. This results in the third model, the
stochastic volatility model with symmetric α-stable returns (SVα) Casarin (2004)
given by

xt+1|xt ∼ N
(
xt+1;µ+ φxt, σ

2
)
, (2.5a)

yt|xt ∼ A
(
yt;α, 0, exp(xt/2), 0

)
, (2.5b)

where the parameter vector is θ = {µ, φ, σ, α} and the constraints {µ, σ} ∈ R2
+,

α ∈ (0, 2] \ {1} ⊂ R and φ ∈ (−1, 1) ⊂ R for stability. Here, A(α, 0, 1, 0) denotes a
symmetric α-stable distribution4 with stability parameter α. For this distribution,
we cannot evaluate gθ(yt|xt) and this results in problems when inferring the states
and parameter vector of the model. In Paper C, we apply ABCs for solving this
problem.

As previously discussed, the inference problem in volatility models is mainly state
inference, which requires a model and hence results in the need for parameter
inference. For example, the state estimate can be used as the volatility estimate
for option pricing. Also, the parameter vector of the model can be used to analyse if
the log-return are symmetric and heavy-tailed or the persistence of the underlying
volatility process.

3A similar model is used for modelling the glacial varve thickness (the thickness of the clay
collected within the glacial) in Shumway and Stoffer (2010). This model is obtain by replacing
the noise in (2.4b) with gamma distributed noise, i.e. et ∼ G(α−1, α) for some parameter α ∈ R+.

4See Appendix A of Paper C for a brief summary about α-stable distributions and their
properties. For a more detailed presentation, see Nolan (2003).

2.2 Some motivating examples 23

-50050

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

0
5
0

1
0
0

1
5
0

-1
6
0

-1
1
0

-6
0

-1
0

L
a
ti
tu

d
e

Longitude

Figure 2.3: The major earthquakes in the world between 2000 and 2013. The
size of the circle is proportional to the relative magnitude of the earthquake.

24 2 Nonlinear state space models and statistical inference

2.2.3 Earthquake count model in geology
Another application of SSMs is to model the number of major (with magnitude
7 or higher on the Richter scale) earthquakes each year. As a motivation for the
model, we consider some real-world data from the Earthquake Data Base System of
the U.S. Geological Survey5. The data describes the number of major earthquakes
around the world between the years 1900 and 2013. In Figure 2.3, we present the
locations of the major earthquakes during the period 2000 to 2013. In Figure 2.4,
we present the annual number of major earthquakes with some exploratory plots.
From the data, we see that the number of earthquakes is clearly correlated, similar
to the clustering behaviour found in the volatility models from the previous appli-
cation. That is, a year with many earthquakes is likely to be followed by another
year with high earthquake intensity. The reason for this follows quite intuitive
as pointed out in Langrock (2011) since earthquakes are due to stresses in the
tectonic plates of the Earth. Therefore, the underlying process which model these
stresses should be slowly varying over the time span of years.

Due to the autocorrelation in the number of earthquakes, it is reasonable to assume
that the intensity is determined by some underlying latent variable. Therefore, we
can model the number of major earthquakes as an SSM. To this end, we use the
model6 from Zeger (1988) and Chan and Ledolter (1995), which assumes that
the number of earthquakes yt is a Poisson distributed variable (corresponding a
positive integer or count data). Also, we assume that the mean of the Poisson
process λt follows an AR(1) process,

log(λt)− µ = φ
(

log
(
λt−1

)
− µ

)
+ σvvt,

where vt denotes a standard Gaussian random variable. By introducing xt =
log(λt)− µ and β = exp(µ), we obtain the SSM

xt+1|xt ∼ N
(
xt+1;φxt, σ2

v

)
, (2.6a)

yt|xt ∼ P
(
yt;β exp(xt)

)
, (2.6b)

where the parameter vector is θ = {φ, σv, β} with the constraints φ ∈ (−1, 1) ⊂ R
and {σv, β} ∈ R2

+. Here, P(λ) denotes a Poisson distributed variable with mean
λ. That is, the probability of k ∈ N earthquakes during year t is given by the
probability mass function (PMF),

P[Nt = k] = exp(−λ)λk

k! .

The inference problem in this type of model could be to determine the underlying
intensity of the process (the state). This information could be useful in making
predictions of the future number of major earthquakes.

5This data can be accessed from http://earthquake.usgs.gov/earthquakes/eqarchives/.
6This type of Poisson count model can also be used to model the number of yearly polio

infections (Zeger, 1988) and the number of transactions per minute of a stock on the market
(Fokianos et al., 2009).

http://earthquake.usgs.gov/earthquakes/eqarchives/

2.2 Some motivating examples 25

1900 1920 1940 1960 1980 2000 2020

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0

Year

N
u

m
b

e
r

o
f

m
a

jo
r

e
a

rt
h

q
u

a
k
e

s

Number of earthquakes

D
e

n
s
it
y

0 10 20 30 40 50

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

0
.0

6

0 5 10 15 20

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Lag

A
C

F
 o

f
n
u

m
b

e
r

o
f

e
a

rt
h

q
u

a
k
e

s

Figure 2.4: Upper: number of annual major earthquakes (with magnitude 7
or higher on the Richter scale) during the period between the years 1900 and
2013. Middle: the corresponding histogram with the KDE (blue). Lower: the
estimated autocorrelation function (ACF).

26 2 Nonlinear state space models and statistical inference

2.2.4 Daily rainfall models in meteorology
A common problem in meteorology and weather forecasting is to estimate the
probability and amount of rainfall. In practice, this problem is often split into two
subproblems, each with its own model. The first model determines the probability
of rainfall and the second model determines the amount of rainfall. For more
information, see Srikanthan and McMahon (1999) and Woolhiser (1992). Here,
we consider the problem to construct a model to determine the probability of
rainfall given historic data of rainfall in the region of interest. It is also possible
to use user data from the Internet to predict the probability of rainfall in some
region. An example of this is to make use of some collected data from Twitter, see
Naesseth (2012) for more information about this approach.

We first consider some real-world data from the Swedish weather service (SMHI)
collected daily at Malmslätt near Linköping during the period between the years
1952 and 2002. The data is presented in Figure 2.5 as the daily probability of
rainfall (upper) and the average daily amount of rainfall (middle) calculated per
week. We also present the ACF of rainfall, which indicates that there is a corre-
lation between rainy and non-rainy days. Furthermore, the probability of rainfall
seems to follow a cyclic behaviour with a high probability during the latter part
of the year. The amount of rainfall also varies with a peak around week 30.

To construct a model of the probability of rainfall, we follow the insights from
the previous analysis and review the model proposed by Langrock and Zucchini
(2011). To account for the autocorrelation in the rainfall, we make use of a latent
process to describe the persistence of the weather. This construction can be used
to create a rough model to account for the structure of low pressure weather
systems which passes over a period of days. Hence, this can be seen as a short
term model of the probability of rainfall. From practical knowledge, we also know
that the probability of rainfall is connection with the season of the year. This
cyclic behaviour was also seen in the weather data from Malmslätt. Therefore, we
assume that there also exists a cyclical part of the latent process and that this
together with the short term persistence determines the probability of rainfall.

Furthermore, we assume that the output from the model is a binary variable
yt ∼ B(pt) from a Bernoulli distribution with success probability pt. That is, the
variable assumes the value 1 with probability pt (rain falls during day t) and the
value 0 with probability 1 − pt (no rain falls during day t). The final model on
SSM form is given by

ht =
2∑

k=1
αk cos

(
2kπt
365

)
+

2∑
k=1

βk sin
(

2kπt
365

)
, (2.7a)

xt+1|xt ∼ N
(
xt+1;φxt, σ2

v

)
, (2.7b)

yt ∼ B
(

exp(µ+ xt + ht)
1 + exp(µ+ xt + ht)

)
, (2.7c)

where the parameter vector is θ = {φ, σv, µ, α1, α2, β1, β2} with the constraints

2.2 Some motivating examples 27

0 10 20 30 40 50

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

0
.6

0

Week

P
ro

b
a

b
ili

ty
 o

f
ra

in
fa

ll

0 10 20 30 40 50

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Week

A
ve

ra
g

e
 d

a
ily

 r
a

in
fa

ll
(m

m
)

0 5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
ra

in
fa

ll

Figure 2.5: The daily probability of rainfall (upper), the daily amount of
rainfall (middle) and the ACF of rainfall (lower). The values are calculated
as weekly averages of daily data from Malmslätt during the period between
the years 1952 and 2002. The data is provided by the Swedish weather service
(SMHI) and is used under the creative commons license.

28 2 Nonlinear state space models and statistical inference

φ ∈ (−1, 1) ⊂ R and σv ∈ R+. The inference problem in this model could be to
determine the probability of rainfall (estimate pt) given the data. Also, it could be
interesting to determining the strength of the persistence in the system determined
by φ or the strength of the seasonal components determined by {α1, α2, β1, β2}.

2.3 Maximum likelihood parameter inference
In this section, we present the fundamentals of ML based parameter inference in
SSMs. This presentation is mainly included to set the notation and to highlight
some features of the method that are needed in the sequel. An accessible general
introduction to ML inference is given by Casella and Berger (2001). For more
extensive treatments, see Rao (1965) and Lehmann and Casella (1998).

Inference in the ML paradigm is focused on optimising the likelihood function
L(θ) = pθ(y1:T), which also appears in Bayesian inference. The likelihood encodes
the information contained with the observations y1:T into a quantity that can be
used for inference.

2.1 Definition (Likelihood function for an SSM). The likelihood (function) of an
SSM can be expressed as the decomposition

L(θ) = pθ(y1:T) = pθ(y1)
T∏
t=2

pθ(yt|y1:t−1), (2.8)

where pθ(yt|y1:t−1) denotes the one-step-ahead predictor.

It is common to replace the likelihood function with the log-likelihood (function)
in many inference problems. This is done to simplify analytical calculations and
improve the numerical stability of many algorithms. The log-likelihood is given
by

`(θ) = log pθ(y1:T) = log pθ(y1) +
T∑
t=2

log pθ(yt|y1:t−1). (2.9)

In general, there are two different interpretations of the likelihood in statistics.
The first is that the likelihood is a function of the data for a fixed parameter θ.
A common name for this distribution is the sampling distribution and it plays
an important role when calculating the distribution of some sampled data. The
second interpretation (which we adopt in this thesis) is that the likelihood is
a function of the parameter. That is the data is fixed and that the likelihood
therefore summaries the information in the data.

The ML parameter inference problem is formulated as a maximisation problem
of the likelihood or equivalently the log-likelihood. This follows from that the
logarithm is a monotone function and hence any maximiser of the likelihood is
also a maximiser of the log-likelihood.

2.3 Maximum likelihood parameter inference 29

2.2 Definition (Maximum likelihood parameter inference problem). The param-
eter inference problem in the ML setting is given by

θ̂ML = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

`(θ), (2.10)

where θ̂ML denotes the ML parameter estimate.

The interpretation of (2.10) is that we should select the parameter that together
with the model is the most likely to have been generated the observations. This
definition makes good intuitive sense, but as we shall see in the following section
it is not the only method for estimating the parameter given the data.

We continue by discussing some useful quantities connected with the log-likelihood
and will then return to discuss the properties of the estimator in (2.10). The gra-
dient of the log-likelihood is referred to as the score function and the negative Hes-
sian of the log-likelihood is referred to as the observed information matrix. These
quantities are useful in many optimisation algorithms as they are the first order
and second order information about the objective function (the log-likelihood) in
(2.10), respectively. Also, this information can be used to build efficient proposals
in some sampling algorithms, see Paper A.

2.3 Definition (Score function). The score function is defined as the gradient of
the log-likelihood,

S(θ′) = ∇`(θ)
∣∣
θ=θ′ , (2.11)

where the gradient is taken with respect to the parameter vector.

The score function has a natural interpretation as the slope of the log-likelihood.
Hence, the score function is zero when evaluated at the true parameter vector,
S(θ?) = 0. However, note that this is not necessarily true when we work with
finite data samples as is discussed in Example 2.6.

2.4 Definition (Observed information matrix). The observed information matrix
is defined as the negative Hessian of the log-likelihood,

J (θ′) = −∇2`(θ)
∣∣
θ=θ′ (2.12)

where the Hessian is taken with respect to the parameter vector.

The statistical interpretation of the observed information matrix is as a measure
of the amount of information in the data regarding the parameter θ. That is, if the
data is informative the resulting information matrix is large (according to some
measure). Also, the information matrix can geometrically be seen as the negative
curvature of the log-likelihood. As such, we expect it to be positive definite (PD)
at the ML parameter estimate (c.f. the second-derivative test in basic calculus).
Finally, we note that there exists a limiting behaviour for the observed information
matrix, which approaches the so called expected information matrix as the number
of data points tends to infinity.

30 2 Nonlinear state space models and statistical inference

2.5 Definition (Expected information matrix). The expected information matrix
(or the Fisher information matrix) is defined by the expected value of the observed
information matrix (2.12),

I(θ′) = −Ey1:T

[
∇2`(θ)

∣∣
θ=θ′

]
= Ey1:T

[(
∇`(θ)

∣∣
θ=θ′

)2
]
, (2.13)

which is evaluated with respect to the data record.

Note, that the expected information matrix is independent of the data realisation,
whereas the observed information is dependent on the realisation. The expected
information matrix is PD for all values of θ as it can be seen as the variance of the
score function. We make use of this property in Section 4.2.2 and in Paper A to
construct a random walk on a Riemann manifold using the information matrices.
We conclude the discussion on the score function and the information matrix by
Example 2.6, where we investigate the defined quantities for an LGSS model as a
function of the parameter φ.

2.6 Example: Score and information matrix in the LGSS model
Consider the LGSS model (2.2) with the parameter vector θ? = {0.5, 0, 1, 0.1} from
which we generate a realisation of length T = 250 using the initial value x0 = 0.
We fix {σv, σe} at their true values and create a grid over φ. For each grid point,
we calculate the log-likelihood, the score function and the expected information
matrix. The results are presented in Figure 2.6.

We note that the log-likelihood has a distinct maximum near the true parameter
(presented as dotted vertical lines) and that the score function is zero close to
this point. The small difference in the score function is due to that we use a finite
amount of data. Finally, the zero of the score function results in a maximum of the
log-likelihood function as the expected information (negative Hessian) is positive.

With the definition of the expected information matrix in place, we now return
to discussing the properties of the ML parameter estimate. The ML estimator
obtained from (2.10) has a number of strong asymptotic properties, i.e. when
the number of observations tends to infinity. It is possible to show that this
estimator is consistent, asymptotically normal and efficient under some regularity
conditions. These conditions include that the parameter space is compact and that
the likelihood, score function and information matrix exist and are well-behaved.

The (ML) estimator is said to be consistent as it fulfils that

θ̂ML
a.s.−→ θ?, T →∞.

That is, the estimate almost surely converges to the true value of the parameter in
the limit of infinite data. Furthermore, as the estimator is asymptotically normal,
we have that the error in the estimate satisfies a CLT given by

√
T
(
θ̂ML − θ?

)
d−→ N

(
0, I−1(θ?)

)
,

2.3 Maximum likelihood parameter inference 31

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
0

−
3

9
0

−
3

8
0

−
3

7
0

−
3

6
0

−
3

5
0

−
3

4
0

φ

L
o

g
−

lik
e

lih
o

o
d

 f
u

n
c
ti
o

n

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
0

−
1

0
0

0
1

0
0

2
0

0

φ

S
c
o

re
 f

u
n

c
ti
o

n

0.0 0.2 0.4 0.6 0.8 1.0

φ

E
x
p

e
c
te

d
 i
n

fo
rm

a
ti
o

n

1
0

0
3

0
0

5
0

0
7

0
0

9
0

0

Figure 2.6: The estimates of the log-likelihood function (upper) the score
function (lower left) and the expected information matrix (lower right) of the
LGSS model in Example 2.6. The dotted lines indicate the true parameter
and the zero-level.

32 2 Nonlinear state space models and statistical inference

which follows from a Taylor expansion around the point θ = θ? of the log-likelihood.
Note that, the expected information matrix enters into the expression and limits
the accuracy of the estimate.

Therefore, a natural question is if we can somehow change the size of this matrix
to decrease the lower-bound on the variance of the estimate. This is a key problem
in the field of input design, where an input is added to the SSM to maximise some
scalar function of the expected information matrix. This problem is discussed for
nonlinear SSMs in Example 4.10 and Paper D.

Lastly, we say that an estimator is efficient if it attains the Cramér-Rao lower
bound, which means that no other consistent estimator has a lower mean square
error (MSE). That is, the ML estimator is the best unbiased estimator in the MSE
sense and there are no better unbiased estimators. This last property is appealing
and one might be tempted to say that the this estimator is the best choice for
parameter inference. However, this result is only valid when we have an infinite
number of samples. Therefore, other estimators (e.g. Bayes estimators discussed
in the next section) could have better properties in the finite sample regime. Also,
there can exist biased estimators with lower MSE than the ML estimator.

We have now introduced the ML parameter inference problem and some of the
properties of the resulting estimate. In practice, we usually encounter a number of
problems when we try to solve the optimisation problem in (2.10). These includes
that for nonlinear SSMs: (i) the log-likelihood, the score and the information
matrix are all intractable, (ii) the optimisation problem cannot be solved in closed-
form and (iii) there could exist many local maxima of the log-likelihood making
numerical optimisation problematic.

To solve these problems, a number of different numerical approaches have been de-
veloped. We return to the use of these approaches for estimating the log-likelihood,
the score and the information matrix in Section 3. We also discuss other numerical
methods for solving the ML parameter inference problem in Chapter 4.

2.4 Bayesian parameter inference
Previously in the ML paradigm, we implicitly assumed that the true parameter
is a specific value. In this section, we instead assume that the true parameter is
distributed according to some probability distribution. From this assumption, we
can construct a different statistical paradigm called Bayesian inference, which can
be to use for state and parameter inference in nonlinear SSMs.

As in the previous section, we only briefly discuss Bayesian inference for SSMs to
set the notation and highlight some important features that we make use of in this
thesis. For general treatments of Bayesian analysis, see Robert (2007) and Berger
(1985). Furthermore, two accessible introductions are Gelman et al. (2013) and
Casella and Berger (2001).

In the Bayesian parameter inference problem, we combine the information in the

2.4 Bayesian parameter inference 33

data described by the likelihood pθ(y1:T) with prior information encoded as a
probability distribution denoted p(θ). This combination of the prior information
and the information in the data is made using Bayes’ theorem,. This procedure
is referred to as the prior-posterior update in Bayesian inference. The result is an
updated probability distribution called the posterior distribution, which we denote
p(θ|y1:T) in the parameter inference problem. Similar distributions can be defined
for the state inference problem and we return to this is Section 3.1.

2.7 Definition (Bayesian parameter inference problem). Given the parameter prior
p(θ) and the likelihood pθ(y1:T), we obtain the parameter posterior by Bayes’ the-
orem as

p(θ|y1:T) = pθ(y1:T)p(θ)
p(y1:T) ∝ pθ(y1:T)p(θ), (2.14)

where p(y1:T) denotes the marginal likelihood (or the evidence). The name is due
to that it can be computed by marginalisation

p(y1:T) =
∫
pθ(y1:T)p(θ)dθ. (2.15)

One of the main questions in Bayesian inference is the choice of the prior and
how we may encode our prior beliefs about the data into it. A common view
is that this choice is subjective as it is often done using intuition and previous
knowledge, which depends on subjective experiences. In this thesis, we make use
of simple priors to encode stability properties of the nonlinear system or to keep
the standard deviation positive at all times. For this, we make use of uniform
priors over different subsets of the parameter space. An example of this is that
we assume a uniform prior over φ ∈ (−1, 1) ⊂ R for the LGSS model (2.2), which
can be expressed as p(φ) = U(φ;−1, 1). Note, that the use of improper priors can
be seen as a link between ML and Bayesian inference, but we shall not discuss
this further. Instead, interested readers are referred to Robert (2007) for more
information.

Another important class of priors that we make use of in Paper E is conjugate
priors, which enables us to compute closed-form expressions for the posterior. A
conjugate prior has the same functional form as the posterior and depends on the
form of the likelihood. For example, the conjugate prior for the mean (given that
the variance is known) of the Gaussian distribution is again a Gaussian distribu-
tion. This results from the fact that the product of two Gaussian distributions
(the likelihood and the prior) is again a Gaussian distribution and hence it is a
conjugate prior. We give another example of a conjugate prior in Example 2.8.
Conjugate priors exist mainly for some combinations of priors and likelihoods in
the exponential family of distributions, see Robert (2007) for a discussion.

34 2 Nonlinear state space models and statistical inference

1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

σ
2

P
o

s
te

ri
o

r

1 2 3 4 5 6

0
.0

6
0

.0
8

0
.1

0
0

.1
2

σ
2

P
ri

o
r

1 2 3 4 5 6

−
5

2
0

−
5

0
0

−
4

8
0

−
4

6
0

−
4

4
0

−
4

2
0

σ
2

L
o

g
−

lik
e

lih
o

o
d

Figure 2.7: The posterior (upper) of the parameter σ2 in the Gaussian distri-
bution resulting from the combination of an inverse-Gamma prior (lower left)
and the data log-likelihood (lower right).

2.4 Bayesian parameter inference 35

2.8 Example: Prior-posterior update in a conjugate model
Consider the problem of inferring the value of the variance σ2 in a Gaussian
distribution given that we know the value of the mean µ. Also, we assume that we
have obtained a set of IID data y1:T generated by the model. The conjugate prior
to the variance in a Gaussian distribution is the inverse-Gamma distribution with
rate α0 and shape β0 denoted IG(α0, β0). By direct calculation, we obtain that
the posterior has the parameters αT = α0 + T/2 and βT = β0 + 1

2
∑T
t=1(yi − µ)2.

Here, we simulate the data realisation using the parameter {µ, σ2} = {1.5, 4} of
length T = 200 and use the prior coefficients {α0, β0} = {1, 4}. The corresponding
posterior, prior and log-likelihood are presented in Figure 2.7. We note that the
prior assigns a small probability of the variance equal to 4. However, as the data
record is relatively large, the resulting posterior is centred close to the true value
of the parameter.

The Bayesian parameter inference problem is completely described by (2.14) and
everything that we need is know is encoded in the posterior. This follows from
the likelihood principle, which states that all information obtained from the data
is contained within the likelihood function, see Robert (2007). However, we are
sometimes interested in computing point estimates of the parameter vector. To
compute point estimates, we can make use of statistical decision theory to make
a decision about what information from the posterior to use. Consider a loss
function L : Θ × Θ → R+, which takes the parameter and its estimate as input
and returns a real-valued positive loss. The expected posterior loss (or posterior
risk) ρ

(
p(θ), δ

∣∣y1:T
)
is given by

ρ
(
p(θ), δ

∣∣y1:T
)

=
∫
L
(
θ, δ(y1:T)

)
p(θ|y1:T)dθ, (2.16)

where δ(y1:T) denotes the decision of the parameter estimate given the data. The
Bayes estimator is defined as the minimising argument of the expected posterior
loss,

δ?(y1:T) = argmin
δ(y1:T)∈Θ

ρ
(
p(θ), δ

∣∣y1:T
)
.

Here, we restrict ourselves to discussing the resulting Bayes estimators for three
different loss functions in Table 2.1, but there are many other possibly suitable
choices for our application. From this, we see that the estimate that minimises
the quadratic loss function is the expected value of the posterior,

E[θ] =
∫
θ p(θ|y1:T)dθ. (2.17)

That is, the Bayes estimator is given by the posterior mean for this choice of
loss function. This is an example of a common expectation operation in Bayesian
inference, as the expected value of the parameter is computed with respect to
the parameter posterior distribution. Similar expressions can be written for many
other Bayes estimators.

36 2 Nonlinear state space models and statistical inference

Loss function Bayes estimator
Linear L(θ, δ) = |θ − δ| Posterior median
Quadratic L(θ, δ) = (θ − δ)2 Posterior mean
0-1 L(θ, δ) = I(θ = δ) Posterior mode

Table 2.1: Different loss functions and the resulting Bayes estimator.

The statistical properties of the Bayes estimator depends on the choice of loss func-
tion when we work with finite data. However, it follows (under some conditions)
from the Bernstein–von Mises theorem that the influence of the prior diminishes
when the amount of data grows. Consequently, the MAP estimator (the posterior
mode) converges to the ML estimator in some cases when the amount of data
increases. Therefore it is possible to see ML parameter inference as a special case
of Bayesian parameter inference in some sense. Finally, we note that Bayes esti-
mators asymptotically have the same properties as the ML estimator, i.e. they are
consistent, asymptotically normal and efficient. Also, as the number of data tends
to infinity, the posterior tends to a Gaussian distribution which is known as the
Bayesian CLT. For more information about the statistical properties of the Bayes
estimators, see Robert (2007), Lehmann and Casella (1998) and Berger (1985).

We have now introduced the Bayesian paradigm for parameter and state inference
in nonlinear SSMs. We have seen that the key quantity in Bayesian inference is the
posterior distribution, which depends on the likelihood. Therefore, we in practice
encounter the same problems with analytically intractable likelihoods as for the
ML paradigm. Another complication is that the posterior might not be described
by any known distribution. As a consequence, we cannot compute many of the
integrals depending on the posterior distribution encountered in Bayesian analysis
in closed-form. Examples of such integrals are the normalisation in (2.15), the
marginalisation in (2.16) and the expectation in (2.17).

To counter these problem, we can make use of the same numerical methods from
Chapter 3 as for the ML paradigm to estimate the likelihood function. To solve
the Bayesian parameter inference problem, we can make use of sampling methods
to obtain approximations of the posterior distributions of interest. These methods
use computer simulations and have therefore only been available for practical use
during the last decades. However, during this period these methods have been
well-studied and are today established tools for Bayesian inference. Another ap-
proach is to make analytical approximations of the posterior distribution using
known distributions or iterative procedures. We discuss some of these methods in
Chapter 4

3
State inference

using particle methods

In this chapter, we discuss the state inference problem in detail and presents some
algorithms for approximate state inference. The foundation of state inference in
SSMs is given by the Bayesian filtering and smoothing recursions that are discussed
in Section 3.1. Unfortunately, these recursions are analytically intractable for
most SSMs. Therefore, the remaining part of this chapter is devoted to discussing
numerical methods based on SMC for approximate state inference. We also discuss
how to make use of SMC methods to estimate the likelihood, the score function
and the information matrix in SSMs. This chapter is concluded by discussing the
direct illumination problem in computer graphics and how it can be solved using
SMC methods.

3.1 Filtering and smoothing recursions
There are mainly two types of state inference problems in an SSM: filtering and
smoothing. Both the filtering and smoothing problem can be marginal (inference
on a single state), k-interval (inference of k states) or joint (inference on all states).
In marginal filtering, only observations y1:t collected until the current time step
t are used to infer the current value of the state xt. In marginal smoothing, all
the collected observations including (possibly) future observations y1:T are used
to infer the value of the current state xt with t ≤ T . In Table 3.1, we summarise
some common filtering and smoothing problems in SSMs.

The solutions to the filtering and smoothing problems are given by the Bayesian
filtering and smoothing recursions (Jazwinski, 1970; Anderson and Moore, 2005).
These (as the names suggest) are based on Bayesian inference similar to the pa-
rameter inference problems discussed in Section 2.4. These recursions can be used

37

38 3 State inference using particle methods

Name Density
(Marginal) filtering pθ(xt|y1:t)
(Marginal) smoothing (t ≤ T) pθ(xt|y1:T)
Joint smoothing pθ(x0:T |y1:T)
Fixed-interval smoothing (s < t ≤ T) pθ(xs:t|y1:T)
Fixed-lag smoothing (for lag ∆) pθ(xt−∆−1:t|y1:t)

Table 3.1: Common filtering and smoothing densities in SSMs.

to iteratively solve the filtering problem for each time t using two steps given by

pθ(xt|y1:t) = pθ(xt|y1:t−1)gθ(yt|xt)
pθ(yt|y1:t−1) , (3.1a)

pθ(xt|y1:t−1) =
∫
fθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1. (3.1b)

In the first step, the state estimate at time t is updated with the new observation
yt (also known as the measurement update) using Bayes’ theorem. In the second
step, a marginalisation is used to predict the next state xt using the information
in the current state and the collected observations (also known as the time up-
date). In a similar manner, the smoothing problem can be solved by iterating the
marginalisation

p(xt|y1:T) = p(xt|y1:t)
∫
f(xt+1|xt)p(xt+1|y1:T)

p(xt+1|y1:t)
dxt+1, (3.2a)

p(xt+1|y1:t) =
∫
f(xt+1|xt)p(xt|y1:t)dxt, (3.2b)

backwards in time. Here the smoothing recursion, makes use of the filtering distri-
bution computed in a forward pass. The resulting smoother from this procedure is
therefore known as the forward filtering backward smoothing (FFBSm) algorithm.
We return to a numerical method based on the FFBSm algorithm for the use in
SSMs later in this chapter.

The filtering (3.1) and smoothing (3.2) recursions can only be solved analytically
for two different classes of SSMs: linear Gaussian SSMs and SSMs with finite state
processes. For the former, the recursions can be solved by the Kalman filter (KF)
and e.g. the Rauch–Tung–Striebel (RTS) smoother (Rauch et al., 1965), respec-
tively. Using the Kalman methods, we can exactly compute the likelihood and the
states in an LGSS model. We do not discuss the details of the Kalman methods
here and refer readers to Anderson and Moore (2005) and Kailath et al. (2000) for
extensive treatments of Kalman filtering and different Kalman smoothers.

The general intractability of the Bayesian filtering and smoothing recursions results
from that there are no closed-form expressions for the densities in the recursions.
This is similar to the problems that we encountered in the Bayesian parameter
inference problem. Instead, we consider numerical approximations that relies on

3.2 Monte Carlo and importance sampling 39

Monte Carlo (MC) methods to estimate the filtering and smoothing distributions.
This results in SMC and related methods, which we return to in Section 3.3.

3.2 Monte Carlo and importance sampling

MC methods are a collection of statistical simulation methods based on sampling
and the strong law of large numbers (SLLN). For a general introduction to MC
methods, see Robert and Casella (2004) for an extensive treatment or Ross (2012)
for an accessible introduction. In this thesis, we mainly use MC methods for esti-
mating the expected value (an integral) of an arbitrary well-behaved test function
ϕ(x),

ϕ̂ = Eπ
[
ϕ(x)

]
=
∫
ϕ(x)π(x)dx, (3.3)

where π(x) denotes a (normalised) target distribution from which we can simulate
IID particles (or samples). As a consequence of the SSLN1, we can estimate the
expected value by the sample average

ϕ̂MC = 1
N

N∑
i=1

ϕ
(
x(i)), x(i) ∼ π(x),

taken over independent realisations x(i) simulated from π(x). This estimator is
strongly consistent, i.e.

ϕ̂MC
a.s.−→ ϕ̂, N →∞.

Also, we can construct a CLT for the error of the MC estimator, given by
√
N
(
ϕ̂− ϕ̂MC

)
d→ N

(
0, σ2

MC

)
, σ2

MC = V[ϕ(x)] <∞,

where we assume that the function ϕ(x) has a finite second moment. Here, we
see that the MC estimator is asymptotically unbiased with Gaussian errors. Also,
the variance of the error decreases as 1/N independent of the dimension of the
problem, which is one of the main advantages of the MC methods.

Consider, the problem of estimating (3.3) when the normalised target π(x) =
γ(x)Z−1 is unknown together with the normalisation factor Z. Instead, we can
only evaluate the unnormalised target γ(x) point-wise. In this case, importance
sampling (IS) (Marshall, 1956) can be used to sample from another distribution
called the proposal distribution (or importance distribution) q(x) and adapt the
particles using a weighting scheme. For this, it is required that q(x) , 0 for almost
all x ∈ supp(π) and that the support of ϕ(x)q(x) contains the support of π(x), i.e.
supp(π) ⊂ supp(ϕq). The IS algorithm follows by rewriting the expected value in

1The SSLN states that the sample average x̄ computed using N IID samples from π(x),
converges almost surely to µ = Eπ [x] when N tends to ∞, i.e. x̄ a.s.−→ µ.

40 3 State inference using particle methods

Algorithm 1 Importance sampling (IS)
Inputs: γ(x) (unnormalised target), q(x) (proposal) and N > 0 (no. particles).
Output: p̂(dx) (empirical distribution).

1: for i = 1 to N do
2: Sample a particle by x(i) ∼ q(x).
3: Compute the weight by w(i) = γ(x(i))/q(x(i).
4: end for
5: Normalise the particle weights by (3.5).
6: Estimate p̂(dx) using (3.7).

(3.3) to obtain

Eπ
[
ϕ(x)

]
=
∫
ϕ(x)π(x)dx =

∫
ϕ(x) γ(x)

q(x)︸ ︷︷ ︸
,w(x)

q(x)dx = Eq
[
w(x)ϕ(x)

]
,

where w(x) denotes the (unnormalised) importance weights. The IS estimator
follows in analogue with the vanilla MC estimator,

ϕ̂IS =
N∑
i=1

w̃(i)ϕ
(
x(i)
)
, x(i) ∼ q(x), (3.4)

where the normalised weights are given by

w̃
(
x(i)) , w̃(i) = w(i)∑N

k=1 w
(k)
, i = 1, . . . , N. (3.5)

We can also construct an unbiased estimator for the normalisation constant by

ẐIS = 1
N

N∑
i=1

w(i), (3.6)

which we later shall make use of to estimate the (marginal) likelihood in SSMs.
The IS algorithm can be interpreted as generating an empirical distribution, which
can be seen by rewriting the estimator in (3.4) as a Dirac mixture given by

p̂(dx) =
N∑
i=1

w̃(i)δx(i)(dx), (3.7)

which we can insert into (3.3) to recover (3.4) as presented in Algorithm 1. Here,
δz(dx) denotes a Dirac point mass located at x = z. In the following, we make
use of this property to compute expectations in state inference problems using
sequential variants of the IS algorithm.

We conclude the discussion of the IS algorithm by Example 3.1 in which we es-
timate the parameters of the HWSV model using some real-world data. Note
that, the IS algorithm can be developed further to include multiple and adaptive

3.3 Particle filtering 41

proposals. In multiple importance sampling (MIS), the algorithm can make use of
several proposal algorithms that are then combined to form the estimate. In adap-
tive importance sampling (AIS), we update a mixture of proposals or the proposal
after each iteration to fit the target better. These methods could be interesting
in developing new approximate state inference algorithms similar to the particle
methods discussed in the next section. For more information, see Kronander and
Schön (2014), Cornuet et al. (2011) and Veach and Guibas (1995).

3.1 Example: IS for Bayesian parameter inference in the HWSV model
Consider the Bayesian parameter inference problem in the Hull-White SV model
(2.4) and the data presented in Section 2.2.2. In this model, we would like to
estimate the parameters given the data by the use of the IS algorithm. The
unnormalised target distribution is given by

γ(θ) = pθ(y1:T)p(θ),

where we assume that we can evaluate the likelihood point-wise. Note that, the
solution to this problem is analytically intractable but can approximated using
methods discussed later in Section 3.3.4. Furthermore, we assume the uniform
priors over φ ∈ (−1, 1) ⊂ R and {σv, β} ∈ R2

+. The parameter proposals are given
by

q(φ,) = U(φ;−1, 1),
q(σv) = G(σv; 2, 0.1),
q(β) = G(β; 7, 0.1).

These proposals are based on prior information regarding the typical values for
parameters in the model. Hence, they can be seen as a kind of prior distributions
in the Bayesian inference. For the IS algorithm, we use N = 200 samples and the
procedure outlined in Algorithm 1.

In Figure 3.1, we present the resulting posterior distributions with the proposal
distributions. The parameter estimates obtain by the posterior mode are θ̂IS =
{0.996, 0.129, 0.837}, which indicates a slowly varying latent volatility process. In
Chapter 4, we discuss other methods for parameter inference that are more efficient
when the number of parameters increases. However, for small problems the IS
algorithm could be a useful alternative in cases when the prior information is good.
Otherwise, the number samples required from the parameter posterior increases
exponentially with the number of elements in the parameter vector.

3.3 Particle filtering
The IS algorithm discussed in the previous section can be combined with the
filtering recursions in Section 3.1 to sequentially estimate the joint smoothing
distribution π(x0:t) = pθ(x0:t|y1:t). To this end, we can apply Algorithm 1 to
sequentially approximate the target using an empirical distribution. The resulting
algorithm is known as the sequential importance sampling (SIS) algorithm. The

42 3 State inference using particle methods

0.90 0.92 0.94 0.96 0.98 1.00

0
5

1
0

1
5

φ

D
e

n
s
it
y

0.00 0.05 0.10 0.15 0.20 0.25

0
5

1
0

1
5

σv

D
e

n
s
it
y

0.6 0.7 0.8 0.9

0
1

2
3

4
5

6

β

D
e

n
s
it
y

Figure 3.1: The estimates posterior distributions for φ (green), σv (red) and
β (orange) compute as KDEs with the proposal distributions presented in
blue. The grey dots indicates the samples obtained from the proposal and the
dotted lines indicate the posterior means.

3.3 Particle filtering 43

main problem with this algorithm is that the variance of the estimate increases
rapidly as t increases. For a long time, this was a major obstacle in approximate
state inference. This results from that the particle weights deteriorate over time
and in the limit only a single particle has a non-zero weight after a few iterations.
Hence, the effective number of particles is one, which is the reason for the high
variance in the estimates.

However, by including a resampling step into the SIS algorithm, we can focus the
attention of the algorithm on the areas of interest. The resampling step essentially
duplicates particles with large weights and discard particles with small weights,
while keeping the total number of particles fixed. Hence, we do not end up with
only one effective particle in the estimator. This development of the algorithm
leads to the SIS with resampling (SIR) algorithm. When this method is applied
on SSMs, we obtain the basic particle filtering algorithm introduced by Gordon
et al. (1993). In this thesis, we refer to this algorithm as the bootstrap particle
filter (bPF).

In subsequent developments, the particle filter is generalised to include more ad-
vanced proposals and resampling schemes. In this section, we present a refined
version of the bPF called the auxiliary particle filter (APF) (Pitt and Shephard,
1999), which can use more general particle proposals and weighting functions than
in the original formulation. This can result in a large decrease in the variance of
the estimate and also a decrease in the number of particles required to achieve a
certain accuracy. The APF also allows for the use of different resampling schemes
than the multinomial resampling that is used in the original formulation of the
bPF.

To keep the presentation brief, we do not derive the APF and refer interested
readers to Doucet and Johansen (2011) for a derivation of the APF starting from
the IS algorithm. Furthermore, we note that the APF is a member of the more
general family of SMC algorithms, which are discussed in Cappé et al. (2007) and
Del Moral et al. (2006).

3.3.1 The auxiliary particle filter

The APF algorithm operates by constructing a particle system
{
w

(i)
t , x

(i)
t

}N
i=1 se-

quentially over time. By the use of this particle system, we can construct an
empirical marginal filtering distribution in analogue with (3.7) as

p̂θ(dxt|y1:t) ,
N∑
i=1

w̃
(i)
t δ

x
(i)
t

(dxt), (3.8a)

w̃
(i)
t ,

w
(i)
t∑N

k=1 w
(k)
t

, (3.8b)

which can be seen as a discrete approximation of the filtering distribution using
a collection of weighted Dirac point masses. Here x(i)

t and w
(i)
t denote particle

i at time t and its corresponding (unnormalised) importance weight. Also, the

44 3 State inference using particle methods

empirical joint smoothing distribution follows similarly as

p̂θ(dx0:t|y1:t) ,
N∑
i=1

w̃
(i)
t δ

x
(i)
0:t

(dx0:t). (3.9)

Three steps are carried out during each iteration of the APF to update the particle
system from time t− 1 to t:

(i) The particles are resampled according to their auxiliary weights. The means
that particles with small weights are discarded and particles with large
weights are multiplied. This mitigates the weight depletion problem expe-
rienced by the SIS algorithm. This is often the computational bottleneck
of the APF algorithm as all the other steps can easily be implemented in
parallel.

(ii) The particles are propagated from time t − 1 to t. This can be seen as
a simulation step, where new particles are generated by sampling from a
Markov kernel.

(iii) The (unnormalised) particle weight is calculated for each particle. These
weights compare the particle with the recorded output from the system. A
high weight is given to a particle that is likely to generate yt.

After these three steps, we can construct empirical distributions using (3.8) and
(3.9). It is also possible to make use of the particle system for estimating other
quantities. We return to this in the following. Note that, by comparison with
the filtering recursions, Step (ii) corresponds to the time update in (3.1b) and
Step (iii) corresponds to the measurement update in (3.1a). We now proceed to
discuss each step of the APF in more detail.

Step (i) can be seen as a sampling of ancestor indices denoted a(i)
t , i.e. the index of

the particle at time t− 1 from which the particle i at time t originates from. This
can be expressed as simulating from a multinomial distribution with probabilities

P(a(i)
t = j) = ν̃

(j)
t−1, j = 1, . . . , N, i = 1, . . . , N, (3.10)

where ν̃(j)
t denotes a normalised auxiliary weight given by

ν̃
(j)
t−1 = ν

(j)
t−1

[
N∑
k=1

ν
(k)
t−1

]−1

,

for some auxiliary weight function ν(k)
t−1 determined by the user. After the resam-

pling step, we obtain the unweighted particle system {x̃(i)
t−1, 1/N}Ni=1.

In this thesis, we mainly consider two different types of APFs. The bPF is obtained
by selecting the auxiliary weight as the particle weights, i.e. νt = wt. The fully-
adapted particle filter (faPF) (Pitt and Shephard, 1999), which takes into account
the (future) observation in the resampling step. This information is included by

3.3 Particle filtering 45

using the auxiliary weight given by

νt−1 = pθ(yt|xt−1) =
∫
gθ(yt|xt)fθ(xt|xt−1)dxt, (3.11)

when it can be computed in closed-form. This is only possible for some systems,
e.g. the LGSS model (2.2) and the GARCH(1,1) model (2.3).

In (3.10), we make use of multinomial resampling but there are other resampling
algorithms that can be useful. Systematic resampling and stratified resampling
are good alternatives to the multinomial resampling. These resampling methods
often decrease the variance in the estimates of the filtering distribution. See Douc
and Cappé (2005) and Hol et al. (2006) for comparisons of different resampling
strategies.

In Step (ii), each particle is propagated using a propagation kernel as,

x
(i)
t ∼ Rθ

(
xt|x

a
(i)
t

0:t−1, yt
)
, i = 1, . . . , N. (3.12)

The bPF is recovered by selecting the state dynamics as the propagation kernel,

Rθ(xt|x0:t−1, yt) = fθ(xt|xt−1).

The faPF makes use of the current observation when proposing new particles. This
results in the propagation kernel

Rθ(xt|x0:t−1, yt) = pθ(xt|yt, xt−1) = pθ(yt|xt)p(xt|xt−1)
p(yt|xt−1) , (3.13)

when it can be computed in closed-form. Each new particle is appended to the

particle trajectory by x(i)
0:t = {xa

(i)
t

0:t−1, x
(i)
t }, for i = 1, . . . , N .

Finally, in Step (iii) each particle is assigned an importance weight by a weighting
function Wθ(xt, xt−1), similar to the IS algorithm in (3.4). The resulting weight
is given by

w
(i)
t = Wθ

(
x

(i)
t , x

a
(i)
t

0:t−1

)
, i = 1, . . . , N (3.14a)

Wθ

(
xt, x0:t−1

)
,
wt−1
νt−1

gθ(yt|xt)fθ(xt|xt−1)
Rθ(xt|x0:1:t−1, yt)

. (3.14b)

For the bPF, the choice of resampling step and propagation kernel leads to that
the weights are given by

νt = wt = gθ(yt|xt),

i.e. the probability of observing yt given xt. For the faPF, we have that the particle
weights are given by wt ≡ 1.

The general form of the APF is presented in Algorithm 2 for approximate state in-
ference in nonlinear SSMs. The complexity of the algorithm is linear in the number
of time steps and particles, i.e. O(NT). The user choices are mainly the number of
particles N , the auxiliary weights ν, the propagation kernel Rθ(xt|x0:t−1, yt) and

46 3 State inference using particle methods

Algorithm 2 Auxiliary particle filter (APF)
Inputs: y1:T (observations), Rθ(xt|x0:t−1, yt) (propagation kernel), νt (auxiliary
weights) and N > 0 (no. particles).
Outputs: p̂θ(xt|y1:t) for t = 1 to T (the empirical marginal filtering distributions)
and p̂θ(x0:t|y1:t) for t = 1 to T (the empirical joint smoothing distributions).

1: Initialise each particle x(i)
0 .

2: for t = 1 to T do
3: Sample new the ancestor indices to obtain {a(i)

t }Ni=1 using (3.10).
4: Propagate the particles to obtain {x(i)

t }Ni=1 using (3.12).
5: Calculate new importance weights to obtain {w(i)

t }Ni=1 using (3.14).
6: Estimate the marginal filtering distribution p̂θ(xt|y1:t) using (3.8).
7: Estimate the joint smoothing distribution p̂θ(x0:t|y1:t) using (3.9).
8: end for

the resampling method. We now proceed with discussing the use of the APF for
state inference and log-likelihood estimation.

3.3.2 State inference using the auxiliary particle filter
Algorithm 2 can be used to estimate the marginal filtering and joint smoothing dis-
tributions in an SSM given some observations. From these empirical distributions,
we can compute an estimate of the filtered marginal state xt|t,

x̂t|t =
∫
xt p̂θ(xt|y1:t)dxt =

N∑
i=1

w̃
(i)
t x

(i)
t , (3.15)

where we have inserted (3.8). Note that, the state trajectory x0:t|t can be estimated
using an analogue expression given by

x̂0:t|t =
∫
x0:t p̂θ(x0:t|y1:t)dx0:t =

N∑
i=1

w̃
(i)
t x

(i)
0:t, (3.16)

by the use of the empirical smoothing distribution (3.9). In Example 3.2, we
illustrate the use of the bPF for marginal state inference in the earthquake model
(2.6) and data discussed in Section 2.2.3,

3.2 Example: State inference in the earthquake count model
Consider the earthquake count model (2.6) using the data presented in Figure 2.4.
To infer the state in the model, we make use of the bPF with N = 1 000 particles
and the parameter vector θ̂ = {0.88, 0.15, 17.65} estimated later in Example 4.9.

In the upper part of Figure 3.2, we present the filtered number of major earth-
quakes obtained from the bPF (red line) together with the data (black dots). We
also present the predicted number of major earthquakes (dark green) for 2014 to
2022 together with a 95% CI for the predictions. The uncertainty grows fast for the

3.3 Particle filtering 47

predictions (gray area), which indicates that a more advanced model is probably
required to make good predictions.

In the lower part of Figure 3.2, we present the estimated state obtained from
the bPF, which indicates that the world currently is in a calmer period with a
smaller earthquake intensity compared with e.g. the 1950s. This conclusion is also
supported in the actual number of earthquakes recorded during these two periods.
We also present the predicted latent state (dark green) for 2014 to 2022 together
with a 95% CI for the predictions (gray area). Again, we see that there is a large
uncertainty in the future latent state.

From Algorithm 2, we know that the APF algorithm can be used to approximate
the joint smoothing distribution. In the following, we require estimates of this dis-
tribution for the use in some of the proposed methods for approximate parameter
inference. However, the accuracy of these estimates are poor due to problems with
path degeneracy. To explain the nature of this problem, consider the resampling
step in the APF algorithm. During each resampling, we discard some particle with
a non-zero probability due to that they have small auxiliary weights. This means
that the number of unique particles is smaller than N with a non-zero probability
after each resampling step.

As t increases, we repetitively resample the particle system and this leads to that
the number of unique particles tends to one before some time s < t. That is, the
particle trajectory collapses into a single trajectory for all the particles before time
s. Consequently, the variance of the estimates of the joint smoothing distribution
is large due to the same problem as in the SIS algorithm. To mitigate this effect,
we could make use of the faPF or increase the number of particles. However, this
could be problematic as the faPF is not available for many interesting models.
Also the computational cost of the APF algorithm increases linearly with N . We
illustrate this effect and compare these two alternatives in Example 3.3.

There exists additional alternatives to mitigate the path degeneracy to obtain
accurate approximation of the joint smoothing distribution. A popular alternative
in practice is to resample only when the variance in the particle weights is larger
than some threshold (Doucet and Johansen, 2011). This leads to a decrease in
the path degeneracy problem but this is often not enough to completely solve the
problem. Instead, a particle smoother is often used for this problem, which gives
better accuracy in the estimates but often increases the computational cost. In
Section 3.4, we return to the use of particle smoothing for estimating the smoothing
distributions. We now continue with discussing the statistical properties of the
APF and how to use the APF to estimate the likelihood and log-likelihood for an
SSM.

48 3 State inference using particle methods

1900 1920 1940 1960 1980 2000 2020

0
1

0
2

0
3

0
4

0
5

0

Year

N
u

m
b

e
r

o
f

m
a

jo
r

e
a

rt
h

q
u

a
k
e

s

1900 1920 1940 1960 1980 2000 2020

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Year

E
s
ti
m

a
te

d
 l
a

te
n

t
s
ta

te

Figure 3.2: Upper: the filtered number of major earthquakes (red line) and
the data (black dots) obtained from the bPF using the data and the model
from Example 3.2. The predicted number of earthquakes (green line) is also
presented together with a 95% CI (gray area). Lower: the estimated latent
earthquake intensity obtained from the bPF. The predicted latent state (green
line) is also presented together with a 95% CI (gray area).

3.3 Particle filtering 49

3.3 Example: Path degeneracy in the GARCH(1,1) model
Consider the GARCH(1,1) model in (2.3) from which we generate T = 20 observa-
tions using the parameter vector θ? = {0.10, 0.80, 0.05, 0.30}. Here, we make use
of the bPF and faPF with systematic resampling at every iteration. The aim is to
estimate the state trajectory x0:t|t using the APF and (3.16).

For this model, the weight function (3.11) and the proposal (3.13) required for
the faPF can be computed in closed from by properties of the joint Gaussian
distributions, see Bishop (2006). The required quantities are given by

p(yt|xt−1, ht) =
∫
N
(
yt;xt, τ2)N (xt; 0, ht) dxt

= N
(
yt; 0, τ2 + ht

)
,

p(xt|yt, xt−1) ∝ p(yt|xt)p(xt|xt−1)
= N

(
yt;xt, τ2)N (xt; 0, ht

)
= N

(
xt;
[
τ−2 + h−1

t

]−1
τ−2yt, τ

−2 + h−1
t

)
,

from the marginalisation property and the conditioning property.

In Figure 3.3, we present the state trajectories obtained by tracing the ancestor
linage backwards from time T to 0. We see that for the bPF with N = 10 particles,
the ancestral lines collapse to a single unique particle before time t = 10 due to the
path degeneracy problem. Increasing the number of particles to N = 20 results
in that the path degenerate before t = 8 instead. However, the faPF does not
have the same problem with degeneracy as many ancestors survive the repeated
resamplings and contributes with information for estimating the joint smoothing
distribution.

3.3.3 Statistical properties of the auxiliary particle filter

In this section, we review some results regarding two aspects of the statistical
properties of the APF. Note that, the analysis of the APF is rather complicated
compared with other estimators that makes use of independent samples from the
target distribution. Instead, the particles obtained from the APF are not indepen-
dent due to the interaction during the resampling step. However, there are many
strong results regarding the statistical properties of the bPF in the literature. Ex-
tensive technical accounts are found in Del Moral (2013) and Del Moral (2004).
Some of the statistical properties are also discussed in a more application oriented
setting in Crisan and Doucet (2002), Douc et al. (2014) and Doucet and Johansen
(2011).

Assume that we would like to compute the expected value of some well-behaved
test function ϕ(x) using the particle system generated by the APF. This is in
analogue with the IS estimator in (3.3). From the empirical filtering distribution

50 3 State inference using particle methods

0 5 10 15 20

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Time

S
ta

te

bPF, N=10

0 5 10 15 20

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Time

S
ta

te

bPF, N=20

0 5 10 15 20

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Time

S
ta

te

faPF, N=10

Figure 3.3: The ancestral paths obtained from the bPF with 10 particles
(upper), the bPF with 20 particles (middle) and the faPF with 10 particles
(lower) with T = 20 in the GARCH(1,1) model in Example 3.3. The discarded
particles are presented as gray dots.

3.3 Particle filtering 51

(3.8), we have that the expected value can be approximated by

ϕ̂APF =
N∑
i=1

w̃
(i)
t ϕ

(
x

(i)
t

)
. (3.17)

Under some assumptions, it is possible to prove that this estimator is consistent
and therefore converges in probability to the true expectation as the number of
particles tend to infinity,

ϕ̂APF
p−→ E

[
ϕ(x)

]
, N −→∞.

Hence, this estimator is asymptotically unbiased and equivalent with some un-
known optimal filter. However, for finite N the estimator is often biased and we
return to this problem in Section 3.4.3.

We would also like to say something about the MSE of the estimator in (3.17). For
this we assume that the function ϕ(x) is bounded2 for all x and some additional
assumptions that are discussed by Crisan and Doucet (2002). It then follows that
the MSE of the estimator obtained by the bPF can be upper bounded as

E
[(
ϕ̂APF − E[ϕ(x)]

)2
]
≤ CT

‖ϕ‖2

N
, (3.18)

where ‖· ‖ denotes the supremum norm. Here, CT denotes a function that possi-
bly depends on T but is independent of N .

There exists numerous other results regarding the MSE of the estimator in (3.17).
For example, it is possible to relax the assumption that ϕ(x) should be bounded
and that we only use the bPF with multinomial resampling. The resulting upper
bounds have a similar structure to (3.18) but with different functions C. For more
information, see Del Moral (2013) and Douc et al. (2014).

From this upper bound on the MSE, we would like to give some general recom-
mendations regarding how to select N given T . However, this is difficult as the
accuracy of the estimates is connected with the mixing property of the SSM (see
Example 3.5). However, in practice it is recommended to use at least N ∝ T
particles in the APF but sometimes even more particles are required to obtain
reasonable estimates. Hence, we recommend that the user estimates the MSE
for each model using e.g. a pilot run with some Monte Carlo simulations or by
comparing with solution obtain from a particle smoother.

3.3.4 Estimation of the likelihood and log-likelihood
As previously discussed, the likelihood L(θ) and log-likelihood `(θ) play impor-
tant roles in both ML and Bayesian parameter inference. We also discussed that
they are analytically intractable for nonlinear SSMs. However, we can obtain an
unbiased estimate of the likelihood for any number of particles using the weights

2This is a rather restrictive assumption as it does not satisfied by the function ϕ(x) = x,
which is used to compute the estimate of the filtered state x̂t|t.

52 3 State inference using particle methods

generated by the APF. To understand how this can be done, we consider the de-
composition in Definition 2.1 and the fact that each predictive likelihood can be
written as

p(yt|y1:t−1) =
∫
pθ(yt, xt|y1:t−1)dxt

=
∫
gθ(yt|xt)fθ(xt|xt−1)pθ(xt−1|y1:t−1)dxt−1:t.

If we consider the bPF algorithm, we can rewrite this as

pbPF(yt|y1:t−1) =
∫
gθ(yt|xt)fθ(xt|xt−1)
Rθ(xt|xt−1, yt)

Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1)dxt−1:t

=
∫
Wθ(xt, xt−1)Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1)dxt−1:t

by the expression for the weight function (3.14) as wt−1 = νt−1 for the bPF.

To approximate the predictive likelihood, we make use of that {x̃(i)
t , x

(i)
t−1}Ni=1 is

approximately distributed according to Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1). From this,
it follows that

pbPF(yt|y1:t−1) ≈ 1
N

N∑
i=1

∫
Wθ(xt, xt−1)δ

x̃
(i)
t ,x

(i)
t−1

(dxt−1:t)

= 1
N

N∑
i=1

Wθ

(
x̃

(i)
t , x

(i)
t−1
)

= 1
N

N∑
i=1

w
(i)
t .

It is also possible to show that the faPF leads to a similar estimator by replacing
wt with νt, see Pitt (2002) for the derivation. The resulting estimator for the
likelihood using the APF (including both the bPF and faPF as special cases) is
given by

L̂(θ) = p̂θ(y1:T) = 1
NT+1

{
N∑
i=1

w
(i)
T

}{
T−1∏
t=0

N∑
i=1

ν
(i)
t

}
, (3.19)

where the first summation is unity for the faPF and where νt = wt for the bPF. To
implement this estimator, we run Algorithm 2 and then calculate the likelihood
estimate using (3.19) by inserting the particle weights generated by the APF.

The statistical properties of the likelihood estimator are studied by Del Moral
(2004). It turns out that the estimator is consistent and unbiased for any N ≥ 1.
Furthermore, the error of the estimate satisfies a CLT,

√
N
[
L(θ)− L̂(θ)

]
d−→ N

(
0, ψ2(θ)

)
, (3.20)

for some asymptotic variance ψ2(θ), see Proposition 9.4.1 in Del Moral (2004).

3.4 Particle smoothing 53

It is also straightforward to obtain an estimator for the log-likelihood from (3.19),

̂̀(θ) = ̂log pθ(y1:T) = log
{

N∑
i=1

w
(i)
T

}
+
T−1∑
t=0

log
{

N∑
i=1

ν
(i)
t

}
− T log(N + 1). (3.21)

However, this estimator is biased for a finite number of particles, but it is still
consistent and asymptotically normal. This result follows from applying the second-
order delta method (Casella and Berger, 2001) on (3.20). The resulting CLT for
the log-likelihood estimator is given by

√
N

[
`(θ)− ̂̀(θ) + γ2(θ)

2N

]
d−→ N

(
0, γ2(θ)

)
, (3.22)

where we introduce γ(θ) = ψ(θ)/L(θ). As a result, we have an expression for the
bias of the estimator given by −γ2(θ)/2N for a finite number of particles. Conse-
quently, it is possible to compensate for the bias as the variance of the estimator
γ2(θ) can be estimated using Monte Carlo simulations by repeated application of
the APF on the same data. This could be an interesting improvement for the
proposed methods in Papers B and C, where we make use of the log-likelihood
estimator.

3.4 Example: Bias and variance of the log-likelihood estimate
Consider the setup in Example 2.6 and the problem of estimating the log-likelihood
at θ = θ? using the faPF with N = 10 particles. We repeat the estimation over
1 000 Monte Carlo simulations using the same data. The error of the log-likelihood
estimate is calculated using the true valued obtain from the Kalman filter.

In Figure 3.4, we present the histogram of the error together with a Gaussian
approximation (upper), the box plot of the errors (lower left) and the QQ-plot of
the errors (lower right). The Gaussian approximation fits the data quite well and
the resulting average error is −0.03 with variance γ̂2(θ?) = 0.05. The predicted
bias is calculated using (3.22) by −γ̂2(θ?)/2

√
N = −0.01. The QQ-plot validates

the Gaussian assumption as we do not seen any deviating tail behaviour.

3.4 Particle smoothing
Particle smoothers approximate the solution to the smoothing problem in an SSM
similar to how the APF approximates the corresponding filtering problem. How-
ever, there exists a number of different approaches to carry out the smoothing
given the particle system from the APF. The simplest smoother is to make use of
the APF to approximate the joint smoothing distribution as discussed in the pre-
vious. The main problem with this approach is that the path degeneracy problem
limits the accuracy of the estimate. Another similar approach is to make use of
the fixed-lag (FL) particle smoother (Kitagawa and Sato, 2001), which is based on
using the APF to estimate the fixed-lag smoothing distribution (recall Table 3.1).
In the following, we make use of this smoother as it has a low computational cost
and a reasonable accuracy compared with other particle smoothers.

54 3 State inference using particle methods

Error in the log−likelihood estimate

D
e

n
s
it
y

−1.0 −0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

−
0

.5
0

.0
0

.5

E
rr

o
r

in
 t

h
e

 l
o

g
−

lik
e

lih
o

o
d

 e
s
ti
m

a
te

−3 −2 −1 0 1 2 3

−
0

.5
0

.0
0

.5

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 3.4: The histogram with a Gaussian approximation (blue line) of the
error in the log-likelihood estimates (upper) in the LGSS model using a faPF.
The boxplot (lower left) and QQ-plot (lower right) supports the Gaussian
assumption of the error.

3.4 Particle smoothing 55

More advanced smoothers are often based on approximations of the Bayesian
smoothing recursion (3.2). There are two main families of smoothers that re-
sults from this approach: the FFBSm and the forward filtering backward simula-
tor (FFBSi). The original marginal FFBSm and FFBSi algorithms are discussed
in Doucet et al. (2000) and Godsill et al. (2004), respectively. Another type of
smoother makes use of two APFs (one running forward in time and the other
backwards) and combines the output of these by using a two-filter formula (Briers
et al., 2010; Fearnhead et al., 2010). Furthermore, other types of smoothers have
been proposed in Bunch and Godsill (2013) and Dubarry and Douc (2011) using
MCMC methods (discussed in the next chapter). The interesting improvement in
these two smoothers are that they generate new particles in the backward sweep,
which is not done in the FFBSm and FFBSi. See Lindsten and Schön (2013) for
a recent survey of different particle smoothing methods.

In this section, we focus on the use of the FL smoother for estimating some quanti-
ties that are required for the proposed methods in Papers A and D. We introduce
the underlying assumptions of the smoother and discuss how to implement it. We
also show how it can be used to estimate the score function of an SSM and parts of
the information matrix. We conclude by discussing the properties of the estimates
obtained from the FL smoother.

3.4.1 State inference using the particle fixed-lag smoother
The FL smoother relies on the forgetting properties of an SSM, i.e. that the Markov
chain quickly forgets about its earlier states. This property is illustrated in Exam-
ple 3.5 for an LGSS model.

3.5 Example: Mixing property in the LGSS model
Consider the LGSS model using the same setup as in Example 2.6, where 20
different state processes are simulated during 8 time steps. Here, each state process
has a randomly selected initial states distributed as x0 ∼ N (0, 202).

In Figure 3.5, we present the evolution of the state processes in three different
LGSS models. We note that the value of φ determines the rate at which the
processes converge to a stationary phase. A larger value of φ gives the process a
longer memory and this results in that it requires longer time to forget its initial
condition. That is, the state process mixes slowly and therefore future observations
contain useful information about the current state.

The observation that some SSMs mixes quickly is the basis for the assumption
that

pθ(x0:t|y1:T) ≈ pθ(x0:t|y1:κt), (3.23)

where κt = min{T, t + ∆} and ∆ denotes some lag determined by the user. This
means that future observations contain a decreasing amount of information about
the current state. The rate of this decrease is determined by the mixing of the
model as discussed in Example 3.5. If the model mixes quickly, future observations
have a limited amount of information about the current state as the state process

56 3 State inference using particle methods

0 2 4 6 8

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

Time

S
ta

te

φ=0.2

0 2 4 6 8

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

Time

S
ta

te

φ=0.5

0 2 4 6 8

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

Time

S
ta

te

φ=0.8

Figure 3.5: The evolution of 20 different state processes in the LGSS model
from Example 2.6 using different initial values. Three different values of φ
are used in the LGSS model: φ = 0.2 (upper), φ = 0.5 (middle) and φ = 0.8
(lower).

3.4 Particle smoothing 57

Algorithm 3 Two-step fixed-lag (FL) particle smoother
Inputs: y1:T (observations), Rθ(xt|x0:t−1, yt) (propagation kernel), νt (auxiliary
weights), N > 0 (no. particles) and ∆ (lag).
Outputs: p̂θ(xt−1:t|y1:T) for t = 1 to T (empirical two-step smoothing dist.).

1: Initialise each particle x(i)
0 .

2: for t = 1 to T do
3: Sample new the ancestor indices to obtain {a(i)

t }Ni=1 using (3.10).
4: Propagate the particles to obtain {x(i)

t }Ni=1 using (3.12).
5: Calculate new importance weights to obtain {w(i)

t }Ni=1 using (3.14).
6: if t > ∆ + 1 then
7: Compute κt = min{t+ ∆, T} and recover {x(i)

κt,t−1:t}Ni=1.
8: Compute (3.24) to obtain p̂θ(xt−1:t|y1:T).
9: end if

10: end for

quickly forgets its past. Hence, the lag ∆ can be selected to be rather small and
still make (3.23) a valid approximation. This is the main intuition behind the FL
smoother and the procedure follows directly from the APF in Algorithm 2.

In the following, we require estimates of the two-step smoothing distribution
p̂θ(dxt−1:t|y1:κt) to estimate the score function and the information matrix for
an SSM. By using the FL smoother assumption, we can compute the required
estimate by a marginalisation over the joint smoothing distribution,

pθ(xt−1:t|y1:κt) =
∫
pθ(x0:κt |y1:κt)dx0:t−2 dxt+1:κt .

By inserting the empirical joint smoothing distribution pθ(x1:κt |y1:κt) from (3.9),
an estimate of the two-step smoothing distribution is obtained as

p̂θ(dxt−1:t|y1:κt) =
N∑
i=1

w̃
(i)
κt δx(i)

κt,t−1:t
(dxt−1:t), (3.24)

where x(i)
κt,t

denotes the ancestor particle from which the particle x(i)
κt originated

from at time t. This ancestor is obtained by tracing the linage backwards similar
to Figure 3.3, where the same is done for the particles starting at time T .

We summarise the procedure for estimating the two-step smoothing distribution
using the FL-smoother in Algorithm 3. The marginal smoothing distribution can
be computed using an analogue expression and this results in a similar procedure.
Finally, we present an application of these methods for volatility estimation in
Example 3.6.

58 3 State inference using particle methods

−
0

.1
0

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

Year

D
a

ily
 l
o

g
−

re
tu

rn
s

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

bPF

FL smoother

−
0

.0
2

−
0

.0
1

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Year

b
P

F
 e

s
ti
m

a
te

 o
f

vo
la

ti
lit

y

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

−
0

.0
2

−
0

.0
1

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4

Year

F
L

 s
m

o
o

th
e

r
e

s
ti
m

a
te

 o
f

v
o

la
ti
lit

y

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Figure 3.6: Upper: the log-returns (gray dots) from the Nasdaq OMX Stock-
holm 30 Index presented in Figure 2.2. The estimated 95% CIs are also
presented for the bPF (red) and the FL smoother (blue). Middle: the esti-
mated latent volatility obtained from the bPF. Lower: the estimated latent
volatility obtained from the FL smoother.

3.4 Particle smoothing 59

3.6 Example: State inference in the Hull-White SV model
Consider the Hull-White SV model (2.4) with data from Section 2.2.2 and the
parameter vector estimate from Example 3.1. To infer the latent volatility (the
state), we apply the bPF using Algorithm 2 and the FL smoother according to
Algorithm 3 using N = 5 000 particles and ∆ = 12.

In the upper part of Figure 3.6, we present the filtered log-returns with a 95% CI
for the bPF (red) and the FL smoother (blue). Here, we present the upper CI for
the bPF and the lower CI for the FL smoother so that the two lines do not overlap.
Note that the mean of the log-returns is zero and therefore the CIs are symmetric
around zero. We conclude that the CIs seem reasonable as they cover most of the
log-returns except at the financial crises. Also, the CI computed from the bPF is
a bit rougher than the CI computed using the FL smoother.

In the middle and lower parts of Figure 3.6, we present the estimated volatilities
using both methods. We see that the estimates correspond reasonable well with
variation of the log-returns. Note that, the periods with larger volatility are con-
nected with the financial crises.

3.4.2 Estimation of additive state functionals
In this section, we consider the use of particle smoothing to estimate the expected
value of an additive functional given the observations. This is in analogue with
the Monte Carlo estimate of the expectation of a function in (3.3). An additive
functional satisfies the expression

Sθ(x0:T) =
T∑
t=1

sθ,t(xt−1:t), (3.25)

which means that we can decompose a function that depends on the entire par-
ticle trajectory into several functionals. Here, sθ,t(xt−1:t) denotes some general
functional that depends on only two states of the trajectory. This type of additive
functionals occurs frequently in nonlinear SSMs when we would like to compute
functions that depend on the kernels fθ(xt+1|xt) and gθ(yt|xy). In the following,
we give some concrete examples of these functionals connected with parameter in-
ference in SSMs. In these problems, we would like to compute the expected value
of the additive functional given the observations,

E
[
Sθ(x0:T)

∣∣y1:T
]

=
∫
Sθ(x0:T)pθ(x0:T |y1:T)dx0:T

=
T∑
t=1

∫
sθ,t(xt−1:t)pθ(xt−1:t|y1:T)dxt−1:t. (3.26)

This can be done by inserting the two-step smoothing distribution estimated by
any particle filter or smoothing algorithm. Examples of some different approaches
for this are found in Poyiadjis et al. (2011) using the APF and in Del Moral et al.
(2010) using a forward smoother based on the FFBSm. In this section and in

60 3 State inference using particle methods

Paper A, we discuss the use of the FL smoother for this application. The resulting
estimate is obtained by inserting (3.24) into (3.26),

Ŝθ(x0:T) =
T∑
t=1

N∑
i=1

w̃
(i)
κt sθ,t(x

(i)
κt,t−1:t), (3.27)

which can be computed by some minor modifications of Algorithm 3.

We encounter this type of additive functionals are encountered in two common
problems concerning SSMs: when estimating the score function and parts of the
information matrix. In this thesis, we make use of the material in this section for
estimating the latter two quantities in Papers A and D. To derive the expressions
for the additive functions related to these problems, we consider the logarithm of
the joint distribution of states and observations in an SSM,

log pθ(x0:T , y1:T) = logµ(x0) +
T∑
t=1

[
log fθ(xt|xt−1) + log gθ(yt|xt)

]
. (3.28)

By using this quantity, the score function can be estimated using Fisher’s identity
(Fisher, 1925; Cappé et al., 2005),

S(θ′) = ∇`(θ)
∣∣
θ=θ′ =

∫ [
∇ log pθ(x0:T , y1:T)

∣∣
θ=θ′

]
pθ(x0:T |y1:T)dx0:T ,

which results in the functional

ξθ,t(xt−1:t) = ∇ log fθ(xt|xt−1)
∣∣
θ=θ′ +∇ log gθ(yt|xt)

∣∣
θ=θ′ , (3.29)

corresponding to the gradient of (3.28) evaluated at θ = θ′. An estimator of
the score function is obtained by inserting the additive function (3.29) into the
empirical distribution obtained by the FL smoother (3.27) as

Ŝ(θ′) =
T∑
t=1

N∑
i=1

w̃
(i)
κt ξθ,t(x

(i)
κt,t−1:t).

The observed information matrix can be estimated using Louis’ identity (Louis,
1982; Cappé et al., 2005). However, only some parts of the identity can be directly
estimated using the FL smoother. The remaining parts must be estimated using
the APF or a more advanced smoother like the FFBSm. To see this, we rewrite
the observed information matrix using Louis’ identity,

J (θ′) = −∇2`(θ)
∣∣
θ=θ′ =

[
∇`(θ)

∣∣
θ=θ′

]2
−
[
∇2L(θ)

∣∣
θ=θ′

][
L(θ)

]−1
.

Here, the second term of the identity can be written as[
∇2L(θ)

∣∣
θ=θ′

][
L(θ)

]−1
=
∫ [
∇ log pθ(x0:T , y1:T)

∣∣
θ=θ′

]2
pθ(x0:T |y1:T)dx0:T

+
∫ [
∇2 log pθ(x0:T , y1:T)

∣∣
θ=θ′

]
pθ(x0:T |y1:T)dx0:T .

(3.30)

3.4 Particle smoothing 61

The first term in (3.30) cannot be directly estimated by the FL smoother, as it does
not provide approximations of the densities needed. Instead, it can be estimated
using the APF directly as proposed by Poyiadjis et al. (2011) or by the use of a
combination of the FL smoother and the APF. The latter alternative is discussed
in Paper A. However, the second term in (3.30) can be estimated using the FL
smoother directly as it can be written as an additive functional given by

ζθ,k(xt−1:t) = ∇2 log fθ(xt|xt−1)
∣∣
θ=θ′ +∇2 log gθ(yt|xt)

∣∣
θ=θ′ . (3.31)

corresponding to the Hessian of (3.28) evaluated at θ = θ′. An estimator for
this part of Louis’ identity is obtained by inserting the additive function (3.31)
into the empirical distribution obtained by the FL smoother (3.27). The expected
information matrix can be estimated as the sample covariance matrix of a large
number of score functions estimated using different data sets. We discuss this
method further in Paper D.

We have now seen two examples of additive functionals in connection with parame-
ter inference in SSMs and how to estimate them using the FL smoother. The same
setup can also be used in the expectation maximisation algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 2008) as discussed in Del Moral et al. (2010) using
a forward smoother. We return to this problem in Section 4.1, where we discuss
different methods for parameter inference. We end this section with Example 3.7,
where we estimate the log-likelihood, score and observed information matrix for a
nonlinear SSM using the FL smoother.

3.7 Example: Score and information matrix in the Hull-White SV model
Consider the problem of estimating the log-likelihood, the score function and the
natural gradient (the score function divided by the observed information matrix)
for θ = φ in the HWSV model (2.4). We again make use of the data from Sec-
tion 2.2.2 and the parameter vector estimate from Example 3.1. For this model,
the additive functional connected with the score function (3.29) is

ξθ,t(xt−1:t) = ∇
[
− 1

2 log
(
2πσ2

v

)
− 1

2σ2
v

(
xt+1 − φxt

)2]∣∣∣∣
φ=φ′

+∇
[
− 1

2 log
(

2πβ2 exp(xt)
)
− y2

t exp(−xt)
2β2

]∣∣∣∣
φ=φ′

= xt
(
xt+1 − φ′xt

)
,

and similar for the observed information matrix (3.31),

ζθ,t(xt−1:t) = ∇
[
xt
(
xt+1 − φxt

)]∣∣∣
φ=φ′

= −x2
t .

Here, we make use of the FL smoother in Algorithm 3 for estimating (3.27) with
lag ∆ = 12 and N = 5 000 particles. We vary the parameter on a grid within the
interval φ ∈ [0.70, 0.99] and estimate the required quantities at each grid point.
Here, we fix {σv, β} to their estimated value. The observed information matrix is
estimated using the combination of the APF and the FL smoother introduced in
Paper A.

62 3 State inference using particle methods

0.70 0.75 0.80 0.85 0.90 0.95 1.00

−
8

0
0

0
−

7
5

0
0

−
7

0
0

0
−

6
5

0
0

φ

E
s
ti
m

a
te

d
 l
o

g
−

lik
e

lih
o

o
d

 f
u

n
c
ti
o

n

0.70 0.75 0.80 0.85 0.90 0.95 1.00

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

φ

E
s
ti
m

a
te

d
 s

c
o

re
 f

u
n

c
ti
o

n

0.90 0.92 0.94 0.96 0.98 1.00

−
0

.0
0

4
−

0
.0

0
2

0
.0

0
0

0
.0

0
2

0
.0

0
4

φ

E
s
ti
m

a
te

d
 n

a
tu

ra
l
g

ra
d

ie
n

t

Figure 3.7: The estimates of the log-likelihood function (upper) the score
function (lower left) and the natural gradient (lower right) of the HWSV
model in Example 3.7. The dotted lines indicate the true parameters and the
zero level.

3.4 Particle smoothing 63

The resulting estimates are presented in Figure 3.7. We see that the log-likelihood
and score estimates seems reasonable and have a rather low variance. The natural
gradient is more difficult to estimate due to that the observed information matrix
estimates are noisy. We see that the sign of the estimate is correct but the gradient
is noisy and rather small.

3.4.3 Statistical properties of the particle fixed-lag smoother
We conclude the discussion of particle smoothing by reviewing some results regard-
ing the statistical properties of the estimates obtained by the FL smoother for the
additive functionals. In Olsson et al. (2008), the authors analyse the bias and
variance of the estimates from the APF and the FL smoother, respectively. The
variances of the estimates are concluded (under some regularity conditions) to be
upper bounded by quantities proportional to T 2/

√
N and (T log T)/

√
N for the

APF and the FL smoother, respectively.

The bias is also analysed in Olsson et al. (2008) and the authors conclude (under
some regularity conditions) that the bias is upper bounded by quantities propor-
tional to T 2/N and λ + (T log T)/N , respectively. Here, λ denotes a quantity
which is independent of the number of particles. Hence, the FL smoother gives a
biased estimate for all N whereas the bias of the estimate obtained from the APF
decreases as 1/N .

In the analysis, it is assumed that the lag is selected according to ∆ ∝ c log T ,
where c > −1/ log ρ and ρ ∈ [0, 1] denotes a measure of the mixing of the model
(Olsson et al., 2008). If ∆ is too small, the underlying approximation of the FL
smoother (3.23) and the accuracy of the estimate are rather poor. This is the result
of that more information about the current state is available in future observations
that are not taken into account by the smoother. If instead ∆ is too large, we get
problems with path degeneracy and in the limit when ∆ = T , the APF estimate
is recovered. The choice of ∆ is therefore crucial for obtaining good estimates
from the FL smoother and its optimal value depends on both the number of the
observations and the mixing properties of the model. Hence, it must be tailored
for each application individually as is further discussed in Paper A.

Finally, we mention that even better accuracy can be obtained by using other
more advanced smoothing algorithms. The main drawback with these algorithm
is that their computational cost is larger than for the APF and the FL smoother,
which have a computational cost that is proportional to O(NT). For example, the
FFBSm algorithm (Doucet et al., 2000) has a computational cost that is propor-
tional to O(N2T). The benefit of using this smoother is that the variance of the
estimate grows proportional to O(T), instead of as O(T 2) and O(T log T) for the
APF and the FL smoother, respectively. These properties are discussed in more
detail in Del Moral et al. (2010) and Poyiadjis et al. (2011). There are also some
new promising particle smoothers with a computational complexity proportional
to O(TN logN). For more information, see Klaas et al. (2006), Taghavi et al.
(2013) and Gray (2003).

64 3 State inference using particle methods

3.5 SMC for Image Based Lighting
In Sections 3.3 and 3.4, we have discussed the application of SMC to the filtering
and smoothing problems in SSMs. However, the SMC algorithm can be applied
to other problems that are sequential in nature and where the target distribution
π(x0:k) grows over some index k = 1, . . . ,K. It is also possible to make use of
SMC methods for static problems by defining an artificial target that grows over
k even if the original target does not. This approach is discussed by Del Moral
et al. (2006) and opens up for using SMC for a wide range of problems.

Figure 3.8: The setup used in the IBL approach, where the LTE gives the
outgoing radiance at the angle ωr that hits the image plane. This radiance
is computed by taking the EM, the BRDF and the visibility into account.
Note, that one of the light sources are occluded in this scene and does not
contribute to the outgoing radiance.

We exemplify the usefulness of this general class of SMC algorithm by returning to
the problem of rendering a sequence of photorealistic images using IBL (Debevec,
1998; Pharr and Humphreys, 2010) as discussed in Section 1.1.2. In Figure 3.8, we
present a cartoon of the setup of the LTE. Here, we are interested in calculating
the outgoing radiance Lr,k(ωr) from a point at the outgoing angle ωr at frame k,
which is given by the LTE as

Lr,k(ωr) =
∫
fr(ωi → ωr)Lk(ωi)V (ωi)(ωi · n)dωi, (3.32)

where n denotes the surface normal and ωi denotes incoming angles of the light rays
that hits the object at n. Here, fr, Lk and V denote the bidirectional reflectance
distribution function (BRDF), the EM in frame k and the binary visibility function,
respectively. Furthermore, we assume that these functions can be evaluated point-
wise. In this problem, the BRDF describes the optical properties of the object and
can be seen as a distribution over incoming angles.

3.5 SMC for Image Based Lighting 65

To see how SMC can be used to solve (3.32), we define this as a sequence of
normalisation problems, where kth unnormalised target distribution is given by

γk(ωi) = fr(ωi → ωr)Lk(ωi)(ωi · n),

where we neglect the visibility term for computational convenience. Calculating
the outgoing radiance (without regarding visibility) Lr,k(ωr) can therefore be seen
as normalisation,

Lr,k(ωr) =
∫
γk(ωi)dωi,

for a sequence of EMs indexed by k. From this setup, we see that the desired
particles corresponds to incoming angles ωi of the light that hits the object and
contributes to the outgoing radiance. As previously discussed, the challenge is
to select only a few important angles to take into account when solving the LTE.
Otherwise, the problem becomes computational infeasible.

In the filtering problem, this normalisation factor is the marginal likelihood of the
problem, which can be computed using the particle weights. In a similar manner,
we can compute Lr(ωr) and the only difference between the APF in Algorithm 2
is the choice of propagation kernel. Here, we do not have an SSM to describe
the dynamical behaviour of the EM between frames. Instead, we make use of an
MCMC kernel to adapt the particles between EMs. Details of this approach are
found in Kronander et al. (2014a) and Ghosh et al. (2006).

Another approach to solve (3.32) is to use the IS algorithm directly on Lr,k(ωr)
for each frame individually. This can be done with an algorithm similar to SIR,
where we first sample from the EM and compute the particle weights using the
BRDF. The resulting particles are obtained after a resampling step. This method
is referred to as the bidirectional importance sampling (BIS) (Burke et al., 2005)
algorithm. This approach is computationally cheap, but cannot make use of in-
formation from the previous frame when estimating Lr,k(ωr) in the current frame
k. As previously discussed, this problem can be solved with the SMC setup that
we consider here. We conclude this section by Example 3.8 in which we compare
these two approaches.

3.8 Example: SMC for direct illumination
Consider a simple setup, where we would like to render a sphere given a sequence
of HDR images. This is similar to the problem considered in Section 1.1.2 but
simpler since we do not consider multiple bounces. Hence, this problem is referred
to as direct illumination. Here, we compare four different approaches to render
the sphere in the image. The first and second methods are to make use of the IS
algorithm to sample directly from the EM and the BRDF, respectively. Hence, we
disregard the information in the BRDF and the EM, respectively. We also make
use of the BIS algorithm and the SMC algorithm previously outlined.

In Figure 3.9, we compare the four different approaches at frame k = 10 in a
sequence of EMs. The first three methods solves the problem for each frame
individually and the SMC approach makes use of the previous information. We

66 3 State inference using particle methods

see that using the IS algorithm directly to sample from the EM does not perform
well. The reason is that we consider a mirror sphere, where the BRDF is rather
narrow, which means that only light from a few incoming angles contribute to
the outgoing radiance. The remaining three methods gives comparable results.
Therefore, we conclude that there could be advantages by using the SMC algorithm
for this application. See Kronander et al. (2014a) for a more detailed discussion
and comparison of these approaches.

3.5 SMC for Image Based Lighting 67

Figure 3.9: Mirror sphere, frame 10 with different sampling techniques: IS
the EM (upper left), IS the BRDF (upper right), BIS (lower left), and the
SMC algorithm (lower right).

4
Parameter inference

using sampling methods

In this chapter, we consider some sampling based methods for ML and Bayesian
parameter inference in SSMs. We start by giving a small overview of some of the
current algorithms in the field. Later, we introduce and discuss the use of MCMC
(Robert and Casella, 2004) and particle MCMC (PMCMC) (Andrieu et al., 2010)
approaches to Bayesian parameter inference. Here, we also discuss the use of
Langevin and Hamiltonian dynamics to improve the efficiency of the method. This
material is later used in Paper A to construct a particle version of these MCMC
algorithms.

The second part of this chapter is devoted to discussing the BO algorithm (Jones,
2001; Boyle, 2007; Lizotte, 2008; Osborne, 2010) and how it can be used together
with GPs (Rasmussen and Williams, 2006) for ML parameter inference and input
design. This approach is used in Papers B and C for ML based parameter inference
and MAP based parameter inference, respectively.

4.1 Overview of computational methods for
parameter inference

There are many different methods developed for parameter inference in SSMs using
both ML and Bayesian methods. Here, we review some of these methods to give
an overview of the area and discuss some of the more popular methods. For more
exhaustive accounts of different methods, see Douc et al. (2014), Kantas et al.
(2009), Cappé et al. (2007) and Cappé et al. (2005).

69

70 4 Parameter inference using sampling methods

4.1.1 Maximum likelihood parameter inference
Most parameter inference problems in the ML framework cannot be solved by
analytical calculations. Instead popular approaches are based on optimisation and
other iterative algorithms to solve the inference problem in Definition 2.2. From
Chapter 3, we know that the APF can be used to calculate the log-likelihood and
that the FL smoother can be used to estimate the score function (the gradient
of the log-likelihood). Hence, we can make use of a gradient-based optimisation
algorithm to maximise the log-likelihood and thereby estimate the parameters of
the model. This method operates by an iterative application of

θ̂k+1 = θ̂k + εkŜ(θk), (4.1)

where θ̂k and εk denote the current estimate of the parameter vector and the
step length, respectively. This approach is used by Poyiadjis et al. (2011) and
Yildirim et al. (2013) for parameter inference in SV models with Gaussian returns
and α-distributed returns, respectively. Furthermore, we can estimate the Hessian
information by a particle smoother and make use of it in (4.1). This results in a
Newton optimisation algorithm which operates by an iterative application of

θ̂k+1 = θ̂k + εkĴ−1(θk)Ŝ(θk). (4.2)

Another approach is to estimate the Hessian on-the-fly in a Quasi-Newton algo-
rithm using finite difference approximation. A popular member of this class of
algorithms is the simultaneous perturbation stochastic approximation (SPSA) algo-
rithm discussed in Spall (1987). The SPSA algorithm is used for inference in the
αSV model in Ehrlich et al. (2012).

The expectation maximisation algorithm (Dempster et al., 1977; McLachlan and
Krishnan, 2008) is another popular alternative for ML inference. In this method,
the latent states are seen as missing information and are estimated together with
the parameter vector of the model. The quantity required by the expectation max-
imisation algorithm is an additive functional that can be estimated using a particle
smoother. Many different versions of the expectation maximisation algorithm are
available in the literature using different particle smoothers. Some examples are
Del Moral et al. (2010) using a forward smoother, Olsson et al. (2008) using the
FL smoother, Lindsten (2013) using the conditional particle filter with ancestor
sampling and Schön et al. (2011) using the FFBSm.

Finally, we mention another approach based on Bayesian optimisation (Jones,
2001; Boyle, 2007; Lizotte, 2008), introduced in Papers B and C for ML parameter
inference in SSMs where the likelihood can be intractable. We return to this
approach in Section 4.4, where we introduce the method in detail.

4.1.2 Bayesian parameter inference
As for the ML parameter inference approach, most interesting Bayesian parameter
inference problems are analytically intractable. Some problems can be solved in
closed-form using conjugate priors as discussed in Section 2.4. However, in gen-
eral we require approximate methods to solve expectation, marginalisation and

4.2 Metropolis-Hastings 71

normalisation problems in Bayesian inference. Previously, we discussed the sam-
pling based approach in which we make use of statistical simulations and computers
to approximate the posterior. Examples of some sampling based approaches are
MCMC methods or SMC methods. Some recent methods that makes us of the
latter method are SMC-squared (SMC2) (Chopin et al., 2013) and particle learning
(Carvalho et al., 2010). An alternative class of methods are based on approximate
analytical computations, which often makes use of iterated approximations to ap-
proximate the posterior. Examples of analytical approximations are the Laplace
approximation, the integrated nested Laplace approximation (INLA) (Rue et al.,
2009), variational Bayes (VB) (Bishop, 2006) and expectation propagation (EP)
(Minka, 2001).

In this thesis, we are primarily interested in sampling based inference using MCMC
(Robert and Casella, 2004) for Bayesian parameter inference. MCMC is a family
of algorithms that all are based on simulating a Markov chain with the target
as its stationary distribution. After some burn-in, the chain reaches stationarity
and the samples obtained from the chain can be treated as independent samples
from the parameter posterior by the ergodic theorem discussed in Section 4.2.1.
Here, we consider two instances of MCMC algorithms, the Metropolis-Hastings
(MH) algorithm (Metropolis et al., 1953; Hastings, 1970) and the Gibbs sampler
(Geman and Geman, 1984). The Gibbs sampler can be seen as a special case of
the more general MH algorithm. As such it can only be used in models with a
certain conditional structure of the joint parameter posterior. We return to the
Gibbs sampler in Paper E for parameter inference in a non-Gaussian ARX model.

The MH algorithm is a general method for sampling from intractable distributions
and is applied in many different fields. Some applications of the MH algorithm are
found in biology (Wilkinson, 2011), system identification (Ninness and Henriksen,
2010), finance (Johannes and Polson, 2009) and statistics (Robert and Casella,
2004). A major problem with this algorithm is that it requires evaluations of
the likelihood of the SSMs. As discussed in Section 3.3.4, we can only obtain an
unbiased estimator of this quantity, but it turns out that this is enough. As a
result of the unbiasedness property, the resulting Markov chain keeps the target
as its stationary distribution. This type of methods are known as psuedo-marginal
algorithms (Andrieu and Roberts, 2009; Andrieu et al., 2010) and this family
includes the particle MH (PMH) and particle Gibbs (PG) algorithms. This opens
up for Bayesian parameter inference in SSMs. We return to discussing the PMH
algorithm in Section 4.3 and propose refinements to it in Paper A.

4.2 Metropolis-Hastings
In this section, we discuss the use of the MH algorithm for sampling from the
parameter posterior p(θ|y1:T). Here, we give a short introduction to the MH algo-
rithm and also briefly discuss why it works and discuss some interesting extensions
of the algorithm based on random walks on Riemann manifolds. Interested readers
are referred to Robert and Casella (2004), Gelman et al. (2013) and Liu (2008) for

72 4 Parameter inference using sampling methods

more detailed accounts of the algorithm and its general application.

The MH algorithm samples the target distribution π(θ) = p(θ|y1:T) by simulating a
carefully constructed Markov chain on the parameter space Θ. The Markov chain
is constructed in such a way that it admits the target as its unique stationary
distribution. The algorithm consists of two steps: (i) a new parameter θ′′ is
sampled from a proposal distribution q(θ′′|θ′) given the current state θ′ and (ii) the
current parameter is changed to θ′′ with acceptance probability α(θ′′, θ′), otherwise
the chain remains at the current parameter. The acceptance probability is given
by

α(θ′′, θ′) = 1 ∧ π(θ′′)
π(θ′)

q(θ′|θ′′)
q(θ′′|θ′) = 1 ∧ p(θ

′′)
p(θ′)

pθ′′(y1:T)
pθ′(y1:T)

q(θ′|θ′′)
q(θ′′|θ′) , (4.3)

where a ∧ b , min{a, b} and pθ(y1:T) denotes the likelihood. The resulting pro-
cedure is outlined in Algorithm 4 for parameter inference in models where we
can compute the likelihood exactly. Here, we have used the form of the parame-
ter posterior from (2.14), where the marginal likelihoods cancel in the acceptance
probability. Therefore, the algorithm only requires that we can point-wise evaluate
the unnormalised target distribution.

Note that the IS algorithm could be used to estimate the parameter posterior us-
ing e.g. a multivariate Gaussian distribution as the proposal as in Example 3.1.
However, if θ is high dimensional this approach would require many samples to
accurately estimate the posterior. In the MH algorithm, we could instead con-
struct a Markov chain that explores the posterior distribution by local moves thus
exploiting the previously accepted parameter. Hence, it focuses its attention to
areas of the parameter space in which the posterior assigns a relatively large prob-
ability mass. This makes sampling of high dimensional target more efficient, as
less iterations of the algorithm are required to obtain an accurate estimate.

To see this, assume that we have a symmetric proposal q(θ′′|θ′) = q(θ′|θ′′), so that
the ratio between the proposals cancel in (4.3). The remaining part is the ratio
between the target evaluated at θ′′ and θ′. If the proposed parameter θ′′ results
in that the target assumes a larger value than in θ′, it is always accepted. Also,
we accept a proposed parameter with some probability if this results in a small
decrease of the target compared with the previous iteration. This results in that
the MH sampler both allows for the algorithm to climb the posterior to its mode
and explore the area surrounding the mode. Hence, the MH algorithm can possibly
escape local extrema which is a problem for many local optimisation algorithms
used in numerical ML parameter inference.

The performance of the MH algorithm is dependent on the choice of the proposal
distribution. A poor proposal leads to a poor exploration of the posterior distribu-
tion, which results in that many iterations of the algorithm are required to obtain
a good approximation of the posterior. Here, we discuss some common choices of
proposals which are needed for the discussion in Section 4.2.2 and in Paper A. The
perhaps simplest example is the independent proposal in which q(θ′′|θ′) = q(θ′′),
i.e. a parameter is proposed without taking the previously accepted parameter into

4.2 Metropolis-Hastings 73

Algorithm 4 Metropolis-Hastings (MH) for Bayesian inference in SSMs
Inputs: M > 0 (no. MCMC steps), q(·) (proposal) and θ0 (initial parameter).
Output: θ = {θ1, . . . , θM} (samples from the parameter posterior).

1: Initalise using θ0.
2: for k = 1 to M do
3: Sample θ′ from the proposal θ′ ∼ q(θ′|θk−1).
4: Calculate the likelihood pθ′(y1:T).
5: Sample ωk from U(0, 1).
6: if ωk < α(θ′, θk−1) given by (4.3) then
7: θk ← θ′. {Accept the parameter}
8: else
9: θk ← θk−1. {Reject the parameter}

10: end if
11: end for

account. This proposal cannot exploit the previous accepted parameters and this
could be a difficulty in inference problems when the posterior is quite complicated.
However, if the proposal is similar to the posterior, this leads to a good mixing of
the Markov chain as the proposed parameters are uncorrelated. This insight have
been used in Giordani and Kohn (2010) to construct a proposal distribution based
on a mixture of Gaussian distributions, which results in an efficient MH sampler
in some applications.

Another popular choice is the (symmetric) Gaussian random walk (RW) with some
step length ε, which results from selecting q(θ′′|θ′) = N (θ′′; θ′, ε2). The choice of
the step length in the RW proposal determines the mixing of the Markov chain
and thereby the efficiency of the exploration of the parameter posterior. If the
step length is too small, the exploration is poor since that it takes a long time to
explore the target. If it is too large, we seldom accept the proposed parameter as
the difference in the values that the posterior assume is too large, resulting in a
small acceptance probability. This is often referred to as the mixing of the Markov
chain (c.f. Example 3.5). That is we would like to balance the mixing of the
Markov chain to get a reasonable exploration of the posterior and acceptance rate.
This problem is illustrated in Example 4.1, where we make use of Algorithm 4 to
infer the parameters in an LGSS model for which we can compute the likelihood
exactly. We return to the choice of proposal and the mixing of the Markov chain
in following sections.

4.1 Example: Parameter inference in the LGSS model
Consider the parameter inference problem in the LGSS model (2.2) with the un-
known parameter θ = φ. We use the parameter θ? = 0.5 together with {σv, σe} =
{1.0, 0.1} to generate a realisation from the model with T = 250 and known initial
state x0 = 0. Here, we use the MH algorithm defined in Algorithm 4 together with
the Kalman filter for estimating the likelihood. A Gaussian random walk proposal
is used with zero mean and variance ε. For simplicity, we use a uniform prior over

74 4 Parameter inference using sampling methods

0 100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Iteration

φ

ε =0.01

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
φ

0 100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Iteration

φ

ε =0.10

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
φ

0 100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Iteration

φ

ε =1.00

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
φ

Figure 4.1: The traces (left) of the first 500 iterations of φ in the LGSS model
(2.2) using the RW proposal with three different step lengths ε = 0.01 (up-
per), ε = 0.10 (middle) and ε = 1.00 (lower). The estimated autocorrelations
function (right) using 9 000 iterations corresponding to each step length in
the RW proposal. The dotted lines show the true parameters from which the
data was generated.

4.2 Metropolis-Hastings 75

0 100 200 300 400 500

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Iteration

φ

φ

D
e

n
s
it
y

0.4 0.5 0.6 0.7

0
2

4
6

8

0 100 200 300 400 500

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Iteration

σ
v

σv

D
e

n
s
it
y

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0
1

2
3

4
5

Figure 4.2: The trace of the first 500 iterations of φ (upper left) and σv (lower
left) in the LGSS model in Example 4.1. The estimated parameter posteriors
(right) obtained from 9 000 iterations of the MH algorithm. The dotted lines
show the true parameters from which the data was generated.

76 4 Parameter inference using sampling methods

φ ∈ (−1, 1) ⊂ R to ensure that the system is stable at all times.

In Figure 4.1, we present the trace plot of the Markov chain together with the
estimated autocorrelation function fromM = 10 000 iterations (discarding the first
1 000 iterations as burn-in) for the RW proposal with three different step lengths.
We see that the mixing is rather poor for the smallest step size ε = 0.01, as this
results in a poor exploration of the posterior and therefore a large correlation in
the Markov chain. This is also the case if the step length is too large as illustrated
by the proposal with step length ε = 1.00. Here, the large step length results is
a small acceptance probability and therefore a larger correlation in the Markov
chain.

We now add the parameter σv to our inference problem and would therefore like
to infer the parameters {φ, σv} using the same setup as before. Here, we also
add an uniform prior over σv ∈ R+ as it corresponds to a standard deviation.
We use the step length ε = 0.1 with the RW proposal and simulate the Markov
chain for M = 10 000 iterations (discarding the first 1 000 iterations as burn-in).
In Figure 4.2, we present the trace of each parameter and the resulting posterior
density estimate. We see that the Markov chain mixes well in both parameters
and that the posterior estimates rather close to the true parameters.

4.2.1 Statistical properties of the MH algorithm

In this section, we discuss some of the statistical results that the MH algorithm
relies upon and briefly mention their underlying assumptions. For more informa-
tion about the properties of the MH algorithm and MCMC algorithms in general,
see e.g. Tierney (1994), Robert and Casella (2004) and Meyn and Tweedie (2009).
The core result that is used in the MH algorithm is the ergodic theorem (Tierney,
1994; Robert and Casella, 2004). Given a well-behaved test function ϕ, we can
construct a Monte Carlo estimator,

ϕ̂MH = 1
N

N∑
i=1

ϕ(θi),

where {θi}Mi=1 denotes the samples obtain from the MH algorithm. If the Markov
chain is ergodic, then by the ergodic theorem this estimator is strongly consistent,
i.e.

ϕ̂MH
a.s.−→ E

[
ϕ(θ)

]
, N →∞.

Note that this property does not follow directly from the SLLN as the samples
obtained for the posterior are not IID, as the proposed parameters are correlated.
Hence, the ergodic theorem can be seen as the SLLN for correlated samples. Also,
a CLT for the error in the estimator (under some conditions) is given by

√
N

[
ϕ̂MH − E

[
ϕ(θ)

]] d→ N
(
0, σ2

ϕ

)
,

4.2 Metropolis-Hastings 77

where σ2
ϕ denotes the variance of the estimator, which is proportional to the mix-

ing properties of the Markov chain. In fact, this variance is proportional to the
integrated autocorrelation time (IACT), which is given by

IACT(θ1:M) = 1 + 2
∞∑
k=1

ρk(θ1:M).

The IACT cannot be computed analytically in practice as we do not know the true
autocorrelation function for many models. Therefore, we often approximate it by

ÎACT(θ1:M) = 1 + 2
K∑
k=1

ρ̂k(θ1:M),

where ρ̂k(·) denotes the empirical autocorrelation function at lag k andK denotes
some maximum lag for which to compute the IACT. This value can be selected
as a fixed value or by the first index at which the ACF becomes statistically
insignificant, i.e. the first index K such that |ρ̂K(θ1:M)| < 2/

√
M . Another related

measure is the effective sample size (ESS) defined as

ESS(θ1:M) = M

IACT(θ1:M) = M

1 + 2
∑∞
k=1 ρk(θ1:M) , (4.4)

which can be approximated in the same manner as the IACT. The IACT and ESS
have the interpretations as the number of iterations between each independent
sample and the number of independent samples obtained from the posterior, re-
spectively. Hence, we would like to minimise the IACT and maximise the ESS to
get an optimal mixing in the Markov chain and many uncorrelated samples from
the posterior. We illustrate the ESS values for parameter inference in an LGSS
model in Example 4.2.

4.2 Example: ESS values for inference in the LGSS model
We return to Example 4.1 and calculate the ESS values for the three different
Markov chains considered in Figure 4.1. The ESS values (4.4) are {22, 1292, 353}
when calculated using the adaptive method for the RW proposal with each of the
three step lengths, respectively. These number validates the previous discussion
that the proposal with ε = 0.10 is preferable for this problem, as this maximises
the number of uncorrelated samples from the posterior.

The consistency results and the CLT relies on the ergodic theorem, which assumes
that the Markov chain is irreducible and aperiodic. Irreducible means that we
should be able to get from any state to any state in the state space. Aperiodicity
means that the Markov chain does not return to a state with regular intervals, i.e.
no loops that the chain can get stuck in. These requirements need to be check for
each MH algorithm to validate its assumptions. However, often in practice these
assumptions hold for at least unimodal parameter posteriors.

Another property that is important for a Markov chain used in MCMC is reversible.

78 4 Parameter inference using sampling methods

This property holds if the chain satisfies the detailed balance equation,

π(θ′′)K(θ′′, θ′) = π(θ′)K(θ′, θ′′),

where K(θ′′, θ′) denote the Markov transition kernel. This results in that we can
write∫

π(θ′′)K(θ′′, θ′)dθ′′ =
∫
π(θ′)K(θ′, θ′′)dθ′′ = π(θ′)

∫
K(θ′, θ′′)dθ′′ = π(θ′),

which shows that π is an invariant distribution of K, i.e. admits π(θ) as its station-
ary distribution. To show that the MH algorithm, satisfies the detailed balance
equation we follow Liu (2008) and write the transition kernel of the Markov chain
as,

K(θ′′, θ′) = q(θ′′, θ′) min
{

1, π(θ′)q(θ′, θ′′)
π(θ′′)q(θ′′, θ′)

}
, θ′′ , θ′

which gives

π(θ′′)K(θ′′, θ′) = min{π(θ′′)q(θ′′, θ′), π(θ′)q(θ′, θ′′)},

which is a symmetric function in θ′′ and θ′. This results in that the detailed bal-
ances is fulfilled and the resulting Markov chain obtained from the MH algorithm
is reversible.

4.2.2 Proposals using Langevin and Hamiltonian dynamics
We have previously discussed two different proposals for the MH algorithm and
that these could perform better than the IS algorithm when the target is high
dimensional. It turns out that the RW proposal in the MH algorithm still scales
rather poorly as the dimension of the parameter space d increases, see Roberts et al.
(1997). That is, the mixing of the Markov chain decreases and more iterations are
required to maintain the number of independent samples from the target. This is
a result of that the random walk does not explore the parameter space well when
the dimension increases.

A modification to the random walk proposal that could increase the mixing in the
Markov chain is to add a drift term that is proportional to the gradient of the log-
target. This leads to a proposal which is the noisy equivalent of (4.1). In statistics,
the resulting algorithm is known as the Metropolis adjusted Langevin algorithm
(MALA) (Roberts and Rosenthal, 1998; Neal, 2010), where the proposal is said
to follow a Langevin dynamics. This means that the proposal can be seen as the
discrete version of a continuous time Langevin diffusion process (Øksendal, 2010;
Kloeden and Platen, 1992). The Langevin diffusion with stationary distribution
p(θ|y1:T) is given by the stochastic differential equation,

dθ(τ) = 1
2

[
∇ log p(θ|y1:T)

∣∣
θ=θ(τ)

]
dτ + dB(τ),

where B(τ) denotes a Brownian motion. To obtain samples from the parameter
posterior, we can simulate the Langevin diffusion to stationarity, which is useful
in the proposal as it guides the process towards the mode of the posterior. The

4.2 Metropolis-Hastings 79

discrete time proposal used in MALA follows from a first order Euler discretisation
of (4.5) as

q(θ′′|θ′) = N
(
θ′′; θ′ + ε2

2 S(θ′), ε2Id
)
,

where ε denotes a step length of the discretisation and the corresponding proposal.
The proposal can also be derived using a Laplace approximation of the log-posterior
as discussed in Paper A. Another version of this algorithm is the manifold MALA
(mMALA) (Neal, 2010; Girolami and Calderhead, 2011) which also includes the
Hessian information of the log-posterior in analogue with Newton algorithms (c.f.
(4.2)). This proposal can be derived similar to the MALA proposal and has the
form

q(θ′′|θ′) = N
(
θ′′; θ′ + ε2

2 J
−1(θ′)S(θ′), ε2J−1(θ′)

)
,

where we include the observed information matrix J (θ) into the proposal. We
make use of the MALA and mMALA proposals in Paper A to construct particle
versions of the algorithms for parameter inference in SSMs. Alternative algorithms
that solves the same problem are proposed by Girolami and Calderhead (2011),
where the MALA and mMALA are used for parameter inference in the SV model.

In this thesis, we adopt an optimisation mind set and refer to the MALA and
mMALA algorithm as first order and second order proposals, respectively. The
names of the proposals refer to the use of first order information (the gradient) and
the second order information (the Hessian) in the proposals. In the optimisation
literature, this corresponds to the first order gradient-based search method and
and second order Newton method, respectively. The corresponding MH algorithms
are therefore called MH1 and MH2, respectively.

Another perspective of the second order proposal is that the added gradient and
Hessian information about the log-target is used to construct a random walk on
a Riemann manifold (Livingstone and Girolami, 2014; Girolami and Calderhead,
2011). For this end, we require that the negative Hessian is a PD matrix which is
not always the case when we use the observed information matrix as the second
order information. In Girolami and Calderhead (2011), it is proposed that the ex-
pected information matrix should be used instead, but this is computational costly
to estimate for an SSM. Therefore, we make use of methods from optimisation (No-
cedal and Wright, 2006) to make the observed information matrix PD if necessary.
This is done by regularisation, i.e. adding an appropriate diagonal matrix to make
the negative eigenvalues positive, see Paper A for more information.

Another related method is called manifold Hamiltonian MCMC (mHMC) and it
can improve the mixing of the Markov chain further. This method originates from
physics and is one instance of hybrid MC (Duane et al., 1987) algorithms, which
are used in statistical physics to simulate from high dimensional targets. Here, we
shortly discuss their use in a statistical setting for parameter inference. Interested
readers are referred to Liu (2008), Neal (2010) and Girolami and Calderhead (2011)

80 4 Parameter inference using sampling methods

for more information. The mHMC algorithm is based on simulating a physical
system with the Hamiltonian (the total energy),

H(θ, p) = U(θ) +K(p), (4.5)

where p ∼ N (0,J−1(θ)) denotes a random fictitious momentum for each parame-
ter. Here, the potential energy function and the kinetic energy function are given
by U(θ) = − log π(θ) and K(p) = p>J−1(θ)p/2, respectively. The proposal simu-
lates this Hamiltonian system for a number of steps L using the so-called leap-frog
algorithm (Neal, 2010) with some step size ε. The result from this procedure
is the proposed parameter and the resulting momentum {θ′′, p′′}. This pair is
accepted/rejected using a similar procedure as in the MH algorithm. The accep-
tance probability compares the Hamiltonian of the system at the last accepted
parameter and the proposed parameter by

α(θ′′, θ′) = 1 ∧ exp
(
H(θ′′, p′′)−H(θ′, p′)

)
. (4.6)

As the accept/reject decision is delayed for L steps, this proposal allows for the
chain to move a larger distance between the iterations of the algorithm. This
increases the mixing of the Markov chain and it also allows for the Markov chain
to visit isolated modes in the posterior. This leads to a better exploration of
the posterior as well as more effective samples. The mHMC algorithm is used in
many applications and is currently a popular algorithm in statistics and machine
learning, see e.g. Chen et al. (2014), Beam et al. (2014) and Betancourt and
Girolami (2013). In Girolami and Calderhead (2011), the authors make use of the
mHMC algorithm for parameter inference in a SV model with impressive results.
To adapt the mHMC algorithm to the PMCMC framework is therefore an exciting
opportunity for future research.

We conclude this section with an comparison between the three MCMC algorithms
previously discussed. In Example 4.3, we replicate and extend an illustration
from Neal (2010) to compare the different methods when sampling from a high-
dimensional target distribution.

4.3 Example: Parameter inference in a 100-dimensional Gaussian dist.
Consider the problem of sampling from a non-isotropic 100-dimensional Gaussian
distribution with zero-mean and covariance matrix Σ = diag(1.00, 0.99, . . . , 0.01).
In this problem, we use random step sizes where εRW ∼ U(0.018, 0.026) for MH-RW
and εHMC ∼ U(0.010, 0.016) for HMC with L = 150. These values follow the sug-
gestions by Neal (2010). For MALA, we us the step length εLMC ∼ U(0.008, 0, 013),
which results in an acceptance rate of about 60%. The HMC algorithm is executed
for 1 000 iterations and the RW and MALA algorithms are executed for 150 000
iterations but only every 150th iteration is considered to make a fair comparison
with the HMC. The resulting acceptance probabilities are 0.26, 0.60 and 0.88, for
each proposal respectively.

The trace plots and ACF for the first coordinate (with standard deviation 1)
are presented in Figure 4.3. The estimated mean and standard deviations of the
target distribution are presented in Figure 4.4. The HMC algorithm gives almost

4.2 Metropolis-Hastings 81

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration

x
1

RW−MH

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration

x
1

MALA

0 200 400 600 800 1000

−
4

−
2

0
2

4

Iteration

x
1

HMC

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
x

1

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
x

1

0 10 20 30 40

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Lag

A
C

F
 o

f
x

1

Figure 4.3: The trace of x1 (left) and the corresponding estimated ACF (right)
for the RW-MH, MALA and HMC algorithms.

82 4 Parameter inference using sampling methods

0 20 40 60 80 100

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Coordinate

µ̂

RW−MH

0 20 40 60 80 100

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Coordinate

µ̂

MALA

0 20 40 60 80 100

−
0

.6
−

0
.4

−
0

.2
0

.0
0

.2
0

.4
0

.6

Coordinate

µ̂

HMC

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Coordinate

σ̂

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Coordinate

σ̂

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Coordinate

σ̂

Figure 4.4: The estimated parameters obtained for each coordinate from the
RW-MH, MALA and HMC algorithms. The estimates of the mean vector
(left) and the diagonal of the covariance matrix (right) are presented for each
coordinate. The dashed lines indicate the true parameter values for each
coordinate.

4.3 Particle Metropolis-Hastings 83

independent samples from the target. The ACF falls off quicker for the MALA
compared with the RW-MH, which indicates a more efficient exploration of the
posterior. However, the estimates of the covariance matrix are biased for the
MALA, which could be the result of that the Markov chain gets stuck somewhere
in the parameter space. We conclude that there is a large gain in using the HMC
algorithm for inference in models with a high-dimensional parameter vector.

4.3 Particle Metropolis-Hastings
As previously discussed in Chapter 2, the likelihood of an SSM is analytically
intractable and therefore we cannot make use of the MH algorithm directly for
parameter inference. In Section 3.3.4, we reviewed how to construct an unbiased
estimator for the likelihood based on the APF. A natural solution to this problem
could therefore be to replace the intractable quantities in the acceptance probabil-
ity with unbiased estimates.

This idea is first used by Beaumont (2003), where the authors replace an analytical
intractable likelihood with an unbiased estimate for a genetics application of the
MH algorithm. The first use of this idea for parameter inference in nonlinear SSMs
is found in Fernández-Villaverde and Rubio-Ramírez (2007), where the intractable
likelihood is replaced with an estimate from the APF. Subsequent work by An-
drieu and Roberts (2009) and Andrieu et al. (2010) analyse the resulting PMH
algorithm and prove that this is a valid approach to solve the problem. To see
why this method works, we review the derivation of the PMH algorithm following
the presentation in Flury and Shephard (2011).

Consider the problem of using the MH algorithm to sample the parameter poste-
rior (2.14), i.e. π(θ) = p(θ|y1:T). This implies that the acceptance probability (4.3)
depends explicitly on the intractable likelihood pθ(y1:T), preventing direct appli-
cation of the MH algorithm to this problem. Instead, assume that there exists an
unbiased, non-negative estimator of the likelihood p̂θ(y1:T |u), i.e.

Eu|θ
[
p̂θ(y1:T |u)

]
=
∫
p̂θ(y1:T |u)mθ(u)dθ = pθ(y1:T) (4.7)

where u ∈ U denotes the multivariate random variable (vector) used to construct
this estimator. Here, mθ(u) denotes the probability density of u on U. When the
APF is used to construct the estimator of the likelihood, the random variable u is
the particles and their ancestors {x(i)

0:T , a
(i)
1:T }

N
i=1.

The PMH algorithm can then be seen as a standard MH algorithm operating in a
non-standard extended space Θ × U, with the extended target given by

π(θ, u|y1:T) = p̂θ(y1:T |u)mθ(u)p(θ)
p(y1:T) = p̂θ(y1:T |u)mθ(u)p(θ|y1:T)

pθ(y1:T) ,

and the proposal distribution mθ′′(u′′)q(θ′′|θ′). As a result, we can recover the

84 4 Parameter inference using sampling methods

Algorithm 5 Particle Metropolis-Hastings (PMH) for Bayesian inference in SSMs
Inputs: Algorithm 2, M > 0 (no. MCMC steps), q(θ′′, θ′) (proposal) and θ0
(initial parameters).
Output: θ = {θ1, . . . , θM} (samples from the parameter posterior).

1: Initalise using θ0.
2: for k = 1 to M do
3: Sample θ′ from the proposal θ′ ∼ q(θ′|θk−1).
4: Estimate the likelihood p̂θ′(y1:T) using Algorithm 2 and (3.19).
5: Sample ωk from U(0, 1).
6: if ωk < α(θ′, θk−1) given by (4.8) then
7: {θk, p̂θk(y1:T)} ← {θ′, p̂θ′(y1:T)}. {Accept the parameter}
8: else
9: {θk, p̂θk(y1:T)} ← {θk−1, p̂θk−1(y1:T)}. {Reject the parameter}

10: end if
11: end for

parameter posterior by marginalisation of the extended target,∫
π(θ, u|y1:T)du = p(θ|y1:T)

pθ(y1:T)

∫
p̂θ(y1:T |u)mθ(u)du︸ ︷︷ ︸

=pθ(y1:T)

= p(θ|y1:T),

using the unbiasedness property (4.7) of the likelihood. Samples from the pa-
rameter posterior can therefore be obtained as a byproduct by simulating from
π(θ, u|y1:T). By selecting the proposal distribution as q(θ′′|θ′, u), the acceptance
probability is given by

α(θ′′, θ′) = 1 ∧ p̂θ′′(y1:T |u′′)
p̂θ′(y1:T |u′)

p(θ′′)
p(θ′)

q(θ′′|θ′, u′)
q(θ′|θ′′, u′′) . (4.8)

Note, that the acceptance probability is the same as for the MH algorithm, but
replacing the intractable likelihood with an unbiased estimator and including an
extended proposal. As previously discussed, the random variable u contains the
entire particle system generated by the APF algorithm. From Section 3.4.2, we
know that this information can be used in combination with the FL smoother
to estimate the score and information matrix, which can be used to construct
particle versions of the MH1 and MH2 algorithms. This is the main idea behind
the proposed PMH1 and PMH2 algorithms in Paper A, to which we refer interested
readers for more information.

It turns out that the acceptance rate of the PMH algorithm is closely connected
with the number of particles used to estimate the log-likelihood. If N is too small,
then the variance of the log-likelihood estimates are large and therefore we often get
stuck with the Markov chain with a resulting low acceptance rate. We also know
that N is connected with the computational cost of the APF algorithm. Therefore,
we have a trade-off between the number of MCMC iterations and the number of

4.4 Bayesian optimisation 85

particles in the APF, where we would like to minimise the total computational cost
of the PMH algorithm. This problem is analysed and discussed by Doucet et al.
(2012), Pitt et al. (2010) and Pitt et al. (2012). From this work, it is recommended
to use a value of N such that the variance of the log-likelihood estimates is between
0.25 and 2.25. Consequently, we can determine the optimal number of particles
by a pilot run.

Two other common versions of the PMH algorithm are the particle independent MH
(PIMH) algorithm and the particle marginal MH (PMMH or PMH0) algorithm.
The Gaussian versions of these proposals are obtained by using q(θ′′) = N (θ′′; 0, ε2)
and q(θ′′|θ′) = N (θ′′; θ′, ε2), respectively. The resulting general version of the PMH
algorithm that incorporates the PMH0 and PIMH as special cases is presented in
Algorithm 5. The full procedure for PMH1 and PMH2 are found in Algorithm 1
in Paper A.

4.4 Example: PMH0 for parameter inference in the GARCH(1,1) model
Consider the parameter inference problem for the GARCH(1,1) model (2.3) using
the NASDAQ OMX Stockholm 30 Index data from Section 2.2.2. We make use of
the PMH0 algorithm and the RW proposal with the step length ε = 0.005 for all
elements in the parameter vector. We run the algorithm forM = 20 000 iterations
(discarding the first 5 000 as burn-in) with the faPF algorithm and N = 3 000
particles for estimating the likelihood.

The resulting acceptance rate is 0.06 (after burn-in) with ESS {39, 21, 21, 11} for
the four parameters, respectively. Note that the poor ESS are due to that we for
simplicity make use of the same step length for all parameters. In Figure 4.5, we
present the trace plots and posterior estimates obtain from the run. We see that
the mixing is rather poor and longer runs with smaller step lengths are needed.
Also, we could make use of PMH1 or PMH2 from Paper A to improve the mixing.
The posterior means are θ̂PMH = {0.0088, 0.14, 0.86, 0.63}, which can be used as
point estimates of the parameters in the model.

4.4 Bayesian optimisation
BO (Jones, 2001; Boyle, 2007; Lizotte, 2008; Osborne, 2010) is a popular (global)
derivative-free optimisation method, which is currently studied extensively in the
machine learning community. Here, we consider the use of BO to solve

xmax = argmax
x∈B

f(x), (4.9)

where B ⊂ Rd denotes some compact set. Here, we assume that we cannot directly
evaluate the real-valued function f(x), but can obtain noisy estimates (samples)
modelled as

yk = f(xk) + zk, zk ∼ N (0, σ2
z), (4.10)

86 4 Parameter inference using sampling methods

5000 6000 7000 8000 9000 10000

0
.0

0
4

0
.0

0
8

0
.0

1
2

Iteration

α

φ

D
e

n
s
it
y

0.000 0.005 0.010 0.015 0.020

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

5000 6000 7000 8000 9000 10000

0
.1

0
0

.1
2

0
.1

4
0

.1
6

Iteration

β

β

D
e

n
s
it
y

0.10 0.12 0.14 0.16 0.18 0.20

0
1

0
2

0
3

0
4

0
5

0
6

0

5000 6000 7000 8000 9000 10000

0
.8

3
0

.8
5

0
.8

7
0

.8
9

Iteration

γ

γ

D
e

n
s
it
y

0.80 0.82 0.84 0.86 0.88 0.90

0
1

0
2

0
3

0
4

0
5

0

5000 6000 7000 8000 9000 10000

0
.5

8
0

.6
0

0
.6

2
0

.6
4

0
.6

6

Iteration

τ

τ

D
e

n
s
it
y

0.55 0.60 0.65 0.70

0
5

1
0

1
5

2
0

2
5

3
0

Figure 4.5: The trace plots (left) and the corresponding posterior estimates
(right) of the GARCH(1,1) model using the Nasdaq OMX Stockholm 30 In-
dex data from Section 2.2.2. The estimates are computed using the PMH0
algorithm with 20 000 iterations and discarding the first 5 000 as burn-in.

4.4 Bayesian optimisation 87

where zk denotes some zero-mean Gaussian noise with unknown variance σ2
z .

Therefore, the BO algorithm is useful when we can only estimate the value of
the objective function with some simulation based algorithm. It also turns out
that the BO algorithm requires less estimates of the objective function than other
optimisation algorithms (Brochu et al., 2010). As a consequence, BO is useful
when the noisy estimates of the objective function are computationally costly to
obtain. In the following, we make use of BO for ML based parameter inference
and for input design in nonlinear SSMs. In these cases, the objective function
corresponds to the log-likelihood and the logarithm of the determinant of the ex-
pected information matrix, respectively. In both these cases, these quantities are
analytically intractable but we can obtain noisy estimates from the objective func-
tion by the use of computationally costly particle filtering and smoothing. Hence,
these are two applications which fits the BO algorithm well.

The BO algorithm operates by constructing a surrogate function also called a
response surface that emulates the objective function. In BO, this surrogate func-
tion is modelled as a probabilistic function with some prior form selected by the
user. The name comes from that the samples from the objective function are used
together with the prior to update the model using Bayes’ theorem. Using the
updated posterior, we can predict the value of the objective function anywhere in
the space of interest and also obtain an uncertainty of the predicted value.

Using the predictive distribution, the algorithm can analyse where the optimum of
the objective function could be located and focus the sampling to that area. Also,
the algorithm can choose to explore areas where there are large uncertainties in
the predicted value of the objective function. We refer to these two situations as
exploitation and exploration, respectively. In the following, we discuss this part
of the algorithm in more detail and the acquisition rules that is used to make
the decisions regarding exploitation and exploration. To conclude this overview of
the BO algorithm, we present the three steps that are carried out during the kth
iteration:

(i) Sample the objective function in xk to obtain yk.

(ii) Use the data collected Dk = {xi, yi}ki=1 to construct a surrogate function.

(iii) Use an acquisition rule and the surrogate function to select xk+1, i.e. where
to sample the objective function in the next iteration of the algorithm.

We now proceed by discussing Steps (ii) and (iii) in more detail. Step (i) depends
on the specific optimisation problem that we would like to solve and for the two
previously discussed applications correspond to the APF and the FL smoother in
Algorithms 2 and 3, respectively.

In this thesis, we make use of GPs (Rasmussen and Williams, 2006) as the surro-
gate function. Therefore, we devote the following section to introducing the GP
and discuss its structure and how to combine it with the obtained samples from
the objective function. Then, we discuss some different acquisition functions and
compare their properties. Finally, we combine the GP with the BO algorithm to

88 4 Parameter inference using sampling methods

obtain the Gaussian process optimisation (GPO) algorithm. We conclude this sec-
tion by discussing some applications of GPO in connection with SSMs. For more
information regarding BO, see Lizotte (2008), Boyle (2007), Brochu et al. (2010)
and Snoek et al. (2012).

4.4.1 Gaussian processes as surrogate functions

GPs are an instance of Bayesian nonparametric models and has its origins in
kriging (Cressie, 1993; Matheron, 1963) methods from spatial statistics. An ap-
plication of kriging is to interpolate between elevation measurements sampled in
some terrain to build a map of the elevation in an area. The underlying assump-
tion is that the elevation should vary smoothly between sampled points. This is
the property of the GP that we would like to use for interpolating the objective
function between the values in which we sample it.

A GP (Rasmussen and Williams, 2006) can be seen as a generalisation of the mul-
tivariate Gaussian distribution to an infinite dimension. As such, it is a collection
of random variables, where each finite subset is jointly distributed according to a
Gaussian distribution. A realisation drawn from a GP can therefore be seen as an
infinitely long vector of values, which can be seen as a function over the real space
Rd. This is why the GP is considered by some to be a prior over functions on Rd.

As the GP is a Gaussian distribution of infinite dimension, we cannot characterise
it using a mean vector and covariance matrix. Instead, we introduce a mean
function m(x) and a kernel (or covariance function) κ(x, x′) defined as

m(x) = E[f(x)], (4.11a)

κ(x, x′) = E
[(
f(x)−m(x)

)(
f(x′)−m(x′)

)]
. (4.11b)

To construct the surrogate function, we assume a priori that the objective function
can be modelled as a GP,

f(x) ∼ GP
(
m(x), κ(x, x′)

)
, (4.12)

with the mean function and kernel defined by (4.11). Here, the mean function
specifies the average value of the process and the kernel specifies the correlation
between (nearby) samples. Both functions are considered to be prior choices to the
algorithm and are used to encode the beliefs about the data before it is observed.

Consequently, we have that both the prior (4.12) and the data likelihood (4.10)
are distributed according to Gaussian distributions. Hence, the posterior resulting
from Bayes’ theorem is a Gaussian distribution with some mean and covariance
that can be calculated using standard results. From this posterior, we can con-

4.4 Bayesian optimisation 89

struct the predictive distribution at some test point x? given the data Dk by

f(x?)
∣∣Dk ∼ N(x?;µf (x?|Dk), σ2

f (x?|Dk)
)
, (4.13a)

µf (x?|Dk) = κ>?

[
κ
(
x1:k, x1:k

)
+ σ2

zIk

]−1
y1:N , (4.13b)

σ2
f (x?|Dk) = κ

(
x?, x?

)
− κ>?

[
κ
(
x1:k, x1:k

)
+ σ2

zIk

]−1
κ? + σ2

z , (4.13c)

where κ? = κ
(
x?, x1:k

)
denotes the covariance between the test value and the

sampling points. Here, κ
(
x1:k, x1:k

)
denotes a matrix where the element at (i, j)

is given by κ(xi, xj) for i = 1, . . . , k and j = 1, . . . , k.

To obtain the GP posterior, we need to select a kernel function. Note that, it
is possible to include the assumption of a non-zero mean function into the kernel
function by adding an appropriate constant kernel. Therefore, we only make use of
a zero mean function in this thesis and focus on the kernel design problem, where
several kernels can be combined by different operations to encode the prior beliefs
of the structure in the data. Here, we only consider the combination of a constant
covariance function and three different popular kernels: the squared exponential
(SE), the Matérn 3/2 and the Matérn 5/2. See Rasmussen and Williams (2006)
for other kernels and for a discussion of how they can be combined.

The SE kernel is also known as radial basis function (RBF) and has the form

κSE(x, x′) = σ2
κ exp

(
(x− x′)2

2l2

)
, (4.14)

where the hyperparameters are α = {σ2
κ, l}. Here, l is called the characteristic

length scale as it scales the Euclidean distance between the two points x and x′.
Two other kernels are the Matérn 3/2 and the Matérn 5/2 with the form

κ3/2 = σ2
κ

(
1 +
√

3(x− x′)
l

)
exp

(
−
√

3(x− x′)
l

)
, (4.15a)

κ5/2 = σ2
κ

(
1 +
√

5(x− x′)
l

+ 5(x− x′)2

3l2

)
exp

(
−
√

5(x− x′)
l

)
, (4.15b)

where the hyperparameters are α = {σ2
κ, l}. The main difference between the three

kernels are their smoothness properties. The SE kernel is the smoothest and it has
infinitely many continuous derivatives. The κ3/2 and κ5/2 kernels only have one
and two continuous derivatives, respectively. To illustrate the different kernels, we
present some simulated realisations from each in Example 4.5.

4.5 Example: GP kernels
In Figure 4.6, we present realisations from the GP prior (4.12) using three different
kernels with two different length scales. We see that the smoothness of the prior
decreases from top to bottom and this verifies the previous discussion. Also, we
see that the length scale determines the rate of change in the realisations.

90 4 Parameter inference using sampling methods

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

x

f(
x
)

SE, l=1

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

x

f(
x
)

Matérn 5/2, l=1

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

x

f(
x
)

Matérn 3/2, l=1

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

x
f(

x
)

SE, l=3

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

x

f(
x
)

Matérn 5/2, l=3

0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

x

f(
x
)

Matérn 3/2, l=3

Figure 4.6: Realisations simulated from the GP prior using three different
kernels: SE (upper), Matérn 5/2 (middle) and Matérn 3/2 (lower) and length
scales 1 (left) and 3 (right).

4.4 Bayesian optimisation 91

Finally, we need to determine suitable values for the hyperparameters in the kernel.
This can be done using an ML procedure called emperical Bayes (EB), where the
marginal likelihood of the data is optimised with respect to the hyperparameters α.
Note that this is not a pure Bayesian approach as the data is used to determine the
properties of the prior. Nevertheless, it is a popular approach in the GP literature
and therefore we make use of it here. The marginal likelihood can be computed
by a marginalisation,

p(y|x, α) =
∫
p(y|f, x, α)p(f |x, α)df,

where we drop the subscript on y1:k, x1:k and f1:k for brevity. The log-marginal
likelihood can be obtained in closed form using results for the Gaussian distribution
as

log p(y|x, α) ∝ −1
2y
>
[
κ
(
x, x

)
+ σ2

zIN

]−1
y − 1

2 log
∣∣∣κ(x, x)+ σ2

zIN

∣∣∣,
where we have neglected the terms that are independent of α (independent of the
kernel). The gradient of the log-marginal likelihood for αj can be computed using

∂

∂αj
log p(y|x, α) = 1

2 tr
((

ββ> − κ
(
x, x

)−1
) ∂

∂θj
κ
(
x, x

))
, β = κ

(
x, x

)−1
y.

Therefore, the hyperparameters can be estimated by maximising the log-marginal
likelihood using a gradient-based search algorithm (4.1). In Example 4.6, we make
use of the EB method for GP regression using the different kernels discussed in
this section.

4.6 Example: GP regression
Consider the GP regression problem where we would like to recover the underlying
function f(x) given by

f(x) =
[
3 cos(0.5x) + sin(2 + 0.25x)

]2
,

from the noisy measurements y generated by (4.10) with σ2
z = 2. Here, we make

use of the three kernels in (4.14) and (4.15) with an added constant kernel to
account for the non-zero mean of the data. The hyperparameters of the resulting
kernels are estimated using the EB procedure.

In the left part of Figure 4.7, we use N = 5 observations and present the resulting
predictive mean (solid line), the underlying function f(x) (dashed) and the 95%
CI of the predictive distribution (gray area). We see that most of the samples are
located in the left part of the region and as a result the predictive means of the
GPs follows the underlying function.

In the right part of Figure 4.7, we present the same setup but usingN = 15 sampled
points instead. Here, the overall fit is much better and the three GP predictive
distributions recover the underlying function pretty well across the region. As the
underlying function is smooth (have infinity many continuous derivatives), it is
well captured by the SE kernel.

92 4 Parameter inference using sampling methods

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

SE, N=5

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 5/2, N=5

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 3/2, N=5

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

SE, N=15

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 5/2, N=15

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 3/2, N=15

Figure 4.7: The GP regression problem in Example 4.6 using N = 5 (left)
and N = 15 (right) data points with three different kernels. The mean of
the predictive distributions (solid lines) and the corresponding 95% CI (gray
area) are presented together with the true function (dashed line) and the noisy
observations (black dots).

4.4 Bayesian optimisation 93

4.4.2 Acquisition rules
We now proceed by discussing Step (iii) of the BO algorithm, i.e. the acquisition
rule and how it operates. The main idea with this rule is to make use of the
predictive mean and its uncertainty to decide on a good parameter to sample the
objective in during the next iteration. We would like the algorithm to explore
the parameter space to find all the peaks, but still focus the samples around the
maximum to decrease the number of samples required to solve the problem. This
is called the exploration and exploitation trade-off as we would like to explore the
space, but also exploit the information encoded in the surrogate function about
about where the maxima are located.

Using a general acquisition rule AQ(x|Dk), we would like to select xk+1 in Step (iii)
as the maximising argument,

xk+1 = argmax
x∈B

AQ(x|Dk), (4.16)

which in itself is an optimisation problem. We discuss some different methods for
solving this in Paper B and now instead proceed with discussing three different
acquisition rules that are popular and widely used in GPO (Brochu et al., 2010).
These are: the probability of improvement (PI), the expected improvement (EI) and
the upper confidence bound (UCB).

The PI and EI make use of the fact that the predictive distribution is Gaussian
and that we can use the predictive mean and covariance. From this, we can use
the probability density function (PDF) and the cumulative distribution function
(CDF) of the Gaussian distribution to calculate the PI and EI. This can be done
by introducing the highest predicted value of the surrogate function (or the incum-
bent),

µmax = max
xi∈x1:k

µf (xi|Dk), (4.17)

then the PI (Kushner, 1964) can be computed using

PI(x|Dk) = P
(
µf (x|Dk) ≥ µmax + ξ

)
= Φ(Zk), (4.18a)

Zk =
µf (x|Dk)− µmax − ξ

σf (x|Dk) , (4.18b)

where Φ(·) denotes the Gaussian CDF. Here, ξ ≥ 0 denotes a user-defined co-
efficient proposed in Lizotte (2008) to balance the exploitation and exploration
behaviour. From the form of the PI expression, we note that the variable Zk can
be seen as a standard Gaussian random variable. Hence, Zk assumes a (large)
positive value if the predictive mean is close to or larger than µmax. Therefore, we
obtain a value of the PI close to one and it is probable that the GPO algorithm
will sample the objective function in this region during its next iteration. Instead,
we obtain a small value of the PI if the predictive mean is much smaller than µmax
and/or the uncertainty is very large. A small value of the PI results in that it is
unlikely that the GPO algorithm will sample the objective function in this region
during its next iteration.

94 4 Parameter inference using sampling methods

However, the PI only takes into account the probability of an improvement and
not its size. To include this information, we consider the EI rule (Mockus et al.,
1978; Jones et al., 1998) of the form

EI(x|Dk) =
(
µf (x|Dk)− µmax − ξ

)
Φ(Zk) + σf (x|Dk)φ(Zk), (4.19)

where φ(·) denotes the Gaussian PDF. The interpretation of the EI follows in
analogue with the PI rule. If the predictive mean is close to or larger than µmax
then Φ(Zk) assumes a value close to one, which scales the expected gain in the
objective function. Here, we also take the uncertainty into account by the second
term in (4.19). This term can be seen as a scaling of the uncertainty in the
predictive distribution. The scaling is large if Zk is close to zero and decreases
for larger value. This means that we get an extra contribution to the EI if the
predictive mean is close to µmax, which means that it could be interesting to explore
that area. For more information, see Paper B where we review the derivation of
the EI rule.

The third acquisition rule, the UCB rule follows from that we can construct a CI
using the predictive distribution. The intuition for this is that if the predictive
mean is high in an area of the parameter space, the resulting UCB is also large.
Moreover, uncertainty in a region increases the predictive covariance, which also
increases the value of the UCB. By this rule, we therefore explore areas where
peaks have been found and where the uncertainty is large. As the name suggests,
we are interested in the upper bound which for a Gaussian distribution is given by

UCB(x|Dk) = µf (x|Dk) + εσf (x|Dk). (4.20)

Here, ε ≥ 0 denotes a coefficient determining the confidence level of the interval.
As the predictive distribution is Gaussian, we would choose ε = 1.96 to obtain a
95% CI and ε = 2.58 to obtain a 99% CI.

4.7 Example: GPO using different acquisition rules
Consider again the problem in Example 4.6 using the Matérn 5/2 kernel with
N = 3, N = 5 and N = 15 samples. In the left of Figure 4.8, we present the
predictive distributions together with the underlying function as before. In the
right part of the figure, we present the normalised value of the three different
acquisition functions previously discussed: the PI (green), the EI (red) and the
UCB (blue). Here, we use the recommended value of ξ = 0.01 in Lizotte (2008)
and ε = 1.96, resulting in that the UCB corresponds to a 95% CI.

We note that the three acquisition functions have quite different behaviours in
the three situations. In the first situation (upper), the PI and the UCB have two
peaks that are located in the left and right part of the region to exploit the current
information and to explore the region better, respectively. The EI would like to
sample the left end of the region to exploit the current information and to reduce
the uncertainty in that area.

In the second situation (middle), the EI again would like to exploit the current
information by placing a sample near the peak of the predictive mean. The other
two acquisition functions would like to explore the right part of the region better.

4.4 Bayesian optimisation 95

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 5/2, N=3

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 5/2, N=5

0 2 4 6 8 10

0
1

0
2

0
3

0

x

f(
x
)

Matérn 5/2, N=10

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

A
Q

(x
)

PI

UCB

EI

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

A
Q

(x
)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

A
Q

(x
)

Figure 4.8: The GP regression problem in Example 4.6 using N = 3 (upper),
N = 5 (middle) and N = 10 (lower) data points with the Matérn 5/2 kernel.
In the left part, we present the mean of the predictive distributions (solid lines)
and the corresponding 95% CI (gray area) together with the true function
(dashed line) and the noisy observations (black dots). In the right part,
we present normalised values of three different acquisition functions for each
situation.

96 4 Parameter inference using sampling methods

Finally, in the third situation (lower) the three functions agree and would like to
exploit the current peak in the predictive mean. Hence, we conclude that the three
acquisition functions have rather different behaviour and we return in a following
example to investigate how this affects the resulting GPO algorithm.

4.4.3 Gaussian process optimisation
The full procedure for using GPO to estimate the solution to (4.9) is presented
in Algorithm 6. As previously discussed, the user choices include the kernel for
the GP prior and the acquisition function. Again, we remind the reader that the
choice of kernel is crucial for the performance of the algorithm. Furthermore, an
optimisation method is needed to optimise the acquisition function in (4.16). Here,
we make use of a global derivative-free optimisation algorithm called DIRECT
(Jones et al., 1993), but we discuss other possible choices in Paper B.

The GPO algorithm is often initialised by some randomly selected parameters
sampled from the parameter prior. These samples are used to estimate the hyper-
parameters of the GP kernels so that the AQ function can operate. The number
of these samples varies with the dimension of the problem but between 5 and 50
are reasonable numbers for small problems. Also, as the EB procedure is compu-
tationally costly, it is beneficial to estimate the GP hyperparameters every 5th or
10th iteration to save computations.

We end this section by discussing three different examples of where GPO and/or
surrogate function modelling is useful. In Examples 4.8 and 4.9, we use the GPO
algorithm for solving the ML parameter inference problem in an SSM and compare
the different possible choices of AQs. Note that more examples of this application
are found in Papers B and C.

Finally in Example 4.10, we illustrate the use of GPO for creating an input that
maximises the logarithm of determinant of the expected information in an SSM.
Remember that this corresponds to maximising the accuracy of the ML parameter
estimate, which is the objective in input design.

Algorithm 6 Gaussian process optimisation (GPO)
Inputs: κ(·) (GP kernel), AQ (acquisition func.),K (no. iterations) and x1 (init. value).
Output: x̂max (estimate of the maximising argument of (4.9)).

1: Initialise the algorithm by random sampling.
2: for k = 1 to K do
3: Sample f(xk) to obtain the noisy estimate yk.
4: Compute (4.13) to obtain µf (x|Dk).
5: Compute (4.17) to obtain µmax.
6: Compute (4.16) to obtain xk+1.
7: end for
8: Compute the maximiser of µf (x|DK) to obtain the estimate x̂max of (4.9).

4.4 Bayesian optimisation 97

4.8 Example: GPO for ML inference in the GARCH(1,1) model
Consider the ML parameter inference problem in the GARCH(1,1) model (2.3)
using synthetic data with θ = τ and Θ = (0, 0.25) ∈ R. Here, we make use of the
GPO algorithm for solving this problem, by first rewriting (4.10) aŝ̀(θk) = `(θk) + zk, zk ∼ N (0, σ2

z),

which is similar to the CLT established in Section 3.3.4. As a consequence, (4.9)
turns into the maximum likelihood maximisation problem discussed in Section 2.3.
The resulting procedure follows from Algorithm 6 by plugging in the APF from
Algorithm 2 for log-likelihood estimation.

Here, we use an one dimensional parameter vector to be able to compare the three
different AQs discussed in the previous section. We generate T = 250 observations
from the model using {α, β, γ, τ} = {0.1, 0.8, 0.05, 0.3}. We make use of the faPF
with N = 100 to estimate the log-likelihood during each iteration. Here, we use the
recommended value of ξ = 0.01 in Lizotte (2008) and ε = 1.96 for the acquisition
rule.

In Figure 4.9, we present the procedure at five consecutive iterations using three
different acquisition rules. The procedure is initialised with two randomly selected
samples of the log-likelihood, which are not shown in the figure. Here, we see that
the behaviour of the three acquisition rules are rather different but the resulting
mode of the log-likelihood is almost the same. The parameter estimate is obtained
around θ̂ML = 0.12 for all three choices of the acquisition rule. Note, that this
small toy example is probably not complex enough to show the real differences
between the acquisition rules. Remember, that more extensive evaluations by
Lizotte (2008) show that the EI rule is often a good choice in many different
applications.

98 4 Parameter inference using sampling methods

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.5

1
.0

1
.5

P
I

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
I

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
I

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
I

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P
I

0.00 0.10 0.20

−
2

4
0

−
2

3
0

−
2

2
0

−
2

1
0

α

L
o

g
−

lik
e

lih
o

o
d

0
1

0
2

0
3

0
4

0
5

0
E

I

0.00 0.10 0.20

−
2

4
0

−
2

3
0

−
2

2
0

−
2

1
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.4

0
.8

1
.2

E
I

0.00 0.10 0.20

−
2

4
0

−
2

3
0

−
2

2
0

−
2

1
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.5

1
.0

1
.5

E
I

0.00 0.10 0.20

−
2

4
0

−
2

3
0

−
2

2
0

−
2

1
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

E
I

0.00 0.10 0.20

−
2

4
0

−
2

3
0

−
2

2
0

−
2

1
0

α

L
o

g
−

lik
e

lih
o

o
d

0
.0

0
.2

0
.4

0
.6

0
.8

E
I

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

−
1

8
5

−
1

7
5

−
1

6
5

−
1

5
5

U
C

B

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

−
3

0
0

−
2

5
0

−
2

0
0

−
1

5
0

U
C

B

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

−
3

0
0

−
2

5
0

−
2

0
0

−
1

5
0

U
C

B

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

−
2

8
0

−
2

4
0

−
2

0
0

−
1

6
0

U
C

B

0.00 0.10 0.20

−
3

0
0

−
2

6
0

−
2

2
0

α

L
o

g
−

lik
e

lih
o

o
d

−
2

8
0

−
2

4
0

−
2

0
0

−
1

6
0

U
C

B

Figure 4.9: Five steps of the GPO algorithm for ML parameter inference in
Example 4.8 using three different acquisition rules: PI (left), EI (center), UCB
(right). The predictive mean and the resulting value of the acquisition rule
are presented with coloured solid and dotted lines, respectively. The black
dots and gray areas indicate the samples obtained from the log-likelihood and
the 95% predictive CI, respectively.

4.4 Bayesian optimisation 99

4.9 Example: GPO for ML inference in the earthquake count model
We return to the setting considered in Example 4.9 for ML parameter inference
in the earthquake count model (2.6) using the real-world data discussed in Sec-
tion 2.2.3. Here, the parameter vector is given by θ = {φ, σv, β} and the parameter
space is Θ = (0, 1)×(0, 1)×(10, 20) ∈ R3. We make use of the bPF with N = 1 000
particles to estimate the log-likelihood. The procedure is initialised with 50 sam-
ples from the log-likelihood at randomly selected parameters and continues with
150 iterations of the GPO algorithm.

In Figure 4.10, we present the current ML parameter estimate at each iteration of
the GPO algorithm. We see that the parameter estimates and the predicted log-
likelihood stabilise after about 150 iterations. This is rather fast compared with
e.g. SPSA which in Paper B requires an order of magnitude more samples of the log-
likelihood. The final parameter estimate is obtained as θ̂ML = {0.88, 0.15, 17.65}.
This shows that the underlying intensity is rather slowly varying and that the
mean number of major earthquakes each year is 17.65.

4.10 Example: Input design in the LGSS model using GPO
Consider the LGSS model (2.2) with the parameters θ? = {0.5, 1, 0.1, 0.1}, T = 250
and an input u1:T generated by

ut =

−1, with probability (1− α1)(1− α2),
0, with probability α1,

1, with probability (1− α1)α2,

for t = 1, . . . , T . Here, the aim is to find the input parameters α? = {α?1, α?2} such
that

α? = argmax
α∈[0,1]×[0,1]

log det
(
Î(θ?, u1:T (α))

)
,

where Î(θ?, u1:T (α)) denotes the estimated expected information matrix using the
input u1:T (α) generated using the input parameters α. We make use of the second
formulation in (2.13) to estimate the expected information matrix. This is done
by first estimating the score function with the FL smoother in Algorithm 3 for
M = 100 different data realisations from the model using the same input u1:T and
the faPF with N = 100. Finally, the expected information matrix is estimated
using the sample covariance matrix of the score function estimates.

We integrate this problem into the GPO procedure outlined in Algorithm 6, where
the estimation of the expected information matrix is Step (i). Furthermore, we
make use of the EI as the acquisition rule and initialise the procedure with 10
uniform random samples for α. In Figure 4.11, we present the resulting predictive
mean for the input parameters and the sampling points for the algorithm. The
input parameter estimates are obtained as α̂ = {0.26, 0.50}. We see that the
algorithm converges quickly to the estimates, which this shows that the GPO
algorithm can be a useful alternative in input design. This as, it requires a limited
number of computationally costly estimates of the expected information matrix.

100 4 Parameter inference using sampling methods

50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

φ̂

50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

σ̂
v

50 100 150 200

1
0

1
2

1
4

1
6

1
8

2
0

Iteration

β̂

50 100 150 200

−
4

2
0

−
4

0
0

−
3

8
0

−
3

6
0

−
3

4
0

−
3

2
0

Iteration

lo
g

−
lik

e
lih

o
o

d
 e

s
ti
m

a
te

Figure 4.10: The ML parameter estimate and the resulting predicted log-
likelihood at each iteration of the GPO algorithm in Example 4.9.

4.4 Bayesian optimisation 101

α1

α
2

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

0 10 20 30 40 50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Iteration

S
a

m
p

le
 p

o
in

t

α1

α2

0 20 40 60 80 100

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Time

In
p

u
t

Figure 4.11: Upper: the estimated mean of the expected information matrix
as a function of the input parameters. Middle: the sampling points of the
GPO algorithm. Lower: a realisation of the estimated optimal input.

5
Concluding remarks and future work

In this chapter, we give a summary of the contributions in the papers included in
this thesis and discuss some avenues for future work.

5.1 Summary of the contributions
Broadly speaking, the main contributions of this thesis are mainly within two areas.
The first contribution is to develop new methods and improve existing methods for
efficient parameter inference in SSMs. Here, we are concerned with computational
efficiency, which means that we would like to reduce the number of particles or
iterations needed to reach a certain accuracy in the parameter estimates. This
contribution is contained within Papers A-C. The second contribution is to make
use of SMC and MCMC to extend existing methods for parameter inference and
input design to nonlinear problems. This contribution is discussed in Papers D
and E.

In Paper A, we develop a novel PMCMC algorithm that combines the PMH al-
gorithm from Section 4.3 with the Langevin dynamics discussed in Section 4.2.2.
The key idea here is to include the particle system within the proposal of the
PMH algorithm. With this information, we can make use of the FL smoother
from Section 3.4.2 to estimate the score function and the observed information
matrix. These quantities are then used to construct the PMH1 and PMH2 al-
gorithms in Paper A in analogue with the MH1 and MH2 algorithms discussed
in Section 4.2.2. The resulting algorithm is efficient as it explores the posterior
distribution better and this results in a higher ESS compared with the PMH0
algorithm. Furthermore, the added information makes the algorithm invariant to
affine transformations of the parameter vector and reduces the length of the the

103

104 5 Concluding remarks and future work

burn-in. As a consequence, the proposed algorithm require less iterations than the
PMH0 algorithm in some settings, which makes it more computationally efficient
as the computational complexity of the two algorithm are the same.

In Paper B, we develop a novel algorithm for ML parameter inference by combining
ideas from GPO in Section 4.4 with log-likelihood estimation using the APF from
Section 3.3.4. The resulting algorithm is computationally efficient as it requires less
samples from the log-likelihood compared with some other optimisation methods.
As these estimates are computationally costly to obtain this results in an overall
decreased computational cost. Compared with SPSA, the gain is about one order
of magnitude, see Paper B for a comparison on the HWSV model. In Paper C,
we extend the combination of GPO and SMC to parameter inference in nonlinear
SSMs with intractable likelihoods. Computationally costly ABC methods are used
to approximate the intractable likelihood. Therefore, there could be substantial
gains in using this algorithm for inference in this type of models.

In Paper D, we develop a novel algorithm for input design in nonlinear SSMs, which
can handle amplitude constraints on the input. The proposed method combines
results from Valenzuela et al. (2013) with SMC from Section 3.4.2 for estimating
the expected information matrix. In Paper E, we propose two algorithms for
parameter inference in ARX models with Student-t innovations which includes
automatic model order selection by two different methods. These methods makes
use of the MH algorithm discussed in Section 4.2 with reversible jump and the
Gibbs sampler together with sparseness priors.

5.2 Outlook and future work
In this section, we summarise some ideas for future work and extensions of the
contributions presented within this thesis. We discuss three different areas; the
PMH-algorithm, the GPO-SMC algorithm and input design in SSMs.

5.2.1 Particle Metropolis-Hastings
The proposed contributions to the PMH algorithm are mainly methodological
developments of existing methods. Therefore, it would be interesting to examine
the theoretical properties of the PMH1 and the PMH2 algorithms. This includes
questions regarding the convergence rate of the algorithm and how its properties
scale with the dimension of the parameter space. Similar analysis has previously
been done for MH0 (Roberts et al., 1997), MH1 (Roberts and Rosenthal, 1998)
and PMH0 (Sherlock et al., 2013). A possible first step for the PMH analysis
is to consider the situation where the number of observations is large. By the
discussion in Section 2.4, we know that the Bayesian CLT would give a roughly
Gaussian posterior, which simplifies the analysis.

Further methodological developments could also be interesting in the PMCMC
framework. This includes the development of adaptive PMH1 and PMH2, which
automatically determines suitable step sizes and the number of particles. It could

5.2 Outlook and future work 105

also be possible to relax the reversibility constraint of the Markov chain during
the burn-in phase of the algorithm. This could decrease the hitting time of the
posterior mode by the Markov chain. The adaptive mechanism could then decide
when the chain has reached the mode and then turn on the reversibility condition,
so that the chain admits the target as its stationary distribution. Relevant work
for this idea is found in Andrieu and Thoms (2008), Peters et al. (2010) and Pitt
et al. (2012). Another approach to reduce the length of the burn-in is to make
use of GPO to estimate the location of the posterior mode in a pilot run. This is
similar to the work by Owen et al. (2014), where the authors make use of some
pilot runs of the ABC algorithm to initialise the PMH0 algorithm in SSMs with
intractable likelihoods.

Also, it would be interesting to develop a particle HMC algorithm as suggested
in the discussions (Doucet et al., 2011) following Girolami and Calderhead (2011).
The challenge with this idea is how to handle that multiple APFs are run within
each PMH iteration, which might require some additional developments to the
PMCMC framework. Better particle smoothers could also be useful as they could
improve the estimates of the score function and the information matrix. This
results in that larger step lengths can be used in the PMH2 algorithm and could
lead to even larger increases in mixing of the Markov chain.

Online methods for Bayesian inference would also be of great interest, especially
for the many big data problems that are likely to be faced in the future. Also,
graphical processing units (GPUs) and other multicore architectures can be used to
decrease the computational cost as some parts of the SMC and MCMC algorithms
are possible to run in parallel. Interested readers are referred to Beam et al.
(2014), Neiswanger et al. (2013), Henriksen et al. (2012) and Murray (2012) for
more information.

5.2.2 Gaussian process optimisation using the particle filter
As we have demonstrated in this thesis, the performance of the GPO algorithm
depends on the kernel function in the GP prior and the choice of acquisition
function. Therefore it would be interesting to develop new acquisition functions
that could make use of ideas from sparse GPs, Newton methods and/or proximal
point algorithms (Rasmussen and Williams, 2006; Nocedal and Wright, 2006). The
main challenge is to construct a rule that keeps exploring the objective function,
but still keeps the fast convergence that we have illustrated in the examples in
Section 4.4.3 and in Papers B and C.

Another possible improvement to the algorithm is to remove the bias in the log-
likelihood estimate. This could be done by the bias compensation discussed in
Example 3.4. Also, it would be interesting to develop online methods for this al-
gorithm, perhaps by using some kind of stochastic approximation scheme. Finally,
we think that there are many interesting applications of GP models for estimat-
ing the score and information matrix for an SSM. As these are computationally
costly to evaluate with good accuracy, perhaps the ideas from probabilistic numer-
ics could be helpful. This is an emerging field in machine learning, where GPs also

106 5 Concluding remarks and future work

are used to estimate derivatives and integrals as well as to solve ordinary differ-
ential equations. For more information, see Hennig (2013), Osborne et al. (2012),
Osborne (2010) and Boyle (2007).

5.2.3 Input design in SSMs
The main drawback of the input design method proposed in Paper D is that the
expected information matrix is computationally costly to evaluate. It is possible
to make a perfect parallel implementation of this method to reduce the computa-
tional cost. However, it would be even more interesting to develop the idea from
Example 4.10 and make use of GPO for input design. This could be useful when
considering that GPO does not require many evaluations of the objective function,
which corresponds to estimates of the expected information matrix.

Also, it would be interesting to consider methods that infer the parameters of the
model at the same time as the optimal input. This would relax the unrealistic
assumption that we need to know the true parameters to be able to construct an
optimal input. There are mainly three approaches for solving this problem. The
first is to pose the problem in a robust optimisation setting and only assume that
the true parameter is located within some set. By this construction, the resulting
optimal input would be an average (in some sense) over this set.

The second approach is to construct a sequential algorithm that first infer the
parameters and then the optimal input. This is repeated over many iterations by
exciting the system with the input constructed in the last iteration. However, it is
difficult to prove that this approach would converge to the true optimal input and
the true parameters. Finally, we could pose this problem in a Bayesian manner
and marginalise over the parameters of the model. The resulting optimal input
would therefore be a marginalisation over the parameter posterior. Therefore, we
would not need to know the true parameters of the system. See Müller et al. (2007),
Kuck et al. (2006) and Bubeck and Cesa-Bianchi (2012) for more information.

5.3 Source code and data
Source code written in Python and R for recreating most of the examples in Part I
are available from the author’s homepages at: http://users.isy.liu.se/en/
rt/johda87/ and http://code.johandahlin.com/. Furthermore, source code
for recreating some of the numerical illustrations from Papers A, B, C and E are
also available from the same homepages. The source code and data are provided
under the MIT license with no guaranteed support and no responsibility for its
use and function.

http://users.isy.liu.se/en/rt/johda87/
http://users.isy.liu.se/en/rt/johda87/
http://code.johandahlin.com/

Bibliography

M. Adolfson, S. Laséen, J. Lindé, and M. Villani. RAMSES – a new general
equilibrium model for monetary policy analysis. Sveriges Riksbank Economic
Review, 2, 2007a.

M. Adolfson, S. Laséen, J. Lindé, and M. Villani. Bayesian estimation of an open
economy DSGE model with incomplete pass-through. Journal of International
Economics, 72(2):481–511, 2007b.

M. Adolfson, S. Laséen, L. Christiano, M. Trabandt, and K. Walentin. RAMSES
II – Model Description. Occasional Paper Series, 12, 2013.

G. Amisano and O. Tristani. Euro area inflation persistence in an estimated
nonlinear DSGE model. Journal of Economic Dynamics and Control, 34(10):
1837–1858, 2010.

S. An and F. Schorfheide. Bayesian analysis of DSGE models. Econometric reviews,
26(2-4):113–172, 2007.

B. D. O. Anderson and J. B. Moore. Optimal filtering. Courier Publications, 2005.

C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte
Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Com-
puting, 18(4):343–373, 2008.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 72(3):269–342, 2010.

A. L. Beam, S. K. Ghosh, and J. Doyle. Fast Hamiltonian Monte Carlo Using
GPU Computing. Pre-print, 2014. arXiv:1402.4089v1.

M. A. Beaumont. Estimation of population growth or decline in genetically moni-
tored populations. Genetics, 164(3):1139–1160, 2003.

J. O. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

107

108 Bibliography

M. J. Betancourt and M. Girolami. Hamiltonian Monte Carlo for Hierarchical
Models. Pre-print, 2013. arXiv:1312.0906v1.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
USA, 2006.

T. Björk. Arbitrage theory in continuous time. Oxford University Press, 2004.

F. Black and M. Scholes. The pricing of options and corporate liabilities. The
Journal of Political Economy, pages 637–654, 1973.

T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics, 31(3):307–327, 1986.

P. Boyle. Gaussian processes for regression and optimisation. PhD thesis, Victoria
University of Wellington, 2007.

M. Briers, A. Doucet, and S. Maskell. Smoothing algorithms for state-space models.
Annals of the Institute of Statistical Mathematics, 62(1):61–89, 2010.

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierar-
chical reinforcement learning. Pre-print, 2010. arXiv:1012.2599v1.

P. J. Brockwell and R. A. Davis. Introduction to time series and forecasting.
Springer, 2002.

S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends in Machine Learning,
5(1):1–122, 2012.

P. Bunch and S. Godsill. Improved particle approximations to the joint smoothing
distribution using Markov Chain Monte Carlo. IEEE Transactions on Signal
Processing, 61(4):956–963, 2013.

D. Burke, A. Ghosh, and W. Heidrich. Bidirectional importance sampling for
direct illumination. In Proceedings of the 16th Eurographics Symposium on
Rendering Techniques, pages 147–156, Konstanz, Germany, June 2005.

O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models.
Springer, 2005.

O. Cappé, S. J Godsill, and E. Moulines. An overview of existing methods and
recent advances in sequential Monte Carlo. Proceedings of the IEEE, 95(5):
899–924, 2007.

C. M. Carvalho, M. S. Johannes, H. F. Lopes, and N. G. Polson. Particle learning
and smoothing. Statistical Science, 25(1):88–106, 2010.

R. Casarin. Bayesian inference for generalised Markov switching stochastic volatil-
ity models, 2004. CEREMADE Journal Working Paper 0414.

G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 2 edition, 2001.

Bibliography 109

K. S. Chan and J. Ledolter. Monte Carlo EM estimation for time series models
involving counts. Journal of the American Statistical Association, 90(429):242–
252, 1995.

T. Chen, E. B. Fox, and C. Guestrin. Stochastic Gradient Hamiltonian Monte
Carlo. Pre-print, 2014. arXiv:1402.4102v1.

S. Chib, F. Nardari, and N. Shephard. Markov chain Monte Carlo methods for
stochastic volatility models. Journal of Econometrics, 108(2):281–316, 2002.

N. Chopin, P. E. Jacob, and O. Papaspiliopoulos. SMC2: an efficient algorithm
for sequential analysis of state space models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 75(3):397–426, 2013.

R. Cont. Empirical properties of asset returns: stylized facts and statistical issues.
Quantitative Finance, 1:223–236, 2001.

J-M. Cornuet, J-M. Marin, A. Mira, and C. P. Robert. Adaptive Multiple Impor-
tance Sampling. Pre-print, 2011. arXiv:0907.1254v5.

N. Cressie. Statistics for spatial data. Wiley, 1993.

D. Crisan and A. Doucet. A survey of convergence results on particle filtering
methods for practitioners. IEEE Transactions on Signal Processing, 50(3):736–
746, 2002.

J. Dahlin and F. Lindsten. Particle filter-based Gaussian process optimisation for
parameter inference. In Proceedings of the 19th IFAC World Congress, Cape
Town, South Africa, August 2014. (accepted for publication).

J. Dahlin and P. Svenson. A Method for Community Detection in Uncertain Net-
works. In Proceedings of 2011 European Intelligence and Security Informatics
Conference, Athens, Greece, August 2011.

J. Dahlin and P. Svenson. Ensemble approaches for improving community detec-
tion methods. Pre-print, 2013. arXiv:1309.0242v1.

J. Dahlin, F. Johansson, L. Kaati, C. Mårtensson, and P. Svenson. A Method for
Community Detection in Uncertain Networks. In Proceedings of International
Symposium on Foundation of Open Source Intelligence and Security Informatics
2012, Istanbul, Turkey, August 2012a.

J. Dahlin, F. Lindsten, T. B. Schön, and A. Wills. Hierarchical Bayesian ARX
models for robust inference. In Proceedings of the 16th IFAC Symposium on
System Identification (SYSID), Brussels, Belgium, July 2012b.

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis Hastings using
Langevin dynamics. In Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May
2013a.

J. Dahlin, F. Lindsten, and T. B. Schön. Inference in Gaussian models with missing
data using Equalisation Maximisation. Pre-print, 2013b. arXiv:1308.4601v1.

110 Bibliography

J. Dahlin, F. Lindsten, and T. B. Schön. Second-order particle MCMC for Bayesian
parameter inference. In Proceedings of the 19th IFAC World Congress, Cape
Town, South Africa, August 2014a. (accepted for publication).

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis-Hastings using gra-
dient and Hessian information. Pre-print, 2014b. arXiv:1311.0686v2.

J. Dahlin, T. B. Schön, and M. Villani. Approximate inference in state space mod-
els with intractable likelihoods using Gaussian process optimisation. Technical
Report LiTH-ISY-R-3075, Department of Electrical Engineering, Linköping Uni-
versity, Linköping, Sweden, April 2014c.

P. Debevec. Rendering synthetic objects into real scenes: bridging traditional and
image-based graphics with global illumination and high dynamic range photog-
raphy. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, pages 189–198, Orlando, FL, USA, jul 1998. ACM.

P. Del Moral. Feynman-Kac Formulae - Genealogical and Interacting Particle
Systems with Applications. Probability and its Applications. Springer, 2004.

P. Del Moral. Mean field simulation for Monte Carlo integration. CRC Press,
2013.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–
436, 2006.

P. Del Moral, A. Doucet, and S. Singh. Forward smoothing using sequential Monte
Carlo. Pre-print, 2010. arXiv:1012.5390v1.

M. Del Negro and F. Schorfheide. Priors from General Equilibrium Models for
VARS. International Economic Review, 45(2):643–673, 2004.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

R. Douc and O. Cappé. Comparison of resampling schemes for particle filtering. In
Proceedings of the 4th International Symposium on Image and Signal Processing
and Analysis (ISPA), pages 64–69, Zagreb, Croatia, September 2005.

R. Douc, E. Moulines, and D. S Stoffer. Nonlinear Time Series: theory, methods
and applications with R examples. CRC Press, 2014.

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of
Nonlinear Filtering. Oxford University Press, 2011.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

A. Doucet, P. Jacob, and A. M. Johansen. Discussion on Riemann manifold

Bibliography 111

Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Sta-
tistical Society: Series B Statistical Methodology, 73(2), p 162, 2011.

A. Doucet, M. K. Pitt, and R. Kohn. Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator. arXiv.org,
arXiv:1210.1871, October 2012.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

C. Dubarry and R Douc. Particle approximation improvement of the joint
smoothing distribution with on-the-fly variance estimation. Pre-print, 2011.
arXiv:1107.55241.

E. Ehrlich, A. Jasra, and N. Kantas. Static Parameter Estimation for ABC Ap-
proximations of Hidden Markov Models. Pre-print, 2012. arXiv:1210.4683v1.

R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the Economet-
ric Society, pages 987–1007, 1982.

P. Fearnhead, D. Wyncoll, and J. Tawn. A sequential smoothing algorithm with
linear computational cost. Biometrika, 97(2):447–464, 2010.

J. Fernández-Villaverde and J. F. Rubio-Ramírez. Estimating macroeconomic
models: A likelihood approach. The Review of Economic Studies, 74(4):1059–
1087, 2007.

R. A. Fisher. Theory of statistical estimation. Mathematical Proceedings of the
Cambridge Philosophical Society, 22(05):700–725, 1925.

T. Flury and N. Shephard. Bayesian inference based only on simulated likelihood:
particle filter analysis of dynamic economic models. Econometric Theory, 27(5):
933–956, 2011.

K. Fokianos, A. Rahbek, and D. Tjøstheim. Poisson autoregression. Journal of
the American Statistical Association, 104(488):1430–1439, 2009.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin.
Bayesian data analysis. Chapman & Hall/CRC, 3 edition, 2013.

S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721–741, 1984.

A. Ghosh, A. Doucet, and W. Heidrich. Sequential sampling for dynamic environ-
ment map illumination. In Proceedings of the 17th Eurographics conference on
Rendering Techniques, pages 115–126, Nicosia, Cyprus, June 2006.

P. Giordani and R. Kohn. Adaptive independent Metropolis-Hastings by fast
estimation of mixtures of normals. Journal of Computational and Graphical
Statistics, 19(2):243–259, 2010.

112 Bibliography

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 73(2):1–37, 2011.

P. Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer,
2004.

S. J. Godsill, A. Doucet, and M. West. Monte Carlo smoothing for nonlinear time
series. Journal of the American Statistical Association, 99(465):156–168, March
2004.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings of Radar
and Signal Processing, 140(2):107–113, 1993.

A. G. Gray. Bringing tractability to generalized n-body problems in statistical
and scientific computation. PhD thesis, Carnegie Mellon University, 2003.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

E. Hecht. Optics. Pearson, 4 edition, 2013.

P. Hennig. Fast probabilistic optimization from noisy gradients. In Proceedings
of the 30th International Conference on Machine Learning, Atlanta, GA, USA,
jun 2013.

S. Henriksen, A. Wills, T. B. Schön, and B. Ninness. Parallel implementation of
particle MCMC methods on a GPU. In Proceedings of the 16th IFAC Sympo-
sium on System Identification (SYSID), Brussels, Belgium, July 2012.

J. D. Hol, T. B. Schön, and F. Gustafsson. On resampling algorithms for particle
filters. In Proceedings of the Nonlinear Statistical Signal Processing Workshop,
Cambridge, UK, September 2006.

J. Hull. Options, Futures, and other Derivatives. Pearson, 7 edition, 2009.

J. Hull and A. White. The pricing of options on assets with stochastic volatilities.
The Journal of Finance, 42(2):281–300, 1987.

D. Hultqvist, J. Roll, F. Svensson, J. Dahlin, and T. B. Schön. Detection and
positioning of overtaking vehicles using 1D optical flow. In Proceedings of the
IEEE Intelligent Vehicles (IV) Symposium, Dearborn, MI, USA, June 2014.
(accepted for publication).

E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility
models with fat-tails and correlated errors. Journal of Econometrics, 122(1):185–
212, 2004.

A. H. Jazwinski. Stochastic processes and filtering theory, volume 63. Academic
press, 1970.

Bibliography 113

M. Johannes and N. Polson. MCMC Methods for Continuous-time Financial
Econometrics. In Y. Ait-Sahalia and L. Hansen, editors, Handbook of Finan-
cial Econometrics, Vol. 1: Tools and Techniques, volume 2, pages 1–72. North-
Holland, 2009.

D. R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization with-
out the Lipschitz constant. Journal of Optimization Theory and Applications,
79(1):157–181, 1993.

D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13(4):455–492,
1998.

T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall, Upper
Saddle River, NJ, USA, 2000.

N. Kantas, A. Doucet, S.S. Singh, and J.M. Maciejowski. An overview of sequential
monte carlo methods for parameter estimation in general state-space models. In
IFAC Symposium on System Identification (SYSID), Saint-Malo, France, July
2009.

M. J. Keeling and P. Rohani. Modeling infectious diseases in humans and animals.
Princeton University Press, 2008.

S. Kim, N. Shephard, and S. Chib. Stochastic volatility: likelihood inference
and comparison with ARCH models. The Review of Economic Studies, 65(3):
361–393, 1998.

G. Kitagawa and S. Sato. Monte Carlo smoothing and self-organising state-space
model. In A. Doucet, N. de Fretias, and N. Gordon, editors, Sequential Monte
Carlo methods in practice, pages 177–195. Springer, 2001.

M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and D. Lang. Fast
particle smoothing: if I had a million particles. In Proceedings of the 23rd
International Conference on Machine Learning, Pittsburgh, USA, June 2006.

P. E. Kloeden and E. Platen. Numerical solution of stochastic differential equations,
volume 23. Springer, 4 edition, 1992.

J. Kronander and T. B. Schön. Robust auxiliary particle filters using multiple
importance sampling. In Proceedings of the 2014 IEEE Statistical Signal Pro-
cessing Workshop (SSP), Gold Coast, Australia, July 2014. (accepted for publi-
cation).

J. Kronander, J. Dahlin, D. Jönsson, M. Kok, T. B. Schön, and J. Unger. Real-time
Video Based Lighting Using GPU Raytracing. In Proceedings of the 2014 Eu-
ropean Signal Processing Conference (EUSIPCO), Lisbon, Portugal, September
2014a. (submitted, pending review).

114 Bibliography

J. Kronander, T. B. Schön, and J. Dahlin. Backward sequential Monte Carlo
for marginal smoothing. In Proceedings of the 2014 IEEE Statistical Signal
Processing Workshop (SSP), Gold Coast, Australia, July 2014b. (accepted for
publication).

H. Kuck, N. de Freitas, and A. Doucet. SMC samplers for Bayesian optimal non-
linear design. In Proceedings of the 2006 Nonlinear Statistical Signal Processing
Workshop, pages 99–102, Cambridge, UK, sep 2006.

H. J. Kushner. A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering, 86(1):
97–106, 1964.

R. Langrock. Some applications of nonlinear and non-Gaussian state–space mod-
elling by means of hidden Markov models. Journal of Applied Statistics, 38(12):
2955–2970, 2011.

R. Langrock and W. Zucchini. Hidden Markov models with arbitrary state dwell-
time distributions. Computational Statistics & Data Analysis, 55(1):715–724,
2011.

E. L. Lehmann and G. Casella. Theory of point estimation. Springer, 1998.

F. Lindsten. An efficient stochastic approximation EM algorithm using conditional
particle filters. In Proceedings of the 38th International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

F. Lindsten and T. B. Schön. Backward simulation methods for Monte Carlo
statistical inference. In Foundations and Trends in Machine Learning, volume 6,
pages 1–143, August 2013.

J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2008.

S. Livingstone and M. Girolami. Information-geometric Markov Chain Monte
Carlo methods using Diffusions. Pre-print, 2014. arXiv:1403.7957v1.

D. J. Lizotte. Practical Bayesian optimization. PhD thesis, University of Alberta,
2008.

L. Ljung. System identification: theory for the user. Prentice Hall, 1999.

T. A. Louis. Finding the observed information matrix when using the EM algo-
rithm. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 44(02):226–233, 1982.

A. Marshall. The use of multi-stage sampling schemes in Monte Carlo simulations.
In M. Meyer, editor, Symposium on Monte Carlo Methods, pages 123–140. Wiley,
1956.

G. Matheron. Principles of geostatistics. Economic Geology, 58(8):1246–1266,
1963.

Bibliography 115

G. J. McLachlan and T. Krishnan. The EM algorithm and extensions. Wiley-
Interscience, second edition, 2008.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953.

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge
University Press, 2009.

T. P. Minka. Expectation propagation for approximate Bayesian inference. In Pro-
ceedings of the 17th conference on Uncertainty in Artificial Intelligence, pages
362–369, Seattle, WA, USA, aug 2001.

S. Mitra. A review of volatility and option pricing. International Journal of
Financial Markets and Derivatives, 2(3):149–179, 2011.

J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for
seeking the extremum. In L. C. W. Dixon and G. P. Szego, editors, Toward
Global Optimization, pages 117–129. North-Holland, 1978.

P. Müller, D. A. Berry, A. P. Grieve, M. Smith, and M. Krams. Simulation-based
sequential Bayesian design. Journal of Statistical Planning and Inference, 137
(10):3140–3150, 2007.

K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press,
2012.

L. Murray. GPU acceleration of the particle filter: The Metropolis resampler.
Pre-print, 2012. arXiv:1202.6163v1.

C. A. Naesseth. Nowcasting using Microblog Data. Bachelor thesis, Linköping
University, sep 2012. LiTH-ISY-EX-ET-12/0398.

R. M. Neal. MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman,
G. Jones, and X-L. Meng, editors, Handbook of Markov Chain Monte Carlo.
Chapman & Hall/ CRC Press, June 2010.

W. Neiswanger, C. Wang, and E Xing. Asymptotically Exact, Embarrassingly
Parallel MCMC. Pre-print, 2013. arXiv:1311.4780v2.

B. Ninness and S. Henriksen. Bayesian system identification via Markov chain
Monte Carlo techniques. Automatica, 46(1):40–51, 2010.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 2 edition, 2006.

J. Nolan. Stable distributions: models for heavy-tailed data. Birkhauser, 2003.

B. Øksendal. Stochastic differential equations. Springer, 6 edition, 2010.

J. Olsson, O. Cappé, R. Douc, and E. Moulines. Sequential Monte Carlo smooth-
ing with application to parameter estimation in nonlinear state space models.
Bernoulli, 14(1):155–179, 2008.

116 Bibliography

M. Osborne. Bayesian Gaussian Processes for Sequential Prediction, Optimisation
and Quadrature. PhD thesis, University of Oxford, 2010.

M. A. Osborne, R. Garnett, S. J. Roberts, C. Hart, S. Aigrain, and N. Gibson.
Bayesian quadrature for ratios. In Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 832–840,
La Palma, Canary Islands, SP, apr 2012.

J. Owen, D. J. Wilkinson, and C. S. Gillespie. Scalable Inference for Markov
Processes with Intractable Likelihoods. Pre-print, 2014. arXiv:1403.6886v1.

G. W. Peters, G. R. Hosack, and K. R. Hayes. Ecological non-linear state space
model selection via adaptive particle Markov chain Monte Carlo. Pre-print, 2010.
arXiv:1005.2238v1.

M. Pharr and G. Humphreys. Physically based rendering: From theory to imple-
mentation. Morgan Kaufmann, 2010.

M. K. Pitt. Smooth Particle Filters for Likelihood Evaluation and Maximisation.
Technical Report 651, Department of economics, University of Warwick, Coven-
try, UK, July 2002. Warwick economic research papers.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

M. K. Pitt, R. S. Silva, P. Giordani, and R. Kohn. Auxiliary particle filtering within
adaptive Metropolis-Hastings sampling. Pre-print, 2010. arXiv:1006.1914v1.

M. K. Pitt, R. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov
chain Monte Carlo simulation methods based on the particle filter. Journal of
Econometrics, 171(2):134–151, 2012.

G. Poyiadjis, A. Doucet, and S. S. Singh. Particle approximations of the score and
observed information matrix in state space models with application to parameter
estimation. Biometrika, 98(1):65–80, 2011.

C. R. Rao. Linear Statistical Inference and Its Applications. Wiley, 1965.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear
dynamic systems. AIAA Journal, 3(8):1445–1450, August 1965.

C. P. Robert. The Bayesian choice. Springer, 2007.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2 edition,
2004.

G. O. Roberts and J. S. Rosenthal. Optimal Scaling of Discrete Approximations to
Langevin Diffusions. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 60(1):255–268, 1998.

Bibliography 117

G. O. Roberts, A. Gelman, andW. R. Gilks. Weak convergence and optimal scaling
of random walk Metropolis algorithms. The Annals of Applied Probability, 7
(1):110–120, 1997.

S. M. Ross. Simulation. Academic Press, 5 edition, 2012.

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent
Gaussian models by using integrated nested Laplace approximations. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 71(2):319–392,
2009.

T. B. Schön, A. Wills, and B. Ninness. System identification of nonlinear state-
space models. Automatica, 47(1):39–49, 2011.

C. Sherlock, A. H. Thiery, G. O. Roberts, and J. S. Rosenthal. On the effi-
cency of pseudo-marginal random walk Metropolis algorithms. Pre-print, 2013.
arXiv:1309.7209v1.

R. H. Shumway and D. S. Stoffer. Time series analysis and its applications.
Springer, 3 edition, 2010.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of
Machine Learning Algorithms. In Advances in Neural Information Processing
Systems 25 (NIPS 2012), pages 2951–2959. Curran Associates, Inc., 2012.

J. C. Spall. A stochastic approximation technique for generating maximum likeli-
hood parameter estimates. In American Control Conference, pages 1161–1167,
Minneapolis, MN, USA, June 1987.

R. Srikanthan and T. A. McMahon. Stochastic generation of annual, monthly
and daily climate data: A review. Hydrology and Earth System Sciences, 5(4):
653–670, 1999.

E. Taghavi, F. Lindsten, L. Svensson, and T. B. Schön. Adaptive stopping for
fast particle smoothing. In Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May
2013.

L. Tierney. Markov chains for exploring posterior distributions. The Annals of
Statistics, 22(4):1701–1728, 1994.

R. S Tsay. Analysis of financial time series. John Wiley & Sons, 2 edition, 2005.

J. Unger, J. Kronander, P. Larsson, S. Gustavson, J. Löw, and A. Ynnerman.
Spatially varying image based lighting using HDR-video. Computers & graphics,
37(7):923–934, 2013.

P. E. Valenzuela, C. R. Rojas, and H. Hjalmarsson. Optimal input design for
dynamic systems: a graph theory approach. In Proceedings of the IEEE Con-
ference on Decision and Control (CDC), Florence, Italy, dec 2013.

P. E. Valenzuela, J. Dahlin, C. R. Rojas, and T. B. Schön. A graph/particle-based
method for experiment design in nonlinear systems. In Proceedings of the 19th

118 Bibliography

IFAC World Congress, Cape Town, South Africa, August 2014. (accepted for
publication).

E. Veach and L. J. Guibas. Optimally combining sampling techniques for monte
carlo rendering. In Proceedings of the 22nd Annual Conference on Computer
Graphics, pages 419–428, Los Angeles, CA, USA., aug 1995. ACM.

E. Veach and L. J. Guibas. Metropolis light transport. In Proceedings of the
24th annual conference on Computer graphics and interactive techniques, pages
65–76, 1997.

D. J. Wilkinson. Stochastic modelling for systems biology. CRC press, 2 edition,
2011.

D. A. Woolhiser. Modeling daily precipitation – progress and problems. In Statis-
tics in the Environmental and Earth Sciences 5, pages 71–89. Halsted Press New
York, 1992.

S. Yildirim, S. S. Singh, T. Dean, and A Jasra. Parameter Estimation in Hidden
Markov Models with Intractable Likelihoods Using Sequential Monte Carlo. Pre-
print, 2013. arXiv:1311.4117v1.

S. L. Zeger. A regression model for time series of counts. Biometrika, 75(4):
621–629, 1988.

Part II

Publications

Paper A
Particle Metropolis-Hastings using
gradient and Hessian information

Authors: J. Dahlin, F. Lindsten and T. B. Schön

Supported by the project Probabilistic modelling of dynamical systems (Contract
number: 621-2013-5524) funded by the Swedish Research Council.

Edited version of the paper:

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis-Hastings us-
ing gradient and Hessian information. Pre-print, 2014b. arXiv:1311.0686v2.

Parts of the theory presented in this paper have also been presented in:

J. Dahlin, F. Lindsten, and T. B. Schön. Second-order particle MCMC
for Bayesian parameter inference. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August 2014a. (accepted for
publication).

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis Hastings us-
ing Langevin dynamics. In Proceedings of the 38th International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver,
Canada, May 2013a.

Particle Metropolis-Hastings using gradient
and Hessian information

J. Dahlin?, F. Lindsten† and T. B. Schön‡

?Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
johan.dahlin@isy.liu.se

†Dept. of Engineering,
University of Cambridge,

CB2 1PZ Cambridge, United Kingdom.
fredrik.lindsten@eng.cam.ac.uk

‡Dept. of Information Technology,
Uppsala University,

SE-751 05 Uppsala, Sweden.
thomas.schon@it.uu.se

Abstract
Particle Metropolis-Hastings (PMH) allows for Bayesian parameter in-
ference in nonlinear state space models by combining MCMC and par-
ticle filtering. The latter is used to estimate the intractable likelihood.
In its original formulation, PMH makes use of a marginal MCMC pro-
posal for the parameters, typically a Gaussian random walk. However,
this can lead to a poor exploration of the parameter space and an
inefficient use of the generated particles.

We propose two alternative versions of PMH that incorporate gradient
and Hessian information about the posterior into the proposal. This
information is more or less obtained as a byproduct of the likelihood
estimation. Indeed, we show how to estimate the required information
using a fixed-lag particle smoother, with a computational cost growing
linearly in the number of particles. We conclude that the proposed
methods can: (i) decrease the length of the burn-in phase, (ii) increase
the mixing of the Markov chain at the stationary phase, and (iii) make
the proposal distribution scale invariant which simplifies tuning.

123

124 Paper A PMH using gradient and Hessian information

1 Introduction
We are interested in parameter and state inference in nonlinear state space models
(SSM) of the form

xt|xt−1 ∼ fθ(xt|xt−1), yt|xt ∼ gθ(yt|xt), (1)

where the latent states and the measurements are denoted by x = x0:T , {xt}Tt=0
and y = y1:T , {yt}Tt=1, respectively. Here, fθ(·) and gθ(·) denote the tran-
sition and observation kernels, respectively, parametrised by the unknown static
parameter vector θ ∈ Θ ⊂ Rd. The initial state is distributed according to µ(x0)
which, for notational simplicity, is assumed to be independent of θ.

The aim of Bayesian parameter inference in SSMs is to compute the parameter
posterior distribution

p(θ|y) = pθ(y)p(θ)
p(y) , (2)

where p(θ) denotes the prior distribution of θ and pθ(y) denotes the likelihood
function, which can be expressed as

pθ(y) = pθ(y1)
T∏
t=2

pθ(yt|y1:t−1). (3)

The one-step ahead predictor pθ(yt|y1:t−1), and thus also the likelihood function,
is in general not analytically tractable. However, unbiased estimators of the likeli-
hood can be constructed using Sequential Monte Carlo (SMC) methods and these
can be used as plug-in estimators. This is especially useful in Markov chain Monte
Carlo (MCMC) for estimating the parameter posterior in (2).

This combination of MCMC and SMC is known as Particle MCMC (PMCMC)
(Andrieu et al., 2010) or psuedo-marginal algorithms (Beaumont, 2003; Andrieu
and Roberts, 2009). Here, we focus on a specific member of the PMCMC family
called the particle Metropolis-Hastings (PMH) algorithm. The theoretical proper-
ties of PMH have been analysed in Andrieu and Vihola (2012), Pitt et al. (2012)
and Doucet et al. (2012). The method has been used for a number of interesting
applications in e.g. economics (Flury and Shephard, 2011), social network analysis
(Everitt, 2012) and ecology (Golightly and Wilkinson, 2011).

The PMH algorithm makes use of an MCMC proposal to move the parameter, after
which the (intractable) likelihood is estimated using SMC. The likelihood estimate
is plugged in to the MH acceptance probability and it is thus used to decide
whether or not the proposed parameter value should be accepted (see Section 2).
The original PMH algorithm makes use of a marginal proposal for θ, i.e. only the
current parameter is used when proposing a new parameter.

In this paper, we show that information such as the gradient and the Hessian
(referred to here as the first and second order information) about the posterior can
be included in the construction of the PMH proposal. This idea is first suggested in

1 Introduction 125

Doucet et al. (2011) in the discussions following Girolami and Calderhead (2011).
In two previous proceedings, we have applied and extend this idea with first order
information (Dahlin et al., 2013) and also using second order information (Dahlin
et al., 2014a). The present article builds upon, unifies, and extends this preliminary
work. A first order PMH method has also been suggested in the recent preprint
(Nemeth and Fearnhead, 2014). This method is similar to the one we presented
in Dahlin et al. (2013), using a different estimator of the gradient.

In the context of vanilla MH sampling, it has been recognised that the gradient
and Hessian information can been used to construct efficient proposal distributions.
In the Metropolis Adjusted Langevin Algorithm (MALA) (Roberts and Stramer,
2003), a drift term is added to the proposal in the direction of the gradient of the
log-posterior. Intuitively, compared to a random walk MH, this will result in a
larger proportion of proposed samples in regions of high posterior probability.

This idea has been extended in the manifold MALA (mMALA) (Girolami and
Calderhead, 2011), where the Hessian is used to scale the proposal distribution
to also take the curvature of the log-posterior into account. Drawing parallels
with the optimisation literature, mMALA shares some properties with Newton-
type optimisation algorithms (where MALA is more similar to a steepest ascent
method). In particular, the method is invariant to affine transformation of the
parameters. This can considerably simplify the tedious tuning of the method
since it removes the need for running costly pilot runs, which are commonly used
to tune the covariance matrices of the random walk MH and the MALA to take
the scale of the problem into account.

Related to these methods are the Hamiltonian Monte Carlo (HMC) (Duane et al.,
1987; Neal, 2010) and the manifold HMC (Girolami and Calderhead, 2011) al-
gorithms. These methods build upon the same ideas as MALA and mMALA,
respectively, but they make use of multiple steps in the proposal constructions.
This paper will focus on incorporating the MALA and mMALA proposals into
the PMH framework. However, we believe that the proposed methods will also be
useful in designing PMCMC-versions of the HMC/mHMC algorithms.

In our problem, i.e. for inference in a nonlinear SSM (1), the gradient and Hessian
of the log-posterior cannot be computed analytically. However, in analogue with
the intractable likelihood, these quantities can be estimated using SMC algorithms,
see e.g. Poyiadjis et al. (2011), Nemeth et al. (2013) and Doucet et al. (2013). This
provides us with the tools to construct PMH algorithms in the flavour of the MALA
and the mMALA, resulting in the two methods proposed in this paper, PMH1 and
PMH2, respectively. In particular, we make use of a fixed-lag particle smoother
(Kitagawa and Sato, 2001) and the Fisher (Fisher, 1925; Cappé et al., 2005) and
Louis (Louis, 1982; Cappé et al., 2005) identities to estimate the gradient and the
Hessian. The motivation for this is that the fixed-lag smoother only makes use of
the weighted particles computed by the particle filter. Consequently, we obtain the
gradient and Hessian information, basically, as a byproduct of the likelihood com-
putation in the PMH algorithm. This results in a small computational overhead
for the proposed methods when compared to the marginal method.

126 Paper A PMH using gradient and Hessian information

We provide numerical experiments to examine and illustrate the benefits of using
the first and second order information and the accuracy of using the fixed-lag
particle smoother. We demonstrate some interesting properties of the proposed
algorithms, in particular that they enjoy (i) a shorter burn-in compared with
the marginal algorithm, (ii) a better mixing of the Markov chain in the stationary
phase, and (iii) a simplified tuning of the step length(s), especially when the target
is non-isotropic.

2 Particle Metropolis-Hastings
In this section we review the PMH algorithm and show how the random variables
used to compute the likelihood estimator can be incorporated in the proposal
construction. We then outline the idea of how this can be used to construct the
proposed PMH1 and PMH2 algorithms.

2.1 MH sampling with unbiased likelihoods
The MH algorithm (Metropolis et al., 1953; Hastings, 1970) is a member of the
MCMC family for sampling from a target distribution π(θ) by simulating a care-
fully constructed Markov chain on Θ. The chain is constructed in such a way
that it admits the target distribution as its unique stationary distribution. The
algorithm consists of two steps: (i) a new parameter θ′′ is sampled from a proposal
distribution q(θ′′|θ′) given the current state θ′ and (ii) the current parameter is
changed to θ′′ with probability α(θ′, θ′′), otherwise the chain remains at the current
parameter. The acceptance probability is given by

α(θ′, θ′′) = 1 ∧ π(θ′′)
π(θ′)

q(θ′|θ′′)
q(θ′′|θ′) , (4)

where we use the notation a ∧ b , min{a, b}.

In this paper, we have the parameter posterior distribution (2) as the target dis-
tribution, i.e. π(θ) = p(θ|y). This implies that the acceptance probability (4) will
depend explicitly on the intractable likelihood pθ(y), preventing direct application
of the MH sampler to this problem. However, this difficulty can be circumvented
by using a pseudo-marginal approach (Andrieu and Roberts, 2009).

Assume that there exists an unbiased, non-negative estimator of the likelihood
p̂θ(y|u). We introduce explicitly the (multivariate) random variable u ∈ U used to
construct this estimator, and we let mθ(u) denote the probability density of u on
U.

The pseudo-marginal method is then a standard MH algorithm operating in a
non-standard extended space Θ × U, with the extended target

π(θ, u|y) = p̂θ(y|u)mθ(u)p(θ)
p(y) = p̂θ(y|u)mθ(u)p(θ|y)

pθ(y) ,

and proposal distribution mθ′′(u′′)q(θ′′ | θ′).

2 Particle Metropolis-Hastings 127

Since the likelihood estimator is unbiased, Eu|θ[p̂θ(y|u)] = pθ(y), it follows that
the extended target admits p(θ|y) as a marginal. Hence, by simulating from the
extended target π(θ, u|y) we obtain samples from the original target distribution
p(θ|y) as a byproduct.

If the likelihood is estimated by using SMC (see Section 3) we obtain the PMH
algorithm. The random variable u then corresponds to all the weighted particles
generated by the SMC sampler. However, these random variables carry useful
information, not only about the likelihood, but also about the geometry of the
posterior. Therefore, we suggest to incorporate this information into the proposal,
i.e. when proposing a new parameter value θ′′, this is done from some distribution
q(θ′′|θ′, u′). Note that this opens up for using a wide range of adapted proposals,
possibly different from the ones considered in this work.

By this choice of proposal distribution, it follows that the resulting acceptance
probability is

α(θ′′, θ′) = 1 ∧ p̂θ′′(y|u
′′)

p̂θ′(y|u′)
p(θ′′)
p(θ′)

q(θ′′|θ′, u′)
q(θ′|θ′′, u′′) . (5)

Note, that the acceptance probability is the same as for the MH algorithm, but
replacing the intractable likelihood with an unbiased estimator and including the
extended proposal.

2.2 Constructing the first and second order proposals

We now turn to the construction of a proposal that makes use of the gradient and
Hessian of the log-posterior. Following Robert and Casella (2004), we do this by
a Laplace approximation of the parameter posterior around the current state θ′.
Hence, consider a second order Taylor expansion of log p(θ′′|y) at θ′:

log p(θ′′|y) ≈ log p(θ′|y) + (θ′′ − θ′)>
[
∇ log p(θ|y)

]
θ=θ′

+ 1
2(θ′′ − θ′)>

[
∇2 log p(θ|y)

]
θ=θ′

(θ′′ − θ′).

Taking the exponential of both sides and completing the square, we obtain

p(θ′′|y) ≈ N
(
θ′′; θ′ + I−1

T (θ′)ST (θ′), I−1
T (θ′)

)
,

where ST (θ′) = ∇ log p(θ|y)|θ=θ′ and IT (θ′) = −∇2 log p(θ|y)|θ=θ′ denote the gra-
dient and the negative Hessian of the log-posterior, respectively.

As pointed out above, these quantities cannot be computed in closed form, but
they can be estimated from the random variable u′ (see Section 3). This suggests
three different versions of the PMH algorithm, each resulting from a specific choice

128 Paper A PMH using gradient and Hessian information

Algorithm 1 Second order Particle Metropolis-Hastings
Inputs: The inputs to Algorithm 2. M > 0 (no. MCMC steps), θ0 (initial parameters),
γ (proposal step lengths).
Output: θ = {θ1, . . . , θM} (samples from the posterior).

1: Run Algorithm 2 to obtain p̂θ0(y), ŜT (θ0) and ÎT (θ0).
2: for k = 1 to M do
3: Sample θ′ ∼ q(θ′|θk−1) using (6) with ŜT (θk−1) and ÎT (θk−1).
4: Run Algorithm 2 to obtain p̂θ′(y), ŜT (θ′) and ÎT (θ′).
5: Sample ωk uniformly over [0, 1].
6: if ωk < α(θ′, θk−1) given by (5) then
7: θk ← θ′. {Accept the parameter}
8: {p̂θk (y), ŜT (θk), ÎT (θk)} ← {p̂θ′(y), ŜT (θ′), ÎT (θ′)}.
9: else

10: θk ← θk−1. {Reject the parameter}
11: {p̂θk (y), ŜT (θk), ÎT (θk)} ← {p̂θk−1(y), ŜT (θk−1), ÎT (θk−1)}.
12: end if
13: end for

of the proposals

q(θ′′|θ′, u′) =

N
(
θ′, Γ

)
, [PMH0]

N
(
θ′ + 1

2 ŜT (θ′|u′), Γ
)
, [PMH1]

N
(
θ′ + Ĝ(θ′|u′), Ĥ(θ′|u′)

)
. [PMH2]

(6)

Here, we use the notation Ĝ(θ|u) = 1
2 Γ Î−1

T (θ|u) ŜT (θ|u) and Ĥ(θ|u) = Γ Î−1
T (θ|u)

for the natural gradient and scaled inverse Hessian, respectively. Furthermore, Γ
denotes a scaling matrix that controls the step-lengths of the proposal. For PMH0
and PMH1, Γ can be chosen as an estimate of the posterior covariance matrix.
However, computing this estimate typically requires costly and tedious trial runs.
For PMH2, the curvature of the problem is captured by the Hessian matrix, i.e. a
single step-length can by used which can significantly simplify the tuning. It is also
possible to choose different step-lengths for the drift term and for the covariance
matrix of the proposal.

The proposed methods—PMH1 and PMH2—can be seen as PMCMC-analogues of
the MALA and the mMALA, respectively. The final PMH2 algorithm is presented
in Algorithm 1. It makes use of Algorithm 2, described in the subsequent section,
to estimate the quantities needed for computing the proposal and the acceptance
probability. Clearly, PMH0 and PMH1 are special cases obtained by using the
corresponding proposal from (6) in the algorithm.

2.3 Properties of the first and second order proposals

In the sequel, we use a single step size Γ = γ2Id for all the parameters in the pro-
posal. This is done to illustrate the advantage of adding the Hessian information,

3 Estimation of likelihoods, gradients, and Hessians 129

which rescales the step lengths according to the local curvature. Hence, it allows
for taking larger steps when the curvature is small and vice verse. This property of
PMH2 makes the algorithm scale-free in the same manner as a Newton algorithm
in optimisation (see e.g. (Nocedal and Wright, 2006, Chapter 3)). That is, the
parameters are dimensionless and invariant to affine transformations. Note that,
since the local information is used, this is different from scaling the proposal in
PMH0 with the posterior covariance matrix estimated from a pilot run as this only
takes the geometry at the mode of the posterior into account.

Some analyses of the statistical properties are available for PMH0 (Sherlock et al.,
2013), MH using a random walk (Roberts et al., 1997) and MALA (Roberts and
Rosenthal, 1998). It is known from these analyses that adding the gradient into
the proposal can increase the mixing of the Markov chain. Note that these results
are obtained under somewhat strict assumptions. Also, we know from numerical
experiments (Girolami and Calderhead, 2011) that there are further benefits of
also adding the Hessian into the proposal.

From previous work, we also know that significant improvements can be obtain
using mHMC instead of mMALA (Neal, 2010; Girolami and Calderhead, 2011).
Although, we do not pursue this endeavour here, an interesting direction for future
work is to extend the material presented in this work to implement a particle
version of mHMC. We believe that the present work is an important step in this
direction.

3 Estimation of likelihoods, gradients, and Hessians

In this section, we show how to estimate the likelihood together with the gradi-
ents and Hessians needed for the different versions of PMH. This is done with a
linear computational cost using an auxiliary particle filter (APF) (Pitt and Shep-
hard, 1999) together with the fixed-lag (FL) particle smoother (Kitagawa and Sato,
2001). Both the APF and the FL are instances of SMC algorithms and we refer
to Doucet and Johansen (2011) and Del Moral et al. (2006) for a more in-depth
presentation.

3.1 Auxiliary particle filter

An APF can be used to approximate the sequence of joint smoothing distributions
pθ(x1:t|y1:t) for t = 1 to T . The APF makes use of a particle system consisting of N
weighted particles {x(i)

1:t, w
(i)
t }Ni=1 to approximate the joint smoothing distribution

at time t according to

p̂θ(dx1:t|y1:t) ,
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x

(i)
1:t

(dx1:t). (7)

130 Paper A PMH using gradient and Hessian information

Here, δz(dx1:t) denotes the Dirac measure placed at z. The system is propagated
from t− 1 to t by first sampling an ancestor index a(i)

t , with

P(a(i)
t = j) = ν

(j)
t−1

[
N∑
k=1

ν
(k)
t−1

]−1

, j = 1, . . . , N. (8)

Given the ancestor index, a new particle is generated from some propagation
kernel,

x
(i)
t ∼ Rθ

(
xt|x

a
(i)
t

1:t−1, yt
)
. (9)

This sampling is repeated for each particle, i.e. for i = 1 to N . In the above, ν(i)
t−1

denote the resampling weights, which need not be equal to the particle impor-
tance weights in general. Finally, we append the obtained sample to the particle

trajectory by x(i)
1:t = {xa

(i)
t

1:t−1, x
(i)
t } and compute a new importance weight as

w
(i)
t ,

w
a

(i)
t
t−1

ν
a

(i)
t
t−1

gθ

(
yt|x

(i)
t

)
fθ

(
x

(i)
t |x

a
(i)
t
t−1

)
Rθ

(
x

(i)
t |x

a
(i)
t

1:t−1, yt
) . (10)

Hence, the empirical approximations of the smoothing distributions (7) can be
computed sequentially for t = 1 to T by repeating (8)–(10). Note that the random
variables u appearing in the extended target of the PMH algorithm correspond to
all the random variables generated by the APF, i.e. all the particles and ancestor
indices,

u = ({x(i)
t , a

(i)
t }

N
i=1, t = 1, . . . , T).

Two important special cases of the APF are: the bootstrap particle filter (bPF)
(Gordon et al., 1993) and the fully adapted particle filter (faPF) (Pitt and Shep-
hard, 1999). For the bPF, we select the proposal Rθ(xt|x1:t−1, yt) = fθ(xt|xt−1)
and the auxiliary weights ν(i)

t = w
(i)
t = gθ(yt|x

(i)
t). The faPF is obtained by choos-

ing Rθ(xt|x1:t−1, yt) = pθ(xt|yt, xt−1) and ν
(i)
t = pθ(yt+1|x

(i)
t), resulting in the

weights w(i)
t ≡ 1. Note, that the faPF can only be used in models for which these

quantities are available, though partially adapted versions also exist, see Pitt and
Shephard (1999).

3.2 Estimation of the likelihood

The likelihood for the SSM in (1) can be estimated using (3) by inserting estimated
one-step predictors pθ(yt|y1:t−1) obtained from the APF. The resulting likelihood
estimator is given by

p̂θ(y|u) = 1
NT

N∑
i=1

w
(i)
T

{
T−1∏
t=1

N∑
i=1

ν
(i)
t

}
. (11)

3 Estimation of likelihoods, gradients, and Hessians 131

This likelihood estimator has been extensively studied in the SMC literature. In
particular, it is known to be unbiased for any number of particles, see e.g. Pitt et al.
(2012) and Proposition 7.4.1 in Del Moral (2004). As discussed in the previous
section, this is exactly the property that is needed in order to obtain p(θ | y) as
the unique stationary distribution for the Markov chain generated by the PMH
algorithm.

Consequently, PMH will target the correct distribution for any number of particles
N ≥ 1. However, the variance in the likelihood estimate is connected with the
acceptance rate and the mixing of the Markov chain. Therefore it is important to
determine the number of particles that balances a reasonable acceptance rate with
a reasonable computational cost. This problem is studied for the marginal PMH
algorithm in Pitt et al. (2012) and Doucet et al. (2012).

3.3 Estimation of the gradient

As we shall see below, the gradient of the log-posterior can be computed by solving
a smoothing problem. The APF can be used directly to address this problem,
since the particles {x(i)

1:T , w
(i)
T }

N
i=1 provide an approximation of the joint smoothing

distribution at time T according to (7) (see also Poyiadjis et al. (2011)). However,
this method can give estimates with high variance due to the particle degeneracy
problem. Instead, we make use of the FL smoother (Kitagawa and Sato, 2001)
which has the same linear computational cost, but smaller particle degeneracy than
the APF. Alternative algorithms for estimating this information are also available
in Del Moral et al. (2010), Poyiadjis et al. (2011) and Nemeth et al. (2013).

The gradient of the parameter log-posterior (the first order information) is given
by

ST (θ) = ∇ log p(θ) +∇ log pθ(y), (12)

where it is assumed that the gradient of the log-prior ∇ log p(θ) can be calculated
explicitly. The gradient of the log-likelihood ∇ log pθ(y), commonly referred to as
the score function, can using Fisher’s identity (Fisher, 1925; Cappé et al., 2005)
be expressed as,

∇ log pθ(y) = Eθ
[
∇ log pθ(x,y)

∣∣∣y] . (13)

The gradient of the, so called, complete data log-likelihood is by (1) given by

∇ log pθ(x,y) =
T∑
t=1

ξθ(xt, xt−1), where (14)

ξθ(xt, xt−1) = ∇ log fθ(xt|xt−1) +∇ log gθ(yt|xt).

Combining this with (13) results in

∇ log pθ(y) =
T∑
t=1

∫
ξθ(xt, xt−1)pθ(xt−1:t|y)dxt−1:t,

132 Paper A PMH using gradient and Hessian information

which depends on the (intractable) two-step smoothing distribution pθ(xt−1:t|y).
To approximate the quantity above we use the FL smoother which relies on the
assumption that there is a decaying influence of future observations yt+∆:T on the
state xt. This means that

pθ(xt−1:t|y) ≈ pθ(xt−1:t|y1:κt),

holds for some large enough κt = min{t+∆, T}. Here, ∆ denotes a pre-determined
lag decided by the user, which depends on the forgetting properties of the model.
By marginalisation of the empirical smoothing distribution p̂θ(x1:κt |y1:κt) over
x1:t−2 and xt+1:κt , we obtain the empirical fixed-lag smoothing distribution

p̂∆θ (dxt−1:t|y) ,
N∑
i=1

w
(i)
κt δx̃(i)

κt,t−1:t
(dxt−1:t). (15)

Here, we use the notation x̃
(i)
κt,t

to denote the ancestor at time t of particle x(i)
κt .

Furthermore x̃(i)
κt,t−1:t = {x̃(i)

κt,t−1, x̃
(i)
κt,t
}. Inserting (14)–(15) into (13) provides an

estimate of (12),

ŜT (θ|u) = ∇ log p(θ) +
T∑
t=1

N∑
i=1

w
(i)
κt ξθ(x̃

(i)
κt,t

, x̃
(i)
κt,t−1), (16)

which is used in the proposal distributions in (6).

3.4 Estimation of the Hessian

The negative Hessian of the parameter log-posterior (the second order information)
is given by

IT (θ) = −∇2 log p(θ)−∇2 log pθ(y). (17)

It is assumed that the Hessian of the log-prior ∇2 log p(θ) can be calculated ana-
lytically. The negative Hessian of the log-likelihood, also known as the observed
information matrix, can using Louis’ identity (Louis, 1982; Cappé et al., 2005) be
expressed as

−∇2 log pθ(y) = ∇ log pθ(y)2

− Eθ
[
∇2 log pθ(x,y)|y

]
− Eθ

[
∇ log pθ(x,y)2|y

]
. (18)

Here, we have introduced the notation v2 = vv> for a vector v. From this, we can
construct an estimator of (17) using the estimate of the gradient in (16), of the
form

ÎT (θ|u) = −∇2 log p(θ) + ŜT (θ|u)2 − Î(1)
T (θ|u)− Î(2)

T (θ|u), (19)

where we have introduced

I(1)
T (θ) = Eθ

[
∇2 log pθ(x,y)|y

]
, I(2)

T (θ) = Eθ
[
∇ log pθ(x,y)2|y

]
.

3 Estimation of likelihoods, gradients, and Hessians 133

We obtain the estimator of the first term analogously to (16) as

Î(1)
T (θ|u) =

T∑
T=1

N∑
i=1

w
(i)
κt ζθ(x̃

(i)
κt,t

, x̃
(i)
κt,t−1), where (20)

ζθ(xt, xt−1) = ∇2 log fθ(xt|xt−1) +∇2 log gθ(yt|xt).

The estimate of the second term needs a bit more work and we start by rewriting
the last term in (18) as

T∑
t=1

T∑
s=1

Eθ
[
ξθ(xt, xt−1)ξθ(xs, xs−1)>

∣∣∣y]

=
T∑
t=1

{
Eθ
[
(ξθ(xt, xt−1))2

∣∣∣y]+
t−1∑
s=1

Eθ
[
(ξθ(xt, xt−1), ξθ(xs, xs−1))†

∣∣∣y]}, (21)

where we have introduced the operator (a, b)† = ab> + ba> for brevity. Consider
the last term appearing:

t−1∑
s=1

Eθ
[
ξθ(xt, xt−1)ξθ(xs, xs−1)>

∣∣∣y]

= Eθ

[
ξθ(xt, xt−1)

{
t−1∑
s=1

Eθ
[
ξθ(xs, xs−1)

∣∣xt−1, y1:t−1
]}>

︸ ︷︷ ︸
,αθ(xt−1)>

∣∣∣y].
From this, we see that (21) can be written as an additive functional of the form

T∑
t=1

Eθ
[
(ξθ(xt, xt−1))2 + (ξθ(xt, xt−1), αθ(xt−1))†

∣∣∣y] ,
which can be estimated using the FL smoother as before. However, for this we
need to compute the quantities αθ(xt−1). One option is to make use of a type of
fixed-lag approximation for αθ(xt−1), by assuming that xs and xt are conditionally
independent given y1:κt , whenever |s− t| > ∆. This approach has previously been
used by Doucet et al. (2013). Alternatively, we can use a filter approximation
according to

α̂θ(x
(i)
t) = α̂θ(x

a
(i)
t
t−1) + ξθ(x

(i)
t , x

a
(i)
t
t−1), (22)

for each particle from i = 1 to N . Note that this filter approximation suffers
from the same particle degeneracy as the APF. However, this only affects a small
number of terms and in our experience this approximation works sufficiently well
to give estimates with reasonably low variance. The resulting estimate inserted

134 Paper A PMH using gradient and Hessian information

Algorithm 2 Est. of the likelihood, the gradient and the Hessian of the log-posterior
Inputs: y (measurements), R(·) (propagation kernel), ν(·) (weight function), N > 0
(no. particles), 0 < ∆ ≤ T (lag).
Outputs: p̂θ(y) (est. of the likelihood), ŜT (θ) (est. of the gradient), ÎT (θ) (est. of the
negative Hessian).

1: Initialise each particle x(i)
0 .

2: for t = 1 to T do
3: Resample and propagate each particle using (9).
4: Calculate the weights for each particle using (10).
5: end for
6: Compute p̂θ(y) by (11).
7: Compute ŜT (θ) and ÎT (θ) by (16) and (20), respectively.
8: Mirror the negative eigenvalues (if any) of ÎT (θ) by adding a suitable diagonal matrix

to the estimate.

into (21) yields

Î(2)
T (θ|u) =

T∑
t=1

N∑
i=1

w
(i)
κt ηθ(x̃

(i)
κt,t

, x̃
(i)
κt,t−1), where (23)

ηθ(xt, xt−1) = ξθ(xt, xt−1)2 + (ξθ(xt, xt−1), α̂θ(xt−1))† .

Hence, the second order information can be estimated using (19) by inserting the
estimates from (20), (22) and (23).

The second order proposal (6) relies on the assumption that the observed infor-
mation matrix is positive definite. The estimator given in (19) does not always
satisfy this, especially when the Markov chain is located far from the posterior
mode. Typically, the amount of information is limited in such regions and this
results in that the curvature is difficult to estimate. To cope with this issue we
regularize the Hessian by adding a diagonal matrix to shift the eigenvalues to be
positive (this heuristic is common also for Newton-type optimisation algorithms,
see e.g. (Nocedal and Wright, 2006, Chapter 3.4)).

Note, that there are other solutions available that e.g. makes use of matrix de-
compositions, see (Nocedal and Wright, 2006, Chapter 3) for alternative methods
to ensure positive definiteness of the Hessian. We emphasise that this regulariza-
tion does not alter the stationary distribution of the Markov chain, i.e. the PMH2
algorithm will still target the correct posterior distribution.

3.5 Accuracy of the estimated gradients and Hessians
The APF and the FL smoother are analysed in Olsson et al. (2008), where it is
suggested to choose the lag ∆ to be proportional to log T . In this case, the biases
are O(T/N) and λ + O(T log[T]/N), for the APF and the FL smoother, respec-
tively. Here, λ denotes a term that is independent of the number of particles. The
variances for the two smoothers are O(T 2/

√
N) and O(T log[T]/

√
N), respectively.

4 Numerical illustrations 135

Note that a too small lag gives a large bias in the estimate and a too large lag gives
a large variance in the estimate. The choice of ∆ thus controls the bias-variance
trade off the estimates; we return to this choice in Section 4.

The main difference between the two smoothers is that we obtain a smaller variance,
but a persisting bias for the FL smoother. With the latter, we mean that the bias
does not decrease to zero in the limit when the number of particles tends to infinity.
However, this bias is compensated for by the acceptance probability in the PMH
algorithm, as it corresponds to a non-symmetric proposal. Hence, the invariance
of the Markov kernel is not compromised and the resulting algorithm still targets
the correct posterior distribution.

3.6 Resulting SMC algorithm
In Algorithm 2, we present the complete procedure that combines the APF with
the FL smoother to compute the estimates need for the second order proposal
(6). This corresponds to estimating the likelihood, the gradient and the negative
Hessian of the parameter log-posterior.

4 Numerical illustrations
In this section, we provide illustrations of the properties of the proposed algorithms.
We start by evaluating the fixed-lag approximation on a model with known param-
eters, and then turn to the application of the proposed methods for parameter
inference.

4.1 Estimation of the log-likelihood and the gradient
We begin by illustrating the use of the FL smoother for estimating the log-likelihood
and the gradient. For this end, we consider a linear Gaussian state space (LGSS)
model given by

xt+1|xt ∼ N(xt+1;φxt, σ2
v), yt|xt ∼ N(yt;xt, σ2

e). (24)

We generate two data realisations of T = 100 time steps using parameters θ(1) =
{φ, σ2

v , σ
2
e} = {0.5, 1.0, 0.12} and θ(2) = {0.5, 1.0, 1.0} with a known initial state

x0 = 0. We use the lag ∆ = 5 and run the bPF and the faPF with systematic
resampling.

For this model, we can compute the true values of the log-likelihood and the
gradient by running an RTS smoother (Rauch et al., 1965). In Figure 1, we
present boxplots of the L1-errors in the estimated log-likelihood and the gradient
of the log-posterior with respect to φ, evaluated at the true parameters. When
the observation noise is small (σe = 0.1), we observe that the faPF has a large
advantage over the bPF for all choices ofN . When the noise is larger (σe = 1.0), we
get smaller difference in the error of the gradient estimates, but the log-likelihood
estimates are still better for the faPF. Similar results are also obtained for the
gradient with respect to σv.

136 Paper A PMH using gradient and Hessian information

1
0

2
0

5
0

1
0

0

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

−10

−5

0

5

No. particles

lo
g

 L
1

−
e

rr
o

r
o

f
lo

g
−

lik
e

lih
o

o
d

σe= 0.1

1
0

2
0

5
0

1
0

0

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

−10

−5

0

5

No. particles

lo
g

 L
1

−
e

rr
o

r
o

f
lo

g
−

lik
e

lih
o

o
d

σe= 1.0

1
0

2
0

5
0

1
0

0

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

−8

−6

−4

−2

0

2

4

No. particles

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

σe= 0.1

1
0

2
0

5
0

1
0

0

2
0

0

5
0

0

1
0

0
0

2
0

0
0

5
0

0
0

−6

−4

−2

0

2

4

No. particles

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

σe= 1.0

bPF

faPF

Figure 1: The log L1-error in the log-likelihood estimates and the estimates
of the gradient with respect to φ in the LGSS model with σe = 0.1 (left) and
σe = 1 (right). The bPF (black) and faPF (red) are evaluated by 1 000 Monte
Carlo iterations using a fixed data set with T = 100.

4 Numerical illustrations 137

2 4 8

1
6

3
2

6
4

−10

−5

0

5

10

lag

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

N=10, σe=0.1

2 4 8

1
6

3
2

6
4

−10

−5

0

5

10

lag

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

N=100, σe=0.1

2 4 8

1
6

3
2

6
4

−10

−5

0

5

10

lag

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

N=1000, σe=0.1

2 4 8

1
6

3
2

6
4

−10

−5

0

5

10

lag

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

N=10, σe=1.0

2 4 8

1
6

3
2

6
4

−10

−5

0

5

10

lag

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

N=100, σe=1.0

2 4 8

1
6

3
2

6
4

−10

−5

0

5

10

lag

lo
g

 L
1

−
e

rr
o

r
o

f
g

ra
d

ie
n

t
w

rt
 φ

N=1000, σe=1.0

bPF
faPF

Figure 2: The log L1-error in the estimates of the gradient with respect to φ
in the LGSS model with σe = 0.1 (left) and σe = 1 (right). The bPF (black)
and faPF (red) are evaluated by 1 000 Monte Carlo iterations using a fixed
data set with T = 100.

138 Paper A PMH using gradient and Hessian information

In Figure 2, we present the error in the gradient estimates with respect to φ
using a varying lag ∆ and a varying number of particles N . The results are
generated using 1 000 Monte Carlo runs on a single data set generated from the
previously discussed LGSS model with T = 100. We conclude again that faPF is
preferable when available. We also see that the lag does not affect the variance in
the estimates to any large extent when using the faPF. A lag of about 12 seems
to be a good choice for this model when T = 100 and when using the faPF with
systematic resampling.

4.2 Burn-in and scale-invariance
Consider now the problem of inferring {θ1, θ2} = {φ, σv} in the LGSS model (24).
We simulate a single data set with parameters θ(1) (as defined in the previous
section) of length T = 250. We use a uniform parameter prior over |φ| < 1, σv > 0
and initialise the parameters in θ0 = {0.1, 2}. We use N = 100 particles in the
faPF with systematic resampling and the lag ∆ = 12 for the FL smoother.

We select the step lengths γ to give an acceptance rate between 0.7 and 0.8 in the
stationary phase, obtaining γ = {0.04, 0.065, 1.0} for PMH{0, 1, 2}, respectively.
Note that a single step length is used for each proposal to simplify the tuning. Of
course, different step lengths can be used for each parameter, and we could also use
different step lengths during the burn-in and the stationary phase of the algorithm.
For example, we could have used a pilot run of PMH0 to compute an estimate of
the covariance matrix of the posterior distribution and then used this information
to precondition the random walk proposal. However, for this approach to be
successful, it is necessary that the pilot run in itself is sufficiently well tuned to
provide a useful estimate of the posterior covariance. As previously mentioned, the
PMH2 algorithm avoids this (potentially difficult and time-consuming) procedure,
by taking the local geometric information into account.

In the left column of Figure 3, we present the first 50 iterations of the Markov
chain from the three different algorithms. We also show the true parameters as
dotted lines and the log-likelihood function (calculated on a grid) as gray contours.
We note that the added information in the proposals of PMH1 and PMH2 aids
the Markov chain in the burn-in phase. This results in that the Markov chains for
the proposed algorithms reach the mode of the posterior much quicker than the
random walk used in PMH0.

To show the scale invariance of the PMH2-algorithm, we reparametrise the LGSS
model as {θ3, θ4} = {φ, σv/10}. We keep the same settings as for the previous
parametrisation and rerun the algorithms. From this run we obtain the middle
column in Figure 3. We see clearly that the PHM1-algorithm does not perform
well and gets stuck at the initial parameter value. The reason is that the second
component of the gradient is increased by a factor 10 for the rescaled model. Since
we still use the same step length, this will cause the PMH1 algorithm to overshoot
the region of high posterior probability when proposing new values, and these will
therefore never be accepted.

Finally, to improve the performance we recalibrate the three algorithms on the

4 Numerical illustrations 139

θ1 (φ)

θ
2
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [A] PMH0

θ1 (φ)

θ
2
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [A] PMH1

θ1 (φ)

θ
2
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [A] PMH2

θ3 (φ)

1
0

×
θ

4
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [B] PMH0

θ3 (φ)

1
0

×
θ

4
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [B] PMH1

θ3 (φ)

1
0

×
θ

4
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [B] PMH2

θ3 (φ)

1
0

×
θ

4
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [C] PMH0

θ3 (φ)

1
0

×
θ

4
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [C] PMH1

θ3 (φ)

1
0

×
θ

4
 (

σ
v
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.5

1
.0

1
.5

2
.0 [C] PMH2

Figure 3: The trace plots of the first 50 steps using three different proposals
and LGSS models. The dotted lines show the true parameters of the model
from which the data is generated. The gray contours show the log-likelihood
function.

140 Paper A PMH using gradient and Hessian information

new parametrisation using the same procedure as before. We then obtain the new
step lengths {0.005, 0.0075, 1.0}. The resulting Markov chains are presented in
the right column of Figure 3. Despite the new step lengths, PMH0 and PMH1
continue to struggle. The reason is that the step lengths are limited by the small
posterior variance in the θ4-parameter, resulting in a very slow progression in the
θ3-direction. Again, for PMH2, the added second order information is used to
rescale the proposal in each dimension resulting in a much more efficient explo-
ration of the posterior than for PMH0 and PMH1.

4.3 The mixing of the Markov chains at stationarity
We return to the LGSS model in (24) and generate 25 data sets using the param-
eters θ(1), with the same settings as before. We are interested in investigating the
mixing of the Markov chains at stationarity. For this, we use the effective sample
size (ESS)

ESS(θ1:M2) = S

[
1 + 2

K∑
k=1

ρk(θ1:M2)
]−1

, (25)

where ρk(θ1:M2) denotes the autocorrelation at lag k of the trace θ1:M2 of the
parameters (after the burn-in has been discarded) and S denotes the number
of posterior samples. A high value of the ESS indicates that we obtain many
uncorrelated samples from the target distribution, indicating that the chain is
mixing well.

We use the original parameterisation, {θ1, θ2} = {φ, σv}, and we initialise the
algorithms at the true parameter values to avoid a long burn-in phase. To tune
the step lengths for this experiment, we let the step lengths vary with a multiplier
ρ ∈ [0.5, 1.5] of a base length {0.10, 0.065, 2.00}, for each algorithm, respectively.
We run the algorithms for these intervals for the first 5 simulated data sets.

In Figure 4, we present the acceptance rates and the total ESS for each algorithm
using the different step lengths. We see that PMH1 and PMH2 have distinct peaks
in the total ESS which both corresponds to an acceptance rate of about 60 %. From
the peaks of the ESS values, we obtain the best step lengths for the three methods,
given by {0.08, 0.075, 1.50} (after correction with the step length multiplier). We
stress that these values are not universal and they will likely depend on the model,
the amount of data, etc.

Finally, we compute the average acceptance rate and ESS for the 25 simulated data
sets duringM = 10 000 Monte Carlo iterations (after discarding the burn-inM2 =
5 000 iterations are left) using the same settings as before and the calibrated step
lengths. The results are presented in Table 1, where the median and interquartile
range (the distance between the 25% and 75% quartiles) are presented for each
method using different SMC algorithms.

The added information increases the ESS about three times for PMH1 and PMH2
compared with the random walk proposal in PMH0. The extra information
brought by the gradient and the Hessian improves the mixing of the Markov chains

4 Numerical illustrations 141

0.6 0.8 1.0 1.2 1.4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

step length multiplier (ρ)

a
c
c
e
p
ta

n
c
e
 r

a
te

PMH0

PMH1

PMH2

0.6 0.8 1.0 1.2 1.4

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

step length multiplier (ρ)

to
ta

l
E

S
S

Figure 4: Acceptance rates and total ESS for the three different algorithms
in 5 different data sets using different step length multipliers. Dotted lines
indicates the multipliers that gives the largest ESS for each algorithm.

142 Paper A PMH using gradient and Hessian information

Acc. rate ESS(φ) ESS(σv)
Alg. Median Median IQR Median IQR

Zeroth order PMH (PMH0)
bPF(500) 0.02 19 10 19 27
bPF(1000) 0.06 60 73 63 81
bPF(2000) 0.15 170 146 343 398
faPF(50) 0.37 543 446 657 458
faPF(100) 0.38 558 378 760 429
faPF(200) 0.38 674 508 678 391

First order PMH (PMH1)
bPF(500) 0.02 27 38 21 34
bPF(1000) 0.10 79 91 104 164
bPF(2000) 0.22 222 317 303 538
faPF(50) 0.58 1440 579 1741 634
faPF(100) 0.59 1334 853 1659 361
faPF(200) 0.58 1435 651 1475 300

Second order PMH (PMH2)
bPF(500) 0.03 29 29 31 48
bPF(1000) 0.10 85 213 77 97
bPF(2000) 0.24 400 430 268 219
faPF(50) 0.66 1747 488 1363 670
faPF(100) 0.66 1538 398 1100 466
faPF(200) 0.66 1772 755 1413 699

Table 1: Median and interquartile ranges (IQR) for the acceptance rate and
effective sample size (ESS). The values are averaged over 25 different data
sets from the LGSS model with T = 250 using M = 10 000 (discarding the
first 5 000 iterations as burn-in).

5 Discussion and future work 143

in this model, which results in a more efficient exploration of the posterior. Note
that, for this parametrisation of the LGSS model the posterior is quite isotropic
(which can also be seen in the left column of Figure 3). Hence, the conditions are
in fact rather favourable for PMH0 and PMH1. For a more non-isotropic posterior
we expect PMH2 to have a more clear advantage over the other methods, for the
reasons discussed above.

5 Discussion and future work
Adding the gradient and Hessian information to the PMH proposal can have ben-
eficial results including: (i) a shorter burn-in phase, (ii) a better mixing of the
Markov chain, and (iii) scale-invariance of the proposal which simplifies tuning.
The latter point is true in particular for PMH2, since this method takes the local
curvature of the posterior into account, effectively making the method invariant
to affine transformations.

It is common to distinguish between two phases of MCMC algorithms: the burn-in
(transient) phase and the stationary phase. The proposed methods can improve
upon the original PMH0 during both of these phases. However, we have seen
empirically that the best choices for the step lengths of the algorithms can differ
between the phases. Typically, a smaller step length is preferred during burn-
in and a larger during stationarity (the opposite holds for PMH0). The reason
for this is that during burn-in, the (natural) gradient information will heavily
skew the proposal in a direction of increasing posterior probability. That is, the
methods tend to be aggressive and propose large steps to make rapid progression
toward regions of high posterior probability. While this is intuitively appealing,
the problem is that we require the Markov chains to be reversible at all times. The
reverse of these large steps can have very low probability which prevents them from
being accepted.

One interesting direction for future work is therefore to pursue adaptive algorithms
(see e.g. Andrieu and Thoms (2008), Peters et al. (2010) and Pitt et al. (2012)), to
automatically tune the step lengths during the different phases of the algorithms.
It can also be useful to (either adaptively on non-adaptively) use different step
lengths for the drift term and for the covariance matrix in PMH1 and PMH2.
Another interesting possibility is to relax the reversibility requirement during burn-
in; see Diaconis et al. (2000) for a related reference. This would cause the methods
to behave like optimisation procedures during the initial phase, but transition into
samplers during the second phase.

The performance of the PMH2 algorithm depends on the accuracy of the estimate
of the Hessian matrix. Errors in the estimate can cause the matrix to be indefinite
(even when the actual Hessian is not). We have considered a simple heuristic to
cope with this issue, namely to add a diagonal regulariser to the matrix whenever
needed. Alternative ways of dealing with this problem include projections of the
eigenvalues of the Hessian matrix, adaptive refinement of the estimate, and hybrid
methods that make use of, e.g. the PMH1 proposal when the estimate of the

144 Paper A PMH using gradient and Hessian information

Hessian is deemed to be unreliable. Further investigation of these alternatives is
an interesting topic for future work.

Future work also includes a thorough theoretical analysis of the proposed algorithm
to determine e.g. the optimal acceptance probabilities and step lengths. Perhaps a
good starting point for this could be the scenario when the data record is long, thus
making the posterior approximately Gaussian. Finally, another very interesting
direction for future work is to extend the proposed methods to develop particle
versions of the HMC and mHMC algorithms. The reason for this is motivated
by the large improvement in mixing seen in e.g. Neal (2010) and Girolami and
Calderhead (2011) for high dimensional problems in vanilla MH sampling.

Bibliography 145

Bibliography
C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte
Carlo computations. The Annals of Statistics, 37(2):697–725, 2009.

C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Com-
puting, 18(4):343–373, 2008.

C. Andrieu and M. Vihola. Convergence properties of pseudo-marginal Markov
chain Monte Carlo algorithms. arXiv.org, arXiv:1210.1484, October 2012.

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 72(3):269–342, 2010.

M. A. Beaumont. Estimation of population growth or decline in genetically moni-
tored populations. Genetics, 164(3):1139–1160, 2003.

O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models.
Springer, 2005.

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis Hastings using
Langevin dynamics. In Proceedings of the 38th International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May
2013.

J. Dahlin, F. Lindsten, and T. B. Schön. Second-order particle MCMC for Bayesian
parameter inference. In Proceedings of the 19th IFAC World Congress, Cape
Town, South Africa, August 2014a. (accepted for publication).

J. Dahlin, F. Lindsten, and T. B. Schön. Particle Metropolis-Hastings using gra-
dient and Hessian information. Pre-print, 2014b. arXiv:1311.0686v2.

P. Del Moral. Feynman-Kac Formulae - Genealogical and Interacting Particle
Systems with Applications. Probability and its Applications. Springer, 2004.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–
436, 2006.

P. Del Moral, A. Doucet, and S. Singh. Forward smoothing using sequential Monte
Carlo. Pre-print, 2010. arXiv:1012.5390v1.

P. Diaconis, S. Holmes, and R. Neal. Analysis of a nonreversible Markov chain
sampler. Annals of Applied Probability, 10(3):685–1064, 2000.

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of
Nonlinear Filtering. Oxford University Press, 2011.

A. Doucet, P. Jacob, and A. M. Johansen. Discussion on Riemann manifold
Langevin and Hamiltonian Monte Carlo methods. Journal of the Royal Sta-
tistical Society: Series B Statistical Methodology, 73(2), p 162, 2011.

146 Paper A PMH using gradient and Hessian information

A. Doucet, M. K. Pitt, and R. Kohn. Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator. arXiv.org,
arXiv:1210.1871, October 2012.

A. Doucet, P. E. Jacob, and S. Rubenthaler. Derivative-Free Estimation of the
Score Vector and Observed Information Matrix with Application to State-Space
Models. Pre-print, 2013. arXiv:1304.5768v2.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

R. G. Everitt. Bayesian parameter estimation for latent Markov random fields
and social networks. Journal of Computational and Graphical Statistics, 21(4):
940–960, 2012.

R. A. Fisher. Theory of statistical estimation. Mathematical Proceedings of the
Cambridge Philosophical Society, 22(05):700–725, 1925.

T. Flury and N. Shephard. Bayesian inference based only on simulated likelihood:
particle filter analysis of dynamic economic models. Econometric Theory, 27(5):
933–956, 2011.

M. Girolami and B. Calderhead. Riemann manifold Langevin and Hamiltonian
Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 73(2):1–37, 2011.

A. Golightly and D. J. Wilkinson. Bayesian parameter inference for stochastic
biochemical network models using particle Markov chain Monte Carlo. Interface
Focus, 1(6):807–820, 2011.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings of Radar
and Signal Processing, 140(2):107–113, 1993.

W. K. Hastings. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

G. Kitagawa and S. Sato. Monte Carlo smoothing and self-organising state-space
model. In A. Doucet, N. de Fretias, and N. Gordon, editors, Sequential Monte
Carlo methods in practice, pages 177–195. Springer, 2001.

T. A. Louis. Finding the observed information matrix when using the EM algo-
rithm. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 44(02):226–233, 1982.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21(6):1087–1092, 1953.

R. M. Neal. MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman,
G. Jones, and X-L. Meng, editors, Handbook of Markov Chain Monte Carlo.
Chapman & Hall/ CRC Press, June 2010.

Bibliography 147

C Nemeth and P. Fearnhead. Particle Metropolis adjusted Langevin algorithms
for state-space models. Pre-print, 2014. arXiv:1402.0694v1.

C. Nemeth, P. Fearnhead, and L. Mihaylova. Particle approximations of the score
and observed information matrix for parameter estimation in state space models
with linear computational cost. Pre-print, Jun 2013. arXiv:1306.0735v1.

J. Nocedal and S. Wright. Numerical Optimization. Springer, 2 edition, 2006.

J. Olsson, O. Cappé, R. Douc, and E. Moulines. Sequential Monte Carlo smooth-
ing with application to parameter estimation in nonlinear state space models.
Bernoulli, 14(1):155–179, 2008.

G. W. Peters, G. R. Hosack, and K. R. Hayes. Ecological non-linear state space
model selection via adaptive particle Markov chain Monte Carlo. Pre-print, 2010.
arXiv:1005.2238v1.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

M. K. Pitt, R. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov
chain Monte Carlo simulation methods based on the particle filter. Journal of
Econometrics, 171(2):134–151, 2012.

G. Poyiadjis, A. Doucet, and S. S. Singh. Particle approximations of the score and
observed information matrix in state space models with application to parameter
estimation. Biometrika, 98(1):65–80, 2011.

H. E. Rauch, F. Tung, and C. T. Striebel. Maximum likelihood estimates of linear
dynamic systems. AIAA Journal, 3(8):1445–1450, August 1965.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2 edition,
2004.

G. O. Roberts and J. S. Rosenthal. Optimal Scaling of Discrete Approximations to
Langevin Diffusions. Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 60(1):255–268, 1998.

G. O. Roberts and O. Stramer. Langevin diffusions and Metropolis-Hastings al-
gorithms. Methodology and Computing in Applied Probability, 4(4):337–357,
2003.

G. O. Roberts, A. Gelman, andW. R. Gilks. Weak convergence and optimal scaling
of random walk Metropolis algorithms. The Annals of Applied Probability, 7
(1):110–120, 1997.

C. Sherlock, A. H. Thiery, G. O. Roberts, and J. S. Rosenthal. On the effi-
cency of pseudo-marginal random walk Metropolis algorithms. Pre-print, 2013.
arXiv:1309.7209v1.

Paper B
Particle filter-based Gaussian process
optimisation for parameter inference

Authors: J. Dahlin and F. Lindsten

Supported by the project Probabilistic modelling of dynamical systems (Contract
number: 621-2013-5524) funded by the Swedish Research Council.

Edited version of the paper:

J. Dahlin and F. Lindsten. Particle filter-based Gaussian process op-
timisation for parameter inference. In Proceedings of the 19th IFAC
World Congress, Cape Town, South Africa, August 2014. (accepted for
publication).

Particle filter-based Gaussian process
optimisation for parameter inference

J. Dahlin? and F. Lindsten†

?Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
johan.dahlin@isy.liu.se

†Dept. of Engineering,
University of Cambridge,

CB2 1PZ Cambridge, United Kingdom.
fredrik.lindsten@eng.cam.ac.uk

Abstract
We propose a novel method for maximum-likelihood-based parameter
inference in nonlinear and/or non-Gaussian state space models. The
method is an iterative procedure with three steps. At each iteration a
particle filter is used to estimate the value of the log-likelihood function
at the current parameter iterate. Using these log-likelihood estimates,
a surrogate objective function is created by utilizing a Gaussian process
model. Finally, we use a heuristic procedure to obtain a revised param-
eter iterate, providing an automatic trade-off between exploration and
exploitation of the surrogate model. The method is profiled on two
state space models with good performance both considering accuracy
and computational cost.

151

152 Paper B Particle filter-based GPO for parameter inference

1 Introduction
We are interested in maximum likelihood-based (ML) parameter inference in non-
linear and/or non-Gaussian state space models (SSM). An SSM with latent states
x1:T , {xt}Tt=1 and measurements y1:T , {yt}Tt=1is defined as

xt|xt−1 ∼ fθ(xt|xt−1), (1a)
yt|xt ∼ gθ(yt|xt), (1b)

where fθ(·) and gθ(·) denote known distributions parame- trised by the un-
known static parameter vector θ ∈ Θ ⊆ Rd. For simplicity, we assume that the
initial state x0 is known. Let L(θ) , pθ(y1:T) denote the likelihood of y1:T for a
given value of θ. In ML estimation, we wish to estimate θ by solving,

θ̂ML = argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

`(θ), (2)

where `(θ) , logL(θ) denotes the log-likelihood function. Extensive treatments
on ML inference are found in e.g. Ljung (1999) and Lehmann and Casella (1998).

The likelihood for a general SSM can be expressed as

L(θ) = p(y1)
T∏
t=2

pθ(yt|y1:t−1), (3)

where pθ(yt|y1:t−1) denotes the one-step predictive density. For a linear Gaus-
sian models, these densities can be computed exactly by using the Kalman filter.
However, for a nonlinear model the one-step predictive densities are in general
intractable. It is therefore also intractable to evaluate the objective function in
(2), which poses an obvious difficulty in addressing the ML problem.

Recently, ML estimation has been carried out in nonlinear SSMs by the aid of
Sequential Monte Carlo (Doucet and Johansen, 2011). This includes e.g. using
gradient-based search (Poyiadjis et al., 2011) and the Expectation Maximisation
(EM) algorithm (Schön et al., 2011; Lindsten, 2013). However, some of these meth-
ods require computationally costly particle smoothing to estimate the necessary
quantities, which can be a problem in some situations.

An alternative is to make use of the simultaneous perturbation stochastic approx-
imation (SPSA) algorithm (Spall, 1987), which uses a steepest ascent algorithm
with a stochastic approximation scheme to estimate the solution to (2). The
gradients are estimated using finite differences with random perturbations. This
results in that the algorithm only needs to sample the likelihood function twice
at each iteration, independent of the dimension of the problem. SPSA is used in
combination with SMC in e.g. Singh et al. (2011) and Ehrlich et al. (2012).

Another approach for maximum likelihood estimation is based on approximate
inference based on Laplace approximations and moment matching. We do not
consider these methods any further in this paper and refer interested readers to
e.g. Bishop (2006), Khan et al. (2012) and Bell (2000) for more information.

2 Maximum likelihood estimation with a surrogate cost function 153

In this paper, we propose a novel algorithm for ML estimation of static parameters
in a nonlinear SSM. The method combines particle filtering (PF) with Gaussian
process optimisation (GPO) (Jones, 2001; Boyle, 2007; Lizotte, 2008). The latter
is a method well-suited for optimisation when it is costly to evaluate the objective
function. The resulting algorithm is efficient in the sense that it provides accurate
parameter estimates while making use of only a small number of (costly) log-
likelihood evaluations.

2 Maximum likelihood estimation with a surrogate
cost function

We now turn to our new procedure for ML estimation of general nonlinear SSMs
(1). We start by outlining the main ideas of the procedure on a high level. The
individual steps of the algorithm are discussed in detail in the consecutive sections.
The algorithm is an iterative procedure, which thus generates a sequence of iterates
{θk}k≥0 for the model parameters. Each iteration consists of three main steps:

(i) Given the current iterate θk, compute an estimate of the objective function
(i.e. the log-likelihood) for this parameter value, denoted as ̂̀k ≈ `(θk).

(ii) Given the collection of tuples {θj , ̂̀j}kj=0 generated up to the current iterate,
create a model of the (intractable) objective function `(θ).

(iii) Use the model as a surrogate for the objective function to generate a new
iterate θk+1.

Note that the method requires only one estimation of the log-likelihood function
at each iteration. This is promising, since it is typically computationally costly
to estimate the log-likelihood value and we therefore wish to keep the number of
such evaluations as low as possible.

For step (i), i.e. evaluating the log-likelihood function for a given value of θ, we
use a PF, resulting in a (noisy) estimate of the objective function. This step is
discussed in Section 3. For steps (ii) and (iii), we apply the GPO framework. First,
we construct a surrogate for the objective function by modelling it as a Gaussian
process, taking the information available in the previous iterates {θj , ̂̀j}kj=0 into
account. This is discussed in Section 4.

Then, we make use of a heuristic, referred to as an acquisition rule, to find the
next iterate θk+1 based on the GP model. The acquisition rule is such that it
favours values of θ for which the model predicts a large value of the objective
function and/or where there is a high uncertainty in the model. This is useful
since it automatically results in a trade-off between exploration and exploitation
of the model.

In this paper, we consider a simple numerical example to illustrate the different
steps of the algorithm during the derivation. For this, the linear Gaussian state

154 Paper B Particle filter-based GPO for parameter inference

space (LGSS) model,

xt+1|xt ∼ N (xt+1; θxt, 1) , (4a)
yt|xt ∼ N

(
yt;xt, 0.12) , (4b)

with Θ = [−1, 1] and parameter θ? = 0.5 is simulated for T = 250 time steps.
The complete algorithm is evaluated in Section 6 on this model, as well as on a
nonlinear SSM.

3 Estimating the log-likelihood
We begin this section with a brief description of a PF. For more general introduc-
tions, see e.g. Doucet and Johansen (2011). We then continue with discussing the
specific problem of likelihood estimation using the PF.

3.1 The particle filter
The PF is a sequential Monte Carlo method used to approximate e.g. the in-
tractable filtering distribution pθ(xt|y1:t) for a general SSM (1). This is done by
representing it by a set of N weighted particles {x(i)

t , w
(i)
t }Ni=1 according to

p̂θ(dxt|y1:t) ,
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x

(i)
t

(dxt),

where w(i)
t and x(i)

t denote the weight and state of particle i at time t, respectively.
Here, δz(dxt) denotes the Dirac measure located at the point z. These approxima-
tions are generated sequentially in time t. Given the particles at time t − 1, the
PF proceeds to time t by: (a) resampling, (b) propagation and (c) weighting.

In step (a), the particles are resampled with replacement, using the probabilities
given by their (normalized) importance weights. This is done to rejuvenate the
particle system and to put emphasis on the most probable particles. The result
is an unweighted particle system {x̃(i)

t−1, 1/N}Ni=1, targeting the same distribution
pθ(xt−1|y1:t−1).

In step (b), the particles are propagated to time t by sampling from a proposal
kernel x(i)

t ∼ Rθ
(
xt|x̃

(i)
t−1, yt

)
from i = 1 to N . Finally in Step (c), the particles are

assigned importance weights. This is done to account for the discrepancy between
the proposal and the target densities. The importance weights are given by

w
(i)
t = Wθ(x

(i)
t , x̃

(i)
t−1) =

gθ(yt|x
(i)
t)fθ(x

(i)
t |x̃

(i)
t−1)

Rθ

(
x

(i)
t |x̃

(i)
t−1, yt

) . (5)

In the sequel, we use the bootstrap PF which means that new particles are pro-
posed according to the state dynamics, i.e. Rθ(·) = fθ(·) and w(i)

t = gθ(yt|x
(i)
t).

Although more sophisticated alternatives exist, see e.g. the fully-adapted PF in-
troduced in Pitt and Shephard (1999).

3 Estimating the log-likelihood 155

Algorithm 1 PF for log-likelihood estimation
Inputs: An SSM (1), y1:T (obs.) and N (no. particles).
Output: ̂̀(θ) (est. of the log-likelihood).

1: Initialise particles x(i)
0 for i = 1 to N .

2: for t = 1 to T do
3: Resample the particles with weights {w(i)

t−1}
N
i=1.

4: Propagate the particles using Rθ(·).
5: Compute (5) to obtain {w(i)

t }
N
i=1.

6: end for
7: Compute (6) to obtain ̂̀(θ).

3.2 Estimation of the likelihood

In order to use the PF for estimating the likelihood, we start by writing the one-
step predictive density as

pθ(yt|y1:t−1) =
∫
pθ(yt, xt|xt−1)pθ(xt−1|y1:t−1)dxt−1:t

=
∫
Wθ(xt, xt−1)Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1)dxt−1:t,

where we have multiplied and divided with the proposal kernel Rθ(·). To approx-
imate the integral, we note that the (unweighted) particle pairs {x̃(i)

t−1, x
(i)
t }Ni=1 are

approximately drawn from Rθ(xt|xt−1, yt)pθ(xt−1|y1:t−1). Consequently, we ob-
tain the Monte Carlo approximation

pθ(yt|y1:t−1) ≈ 1
N

N∑
i=1

w
(i)
t .

By inserting this approximation into (3) we obtain the particle estimate of the
likelihood,

L̂(θ) =
T∏
t=1

(
1
N

N∑
i=1

w
(i)
t

)
.

This likelihood estimator has been studied extensively in the SMC literature. The
estimator is consistent and, in fact, also unbiased for any N ≥ 1; see e.g. Pitt et al.
(2012) and Proposition 7.4.1 in Del Moral (2004). Furthermore, a central limit
theorem holds,

√
N
[
L̂(θ)− L(θ)

]
d−→ N

(
0, ψ2(θ)

)
,

for some asymptotic variance ψ2(θ); see Proposition 9.4.1 in Del Moral (2004).

156 Paper B Particle filter-based GPO for parameter inference

3.3 Estimation of the log-likelihood
However, working directly with the likelihood typically results in numerical diffi-
culties. To avoid problems with numerical precision, we instead use an estimate
of the log-likelihood

̂̀(θ) = log L̂(θ) =
T∑
t=1

log
[
N∑
i=1

w
(i)
t

]
− T logN. (6)

The resulting complete algorithm for estimating the log-likelihood using a PF is
presented in Algorithm 1.

Note that, by taking the logarithm of L̂(θ), we introduce a bias into the estima-
tor. However, by the second-order delta method (Casella and Berger, 2001), the
asymptotic normality carries over to the log-likelihood estimate,

√
N
[̂̀(θ)− `(θ)

]
d−→ N

(
0, γ2(θ)

)
, (7)

where γ(θ) = ψ(θ)/L(θ). Motivated by this, we make the assumption that the
log-likelihood estimates are Gaussian distributed and centered around the true
log-likelihood value. That is, we can writề(θ) = `(θ) + z, z ∼ N (0, σ2

z). (8)

Similar normality assumptions have previously been used by Pitt et al. (2012) and
Doucet et al. (2012). The unknown variance σ2

z is treated as a free parameter that
is estimated on-the-fly as we run the proposed estimation algorithm. That is, we
do not have to estimate σ2

z by making any initial test runs. We return to this in
the sequel.

We validate the Gaussian assumption (8) using a small numerical experiment to
illustrate the bias and variance, at a finite number of particles. We calculate 1 000
estimates of the log-likelihood `(0.5) for the model in (4). This is done by running
Algorithm 1 independently 1 000 times with N = 1 000 particles.

In Figure 1, we present the distribution of the error in the estimates together with
a QQ-plot. Both plots validate that the estimates are approximatively distributed
according to a Gaussian distribution. Also a Lilliefors hypothesis test (Lilliefors,
1967) does not reject the null hypothesis, that the measurements are drawn from
a Gaussian distribution at significance level α = 0.05.

4 Modelling the surrogate function
From the previous, we consider a naive approach to solve (2) by creating a grid
of the parameter space and estimating the log-likelihood in each grid point. The
parameter estimate is then obtained as the grid point that maximises the objective
function. The problem here is that as the dimension of the parameter space
increases, an exponentially increasing number of grid points is required to retain
the accuracy of the estimate.

4 Modelling the surrogate function 157

Error

D
e

n
s
it
y

-10 -5 0 5

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

-3 -2 -1 0 1 2 3

-4
-2

0
2

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s
Figure 1: Left: the histogram and kernel density estimate (blue line) of the esti-
mation error of the log-likelihood in the LGSS model (4) at θ = θ?. Right: the
QQ-plot of the data with the theoretical quantiles marked with the solid blue line.

Furthermore, using finite differences to compute the gradient of the log-likelihood
is problematic due to the noise in (8). This problem can be mitigated by using a
particle smoother, as previously discussed in e.g. Poyiadjis et al. (2011), but this is
even more computationally expensive than running the particle filter. Instead, we
construct a model of the noisy log-likelihood evaluations in Step (ii). This model
then serves as a surrogate for the actual objective function.

4.1 Gaussian process model

In this paper, we use a GP for this purpose, as these processes are possibly flex-
ible enough to capture the overall structure of the log-likelihood for many SSMs.
GPs can be seen as a generalisation of the multivariate Gaussian distribution and
are commonly used as priors over functions. In this view, the resulting posterior
obtained by conditioning upon some observations, describes the functions that
could have generated the observations. This makes GPs a popular class of nonpa-
rameteric models used for e.g. regression, classification and optimisation, see e.g.
Rasmussen and Williams (2006) and Murphy (2012).

In the following, we model the log-likelihood `(θ) as being a priori distributed
according to a GP. That is,

`(·) ∼ GP
(
m(·), κ(· , ·)

)
, (9)

where the process is fully described by the mean functionm(·) and the covariance
function κ(· , ·).

158 Paper B Particle filter-based GPO for parameter inference

4.2 Updating the model and the hyperparameters
To ease the presentation, we here consider a particular iteration k of the GP and
the PF. Let Dk = {θk, ̂̀k} = {θj , ̂̀(θj)}kj=1 denote a set of iterates, where θk and̂̀
k denote vectors obtained by stacking the k parameters and noisy log-likelihood

estimates, respectively.

It follows that the posterior distribution is given by

`(θ)|Dk ∼ N
(
µ(θ|Dk), σ2(θ|Dk) + σ2

z

)
, (10)

where µ(θ|Dk) and σ2(θ|Dk) denote the posterior mean and variance given the
iterates Dk, respectively. By standard results for the Gaussian distribution, we
have

µ(θ|Dk) = m(θ) + κ(θ, θk)Γ−1
[̂̀
k −m(θ)

]
, (11a)

σ2(θ|Dk) = κ(θ, θ)− κ(θ, θk)Γ−1κ(θk, θ), (11b)

with Γ = κ(θk, θk) + σ2
zIk×k, and where Ik×k denotes a k × k-identity matrix.

Here we note that the posterior distribution can be sequentially updated to save
computations, see the aforementioned references for details.

In the GP model presented, we use some mean function and covariance function
that possibly depend on some unknown hyperparameters. Also, we need to es-
timate the unknown noise variance σ2

z in (8). For this, we adopt the emperical
Bayes (EB) procedure to estimate these quantities. This is done by numerically
optimising the marginal likelihood of the data with respect to the hyperparame-
ters.

4.3 Example of log-likelihood modelling
We end this section by an example to illustrate the usefulness of GPs in modelling
the log-likelihood. In the upper part of Figure 2, we show the posterior distribution
of the log-likelihood of the model in (4). The posterior is estimated using three
(left) and six (right) samples of the log-likelihood drawn at some randomly selected
parameters. With information from only six samples, the mean of the surrogate
function passes close to the observed iterates with a reasonable confidence interval.

5 Acquisition rules
The remaining problem in the proposed algorithm is how to select the parameters
at which the log-likelihood should be evaluated in step (iii). A simple choice would
be to consider a random sampling approach, which works well when the dimension
of the parameters is small. However, when the dimension increases, we are faced
with the curse-of-dimensionality and independent sampling is inefficient.

As previously discussed, we instead use acquisition rules that balances exploration
and exploitation of the parameter space and makes use of the posterior distribution

5 Acquisition rules 159

-1.0 -0.5 0.0 0.5 1.0

-5
2
0

-5
0
0

-4
8
0

-4
6
0

-4
4
0

θ

L
o
g
-l
ik

e
lih

o
o
d

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

θ

E
x
p
e
c
te

d
 I
m

p
ro

v
e
m

e
n
t

-1.0 -0.5 0.0 0.5 1.0

-5
2
0

-5
0
0

-4
8
0

-4
6
0

-4
4
0

θ

L
o
g
-l
ik

e
lih

o
o
d

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

θ

E
x
p
e
c
te

d
 I
m

p
ro

v
e
m

e
n
t

Figure 2: Upper: The surrogate function of the LGSS model (4) using three (left)
and six (right) uniform samples "•", respectively. The solid line presents the value
of the predictive mean function with its 95% CI in blue and the dashed red line
presents the true likelihood. Lower: The corresponding EIs using ζ = 0.01.

160 Paper B Particle filter-based GPO for parameter inference

obtained from the GP. These heuristics are well-studied in GPO and simulation-
based comparisons are presented in e.g. Lizotte (2008). In this paper, we follow
their general recommendations and use expected improvement (EI) (Jones, 2001).

5.1 Expected improvement
Consider the predicted improvement defined as

I(θ) = max
{

0, `(θ)− µmax − ζ
}
, (12)

where ζ is a user-defined coefficient that balances exploration and exploitation.
Also, introduce the expected peak of the log-likelihood function,

µmax = max
θ∈θk

µ(θ|Dk), (13a)

over the previous iterates. Here, we again consider a particular iteration k in the
notation for brevity.

Finally, by using the posterior obtained from the GP, we can write the EI as

E[I(θ)|Dk] = σ(θ)
[
Z(θ)Φ

(
Z(θ)

)
+ φ

(
Z(θ)

)]
, with (14)

Z(θ) = σ−1(θ)
[
µ(θ)− µmax − ζ

]
,

where we drop the dependence on Dk for brevity. Here, Φ and φ denote the CDF
and PDF of the standard Gaussian distribution, respectively. An acquisition rule
follows by the maximising argument

θk+1 = argmax
θ∈Θ

E
[
I(θ)|Dk

]
, (15)

i.e. we sample the likelihood in θk+1 during the next iteration of the algorithm.

In the lower part of Figure 2, the expected improvements are shown for the sit-
uation discussed in the previous example. The two situations correspond to an
exploitation step (left) and an exploration step (right), respectively. In the former,
we sample in the neighbourhood of the current predicted peak. In the latter, we
sample in an area where the uncertainty is large to determine if there is a peak in
that area.

From the expression in (14), we expect a high value of EI for parameters where the
variance σ(θ) is large. If also the predictive mean µ(θ) is larger than µmax, then
the EI assumes even larger values for these parameters. This gives the desired
behaviour of the acquisition function discussed previously.

6 Numerical illustrations
Finally, we are ready to combine the methods discussed in the previous three
sections into the final algorithm and it is presented in Algorithm 2. In the following,
we use an LGSS model and a nonlinear model to illustrate the behaviour and the
performance of the proposed algorithm. We compare the proposed method in the

6 Numerical illustrations 161

Algorithm 2 Particle-based parameter inference in nonlinear SSMs using Gaussian
process optimisation
Inputs: Algorithm 1, K (no. iterations) and θ1 (initial parameter).
Output: θ̂ (est. of the parameter).

1: Initialise the parameter estimate in θ1.
2: for k = 1 to K do
3: Sample ̂̀(θk) using Algorithm 1.
4: Compute (10) and (11) to obtain `(θ)|Dk.
5: Compute (13) to obtain µmax.
6: Compute (15) to obtain θk+1.
7: end for
8: Compute the maximiser µ(θ|DK) to obtain θ̂.

latter model with the SPSA algorithm (Spall, 1987). This algorithm is selected as
it also only makes use of zero-order information (the log-likelihood estimates) and
is known to perform well in many problems, see e.g. Spall (1998).

6.1 Implementation details
For the GP, we use a constant mean function and the Matérn kernel with ν = 3/2.
Note that, other choices of mean functions and kernels (especially the combina-
tion of kernels) can possibly improve the performance of the algorithm. This is
especially important in models where the log-likelihood in non-isotropic.

The GPML toolbox (Rasmussen and Williams, 2006) is used for estimation of the
hyperparameters by EB and for the computation of the predictive distribution
in (10). For the acquisition function, we use the EI with ζ = 0.01 following the
recommendations in Lizotte (2008).

The optimisation in (15) is non-convex and therefore difficult to carry out in a
global setting. Two common approaches in GPO are to use multiple local search
algorithms in a Monte Carlo setting (Lizotte, 2008) or using a global optimisation
algorithm (Brochu et al., 2010). In this paper, we use the latter method with the
gradient-free DIRECT global optimisation algorithm (Jones et al., 1993) and the
implementation written by Daniel E. Finkel, available from http://www4.ncsu.
edu/~ctk/Finkel_Direct/. A maximum of 500 iterations and (cheap) evaluations
of the surrogate function are used in the DIRECT algorithm for each optimisation.

6.2 Linear Gaussian state space model
We begin with the LGSS model using one parameter in (4), as this enables us to
investigate the behaviour of the proposed algorithm in detail. We use N = 1 000
particles, K = 50 iterations and the initial parameter θ1 = −0.98. In Figure
3, we present the surrogate function and the expected improvement at different
iterations. The algorithm converges rather quickly for this simple toy example
with the parameter estimate θ̂ = 0.48. As a comparison, the MLE obtained by the
Kalman filter by maximisation on a grid of parameter values is θMLE = 0.44.

http://www4.ncsu.edu/~ctk/Finkel_Direct/
http://www4.ncsu.edu/~ctk/Finkel_Direct/

162 Paper B Particle filter-based GPO for parameter inference

-1.0 -0.5 0.0 0.5 1.0

-1
0
0
0

-8
0
0

-6
0
0

-4
0
0

-2
0
0

θ

L
o
g
-l
ik

e
lih

o
o
d

0
2
0

4
0

6
0

E
x
p
e
c
te

d
 i
m

p
ro

v
e
m

e
n
t

-1.0 -0.5 0.0 0.5 1.0

-1
0
0
0

-8
0
0

-6
0
0

-4
0
0

-2
0
0

θ

L
o
g
-l
ik

e
lih

o
o
d

0
5

1
0

1
5

2
0

E
x
p
e
c
te

d
 i
m

p
ro

v
e
m

e
n
t

-1.0 -0.5 0.0 0.5 1.0

-1
0
0
0

-8
0
0

-6
0
0

-4
0
0

-2
0
0

θ

L
o
g
-l
ik

e
lih

o
o
d

0
1

2
3

4
5

6
7

E
x
p
e
c
te

d
 i
m

p
ro

v
e
m

e
n
t

-1.0 -0.5 0.0 0.5 1.0

-1
0
0
0

-8
0
0

-6
0
0

-4
0
0

-2
0
0

θ

L
o
g
-l
ik

e
lih

o
o
d

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

E
x
p
e
c
te

d
 i
m

p
ro

v
e
m

e
n
t

Figure 3: The surrogate model (solid line) and EI (green line) at iterations
{5, 10, 15, 50} for the LGSS model. The true log-likelihood is presented as the dashed
red line. The 95% confidence of the surrogate function is marked by blue. "•" and
"4" indicate samples from the log-likelihood and the maximum of the EI obtained
by the DIRECT alg.

6 Numerical illustrations 163

θ1

θ
2

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

*

0 50 100 150 200 250 300

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Log-likelihood estimates (iter.)

θ
1

0 50 100 150 200 250 300

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Log-likelihood estimates (iter.)

θ
2

Figure 4: Upper: the log-likelihood model generated using the K iterates with the
est. parameters (red star). Lower: the estimates of θ1 (left) and θ2 (right) using
GPO (red) and SPSA (green). The true parameters are presented by dotted lines.

164 Paper B Particle filter-based GPO for parameter inference

6.3 Nonlinear stochastic volatility model
Consider the Hull-White stochastic volatility model (Hull and White, 1987),

xt+1|xt ∼ N
(
xt+1; θ1xt, θ

2
2
)
, (16a)

yt|xt ∼ N
(
yt; 0, 0.72 exp(xt)

)
, (16b)

where the parameters are θ? = {θ?1, θ?2} = {0.90, 0.20}. We use Θ = Θ1 × Θ2 =
[−1, 1]× [0, 2], T = 250 time steps, N = 1 000 particles, K = 300 iterations and the
initial parameter θ1 = {0.5, 0.5}. We implement the SPSA algorithm as suggested
by Spall (1998) using the recommended settings for the parameters α, γ and C.
We manually tune a = 0.03 and c = 0.04 to achieve good performance for our
problem.

The GPO algorithm again converges rather quickly after about 50 evaluations
of the log-likelihood and returns the parameter estimate θ̂ = {0.896, 0.187}. The
SPSA algorithm converges slower and requires more than 200 evaluations of the log-
likelihood to reach the neighbourhood of the true parameters. Even more iterations
are required for the estimates to stabilise. This shows, for this particular example,
that the GPO algorithm could be a competitive choice for ML estimation.

7 Conclusions
The results in the previous section indicate that the proposed method does not
require many estimates of the intractable log-likelihood. This is due to the GP
model that captures the overall structure well and enables an efficient sampling
mechanism in the form of the acquisition rule. With this and the comparison with
SPSA in mind, we hope that this algorithm shall turn out to be a competitive
alternative to more advanced algorithms.

Important future work includes benchmarking of the proposed method, alterna-
tive acquisition rules and investigating possibilities for bias-compensation of the
log-likelihood estimate. Also, the Gaussian process models can be useful as an
alternative to compute the gradient (score function) and negative Hessian (the
observed information matrix) of the log-likelihood. Estimating the latter is an im-
portant problem in e.g. nonlinear input design, and this approach could decrease
the variance in such estimates.

At http://users.isy.liu.se/en/rt/johda87/, we provide source code to repro-
duce some of the numerical illustrations in this paper.

Acknowledgement
The authors would like to thank Prof. Thomas B. Schön, Dr. Carl E. Rasmussen,
Roger Frigola and Andrew McHutchon for interesting discussions and suggestions
that greatly improved this paper.

http://users.isy.liu.se/en/rt/johda87/

Bibliography 165

Bibliography
B. M. Bell. The marginal likelihood for parameters in a discrete Gauss-Markov
process. IEEE Transactions on Signal Processing, 48(3):870–873, 2000.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
USA, 2006.

P. Boyle. Gaussian processes for regression and optimisation. PhD thesis, Victoria
University of Wellington, 2007.

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierar-
chical reinforcement learning. Pre-print, 2010. arXiv:1012.2599v1.

G. Casella and R. L. Berger. Statistical Inference. Duxbury Press, 2 edition, 2001.

J. Dahlin and F. Lindsten. Particle filter-based Gaussian process optimisation for
parameter inference. In Proceedings of the 19th IFAC World Congress, Cape
Town, South Africa, August 2014. (accepted for publication).

P. Del Moral. Feynman-Kac Formulae - Genealogical and Interacting Particle
Systems with Applications. Probability and its Applications. Springer, 2004.

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of
Nonlinear Filtering. Oxford University Press, 2011.

A. Doucet, M. K. Pitt, and R. Kohn. Efficient implementation of Markov
chain Monte Carlo when using an unbiased likelihood estimator. arXiv.org,
arXiv:1210.1871, October 2012.

E. Ehrlich, A. Jasra, and N. Kantas. Static Parameter Estimation for ABC Ap-
proximations of Hidden Markov Models. Pre-print, 2012. arXiv:1210.4683v1.

J. Hull and A. White. The pricing of options on assets with stochastic volatilities.
The Journal of Finance, 42(2):281–300, 1987.

D. R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization with-
out the Lipschitz constant. Journal of Optimization Theory and Applications,
79(1):157–181, 1993.

M. E. Khan, S. Mohamed, and K. P. Murphy. Fast bayesian inference for non-
conjugate gaussian process regression. In Proceedings of the 2012 Conference on
Neural Information Processing Systems (NIPS), pages 3149–3157, Lake Tahoe,
Nevada, USA, December 2012.

E. L. Lehmann and G. Casella. Theory of point estimation. Springer, 1998.

166 Paper B Particle filter-based GPO for parameter inference

H. W. Lilliefors. On the Kolmogorov-Smirnov Test for Normality with Mean and
Variance Unknown. Journal of the American Statistical Association, 62(318):
399–402, 1967.

F. Lindsten. An efficient stochastic approximation EM algorithm using conditional
particle filters. In Proceedings of the 38th International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

D. J. Lizotte. Practical Bayesian optimization. PhD thesis, University of Alberta,
2008.

L. Ljung. System identification: theory for the user. Prentice Hall, 1999.

K. P. Murphy. Machine learning: a probabilistic perspective. The MIT Press,
2012.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

M. K. Pitt, R. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov
chain Monte Carlo simulation methods based on the particle filter. Journal of
Econometrics, 171(2):134–151, 2012.

G. Poyiadjis, A. Doucet, and S. S. Singh. Particle approximations of the score and
observed information matrix in state space models with application to parameter
estimation. Biometrika, 98(1):65–80, 2011.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

T. B. Schön, A. Wills, and B. Ninness. System identification of nonlinear state-
space models. Automatica, 47(1):39–49, 2011.

S. S. Singh, N. Whiteley, and S. J. Godsill. Approximate likelihood estimation
of static parameters in multi-target models. In D. Barber, A. T. Cemgil, and
S. Chiappa, editors, Inference and Learning in Dynamic Models, pages 225–244.
Cambridge University Press, 2011.

J. C. Spall. A stochastic approximation technique for generating maximum likeli-
hood parameter estimates. In American Control Conference, pages 1161–1167,
Minneapolis, MN, USA, June 1987.

J. C. Spall. Implementation of the simultaneous perturbation algorithm for stochas-
tic optimization. IEEE Transactions on Aerospace and Electronic Systems, 34
(3):817–823, 1998.

Paper C
Approximate inference in state space
models with intractable likelihoods
using Gaussian process optimisation

Authors: J. Dahlin, T. B. Schön and M. Villani

Supported by the project Probabilistic modelling of dynamical systems (Contract
number: 621-2013-5524) funded by the Swedish Research Council.

Preliminary version:

Technical Report LiTH-ISY-R-3075, Dept. of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden.

Approximate inference in state space models
with intractable likelihoods using Gaussian

process optimisation

J. Dahlin?, T. B. Schön† and M. Villani‡

?Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
johan.dahlin@isy.liu.se

†Dept. of Information Technology,
Uppsala University,

SE-751 05 Uppsala, Sweden.
thomas.schon@it.uu.se

‡Dept. of Computer
and Information Science,
Linköping University,

SE-581 83 Linköping, Sweden.
mattias.villani@liu.se

Abstract
We propose a novel method for MAP parameter inference in nonlin-
ear state space models with intractable likelihoods. The method is
based on a combination of Gaussian process optimisation (GPO), se-
quential Monte Carlo (SMC) and approximate Bayesian computations
(ABC). SMC and ABC are used to approximate the intractable likeli-
hood by using the similarity between simulated realisations from the
model and the data obtained from the system. The GPO algorithm is
used for the MAP parameter estimation given noisy estimates of the
log-likelihood. The proposed parameter inference method is evaluated
in three problems using both synthetic and real-world data. The re-
sults are promising, indicating that the proposed algorithm converges
fast and with reasonable accuracy compared with existing methods.

169

170 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

1 Introduction
We are interested in computing the maximum a posteriori (MAP) parameter esti-
mate in nonlinear state space models (SSMs) with intractable likelihood functions.
An SSM with latent states x1:T , {xt}Tt=1 and measurements y1:T , {yt}Tt=1 is
defined as

xt|xt−1 ∼ fθ(xt|xt−1), (1a)
yt|xt ∼ gθ(yt|xt), (1b)

where fθ(·) and gθ(·) denote known distributions parametrised by the unknown
static parameter vector θ ∈ Θ ⊆ Rd. The initial state x0 is distributed according
to x0 ∼ µ(x0), which for simplicity is assumed to be independent of θ.

The MAP parameter estimate is given by the maximisation problem

θ̂MAP = argmax
θ∈Θ

log p(θ|y1:T) = argmax
θ∈Θ

[
`(θ) + log p(θ)

]
, (2)

where log p(θ|y1:T), `(θ) and log p(θ) denote the parameter log-posterior, the log-
likelihood and the log-prior, respectively. The log-likelihood is analytically in-
tractable for SSMs but can be estimated using SMC algorithms (Doucet and Jo-
hansen, 2011).

However, SMC methods require that we can evaluate gθ(yt|xt) point-wise, which
is not possible for SSMs with intractable likelihoods. An example is an SSM
with observation noise following the α-stable distribution to model the observation
noise in the SSM. This is popular in the financial literature to model heavy-tailed
behaviour observed in log-returns from the stock market. For more information
about this type of models, see Yildirim et al. (2013), Chib et al. (2002) and Jacquier
et al. (2004). Another example is stochastic kinetic models used in computational
systems biology, see Owen et al. (2014) for more information. Another reason for
intractable likelihoods can be computational infeasibility. An example of this is
when the dimension of the state vector is too large for SMC algorithms to handle
with reasonable computational cost.

In this paper, we propose a novel algorithm that can approximate the solution
to (2) in SSMs with intractable likelihoods. The method combines approximate
Bayesian computations (ABCs) (Marin et al., 2011), Gaussian process optimisation
(GPO) (Lizotte, 2008; Snoek et al., 2012) and SMC to compute the parameter
estimate. The likelihood is approximated using the SMC-ABC algorithm (Jasra
et al., 2012) by comparing simulated realisations from the likelihood with the
observed data record. The GPO algorithm is used to carry out the optimisation of
the posterior to obtain the MAP estimate. The proposed method is demonstrated
in three numerical illustrations using synthetic and real-world data. The results
indicate that the method converges fast and quite accurately to the true parameters
of the model.

Many alternative methods based on ABC have been proposed for parameter in-
ference in models with intractable likelihoods. Examples of these methods are

2 An intuitive overview 171

accept/reject sampling (Pritchard et al., 1999), Gibbs sampling (Peters et al.,
2012), SMC sampling (Jasra et al., 2012) and population Monte Carlo (Beaumont
et al., 2009). More specific methods for ML-base parameter inference in nonlinear
SSMs are found in Ehrlich et al. (2012) and Yildirim et al. (2013). The novelty in
our proposed method is the use of GPO for efficient optimisation of the posterior
distribution estimated by the SMC-ABC algorithm.

The main advantage with the proposed method is the use of GPO to compute the
MAP estimate. This makes the method efficient compared with alternative meth-
ods as it requires fewer computationally costly evaluations of the log-posterior.
This property is the result of that the GPO operates by constructing a surrogate
function to emulate the parameter posterior of the SSM. The information in the
surrogate function can be used to decide where to focus the sampling of the pos-
terior. This is the main reason for the computational gains compared with some
other optimisation methods, e.g. gradient-based search.

2 An intuitive overview
In this section, we given an overview of the proposed method for MAP parameter
estimate in nonlinear SSMs with intractable likelihoods. The individual steps are
discussed in detail in the consecutive sections of this paper. The proposed method
is an iterative method, where each iteration consists of three different steps:

(i) compute an estimate of the log-posterior distribution ξk = log p̂(θk|y1:T).

(ii) build a surrogate function using {θk, ξk} = {θj , ξj}kj=1.

(iii) use an acquisition rule to determine θk+1.

In the first step, we make use of the SMC-ABC algorithm (Jasra et al., 2012)
to sample the log-posterior. This method replaces the log-likelihood estimate by
a kernel function, which compares the recorded data with simulated realisations
from the likelihood. The required number of realisations is often quite large and
this results in a large computational cost. We discuss this step in more detail in
Section 3.

The second and third steps constitute the GPO algorithm, which is an iterative
derivative-free global optimisation algorithm (Lizotte, 2008; Snoek et al., 2012).
An advantage with the GPO algorithm is that it typically requires a relative small
amount of samples from the objective function. Therefore this algorithm is suit-
able for our problem, as the log-posterior estimates are computationally costly to
obtain. In Step (ii), we construct a surrogate function of the log-posterior given
the collection of samples obtain from Step (i). Here, we make use of the predic-
tive distribution of a GP as the surrogate function, which we discuss in detail in
Section 4.1.

In Step (iii), we make use of the surrogate function together with a heuristic
referred to as an acquisition function to select the next point to sample the log-
posterior in. This rule selects a point where either the predictive mean and its

172 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

covariance is large. In the first case, the rule is said to exploit the current informa-
tion as we focus the sampling around the predicted mode. In the second case, we
instead explore the parameter space to search for another higher peak. We discuss
the details of this step in Section 4.2.

3 Estimating the posterior distribution
In this section, we discuss how to use a combination of SMC and ABC to estimate
the intractable log-likelihood for a nonlinear SSM (1). As previously discussed,
the main problem is that the log-likelihood cannot be evaluated analytically and
hence the log-posterior cannot be estimated using SMC. Here, we give a short
introduction to SMC-ABC and refer interested readers to e.g. Doucet and Johansen
(2011) and Jasra et al. (2012) for more information.

3.1 State inference
The filtering distribution in general analytically intractable for a nonlinear SSM
but can be approximated using a particle filter (PF), which is an instance of
SMC algorithms. The PF is an iterative method that computes a particle system
{x(i)

t , w
(i)
t }Ni=1 for each time step t. This system consists of N particles index

by i ∈ {1, . . . , N} where x(i)
t and w

(i)
t denote the particle i and its importance

weight. The filtering distribution can then be approximated by the empirical
filtering distribution induced by the particle system as

p̂θ(dxt|y1:t) ,
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x

(i)
t

(dxt),

where w(i)
t and x

(i)
t denote the (unnormalised) weight and state of particle i at

time t, respectively. Here, δz(dxt) denotes the Dirac measure located at x = z.

The particle system consists of N particles that are computed by an iterative pro-
cedure consisting of three steps: (a) resample , (b) propagation and (c) weighting.
For nonlinear SSMs with intractable likelihoods we cannot apply the standard
bootstrap PF (bPF) discussed in Gordon et al. (1993) and Doucet and Johansen
(2011), since the particle weight depends on the intractable gθ(yt|xt).

Instead, it is suggested in Jasra et al. (2012) to augment the nonlinear SSM (1) to
obtain an extended model,

xt|xt−1 ∼ fθ(xt|xt−1), (3a)
ut|xt ∼ gθ(ut|xt), (3b)
yt|ut ∼ Kθ,ε(yt|ut), (3c)

where u1:T and Kθ,ε(yt|ut) denote pseudo observations and a kernel function. Here,
ε > 0 denotes the bandwidth of the kernel and as a result also the precision of
the approximation. To see why this construction is useful, consider the joint
distribution of the states and the measurements for a nonlinear SSM (1) and its

3 Estimating the posterior distribution 173

augmented version,

pθ(x0:T , y1:T) = µ(x0)
T∏
t=1

fθ(xt|xt−1)gθ(yt|xt), (4a)

pθ(x0:T , y1:T , u1:T) = µ(x0)
T∏
t=1
Kθ,ε(yt|ut)fθ(xt|xt−1)gθ(ut|xt). (4b)

If ε→ 0, it follows from the properties of the kernel function that ut → yt and we
recover (4a) from (4b).

By the use of the augmented SSM (3), the authors of Jasra et al. (2012) constructs
a new PF algorithm in analogue with the bPF. We now proceed with discussing
each of the three steps in the algorithm and how they relate to the original bPF
formulation.

In Step (a), the particle system {x(i)
t }Ni=1 is resampled by sampling an ancestor

index a(i)
t from a multinomial distribution with probabilities

P(a(i)
t = j) = w

(j)
t−1

[
N∑
k=1

w
(k)
t−1

]−1

, i, j = 1, . . . , N. (5)

This is done to rejuvenate the particle system and to put emphasis on the most
probable particles. In Step (b), each particle is propagated to time t by sampling
from a proposal kernel,

x
(i)
t ∼ Rθ

(
xt|x

a
(i)
t

1:t−1, yt
)
, i = 1, . . . , N. (6)

For each particle, we generate a psuedo measurement u(i)
t by sampling from the

intractable density gθ(ut|xt), i.e.

u
(i)
t ∼ gθ(ut|x

(i)
t), i = 1, . . . , N. (7)

Finally in Step (c), each particle is assigned importance weights. This is done
to account for the discrepancy between the proposal and the target densities. In
the standard bPF algorithm, the weights are proportional to the density gθ(yt|xt),
which we have assumed is intractable and cannot be point-wise evaluated. Instead,
we make use of the kernel to compute the importance weight for each particle by

w
(i)
t = Kθ,ε

(
yt|u

(i)
t

)
. (8)

Hence, we have reviewed the algorithm proposed in Jasra et al. (2012) that enables
state inference in nonlinear SSMs with intractable likelihoods. The remaining
question is what kernel functions are useful for this application. In this work, we
mainly discuss two different kernels given by

Kθ,ε(yt|ut) =

I
[
|yt − ut| ≤ ε

]
, (standard SMC-ABC)

φm

(
yt;ut, ε Im

)
, (smooth SMC-ABC)

174 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

where |· | denotes the L1-norm and φm(·) denotes the probability density func-
tion of the m-variate normal distribution. In the following, we refer to the PF al-
gorithms resulting from these two kernel functions as the standard and the smooth
SMC-ABC algorithms, respectively,

3.2 Estimation of the log-likelihood
The estimate of the log-likelihood for nonlinear SSM with an intractable likelihood
follows from calculations analogue to the tractable case, see Dahlin and Lindsten
(2014). The log-likelihood for a nonlinear SSM can be written as

`(θ) =
T∑
t=1

log pθ(yt|y1:t−1),

where pθ(yt|y1:t−1) denotes the intractable one-step-ahead predictor. This predic-
tor can be estimated using the Monte Carlo approximation

pθ(yt|y1:t−1) ≈ 1
N

N∑
i=1

w
(i)
t ,

which results in the log-likelihood estimate

̂̀(θ) =
T∑
t=1

log
[
N∑
i=1

w
(i)
t

]
− T logN, (9)

by the ABC approximation. Note that, the log-likelihood estimate (9) is biased
for a finite number of particles N using standard and smooth SMC-ABC. However,
we present some numerical illustrations in Section 6 that indicates that the bias
does not largely influence the parameter estimates.

We end this section, by presenting the procedure for estimating the log-likelihood
in a nonlinear SSM with an intractable likelihood in Algorithm 1. This algorithm
is similar to a bPF, adding the step in which we simulate ut and replacing the
weighting function.

4 Gaussian process optimisation
In this section, we discuss the details of Steps (ii) and (iii) in the proposed algo-
rithm. As previously mentioned, these steps correspond to the GPO algorithm
and more information regarding the details of this algorithm is available in Lizotte
(2008), Snoek et al. (2012) and Boyle (2007).

4.1 Constructing the surrogate function
In this work, we make use of a GP prior to model the log-posterior distribution
and assume that the errors of the log-posterior estimates are Gaussian distributed.
This results in that the surrogate function in the GPO algorithm is given by the
predictive distribution obtained from the GP. From Bayes’ theorem, it also follows

4 Gaussian process optimisation 175

Algorithm 1 SMC-ABC for likelihood estimation
Inputs: An SSM (1), y1:T (observations), N (no. particles), Kθ,ε(·) (ABC kernel func-
tion) and ε (precision).
Output: ̂̀(θ) (est. of the log-likelihood).

1: Sample x(i)
0 ∼ µθ(x0) for i = 1, . . . , N .

2: for t = 1 to T do
3: Sample the ancestor indices to obtain {a(i)

t }
N
i=1 using (5).

4: Propagate the particles to obtain to obtain {x(i)
t }

N
i=1 using (6).

5: Simulate the pseudo observation to obtain {u(i)
t }

N
i=1 using (7).

6: Compute the particle weights to obtain {w(i)
t }

N
i=1 using (8).

7: end for
8: Compute (9) to obtain ̂̀(θ).
that the predictive distribution is given by a Gaussian distribution as both the
prior and the data are Gaussian.

To formalise this, we assume that the log-posterior is observed in Gaussian noise,

ξk = log p̂(θk|y1:T) = log p(θk|y1:T) + zk, zt ∼ N (0, σ2
z),

where σ2
z denotes some unknown variance, which we estimate in a later stage of the

algorithm. To compute the surrogate function, we assume that the log-posterior
can be modelled by a Gaussian process prior (Rasmussen and Williams, 2006),

log p(θ|y1:T) ∼ GP
(
m(θ), κ(θ, θ′)

)
, (10)

where m(θ) and κ(θ, θ′) denote the mean and the covariance function, respectively.
The resulting predictive distribution is given by standard properties of the Gaussian
distribution as

p(θ|y1:T)|Dk ∼ N
(
µ(θ|Dk), σ2(θ|Dk)

)
, (11)

where we have introduced that notationDk = {θk, ξi} for the information available
about the parameter log-posterior at iteration k. Here, the mean and covariance
of the posterior distribution of the GP are given by

µ(θ|Dk) = m(θ) + κ(θ, θk)
[
κ(θk, θk) + σ2

zIk×k
]−1{

ξk −m(θ)
}
, (12a)

σ2(θ|Dk) = κ(θ, θ)− κ(θ, θk)
[
κ(θk, θk) + σ2

zIk×k
]−1

κ(θk, θ) + σ2
z . (12b)

Hence, we can construct the surrogate function of the log-posterior by using (11)
obtained from the GP. The hyperparameters in this model are hidden within the
mean and covariance functions. These are estimated by maximising the marginal
likelihood of the data with respect to these parameters. This is a standard method-
ology in Gaussian process modelling and is often referred to as emperical Bayes
(EB), see Rasmussen and Williams (2006).

176 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

4.2 The acquisition rule
In this section, we discuss how to select the next parameter to sample the param-
eter posterior in, given the Gaussian process model from Step (ii). The aim is to
construct an acquisition rule that selects the next sampling point. In this work,
we make use of the expected improvement (EI) (Jones, 2001) as it is generally
recommended by Lizotte (2008) for GPO applications.

The EI is calculated using the predictive mean and variance from the Gaussian
process model. The main objective of the EI rule is to balance the exploration
of the parameter space and the exploitation of the current information. By the
use of the predictive distribution, we can compute confidence bounds on the log-
posterior. These bounds can be used to make decisions on where the peak of the
function is most likely to be located. This enables the GPO algorithm to focus its
attention on areas where the uncertainty is large or where the mode is most likely
to be found. Therefore, exploring the interesting parts of the parameter space
and neglecting the remaining parts. The EI rule (Jones, 2001) incorporates these
properties and is calculated as

EI(θ|Dk) = σ(θ|Dk)
[
Z(θ)Φ

(
Z(θ)

)
+ φ

(
Z(θ)

)]
, (13a)

Z(θ) = σ−1(θ|Dk)
[
µ(θ|Dk)− µmax − ζ

]
, (13b)

where µmax and ζ denote the maximum value of µ(θ|Dk) and a user defined
parameter that controls the exploitation/exploration behaviour, respectively. In
this work, use use ζ = 0.01 as is recommended in Lizotte (2008). Finally, the next
parameter in which to sample the parameter posterior is obtained by

θk+1 = argmax
θ∈Θ

EI(θ|Dk).

From practical experience of the authors, it is often useful to add some noise to
θk+1 when making inference in SSMs. This is done to improve the exploration of
the area around the peak, thus increasing the accuracy of the obtained parameter
estimates. This jittering can be expressed as

θk+1 = ξk + argmax
θ∈Θ

EI(θ|Dk), ξk ∼ U [−σξ, σξ], (14)

where σξ is some small value determined by the user.

5 Putting the algorithm together
In the previous, we have discussed the three steps of the proposed algorithm in
detail. Thereby, we are ready to present the complete procedure for GPO in
nonlinear SSMs with an intractable likelihood in Algorithm 2.

In the current implementation, we use an affine (constant and linear) mean func-
tion and the Matérn kernel with ν = 3/2 for the Gaussian process prior. Note
that, the choice of mean and covariance functions has a large impact on the result

6 Numerical illustrations 177

Algorithm 2 Parameter inference in intractable nonlinear SSMs using GPO-ABC
Inputs: Algorithm 1, K (no. iterations), p(θ) (parameter prior), m(θ) (mean function),
κ(θ, θ′) (kernel function), θ1 (initial parameter) and ση (jittering factor).
Output: θ̂ (est. of the parameter).

1: Initialise the parameter estimate in θ1.
2: for k = 1 to K do
3: Sample ̂̀(θk) using Algorithm 1.
4: Compute the posterior estimate, ξk = log p̂(θk|y1:T) = log p(θk) + ̂̀(θk).
5: Compute (11) using (12) to obtain p(θ|y1:T)|Dk.
6: Compute µmax = argmaxθ∈θk µ(θ|Dk).
7: Compute (14) using (13) to obtain θk+1.
8: end for
9: Compute the maximiser µ(θ|DK) to obtain θ̂.

of the proposed method and possibly has to be tailored for each SSM individually.

The optimisation of the EI and µ(θ|DK) are possibly non-convex and therefore dif-
ficult to carry out in a global setting. Two common approaches in GPO are to use
a few local gradient-based search algorithms starting at randomly selected points
(Lizotte, 2008), or using some global optimisation algorithm (Brochu et al., 2010).
In this work, we use the latter method with the gradient-free DIRECT global
optimisation algorithm (Jones et al., 1993). A maximum of 1 000 iterations and
function evaluations (of the posterior given by the GP) are used in the DIRECT
algorithm for each optimisation.

6 Numerical illustrations
In this section, we provide the reader with some numerical illustrations of the
performance of the proposed method. First, we estimate the parameters of an α-
stable distribution to model real-world financial data with outliers. Second, we use
the proposed method for parameter inference in a linear Gaussian system. Finally,
we infer the parameters in a nonlinear stochastic volatility model with α-stable
returns using real-world financial data. In the first and third illustrations, the
likelihood function is intractable and inference must be carried out using ABC or
other approximate methods. The second illustration serves only as a comparison
to the case where the likelihood can be computed exactly.

6.1 Inference in α-stable data
Consider the problem of estimating the parameters of the model

yt|θ ∼ A(α, β, 0.01, 0),

where parameters are θ = {α, β} and A(α, β, γ, η) denotes an α-stable distribu-
tion1 with stability parameter α, skewness parameter β, scale parameter γ and

1See Appendix A for an introduction to α-stable distributions.

178 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

0 500 1000 1500 2000

2
0

0
4

0
0

6
0

0
8

0
0

1
0

0
0

Time

D
a

ily
 c

lo
s
in

g
 p

ri
c
e

s

0 500 1000 1500 2000

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

Time

D
a

ily
 l
o

g
−

re
tu

rn

Log−return

D
e

n
s
it
y

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

0
5

1
0

1
5

2
0

2
5

3
0

3
5

−3 −2 −1 0 1 2 3

−
0

.2
−

0
.1

0
.0

0
.1

0
.2

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

Figure 1: The closing prices (upper), the log-returns (middle), the histogram
with a kernel density estimate (lower left) and QQ-plot (lower right) of the
log returns. The data is the Google stock at NASDAQ during the period
2004-08-19 – 2013-12-09.

6 Numerical illustrations 179

Log−returns

D
e

n
s
it
y

−0.10 −0.05 0.00 0.05 0.10

0
5

1
0

1
5

2
0

2
5

3
0

3
5

α

β

0.5 1.0 1.5 2.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

0.85 0.90 0.95 1.00

−
4

.0
−

3
.5

−
3

.0
−

2
.5

−
2

.0

Probability

L
o

g
−

q
u

a
n

ti
le

Figure 2: The histogram and kernel density estimate (upper) in green together
with the Gaussian approximation (red) and the fitted α-stable distribution
(orange). The estimated parameter log-posterior distribution (middle) of α-
stable model of the Google log-return data and the log-quantiles of the three
density estimates (lower).

180 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

location parameter η. for this, we can apply Algorithm 2 and replace the SMC-
ABC method with a standard ABC solution to infer the parameters. That is,
we simulate N = 1 000 realisations of the α-stable distribution given the current
parameters θk and compute

ρ(θk) =
N∑
i=1

I
[∣∣S(y1:T , u1:T,i)

∣∣ ≤ ε],
where we simulate u1:T,i ∼ A(θk) and y1:T denotes the recorded observations. Here,
S(·) denotes the McCulloch quantile statistics (see Appendix A), which are a
near-sufficient statistic for the α-stable distribution. We replace the estimated
log-posterior in Algorithm 2 by ρ(θk) and execute the remainder of the algorithm.
In the following analysis, we fix the parameter γ = 0.01 to simplify the problem
and use an uniform parameter prior over α ∈ [0.5, 2] and β ∈ [−1, 1]. Here, we use
jittering σξ = 0.025 and precision ε = 0.10.

In this problem, the observations are T = 2 358 log-returns of the Google stock
at NASDAQ during the period 2004-08-19 – 2013-12-09. We present this data in
Figure 1, as a time series (upper) and as the log-returns (middle). The occasional
spikes in the latter indicates that the data is distributed according to some other
distribution that have somewhat heavier tails than the Gaussian distribution. The
heavy tails are also captured in the QQ-plot (lower right), where we see large
deviations from that of a Gaussian distribution in the tail behaviour. This is a
well-known fact for financial data and by estimating the parameters in a α-stable
distribution, we can quantify the behaviour of the tails.

The results from the analysis are presented in Figure 2, where the estimate of
the log-posterior distribution is shown (middle). The black dots indicate where
the log-posterior is sampled. The algorithm places most samples around the mode
which stands out from the surrounding log-posterior distribution. This means that
the MAP estimate is a suitable choice in this setting (as the log-posterior is uni-
modular) and it is estimated as θ̂GPO = {1.49, 0.01}. As the Gaussian distribution
has the parameters {2, 0}, we conclude that this data has heavier tails than the
Gaussian distribution allows for.

In the upper part of Figure 2, we present the histogram of the data with kernel
density estimate (blue), the best fit of a Gaussian distribution (red) and the es-
timated distribution of the α-stable distribution (green). The latter is computed
by simulating from the α-stable distribution with the estimated parameters and
then computing a kernel density estimate. We see that the estimated distribution
parameters fits the data pretty well capturing the overall structure, especially the
tails. The tails are compared in log scale in the lower plot. We see that the tails of
the α-stable distribution (green) fits the sample quantiles of the data (blue) quite
well compared with the Gaussian approximation.

6 Numerical illustrations 181

6.2 Linear Gaussian model
Consider the scalar linear Gaussian state space (LGSS) model,

xt+1|xt ∼ N
(
xt+1;φxt, σ2

v

)
,

yt|xt ∼ N
(
yt;xt, 1

)
,

where the parameters are θ = {φ, σv}. We simulate T = 1 000 data points using
the true parameters θ? = {0.5, 1}. For the inference, we use N = 4 000 particles
and smooth ABC with ε = 0.1. We use an uniform prior distribution over |φ| < 1
and σv ∈ [0, 2] to insure a stable system and positive standard deviation. We
run K = 150 iterations and no jittering of parameters, i.e. σξ = 0. The resulting
parameter estimate is obtained as θ̂GPO = {0.52, 0.95}.

In the upper part of Figure 3, we present a contour plot of the estimated param-
eter log-posterior as modelled by the Gaussian process. The black dots indicate
where the algorithm samples the parameter log-posterior. The dotted lines and red
star indicate the parameters of the model from which we simulated the data and
the estimated parameters, respectively. The proposed method mainly focus the
samples around the peak with only a few samples spread out over the remaining
part of the log-posterior. In the lower part of Figure 3, we see that the sampling
stabilises quickly and is concentrated around the true log-posterior mode. From
these results, we conclude the the proposed method gives accurate parameter es-
timates using only a few samples of the log-posterior. We also conclude that the
acquisition rule balances the trade-off between exploration and exploitation well
in this problem.

6.3 Stochastic volatility model with α-stable returns
Consider a stochastic volatility model with symmetric α-stable returns (SVα) (Hull
and White, 1987; Casarin, 2004),

xt+1|xt ∼ N
(
xt+1;µ+ φxt, σ

2
v

)
,

yt|xt ∼ A
(
α, 0, exp(xt/2), 0

)
,

where the parameters are θ = {µ, φ, σv, α}. We estimate the parameters in this
model using daily GBP-DEM exchange rates between January 1, 1987 and De-
cember 31, 1995 with T = 3 827 samples. We calculate the log-returns by rt =
100 ln(ot+1/ot), where o1:T denotes the original data sequence. The observa-
tions y1:T are the residuals from an AR(1) process fitted to the data set r1:T .
This is done in accordance to Lombardi and Calzolari (2009) and Yildirim et al.
(2013) to be able to compare the estimated parameters. The resulting time se-
ries r1:T is presented in the upper part of Figure 4. An alternative would be to
include a constant term and yt−1 into the measurement equation, i.e. rewrite it
as yt|xt ∼ A(α, 0, exp(xt/2), c − yt−1) where c denotes a constant mean and yt
the log-return at time t. The resulting parameter inference problem would then
include c as a parameter, i.e. θ = {µ, φ, σv, c, α}.

182 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

φ

σ
v

−0.5 0.0 0.5

0
.5

1
.0

1
.5

*

0 50 100 150

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

Iteration

S
a

m
p

le
 p

o
in

t

φ

σv

0 50 100 150

−
2

3
0

0
−

2
2

0
0

−
2

1
0

0
−

2
0

0
0

−
1

9
0

0
−

1
8

0
0

−
1

7
0

0
−

1
6

0
0

Iteration

S
a

m
p

le
d

 p
o

s
te

ri
o

r
va

lu
e

Figure 3: Upper: the estimated parameter log-posterior of the LGSS model
obtain by the proposed method. The MAP estimate (red star), the true pa-
rameters (dotted lines) and sample points (black dots) are also indicated. Mid-
dle: the parameters in which the proposed method sampled the log-posterior
distribution. Lower: the estimated value of the log-posterior distribution.

6 Numerical illustrations 183

−
4

−
2

0
2

4

Date

L
o

g
−

re
tu

rn
s

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

0 20 40 60 80 100

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

Iteration

S
a

m
p

le
 p

o
in

t

0
.0

0
.5

1
.0

1
.5

2
.0

Iteration

M
A

P
 e

s
ti
m

a
te

µ

30 40 50 60 70 80 90 100

φ

σv

α

Figure 4: Upper: the detrended log-returns of the exchange rate between the
GBP and DEM during the years 1987 to 1996. Middle: parameters for which
the proposed method samples the log-posterior. Lower: The MAP estimate
at each the iteration.

184 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

Method µ̂ φ̂ σ̂v α̂

GPO-SMC -0.05 0.99 0.50 1.83
Indirect estimation (Lombardi and Calzolari, 2009) -0.01 0.99 0.01 1.80
Gradient-based search (Yildirim et al., 2013) -0.01 0.99 0.14 1.76

Table 1: The parameter estimate in the αSV using three different methods.

We use the proposed method in Algorithm 2 with smooth ABC using ε = 0.10,
K = 500 and jittering σξ = {0.005, 0.025, 0.025, 0.025} for the four parameters,
respectively. We also use an uniform parameter prior over µ ∈ [−0.05, 0], φ ∈
[−1, 1], σ ∈ [0, 2] and α ∈ [1.5, 2]. We initiate the algorithm by sampling 25
parameters from the parameter prior. This is done to be able to estimate the
hyperparameters of the GP and to get an overview of the log-posterior.

In Figure 4, we present the sampling points selected by the algorithm (middle)
and the MAP estimate (lower) at each iteration. We note the randomly sampled
parameters up to iteration 25, after this the algorithm focus the sampling to a
smaller part of the parameter space. The convergence is quick and the parameter
estimate has stabilised after about 60 iterations.

The final MAP estimate and the estimates from Lombardi and Calzolari (2009)
and Yildirim et al. (2013) are presented in Table 1. Our parameter estimate is
close to the other two previously presented estimates in the φ and α-parameters.
The parameters µ and σ are somewhat larger than in the previously communicated
results. This difference could be due to the design of the kernel and mean function
used in the GPO part of the proposed method.

7 Conclusions and outlook
In this work, we have examined the potential of ABC to infer parameters us-
ing GPO in nonlinear state space models with intractable likelihoods. We have
discussed the GPO algorithm and the ABC-SMC method for estimating the in-
tractable likelihood. The proposed algorithm performs well on the three numerical
illustrations that are presented in this work. The algorithm converges quickly and
also gives reasonable estimates of the parameters, which indicates that it can be
an interesting alternative to the existing ML estimation methods. Such solutions,
albeit online in nature, requires in the order of thousands of samples from the
intractable likelihood function, whereas our algorithm requires an order of magni-
tude less.

Future work includes more comparisons between the proposed method and the ex-
isting methods based on gradient-based optimisation (Ehrlich et al., 2012; Yildirim
et al., 2013) and Markov chain Monte Carlo sampling (Peters et al., 2012). GPO
can also be used for other optimisation problems, e.g. input design in which e.g.
the expected information matrix of an nonlinear SSM is maximised by selecting

7 Conclusions and outlook 185

a suitable input. The GPO algorithm can also be further developed by construct-
ing new acquisition rules and improving the SMC algorithm used to sample the
likelihood.

186 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

Bibliography
M. A. Beaumont, J-M. Cornuet, J-M. Marin, and C. P. Robert. Adaptive approx-
imate Bayesian computation. Biometrika, 96(4):983–990, 2009.

P. Boyle. Gaussian processes for regression and optimisation. PhD thesis, Victoria
University of Wellington, 2007.

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierar-
chical reinforcement learning. Pre-print, 2010. arXiv:1012.2599v1.

R. Casarin. Bayesian inference for generalised Markov switching stochastic volatil-
ity models, 2004. CEREMADE Journal Working Paper 0414.

J. M. Chambers, C. L. Mallows, and B. Stuck. A method for simulating stable
random variables. Journal of the American Statistical Association, 71(354):
340–344, 1976.

S. Chib, F. Nardari, and N. Shephard. Markov chain Monte Carlo methods for
stochastic volatility models. Journal of Econometrics, 108(2):281–316, 2002.

J. Dahlin and F. Lindsten. Particle filter-based Gaussian process optimisation for
parameter inference. In Proceedings of the 19th IFAC World Congress, Cape
Town, South Africa, August 2014. (accepted for publication).

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of
Nonlinear Filtering. Oxford University Press, 2011.

E. Ehrlich, A. Jasra, and N. Kantas. Static Parameter Estimation for ABC Ap-
proximations of Hidden Markov Models. Pre-print, 2012. arXiv:1210.4683v1.

E. F. Fama. The behavior of stock-market prices. The journal of Business, 38(1):
34–105, 1965.

N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEEE Proceedings of Radar
and Signal Processing, 140(2):107–113, 1993.

J. Hull and A. White. The pricing of options on assets with stochastic volatilities.
The Journal of Finance, 42(2):281–300, 1987.

E. Jacquier, N. G. Polson, and P. E. Rossi. Bayesian analysis of stochastic volatility
models with fat-tails and correlated errors. Journal of Econometrics, 122(1):185–
212, 2004.

A. Jasra, S. S. Singh, J. S. Martin, and E. McCoy. Filtering via approximate
Bayesian computation. Statistics and Computing, 22(6):1223–1237, 2012.

D. R. Jones. A taxonomy of global optimization methods based on response
surfaces. Journal of Global Optimization, 21(4):345–383, 2001.

Bibliography 187

D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization with-
out the Lipschitz constant. Journal of Optimization Theory and Applications,
79(1):157–181, 1993.

D. J. Lizotte. Practical Bayesian optimization. PhD thesis, University of Alberta,
2008.

M. J. Lombardi and G. Calzolari. Indirect estimation of α-stable stochastic volatil-
ity models. Computational Statistics & Data Analysis, 53(6):2298–2308, 2009.

J-M. Marin, P. Pudlo, C. P. Robert, and R. Ryder. Approximate Bayesian Com-
putational methods. Pre-print, 2011. arXiv:1101.0955v2.

J. H. McCulloch. Simple consistent estimators of stable distribution parameters.
Communications in Statistics-Simulation and Computation, 15(4):1109–1136,
1986.

J. Nolan. Stable distributions: models for heavy-tailed data. Birkhauser, 2003.

J. Owen, D. J. Wilkinson, and C. S. Gillespie. Scalable Inference for Markov
Processes with Intractable Likelihoods. Pre-print, 2014. arXiv:1403.6886v1.

G. W. Peters, S. A. Sisson, and Y. Fan. Likelihood-free Bayesian Inference for
α-stable Models. Comput. Stat. Data Anal., 56(11):3743–3756, November 2012.

J. K. Pritchard, M. T. Seielstad, A. Perez-Lezaun, and M. W. Feldman. Population
growth of human Y chromosomes: a study of Y chromosome microsatellites.
Molecular Biology and Evolution, 16(12):1791–1798, 1999.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of
Machine Learning Algorithms. In Advances in Neural Information Processing
Systems 25 (NIPS 2012), pages 2951–2959. Curran Associates, Inc., 2012.

S. Yildirim, S. S. Singh, T. Dean, and A Jasra. Parameter Estimation in Hidden
Markov Models with Intractable Likelihoods Using Sequential Monte Carlo. Pre-
print, 2013. arXiv:1311.4117v1.

188 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

Appendix

A α-stable distributions
This appendix summarises some important results regarding α-stable distributions.
We discuss the properties of a stable distribution, the parametrisation used in this
work, how to simulate from the distribution and some near sufficient statistics. For
a more detailed presentation, see Nolan (2003), Peters et al. (2012) and references
therein.

A.1 Definitions
We start by defining an α-stable distribution in Definition 1. From its definition,
we see that the Gaussian distribution is a special case of the α-stable distribution.
Also, the Cauchy and Lévy distributions are other special cases of this family.

1 Definition (stable distribution). A non-degenerate random variable X is stable
if and only if for all n > 1, there exist constants cn > 0 and dn ∈ R such that

X1 +X2 + . . .+Xn = cnX + dn,

where X1, X2, . . . , Xn are independent, identical copies of X. Furthermore, X is
strictly stable if dn = 0 for every n.

The general family of α-stable distributions can be described by the characteristic
function ϕX(t) = E[exp(itX)] for a real valued random variable X. Except for
the three members previously mentioned, the probability distribution function
(pdf) cannot be expressed in closed-form. This as the Fourier transform of the
characteristic function cannot be evaluated in these cases. Instead, we generally
work with the characteristic function of the distribution family. Two different
common parametrisations of the α-stable distribution are presented in Definitions
2 and 3.

2 Definition (α-stable distribution, parametrisation 0). An univariate α-stable
distribution denoted by A(α, β, γ, η) has the characteristic function

φ(t|θ) =
{

exp
{
iηt− γα|t|α

[
1 + iβ tan

(
πα
2
)
sgn(t)

(
|γt|1−α − 1

)]}
if α , 1,

exp
{
iηt− γ|t|

[
1 + 2iβ

π sgn(t) ln (γ|t|)
]}

if α = 1,

where α ∈ [0, 2] denotes the stability parameter, β ∈ [−1, 1] denotes the skewness
parameters, γ ∈ R+ denotes the scale parameter and η ∈ R denotes the location
parameter.

3 Definition (α-stable distribution, parametrisation 1). An univariate α-stable
distribution denoted by A(α, β, γ, η) has the characteristic function

φ(t|θ) =
{

exp
{
iηt− γα|t|α

[
1− iβ tan

(
πα
2
)
sgn(t)

]}
if α , 1,

exp
{
iηt− γ|t|

[
1 + 2iβ

π sgn(t) ln(t)
]}

if α = 1,

A α-stable distributions 189

where α ∈ [0, 2] denotes the stability parameter, β ∈ [−1, 1] denotes the skewness
parameters, γ ∈ R+ denotes the scale parameter and η ∈ R denotes the location
parameter.

The parametrisation in Definition 2 is referred to as the zero-parametrisation in
Nolan (2003). This parametrisation is preferred since to that it results in a simple
characteristic function and is continuous in all the parameters. The parametri-
sation in Definition 3 is referred to as the one-parametrisation and is useful in
algebraic evaluations. In this work, we use the one-parametrisation as it is easy
to simulate from.

As previously mentioned, there exists three special cases in which the characteristic
function can be inverted to obtain the PDF. The Gaussian distribution N (η, c2)
is recovered by using {α, β, γ, η} = {2, 0, γ, c}, the Cauchy distribution C(η, c) by
{1, 0, c, η} and the Lévy distribution L(η, c) by {1/2, 1, c, η}. Here, we use the
zero-parametrisation in Definition 2 with η and c denoting the location and scale
parameter, respectively.

Even if the PDF cannot be written down analytically, it can be estimated by
numerical integration. In Figure 5, we present the PDF for different values of the
parameters α and β, keeping the other parameters fixed. We see that the α-stable
distribution can capture both skewed distributions and heavy tails. This is why
they have been used in finance (Lombardi and Calzolari, 2009; Fama, 1965) to
model returns and stock prices.

A.2 Simulating random variables

Even if the pdf often is intractable for α-stable distributions, it is quite simple
to simulate from them using results from Chambers et al. (1976). In Proposi-
tions 4 and 5, we present methods for simulating random variables from the two
parametrisations of the distribution.

4 Proposition (Simulating α-stable variable, parametrisation 0). Assume that we
can simulate w ∼ Exp(1) and u ∼ U(−π/2, π/2). Then, we can obtain a sample
from A(α, β, 1, 0) by

ȳ =

Sα,β

sin[α(u+Bα,β)]
(cosu)α/2

[
cos[u−α(u+Bα,β)]

w

] 1−α
α

if α , 1,

2
π

[(
π
2 + βu

)
tan(u)− β log

π
2w cosu
π
2 +βu

]
if α = 1,

(15)

where we have introduced the following notation

Sα,β =
[
1 + β2 tan2

(πα
2

)]− 1
2α
,

Bα,β = 1
α

arctan
(
β tan

(πα
2

))
.

190 Paper C Approximate inference in SSMs with intractable likelihoods using GPO

−6 −4 −2 0 2 4 6

0
.0

0
.1

0
.2

0
.3

0
.4

x

D
e

n
s
it
y

Gaussian

Cauchy

−6 −4 −2 0 2 4 6

0
.0

0
.2

0
.4

0
.6

0
.8

x

D
e

n
s
it
y

Levy

Figure 5: Estimated probability density functions for α-stable distributions
when varying the stability parameter α ∈ [0, 2] (upper) and the skewness
parameter β ∈ [−1, 1] (lower). We use β = 0 when varying α and α = 0.5
when varying β. The location and scale parameters are kept fixed at {γ, η} =
{1, 0}. Here, we use the zero-parametrisation in Definition 2 of the α-stable
distribution.

A α-stable distributions 191

A sample from A(α, β, γ, η) is obtained by the transformation

y =
{
γ
(
ȳ − β tan(πα2)

)
+ η if α , 1,

γȳ + η if α = 1.

5 Proposition (Simulating α-stable variable, parametrisation 1). Assume that we
can simulate w ∼ Exp(1) and u ∼ U(−π/2, π/2). Then, we can obtain a sample
from A(α, β, 1, 0) by

ȳ =

sin[α(u+Tα,β)]

(cos(αTα,β) cos(u))1/α

[
cos[αTα,β+(α−1)u]

w

] 1−α
α

if α , 1,

2
π

[(
π
2 + βu

)
tan(u)− β log

π
2w cosu
π
2 +βu

]
if α = 1,

(16)

where we have introduced the following notation

Tα,β = 1
α

arctan
(
β tan

(πα
2

))
.

A sample from A(α, β, γ, η) is obtained by the transformation

y =
{
γȳ + η if α , 1,
γȳ +

(
η + β 2

πγ log γ
)

if α = 1.

A.3 Parameter estimation
The moments of α-stable distributions does not always exist for all parameters.
For example, the mean exists if α > 1 but not otherwise. Also the variance is 2γ2

if α = 2, but does not exist otherwise. This makes parameter estimation difficult
in the general case using the usual sample statistics for mean and variance.

One approach to estimate the parameters in the distribution is presented in McCul-
loch (1986) and is based on sample quantiles of the data. These statistics are used
in combination with tabled values to estimate the parameters of the distribution.
The various sample statistics are

ν̂α = q̂95(x)− q̂5(x)
q̂75(x)− q̂25(x) , ν̂β = q̂95(x) + q̂5(x)− 2q̂50(x)

q̂95(x)− q̂5(x) , ν̂γ = q̂75(x)− q̂25(x)
γ

,

where q̂k(x) denotes the k sample quantile of the data x. The location parameter
η can be estimated using a similar expression with the estimates of the other
parameters. As previously mentioned, these statistics can be used with the tables
in McCulloch (1986) to estimate the parameters of an α-stable distribution. The
statistics are also useful as near-sufficient statistics in ABC-based algorithms.

Paper D
A graph/particle-based method for

experiment design in nonlinear
systems

Authors: P. E. Valenzuela, J. Dahlin, C. R. Rojas and T. B. Schön

Supported by the project Probabilistic modelling of dynamical systems (Contract
number: 621-2013-5524) funded by the Swedish Research Council.

Edited version of the paper:

P. E. Valenzuela, J. Dahlin, C. R. Rojas, and T. B. Schön. A graph/particle-
based method for experiment design in nonlinear systems. In Proceed-
ings of the 19th IFACWorld Congress, Cape Town, South Africa, August
2014. (accepted for publication).

A graph/particle-based method for
experiment design in nonlinear systems

P. E. Valenzuela?, J. Dahlin†, C. R. Rojas? and T. B. Schön‡

?Dept. of Automatic Control,
KTH, Royal Institute of Technology,

SE-100 44 Stockholm, Sweden.
{pva,crro}@kth.se

†Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
johan.dahlin@isy.liu.se

‡Dept. of Information Technology,
Uppsala University,

SE-751 05 Uppsala, Sweden.
thomas.schon@it.uu.se

Abstract
We propose an extended method for experiment design in nonlinear
state space models. The proposed input design technique optimizes
a scalar cost function of the information matrix, by computing the
optimal stationary probability mass function (pmf) from which an in-
put sequence is sampled. The feasible set of the stationary pmf is a
polytope, allowing it to be expressed as a convex combination of its
extreme points. The extreme points in the feasible set of pmf’s can be
computed using graph theory. Therefore, the final information matrix
can be approximated as a convex combination of the information ma-
trices associated with each extreme point. For nonlinear systems, the
information matrices for each extreme point can be computed by using
particle methods. Numerical examples show that the proposed tech-
nique can be successfully employed for experiment design in nonlinear
systems.

195

196 Paper D A graph/particle-based method for experiment design

1 Introduction
Experiment design deals with the generation of an input signal that maximizes
the information retrieved from an experiment. Some of the initial contributions
are discussed in Cox (1958) and Goodwin and Payne (1977). Since then, many
contributions to the subject have been developed; see e.g. Fedorov (1972), Whittle
(1973), Hildebrand and Gevers (2003), Hildebrand and Gevers (2003) and the
references therein.

In this article, a new method for experiment design in nonlinear systems is pre-
sented, which extends the input design methods proposed in Gopaluni et al. (2011)
and Valenzuela et al. (2013). The objective is to design an experiment as a real-
ization of a stationary process, such that the system is identified with maximum
accuracy as defined by a scalar function of the Fisher information matrix, and
under the assumption that the input can adopt a finite set of values. The assump-
tion on the input class modifies the class of input sequences considered in Gopaluni
et al. (2011). The optimization of the stationary probability mass function (pmf)
is done by maximizing a scalar cost function of the information matrix over the
feasible set of pmf’s.

Using concepts from graph theory (Zaman, 1983; Johnson, 1975; Tarjan, 1972), we
can express the feasible set of pmf’s as a convex combination of the measures for
the extreme points of the set. Therefore, the information matrix corresponding
to a feasible pmf can be expressed as the convex combination of the information
matrices associated with the extreme points of the feasible set. Since the exact
computation of the information matrices for nonlinear systems is often intractable,
we use particle methods to compute sampled information matrices for the extreme
points of the feasible set. This allows us to extend the technique of Valenzuela et al.
(2013) to more general nonlinear model structures. An attractive property of the
method is that the optimization problem is convex even for nonlinear systems. In
addition, since the input is restricted to a finite set of possible values, the method
can naturally handle amplitude limitations.

Previous results on input design have mostly been concerned with linear systems.
A Markov chain approach to input design is presented in Brighenti et al. (2009),
where the input is modelled as the output of a Markov chain. Suzuki and Sugie
(2007) presents a time domain experiment design method for system identification.
Linear matrix inequalities (LMI) are used to solve the input design problem in
Jansson and Hjalmarsson (2005) and Lindqvist and Hjalmarsson (2000). A robust
approach for input design is presented in Rojas et al. (2007), where the input
signal is designed to optimize a cost function over a set where the true parameter
is assumed to lie.

In recent years, the interest in input design for nonlinear systems has increased.
The main problem here is that the frequency domain approach for experiment
design used in linear systems is no longer valid. An analysis of input design for
nonlinear systems using the knowledge of linear systems is considered in Hjalmars-
son and Mårtensson (2007). In Larsson et al. (2010) an input design method for

2 Problem formulation 197

a particular class of nonlinear systems is presented.

Input design for structured nonlinear systems is discussed in Vincent et al. (2009).
Gopaluni et al. (2011) introduces a particle filter method for input design in nonlin-
ear systems. An analysis of input design for a class of Wiener systems is considered
in Cock et al. (2013). A graph theory approach for input design for output-error
like nonlinear system is presented in Valenzuela et al. (2013). The results presented
allow to design input signals when the system contains nonlinear functions, but
the restrictions on the system dynamics and/or the input structure are the main
limitations of most of the previous contributions. Moreover, with the exception
of Brighenti et al. (2009), Larsson et al. (2010) and Valenzuela et al. (2013), the
proposed methods cannot handle amplitude limitations on the input signal, which
could arise due to physical and/or safety reasons.

2 Problem formulation

In this article, the objective is to design an input signal u1:nseq := {ut}
nseq
t=1 , as a

realization of a stationary process. This is done such that a state space model
(SSM) can be identified with maximum accuracy as defined by a scalar function
of the Fisher information matrix IF (Ljung, 1999). An SSM with states x1:T :=
{xt}Tt=1, inputs u1:T and measurements y1:T is given by

xt|xt−1 ∼ fθ(xt|xt−1, ut−1), (1a)
yt|xt ∼ gθ(yt|xt, ut). (1b)

Here, fθ(·) and gθ(·) denote known probability distributions parametrised by
θ ∈ Θ ⊂ Rd. For the remainder of this article, we make the rather restrictive
albeit standard assumption that we know the initial state x0 and the true model
structure (1) with true parameters θ0. Hence, we can write the joint distribution
of states and measurements for (1) as

pθ(x1:T , y1:T |u1:T) =
T∏
t=1

fθ(xt|xt−1, ut−1)gθ(yt|xt, ut). (2)

This quantity is used in the sequel for estimating IF by

IF := Eθ

{
S(θ0)S>(θ0)

}
, (3a)

S(θ0) := ∇ log lθ(y1:nseq)
∣∣
θ=θ0

, (3b)

where lθ(y1:nseq) and S(θ) denote the likelihood function and the score function,
respectively. Note, that the expected value in (3a) is with respect to the stochastic
processes in (1) and the realizations of u1:nseq .

We note that (3a) depends on the cumulative density function (cdf) of u1:nseq ,
say Pu(u1:nseq). Therefore, the input design problem is to find a cdf P opt

u (u1:nseq)
which optimizes a scalar function of (3a). We define this scalar function as hm :
Rd×d → R. To obtain the desired results, hm must be a nondecreasing matrix

198 Paper D A graph/particle-based method for experiment design

function (Boyd and Vandenberghe, 2004, pp. 108). Different choices of hm have
been proposed in the literature, see e.g. Rojas et al. (2007); some examples are
hm = det, and hm = − tr{(·)−1}. In this work, we leave the selection of hm to
the user.

Since P opt
u (u1:nseq) has to be a stationary cdf, the optimization must be constrained

to the set

P :=
{
Pu : Rnseq → R|Pu(x) ≥ 0, ∀x ∈ Rnseq ;Pu is monotone non-decreasing;

lim
xi→∞

i={1, ..., nseq}
x=(x1, ..., xnseq)

Pu(x) = 1;
∫
v∈R

dPu(v, z) =
∫
v∈R

dPu(z, v) ,∀z ∈ Rnseq−1
}
. (4)

The last condition in (4) (with slight abuse of notation) guarantees that Pu ∈ P
is the cdf of a stationary sequence (Zaman, 1983).

To simplify our analysis, we will assume that ut can only adopt a finite number
cseq of values. We define this set of values as C. With the previous assumption,
we can define the following subset of P:

PC :=
{
pu : Cnseq → R| pu(x) ≥ 0, ∀x ∈ Cnseq ;

∑
x∈Cnseq

pu(x) = 1;

∑
v∈C

pu(v, z) =
∑
v∈C

pu(z, v) ,∀z ∈ C(nseq−1)
}
. (5)

The set introduced in (5) will constrain the pmf pu(u1:nseq).

The problem described can be summarized as

1 Problem. Design an optimal input signal u1:nseq ∈ C
nseq as a realization from

p
opt
u (u1:nseq), where

p
opt
u := arg max

pu∈PC
hm(IF (pu)) , (6)

with hm : Rd×d → R a matrix nondecreasing function, and IF ∈ Rd×d defined as in (3).
�

3 New input design method

In this section, we discuss the proposed input design method, which is based on
three steps. In the first step, we calculate basis input signals, which are used to ex-
cite the system. In the second step, we iteratively calculate the information matrix
estimate and the optimal weighting of the basis inputs in a Monte Carlo setting. In
the third step, we generate an optimal input sequence using the estimated optimal
weighting of the basis inputs.

3 New input design method 199

3.1 Graph theoretical input design
Problem 1 is often hard to solve explicitly since

(i) we need to represent the elements in PC as a linear combination of its basis
functions, and

(ii) the stationary pmf pu is of dimension nseq, where nseq could potentially be
very large.

These issues make Problem 1 computationally intractable.

To solve issue (ii), we assume that pu is an extension from the subspace of station-
ary pmf’s of memory length nm, where nm << nseq. To address issue (i), notice
that all the elements in PC can be represented as a convex combination of its ex-
treme points (Valenzuela et al., 2013). We will refer to VPC := {v1, . . . , vnV } as
the set of the extreme points of PC .

To find all the elements in VPC , we will make use of graph theory as follows. Cnm
is composed of (cseq)nm elements. Each element in Cnm can be viewed as one
node in a graph. In addition, the transitions (edges) between the elements in Cnm
are given by the feasible values of uk+1 when we move from (uk−nm+1, . . . , uk) to
(uk−nm+2, . . . , uk+1), for all integers k ≥ 0. Figure 1 illustrates this idea, when
cseq = 2, nm = 2, and C = {0, 1}. From this figure we can see that, if we are in
node (0, 1) at time t, then we can only transit to node (1, 0) or (1, 1) at time t+ 1.

To find all the elements in VPC we rely on the concept of prime cycles. A prime
cycle is an elementary cycle whose set of nodes do not have a proper subset which
is an elementary cycle (Zaman, 1983, pp. 678). It has been proved that the prime
cycles of a graph describe all the elements in the set VPC (Zaman, 1983, Theorem
6). In other words, each prime cycle defines one element vj ∈ VPC . Furthermore,
each vj corresponds to a uniform distribution whose support is the set of elements
of its prime cycle, for all j ∈ {1, . . . , nV} (Zaman, 1983, pp. 681). Therefore, the
elements in VPC can be described by finding all the prime cycles associated with
the stationary graph GCnm drawn from Cnm .

It is known that all the prime cycles associated with GCnm can be derived from the
elementary cycles associated with GC(nm−1) (Zaman, 1983, Lemma 4), which can
be found by using existing algorithms1. To illustrate this, we consider the graph
depicted in Figure 2. One elementary cycle for this graph is given by (0, 1, 0).
Using (Zaman, 1983, Lemma 4), the elements of one prime cycle for the graph GC2

are obtained as a concatenation of the elements in the elementary cycle (0, 1, 0).
Hence, the prime cycle in GC2 associated with this elementary cycle is given by
((0, 1), (1, 0), (0, 1)).

Since we know the prime cycles, it is possible to generate an input sequence
{ujt}Tt=0 from vj , which will be referred to as the basis inputs. As an example,

1For the examples in Section 4, we have used the algorithm presented in (Johnson, 1975, pp.
79–80) complemented with the one proposed by (Tarjan, 1972, pp. 157).

200 Paper D A graph/particle-based method for experiment design

Figure 1: Example of graph derived from Cnm , with cseq = 2, nm = 2, and
C := {0, 1}.

Figure 2: Example of graph derived from Cnm , with cseq = 2, nm = 1, and
C := {0, 1}.

3 New input design method 201

we use the graph depicted in Figure 1. One prime cycle for this graph is given by
((0, 1), (1, 0), (0, 1)). Therefore, the sequence {ujt}Tt=0 is given by taking the last
element of each node, i.e., {ujt}Tt=0 = {1, 0, 1, 0, . . . , ((−1)T + 1)/2}.

Given {ujt}Tt=0, we can use them to obtain the corresponding information matrix
for vj ∈ VPC , say I

(j)
F . However, in general the matrix I(j)

F cannot be computed ex-
plicitly. To overcome this problem, we use Sequential Monte Carlo (SMC) methods
to approximate I(j)

F , as discussed in the next subsection.

3.2 Estimation of the score function

SMCmethods are a family of methods that can be used e.g. to estimate the filtering
and smoothing distributions in SSMs. General introductions to SMC samplers are
given in e.g. Doucet and Johansen (2011) and Del Moral et al. (2006). Here, we
introduce the auxiliary particle filter (APF) (Pitt and Shephard, 1999) and the
fixed-lag (FL) particle smoother (Kitagawa and Sato, 2001) to estimate the score
function for (1). In the next subsection, the score function estimates are used to
estimate the information matrix using (3a).

The APF estimates the smoothing distribution by

p̂θ(dx1:t|y1:t) :=
N∑
i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x

(i)
1:t

(dx1:t), (7)

where the particle system is denoted by {x(i)
1:t, w

(i)
t }Ni=1. Here, w(i)

t and x(i)
1:t denote

the weights and the particle trajectories computed by the APF. Here, δz(dx1:t)
denotes the Dirac measure at z.

The particle system is sequentially computed using two steps: (i) sampling/propa-
gation and (ii) weighting. The first step can be seen as sampling from a proposal
kernel,

{a(i)
t , x

(i)
t } ∼

watt−1∑N
k=1 w

(k)
t−1

Rθ,t(xt|xatt−1, ut−1), (8)

where we append the sampled particle to the trajectory by x
(i)
1:t = {x(i)

1:t−1, x
(i)
t }.

Here, Rθ,t(·) denotes the propagation kernel and the ancestor index a(i)
t denotes

the index of the ancestor at time t − 1 of particle x(i)
t . In the second step, we

calculate the (unnormalised) importance weights,

w
(i)
t ,

gθ(yt|x
(i)
t , ut)fθ(xt|x

(i)
t−1, ut−1)

Rθ,t(xt|x
(i)
t−1, ut−1)

. (9)

We make use of Fisher’s identity (Fisher, 1925; Cappé et al., 2005) to rewrite the
score function into a form that can be used in combination with SMC methods.

202 Paper D A graph/particle-based method for experiment design

Algorithm 1 PF for score function estimation
Inputs: An SSM (1), y1:T (obs.), u1:T (inp.) and N (no. particles).
Output: Ŝ(θ) (est. of the score).

1: Initialise particles x(i)
0 for i = 1 to N .

2: for t = 1 to T do
3: Resample the particles with weights {w(i)

t−1}
N
i=1.

4: Propagate the particles using Rθ,t(·).
5: Compute (9) to obtain {w(i)

t }
N
i=1.

6: end for
7: Compute (10) to obtain Ŝ(θ).

This results in that we can write

∇log lθ(y1:T) = Eθ

[
∇log pθ(x1:T , y1:T |u1:T)

∣∣y1:T , u1:T
]
,

where we insert (2) to obtain the form

∇log lθ(y1:T) =
T∑
t=1

∫
ξθ(xt−1:t)pθ(xt−1:t|y1:T)dxt−1:t,

with

ξθ(xt−1:t) = ∇
[
log fθ(xt|xt−1, ut−1) + log gθ(yt|xt, ut)

]
,

which depends on the two-step marginal smoothing densities. The APF can be
used the estimate these quantities but this leads to poor estimates with high
variance, due to problems with particle degeneracy.

Instead, we use an FL-smoother to estimate the smoothing densities, which reduces
the variance of the score estimates (Olsson et al., 2008). The fixed-lag smoother
assumes that

pθ(xt|y1:T , u1:T) ≈ pθ(xt|y1:κt , u1:κt),

for κt = min(t+∆, T) with some fixed-lag ∆. This means that measurements after
some time has a negligible effect on the state, see Dahlin et al. (2014) for more
details about the FL-smoother and its use for score estimation. The resulting
expression is obtained as

Ŝ(θ) :=
T∑
t=1

N∑
i=1

w
(i)
κt ξθ

(
x
a

(i)
κt,t

t , x
a

(i)
κt,t−1
t−1 , ut

)
, (10)

where a(i)
κt,t

denotes the particle at time t which is the ancestor of particle i at
time κt. The complete procedure for estimating the score function using the FL
smoother is outlined in Algorithm 1.

3 New input design method 203

Algorithm 2 Optimal input estimation using Monte Carlo
Inputs: Algorithm 1, K (no. MC runs) and M (size of each batch).
Output: γ? (est. of the optimal weighting of the basis inputs).

1: for k = 1 to K do
2: Generate M samples using Algorithm 1 for each basis input.
3: Estimate the information matrix by (12) for each basis input.
4: Solve the problem in (11).
5: Set γk as the weighting factors obtained from the solver.
6: end for
7: Compute the sample mean of γ = {γ1, . . . , γK}, denote it as γ?.

3.3 Monte Carlo-based optimisation

Given {I(j)
F }

nV
j=1 associated with the elements in VPC , we can find the corresponding

information matrix associated with any element in PC as a convex combination
of the I(j)

F ’s. By defining γ := {α1, . . . , αnV } ∈ RnV , we introduce Iapp
F (γ) as

the information matrix associated with one element in PC for a given γ such that
αj ≥ 0, j ∈ {1, . . . , nV},

∑nV
j=1 αj = 1. Therefore, finding the optimal Iapp

F (γ) is
equivalent to determining the optimal weighting vector γ.

Hence, we can rewrite Problem 1 as

γopt = arg max
γ∈RnV

hm(Iapp
F (γ)) , (11a)

st. Iapp
F (γ) :=

nV∑
j=1

αj I
(j)
F , (11b)

nV∑
j=1

αj = 1 , (11c)

αj ≥ 0 , for all j ∈ {1, . . . , nV} , (11d)

To solve the optimisation problem (11), we need to estimate the information matrix
for each basis input. In the SMC literature, the observed information matrix is
often estimated by the use of Louis’ identity (Louis, 1982; Cappé et al., 2005).
However, this approach does not guarantee that the information matrix estimate
is positive semi-definite. In the authors’ experience, this standard approach also
leads to poor accuracy in the estimates.

Instead, we make use of the fact that the information matrix can be expressed as
(3), i.e. the variance of the score function. Hence, a straight-forward method for
estimating the information matrix is to use the Monte Carlo covariance estimator
over some realisations of the system. If we denote each Monte Carlo estimate of

204 Paper D A graph/particle-based method for experiment design

Algorithm 3 New input design method
Inputs: Algorithm 2, C (input values), nm (memory) and T (no. input samples).
Output: γ? (est. of the optimal weighting of the basis inputs).

1: Compute all the elementary cycles of GC(nm−1) by using, e.g., (Johnson, 1975, pp.
79–80), (Tarjan, 1972, pp. 157).

2: Compute all the prime cycles of GCnm from the elementary cycles of GC(nm−1) as
explained above (c.f. (Zaman, 1983, Lemma 4)).

3: Generate the input signals {ujt}
T
t=0 from the prime cycles of GCnm , for each j ∈

{1, . . . , nV}.
4: Execute Algorithm 2.

the score function by Ŝm(θ), the information matrix can be estimated using

ÎF = 1
M − 1

M∑
m=1
Ŝm(θ)Ŝ>m(θ), (12)

where M denotes the number of score estimates. Note, that this is an estimate
of Fisher information matrix as the Monte Carlo estimator averages over the sys-
tem realisations. The estimate is positive semi-definite by construction but inher-
its some bias from the FL-smoother, see Olsson et al. (2008) for more informa-
tion. This problem can be handled by using more computationally costly particle
smoother. Later, we present results indicating that this bias does not effect the
resulting input signal to any large extent.

The information matrix estimate in (12) can be used to estimate I(j)
F for each basis

input. A simple solution is therefore to plug-in the estimates and solve the convex
optimisation problem (11) using some standard solver. However, by doing this we
neglect the stochastic nature of the estimates and disregard the uncertainty. In
practice, this leads to bad estimates of γ.

Instead, we propose the use of a Monte Carlo method which iterates two different
steps over K iterations. In step (a), we compute the information matrix estimates
I(j)
F for each input using (12). In step (b), we solve the optimisation problem in

(11) using the estimates to obtain γk at iteration k. The estimate of the optimal
weighting vector γ? is found using the sample mean of γ = {γ1, . . . , γK}, which
can be complemented with a CI. Such CI could be useful in determining which of
the basis inputs that are significant and should be included in the optimal input
sequence. The outline of the complete procedure is presented in Algorithm 2.

3.4 Summary of the method
The proposed method for designing of input signals in Cnm is summarized in Algo-
rithm 3. The algorithm computes γ? which defines the optimal pmf popt

u (u1:nm) as
a convex combination of the measures associated with the elements in VPC , with
γ? as the weighting vector. Notice that Iapp

F (γ) in (11b) is linear in the decision
variables. Therefore, the optimization (11) is convex.

4 Numerical examples 205

Input / hm(ÎF) log det(ÎF) tr
{

(ÎF)−1
}

Optimal (det) 20.67(0.01) 1.51 · 10−4(5.18 · 10−7)
Optimal (tr) 20.82(0.01) 1.32 · 10−4(4.45 · 10−7)

Binary 20.91(0.01) 1.21 · 10−4(4.51 · 10−7)
Uniform 19.38(0.01) 5.32 · 10−4(2.12 · 10−6)

Table 1: hm(ÎF), LGSS model.

4 Numerical examples

The following examples present some applications of the proposed input design
method.

4.1 Linear Gaussian state space model

Consider the linear Gaussian state space (LGSS) system,

xt+1 = θ1xt + ut + vt, vt ∼ N (0, θ2
2),

yt = xt + et, et ∼ N (0, 0.12),

where θ = {θ1, θ2} denotes the parameters with true values θ0 = {0.5, 0.1}. We
design experiments to identify θ with nseq = 5 · 103 time steps, memory length
nm = 2, and an input assuming values C = {−1, 0, 1}. The optimal experiments
maximize hm(Iapp

F (γ)) = det(Iapp
F (γ)), and hm(Iapp

F (γ)) = −tr
{

(Iapp
F (γ))−1}.

We generate {ujt}Tt=0 for each vj ∈ VPC (T = 102) to compute the approximation
(12) for each I(j)

F . Finally, the optimal input u1:nseq is computed by running a
Markov chain with popt

u (u1:nm) as stationary pmf, where we discard the first 2 · 106

samples and keep the last nseq = 5 · 103 ones. In addition, we consider K = 100,
M = 5 · 103 and N = 103. As a benchmark, we generate nseq input samples from
uniformly distributed white noise with support [−1, 1], and the same amount of
samples from binary white noise with values {−1, 1}. These input samples are
employed to compute an approximation of IF via (12).

Table 1 condenses the results obtained for each input sequence, where Optimal
(det) and Optimal (tr) represent the results for the input sequences obtained from
optimizing det(Iapp

F (γ)), and −tr
{

(Iapp
F (γ))−1}, respectively. The 95% confidence

intervals are given as ± the value in the parentheses. From the data we conclude
that, for this particular example, the binary white noise seems to be the best
input sequence. Indeed, the proposed input design method tries to mimic the
binary white noise excitation, which is clear from the numbers in Table 1.

206 Paper D A graph/particle-based method for experiment design

0 20 40 60 80 100

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Time (s)

O
p

ti
m

a
l
in

p
u

t
s
ig

n
a

l
(u

)

Figure 3: Input realization, Nonlinear growth model.

Input / hm(ÎF) log det(ÎF)
Optimal 25.34(0.01)
Binary 24.75(0.01)
Uniform 24.38(0.01)

Table 2: hm(ÎF), Nonlinear growth model.

4.2 Nonlinear growth model
In this example we consider the system in (Gopaluni et al., 2011, Section 6), given
by

xt+1 = θ1xt + xt

θ2 + x2
t

+ ut + vt, vt ∼ N (0, 0.12),

yt = 1
2xt + 2

5x
2
t + et, et ∼ N (0, 0.12),

where θ = {θ1, θ2} denotes the parameters with true values θ0 = {0.7, 0.6}. We
design an experiment with the same settings as in the LGSS model, maximiz-
ing hm(Iapp

F (γ)) = det(Iapp
F (γ)). A typical input realization obtained from the

proposed input design method is presented in Figure 3.

Table 2 presents the results obtained for each input sequence, where Optimal rep-
resents the result for the input sequence obtained from optimizing det(Iapp

F (γ)).
The 95% confidence intervals are given as ± the value in the parentheses. From
these data we conclude that the extended input design method outperforms the ex-
periment results obtained for binary and uniformly distributed samples. Therefore,
our new input design method can be successfully employed to design experiments
for this nonlinear system.

5 Conclusion 207

5 Conclusion
We have presented a new input design method for state space models, which
extends existing input design approaches for nonlinear systems. The extension
considers a more general model structure, and a new class for the input sequences.
The method maximizes a scalar cost function of the information matrix, by opti-
mizing the stationary pmf from which the input sequence is sampled. The elements
in the feasible set of the stationary pmf are computed as a convex combination of
its extreme points.

Under the assumption of a finite set of possible values for the input, we use graph
theoretical tools to compute the information matrix as a convex combination of
the information matrices associated with each extreme point. The information
matrix for each extreme point is approximated using particle methods, where the
information matrix is computed as the covariance of the score function. The nu-
merical examples show that the extended input design method can be successfully
used to design experiments for general nonlinear systems.

In a future work we will combine the proposed input design technique with param-
eter estimation methods, which will allow to simultaneously estimate the parame-
ters and the optimal input for a nonlinear SSM. We will also consider alternative
methods based on Gaussian process models for information matrix estimation.
This could improve the accuracy and the efficiency in the information matrix esti-
mation method outlined in this paper.

Finally, as with most optimal input design methods, the one proposed in this con-
tribution relies on knowledge of the true system. This difficulty can be overcome
by implementing a robust experiment design scheme on top of it (Rojas et al.,
2007) or via an adaptive procedure, where the input signal is re-designed as more
information is being collected from the system (Rojas et al., 2011). This approach
will be also addressed in a future work.

Acknowledgements
The authors thank to Dr. Fredrik Lindsten for his comments to improve this article.

208 Paper D A graph/particle-based method for experiment design

Bibliography
S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

C. Brighenti, B. Wahlberg, and C. R. Rojas. Input design using Markov chains for
system identification. In Proceedings of the joint 48th Conference on Decision
and Control and 28th Chinese Conference, pages 1557–1562, Shangai, P. R.
China, dec 2009.

O. Cappé, E. Moulines, and T. Rydén. Inference in Hidden Markov Models.
Springer, 2005.

A. De Cock, M. Gevers, and J. Schoukens. A preliminary study on optimal input
design for nonlinear systems. In Proceedings of the IEEE Conference on Decision
and Control (CDC), Florence, Italy, December 2013.

D. R. Cox. Planning of experiments. New York: Wiley, 1958.

J. Dahlin, F. Lindsten, and T. B. Schön. Second-order particle MCMC for Bayesian
parameter inference. In Proceedings of the 19th IFAC World Congress, Cape
Town, South Africa, August 2014. (accepted for publication).

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo samplers. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 68(3):411–
436, 2006.

A. Doucet and A. Johansen. A tutorial on particle filtering and smoothing: Fifteen
years later. In D. Crisan and B. Rozovsky, editors, The Oxford Handbook of
Nonlinear Filtering. Oxford University Press, 2011.

V. V. Fedorov. Theory of optimal experiments. Academic Press, 1972.

R. A. Fisher. Theory of statistical estimation. Mathematical Proceedings of the
Cambridge Philosophical Society, 22(05):700–725, 1925.

G. C. Goodwin and R. L. Payne. Dynamic System Identification: Experiment
Design and Data Analysis. Academic Press, New York, 1977.

R. B. Gopaluni, T. B. Schön, and A. G. Wills. Input design for nonlinear stochastic
dynamical systems - a particle filter approach. In Proceedings of the 18th IFAC
World Congress, Milano, Italy, August 2011.

R. Hildebrand and M. Gevers. Identification for control: Optimal input design
with respect to a worst-case ν-gap cost function. SIAM Journal of Control
Optimization, 41(5):1586–1608, 2003.

H. Hjalmarsson and J. Mårtensson. Optimal input design for identification of non-
linear systems: Learning from the linear case. In Proceedings of the American
Control Conference (ACC), pages 1572–1576, New York, United States, July
2007.

Bibliography 209

H. Jansson and H. Hjalmarsson. Input design via LMIs admitting frequency-wise
model specifications in confidence regions. IEEE Transactions on Automatic
Control, 50(10):1534–1549, oct 2005.

D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM
Journal on Computing, 4(1):77–84, mar 1975.

G. Kitagawa and S. Sato. Monte Carlo smoothing and self-organising state-space
model. In A. Doucet, N. de Fretias, and N. Gordon, editors, Sequential Monte
Carlo methods in practice, pages 177–195. Springer, 2001.

C. Larsson, H. Hjalmarsson, and C. R. Rojas. On optimal input design for nonlin-
ear FIR-type systems. In Proceedings of the 49th IEEE Conference on Decision
and Control (CDC), pages 7220–7225, Atlanta, USA, December 2010.

K. Lindqvist and H. Hjalmarsson. Optimal input design using linear matrix in-
equalities. In Proceedings of the IFAC Symposium on System Identification
(SYSID), Santa Barbara, California, USA, July 2000.

L. Ljung. System identification: theory for the user. Prentice Hall, 1999.

T. A. Louis. Finding the observed information matrix when using the EM algo-
rithm. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 44(02):226–233, 1982.

J. Olsson, O. Cappé, R. Douc, and E. Moulines. Sequential Monte Carlo smooth-
ing with application to parameter estimation in nonlinear state space models.
Bernoulli, 14(1):155–179, 2008.

M. K. Pitt and N. Shephard. Filtering via simulation: Auxiliary particle filters.
Journal of the American Statistical Association, 94(446):590–599, 1999.

C. R. Rojas, J. S. Welsh, G. C. Goodwin, and A. Feuer. Robust optimal experiment
design for system identification. Automatica, 43(6):993–1008, June 2007.

C. R. Rojas, H. Hjalmarsson, L. Gerencsér, and J. Mårtensson. An adaptive
method for consistent estimation of real-valued non-minimum phase zeros in
stable LTI systems. Automatica, 47(7):1388–1398, 2011.

H. Suzuki and T. Sugie. On input design for system identification in time domain.
In Proceedings of the European Control Conference, Kos, Greece, July 2007.

R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Journal on
Computing, 1(2):146–160, June 1972.

P. E. Valenzuela, C. R. Rojas, and H. Hjalmarsson. Optimal input design for
dynamic systems: a graph theory approach. In Proceedings of the IEEE Con-
ference on Decision and Control (CDC), Florence, Italy, dec 2013.

P. E. Valenzuela, J. Dahlin, C. R. Rojas, and T. B. Schön. A graph/particle-based
method for experiment design in nonlinear systems. In Proceedings of the 19th
IFAC World Congress, Cape Town, South Africa, August 2014. (accepted for
publication).

210 Paper D A graph/particle-based method for experiment design

T. L. Vincent, C. Novara, K. Hsu, and K. Poola. Input design for structured
nonlinear system identification. In Proceedings of the 15th IFAC Symposium
on System Identification (IFAC), pages 174–179, Saint-Malo, France, July 2009.

P. Whittle. Some general points in the theory of optimal experiment design. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology), 1:123–
130, 1973.

A. Zaman. Stationarity on finite strings and shift register sequences. The Annals
of Probability, 11(3):678–684, August 1983.

Paper E
Hierarchical Bayesian approaches for

robust inference in ARX models

Authors: J. Dahlin, F. Lindsten, T. B. Schön and A. Wills

Supported by the project Probabilistic modelling of dynamical systems (Contract
number: 621-2013-5524) funded by the Swedish Research Council.

Edited version of the paper:

J. Dahlin, F. Lindsten, T. B. Schön, and A. Wills. Hierarchical Bayesian
ARX models for robust inference. In Proceedings of the 16th IFAC
Symposium on System Identification (SYSID), Brussels, Belgium, July
2012b.

Preliminary version:

Technical Report LiTH-ISY-R-3041, Dept. of Electrical Engineering,
Linköping University, SE-581 83 Linköping, Sweden.

Hierarchical Bayesian approaches for robust
inference in ARX models

J. Dahlin?, F. Lindsten†, T. B. Schön‡ and A. Wills♣

?Dept. of Electrical Engineering,
Linköping University,

SE–581 83 Linköping, Sweden.
johan.dahlin@isy.liu.se

†Dept. of Engineering,
University of Cambridge,

CB2 1PZ Cambridge, United Kingdom.
fredrik.lindsten@eng.cam.ac.uk

‡Dept. of Information Technology,
Uppsala University,

SE-751 05 Uppsala, Sweden.
thomas.schon@it.uu.se

♣School of EECS,
University of Newcastle,

Callaghan, NSE, Australia.
adrian.wills@newcastle.edu.au

Abstract
Gaussian innovations are the typical choice in most ARX models but
using other distributions such as the Student’s t could be useful. We
demonstrate that this choice of distribution for the innovations pro-
vides an increased robustness to data anomalies, such as outliers and
missing observations. We consider these models in a Bayesian setting
and perform inference using numerical procedures based on Markov
Chain Monte Carlo methods. These models include automatic order de-
termination by two alternative methods, based on a parametric model
order and a sparseness prior, respectively. The methods and the ad-
vantage of our choice of innovations are illustrated in three numerical
studies using both simulated data and real EEG data.

213

214 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

1 Introduction
An autoregressive exogenous (ARX) model of orders n = {na, nb}, is given by

yt +
na∑
i=1

ani yt−i =
nb∑
i=1

bni ut−i + et, (1)

where ani and bni are model coefficients, ut is a known input signal and et is white
excitation noise, often assumed to be Gaussian and independent of the input signal.
Then, for known model orders n, the maximum likelihood estimate of the unknown
ARX coefficients θn = {an1 , . . . , anna , b

n
1 , . . . , b

n
nb
} is given by least squares (LS). In

practice, we are often faced with the following problems:

1. The appropriate model order is unknown or no “best” model order may exist.

2. The observed data is non-Gaussian in nature, e.g. due to outliers.

In this work, we propose two hierarchical Bayesian ARX models and algorithms
to make inference in these models, thereby addressing both of the practical issues
mentioned above. The proposed models differs from (1) in two aspects: (i) the
excitation noise is modelled as Student’s t distributed, and (ii) a built-in form of
automatic order selection is used.

The t distribution is more heavy-tailed than the Gaussian distribution, which
means that the proposed ARX model can capture “jumps” in the internal state of
the system (as an effect of occasional large innovations). Furthermore, we believe
that this will result in an inference method that is more robust to model errors
and outliers in the observations, a property which we illustrate in this work.

We propose two alternative methods to automatically determine the system order
n. Firstly, we let the model order n be a parameter of the Bayesian ARX model.
The model order is inferred alongside the other unknown parameters, resulting
in a posterior probability distribution over model orders. In the second model,
we instead use a sparseness prior over the ARX coefficients, known as automatic
relevance determination (ARD) (MacKey, 1994; Neal, 1996).

Based on the models introduced above, the resulting identification problem amounts
to finding the posterior distribution of the model parameters θn and the order n.
This is done using Markov Chain Monte Carlo Methods (see e.g. Robert and
Casella (2004)), where we are constructing a Markov Chain with the posterior dis-
tribution as its stationary distribution. We can thus compute estimates under the
posterior parameter distribution by sampling from the constructed Markov Chain.

For the first model, this is a challenging task as the model order is explicitly
included in the parameter vector. This is due to the fact that we are now dealing
with a parameter space of varying dimension, which thereby require the Markov
Chain to do the same. This will be solved using the reversible jump MCMC (RJ-
MCMC) algorithm introduced by Green (1995). The inference problem resulting
from the use of an ARD prior is in the other hand solvable using standard MCMC
algorithms.

2 Hierarchical Bayesian ARX Models 215

The use of RJ-MCMC to estimate the model order and the parameters of an
AR model driven by Gaussian noise, is fairly well studied, see e.g. (Troughton
and Godsill, 1998; Godsill, 2001; Brooks et al., 2003). The present work differs
from these contributions, mainly in the use of Student’s t distributed innovations.
Similar models are also considered by Christmas and Everson (2011), who derive
a variational Bayes algorithm for the inference problem. This approach is not
based on Monte Carlo sampling, but instead makes use of certain deterministic
approximations to overcome the intractable integrals that appear in the expression
for the posterior distribution.

2 Hierarchical Bayesian ARX Models

In this section, we present the two proposed hierarchical Bayesian ARX models
both using Student’s t distributed excitation noise, as described in Section 2.1.
The models differ in how the model orders are incorporated. The two alternatives
are presented in Sections 2.2 and 2.3, respectively.

2.1 Student’s t distributed innovations

Wemodel the excitation noise as Student’s t-distributed, with scale λ and ν degrees
of freedom (DOF)

et ∼ St(0, λ, ν). (2)

This can equivalently be seen as a latent variable model in which et is modelled as
zero-mean Gaussian with unknown variance (λzt)−1 and zt is a gamma distributed
latent variable. Hence, an equivalent model to (2) is given by

zt ∼ G(ν/2, ν/2), (3a)
et ∼ N (0, (λzt)−1), (3b)

where G(α, β) is the gamma distribution with shape α and inverse scale β and
N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2.

Note that λ and ν are unknowns, we wish to infer these in the proposed Bayesian
models. As we do not know much about these parameters, vague (non-informative)
gamma priors are used as in Christmas and Everson (2011)

p(λ) = G(λ;αλ, βλ), (4a)
p(ν) = G(ν;αν , βν), (4b)

where α and β denote hyperparameters that we define below. Note that these
are standard choices resulting from the property of conjugate priors. This type of
priors used in combination with a suitable likelihood gives an analytical expression
for the posterior, see e.g. Bishop (2006) for other examples of conjugate priors.

216 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

2.2 Parametric model order

The first automatic order determination alternative is to infer the order n along
with the model parameters. Assume that there exists some maximum order such
that na, nb ≤ nmax, resulting in n2

max different model hypotheses

Mn : yt = (ϕnt)>θn + et, (5)

for n = {1, 1}, {1, 2}, . . . , {nmax, nmax}, where

ϕnt = {−yt−1, . . . ,−yt−na , ut−1, . . . , ut−nb}
>, (6)

denotes the known inputs and outputs, θn the model coefficients, and et the ex-
citation noise that is assumed to be independent of the input signal. We use a
uniform prior distribution over these model hypotheses with order n as

p(n) =
{

1/n2
max if na, nb ∈ {1, . . . , nmax},

0 otherwise.
(7)

Furthermore, we model the coefficients θn as random vectors, with prior distribu-
tions

p(θn | n, δ) = N (θn; 0, δ−1Ina+nb), (8)

with the same variance δ−1 for all orders n and where In denotes the n×n identity
matrix. Finally, we place the standard conjugate gamma prior on δ as

p(δ) = G(δ;αδ, βδ). (9)

All put together, the collection of unknowns of the model is given by

η = {θn, n, δ, z1:T , λ, ν}. (10)

The latent variables z1:T , as well as the coefficients’ variance δ−1, can be seen as
nuisance parameters which are not really of interest, but they will simplify the
inference.

2.3 Automatic relevance determination

An alternative approach for order determination is to use ARD. Consider a high-
order ARX model with fixed orders n = {nmax, nmax}. Hence, we overparameterise
the model and the ARX coefficients θ will be a vector of fixed dimension m =
2nmax. To avoid overfitting, we place a sparseness prior, known as ARD, on the
ARX coefficients

p(θi | δi) = N (θi; 0, δ−1
i), (11)

with the conjugate distribution on the variance

p(δi) = G(δi;αδ, βδ), (12)

for i = 1, . . . , m. The difference between the ARD prior and (8) is that in (11),
each coefficient is governed by a different variance, which is IID according to (12).
If there is not enough evidence in the data that the ith parameter should be non-

3 Markov chain Monte Carlo 217

zero, this prior will favor a large value for δi which means that the ith parameter
in effect will be “switched off”. Hence, the ARD prior will encourage a sparse
solution; see e.g. MacKey (1994); Neal (1996) for further discussion. When using
the ARD prior, the collection of unknowns of the model is given by

η = {θ, δ1:m, z1:T , λ, ν}, (13)

where θ is the parameter vector of the overparameterised model of order nmax.

3 Markov chain Monte Carlo
Assume that we have observed a sequence of input/output pairs DT = {u1:T , y1:T }.
We then seek the posterior distribution of the model parameters, p(η | DT), which
is not available in closed form. An MCMC sampler is therefore used to approxi-
mately sample from the posterior distribution.

The most fundamental MCMC sampler is known as the Metropolis-Hastings (MH)
algorithm. In this method, we propose a new value for the state of the Markov
chain from some arbitrary chosen proposal kernel. The proposed value is then
accepted with a certain probability, otherwise the previous state of the chain is
kept.

A special case of the MH algorithm is the Gibbs sampler. In this method, we loop
over the different variables of our model, sampling each variable conditioned on the
remaining ones. By using these conditional posterior distributions as proposals,
the MH acceptance probability will be exactly one. Hence, the Gibbs sampler will
always accept its proposed values. As pointed out by Tierney (1994), it is possible
to mix different types of proposals. This will be done in the sampling strategies
employed in this work, where we use Gibbs moves for some variables and random
walk MH moves for other variables.

A generalisation of the MH sampler is the reversible jump MCMC (RJ-MCMC)
sampler (Green, 1995), which allows for moves between parameter spaces of dif-
ferent dimensionality. This approach will be used in this work, for the model
presented in Section 2.2. The reason is that when the model order n is seen as
a parameter, the dimension of the vector θn will change between iterations. An
RJ-MCMC sampler can be seen as employing standard MH moves, but all vari-
ables that are affected by the changed dimensionality must either be accepted or
rejected as a group. That is, in our case, we propose new values for {n, θn} as a
pair, and either accept or reject both of them (see step (I-1a) below).

For the ARX model with parametric model order, we employ an RJ-MCMC sam-
pler using the following sweep1,

1The reason for why we condition on some variables from time s + 1 to T , instead of from
time 1 to T , is to deal with the unknown initial state of the system. This will be explained in
more detail in Section 4.2.

218 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

(I-1) Order and ARX coefficients:

(a) Draw {θn? , n?} | zs+1:T , λ, δ,DT .

(b) Draw δ? | θn? , n?.

(I-2) Innovation parameters:

(a) Draw z?s+1:T | θn
?
, n?, λ, ν,DT .

(b) Draw λ? | θn? , n?, z?s+1:T , DT .

(c) Draw ν? | z?s+1:T .

If we instead consider the ARX model with an ARD prior we use the following
sweep, denoted ARD-MCMC,

(II-1) ARX coefficients:

(a) Draw θ? | zs+1:T , λ, δ1:m, DT .

(b) Draw δ?1:m | θ?.

(II-2) Innovation parameters:

(a) Draw z?s+1:T | θ?, λ, ν,DT .

(b) Draw λ? | θ?, z?s+1:T , DT .

(c) Draw ν? | z?s+1:T .

The difference between the two methods lies in steps (I-1) and (II-1), where the
parameters related to the ARX coefficients are sampled. In steps (I-2) and (II-2),
we sample the parameters of the excitation noise distribution, and these steps are
essentially the same for both samplers.

4 Posteriors and proposal distributions
In this section, we present the posterior and proposal distributions for the model
order and other parameters used by the proposed MCMC methods.

4.1 Model order
Sampling the model order and the ARX coefficients in step (I-1a) is done via a
reversible jump MH step. We start by proposing a new model order n′, according
to some chosen proposal kernel q(n′ | n). In this work, we follow the suggestion by
Troughton and Godsill (1998) and use a constrained random walk with discretised
Laplace increments with scale parameter `, i.e.

q(n′a | n) ∝ exp(−`|n′a − na|), if 1 ≤ n′a ≤ nmax, (14)

and analogously for nb. This proposal will favour small changes in the model order,
but allows for occasional large jumps.

4 Posteriors and proposal distributions 219

Once we have sampled the proposed model order n′, we generate a set of ARX
coefficients from the posterior distribution

θn
′ ∼ p(θn′ | n′, zs+1:T , λ, δ,DT) = N (θn′ ;µθn′ ,Σθn′). (15)

The expressions for the mean and the covariance of this Gaussian distribution are
provided in the subsequent section. Now, since the proposed coefficients θn′ are
directly connected to the model order n′, we apply an MH accept/reject decision
to the pair {θn′ , n′}. The MH acceptance probability is given by

ρnn′ , 1 ∧ p(n
′, θn

′ | zs+1:T , λ, δ,DT)
p(n, θn | zs+1:T , λ, δ,DT)

q(n, θn | n′, θn′)
q(n′, θn′ | n, θn)

= 1 ∧ p(n
′ | zs+1:T , λ, δ,DT)

p(n | zs+1:T , λ, δ,DT)
q(n | n′)
q(n′ | n) , (16)

where a ∧ b , min(a, b). Since

p(n | zs+1:T , λ, δ,DT) ∝ p(y1:T | n, zs+1:T , λ, δ, u1:T)p(n), (17)

where the prior over model orders is flat according to (7), the acceptance proba-
bility can be simplified to (Troughton and Godsill, 1998)

ρnn′ = 1 ∧
δ
n′
2 |Σθn′ |

1
2 exp

(1
2µ
>
θn
′Σ
−1
θn
′µθn′

)
δ
n
2 |Σθn |

1
2 exp

(1
2µ
>
θnΣ

−1
θn µθn

) q(n | n′)
q(n′ | n) .

Note by (21) that the acceptance probability does not depend on the actual value
of θn′ . Hence, we do not have to carry out the sampling according to (15) unless
the proposed sample is accepted.

4.2 ARX coefficients
The ARX coefficients are sampled in step (I-1a) and step (II-1a) of the two pro-
posed MCMC samplers, respectively. In both cases, we sample from the posterior
distribution over the parameters; see (15). In this section, we adopt the notation
used in the RJ-MCMC sampler, but the sampling is completely analogous for the
ARD-MCMC sampler. A “stacked” version of the linear regression model (5) is

ys+1:T = Φnθn + es+1:T , (18)

where the regression matrix Φn is given by

Φn =

 −ys · · · −ys−na us · · · us−nb+1
...

. . .
...

...
. . .

...
−yT−1 · · · −yT−na uT−1 · · · uT−nb

 . (19)

Here, we have take into account that the initial state of the system is not known,
and only use observations from time s + 1 to T in the vector of observations on
the left hand side of (18). For the RJ-MCMC sampler s = max(na, n′a) and for
the ARD-MCMC sampler s = nmax.

Let ∆−1 be the covariance matrix for the parameter prior, either according to (8)

220 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

or according to (11), i.e.

∆−1 =
{
δIna+nb for RJ-MCMC,
diag(δ1, . . . , δm) for ARD-MCMC.

(20)

Since we condition on the latent variables zs+1:T (and the varince parameter λ−1),
the noise term in (18) can be viewed as Gaussian according to (3b). It follows that
the posterior parameter distribution is Gaussian, as already stated in (15), with
mean and covariance given by

µθn = Σθn(Φn)>(λzs+1:T ◦ ys+1:T), (21a)

Σθn =
(

(Φn)>diag(λzs+1, . . . , λzT)Φn + ∆

)−1
, (21b)

respectively. Here, ◦ denotes elementwise multiplication.

4.3 ARX coefficients variance
We now derive the posterior distributions for the ARX coefficients variance(s),
sampled in steps (I-1b) and (II-1b) for the two models, respectively.

Consider first the model described with parametric model order. The ARX coeffi-
cients variance δ−1 is a priori gamma distributed according to (9). The likelihood
is given by (8) and an analytical expression for the posterior distribution is easily
found as the gamma distributed is a conjugate prior. Thereby motivating the stan-
dard choice of a gamma distributed prior for the inverse variance in a Gaussian
distribution. It follows from standard results (see e.g. Bishop (2006, p. 100)) that

p(δ | θn, n) = G(δ;αpostδ , βpostδ), (22)

with hyperparameters

αpostδ = αδ + na + nb
2 , and βpostδ = βδ + 1

2(θn)>θn. (23)

Similarly, for the ARD model, we get from the prior (12) and the likelihood (11),
that the posterior distributions for the ARX coefficients variances are given by

p(δi | θi) = G(δi;αpostδi
, βpostδi

), (24)

with hyperparameters

αpostδi
= αδ + 1

2 , and βpostδi
= βδ + 1

2θ
2
i , (25)

for i = 1, . . . , m.

4.4 Latent variance variables
Let us now turn to the parameters defining the excitation noise distribution. We
start with the latent variance variables zs+1:T . These variables are sampled anal-
ogously in steps (I-2a) and (II-2a). The latent variables are a priori gamma dis-
tributed according to (3a) and since they are IID, we focus on one of them, say
zt. Note that we here once again have chosen a prior distribution conjugate to the

4 Posteriors and proposal distributions 221

likelihood.

The likelihood model for zt is given by (5), where the model order now is fixed
since we condition on n (in the ARD model, the order is always fixed)

p(yt | zt, θn, n, λ, ν, ϕnt) = N (yt, (ϕnt)>θn, (λzt)−1). (26)

It follows that the posterior is given by

p(zt | θn, n, λ, ν,DT) = G(zt;αpostz , βpostzt), (27)

with the hyperparameters

αpostz = 1
ν

+ 1
2 , and βpostzt = ν

2 + λ

2 ε
2
t . (28)

Here, the prediction error εt is given by

εt = yt − (ϕnt)>θn. (29)

We can thus generate z?s+1:T by sampling independently from (27) for t = s +
1, . . . , T .

4.5 Innovation scale parameter

The innovation scale parameter λ is sampled in steps (I-2b) and (II-2b). This
variable follows a model that is very similar to zt. The difference is that, whereas
the individual zt variables are IID and only enter the likelihood model (5) for a
single t each, we have the same λ for all time instances. The posterior distribution
of λ is thus given by

p(λ | θn, n, zs+1:T , DT) = G(λ;αpostλ , βpostλ), (30)

with

αpostλ = αλ + T − s
2 , and βpostλ = βλ + 1

2ε
>
s+1:T (zs+1:T ◦ εs+1:T), (31a)

where the prediction errors εs+1:T are given by (29).

4.6 Innovation DOF

The DOF ν, sampled in steps (I-2c) and (II-2c), is a priori gamma distributed
according to (4b). The likelihood for this variable is given by (3a). It follows that
the posterior of ν is given by

p(ν | zs+1:T) ∝ p(zs+1:T | ν)p(ν) =
T∏

t=s+1
G(zt; ν/2, ν/2)G(ν;αν , βν). (32)

Unfortunately, this does not correspond to any standard distribution. To circum-
vent this, we apply an MH accept/reject step to sample the DOF. Hence, we
propose a value according to some proposal kernel ν′ ∼ q(ν′ | ν). Here, the pro-
posal is taken as a Gaussian random walk, constrained to the positive real line.

222 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

The proposed sample is accepted with probability

ρνν′ = 1 ∧ p(ν
′ | zs+1:T)

p(ν | zs+1:T)
q(ν | ν′)
q(ν′ | ν) , (33)

which can be computed using (32).

5 Numerical illustrations
We now give some numerical results to illustrate the performance of the proposed
methods. First, we compare the average performance of the MCMC samplers
with least squares (LS) in Section 5.1. These experiments are included mostly
to build some confidence in the proposed method. We then illustrate how the
proposed methods are affected by outliers and missing data in Section 5.2. As a
final example, in Section 5.3 we illustrate the performance of the RJ-MCMC on
real EEG data.

5.1 Average model performance
We evaluate the proposed methods by analysing the average identification perfor-
mance for 25, 000 randomly generated ARX systems. These systems are generated
by sampling a uniform number of poles and zeros (so that the resulting system
is strictly proper) up to some maximum order, here taken as 30. The poles and
zeros are generated uniformly over a disc with radius 0.95.

For each system, we generate T = 450 observations2. The input signal ut is gen-
erated as Gaussian white noise with standard deviation 0.1. The innovations are
simulated from a Student’s t distribution, et ∼ St(0, 1, 2). The hyperparameters
of the model are chosen as αλ = βλ = αν = βν = αδ = βδ = 0.1.

The data is split into three parts with 150 observations each. The first two parts are
used for model estimation, and the last part is used for testing the model. For the
LS method, we employ cross validation by first estimating models for all possible
combinations of model orders na and nb, such that both are less than or equal
to nmax = 30, on the first batch of data. We then pick the model corresponding
to the best model fit (Ljung, 1999, p. 500). The full estimation data set (300
observations) is then used to re-estimate the model parameters. For the MCMC
methods, we use all the estimation data at once, since these methods comprise
automatic order determination and no explicit order selection is made.

The average model fit for the test data, for the 25,000 ARX systems is given
in Table 1. We note a slight statistically significant improvement by using the
RJ-MCMC method in comparison with the standard LS technique. Also, the
RJ-MCMC appear to perform better than the simpler ARD-MCMC method (for
this model class). Therefore, we will focus primarily on the former method in the
remainder of the numerical illustrations.

2When simulating the systems, we run the simulations for 900 time steps, out of which the
first 450 observations are discarded, to remove the effect of transients.

5 Numerical illustrations 223

0 5000 10000 15000 20000 25000

0
.0

0
.5

1
.0

1
.5

2
.0

System

D
if
fe

re
n

c
e

 i
n

 m
o

d
e

l
fi
t

−0.02 −0.01 0.00 0.01 0.02

Difference in model fit

0 100 200 300 400

−
1

5
0

−
1

0
0

−
5

0
0

Time (t)

S
ig

n
a

l
(y

)

Figure 1: Upper: The difference in model fit between the RJ-MCMC and LS
methods. Middle: A boxplot of the difference in model fit with the outliers
removed. Lower: One particular randomly generated ARX model with a large
innovation outlier that affects the system output.

224 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

Method Mean CI

LS 77.51 [77.21 77.81]
RJ-MCMC 78.24 [77.95 78.83]
ARD-MCMC 77.73 [77.47 78.06]

Table 1: The average and 95% confidence intervals (CI) for the model fit (in percent)
from experiments with 25, 000 random ARX models.

In the upper part of Figure 1, the differences in model fit between RJ-MCMC
and LS for all 25,000 systems are shown. We note that there are no cases with
large negative values, indicating that the RJ-MCMC method performs at least as
good as, or better than, LS for the vast majority of these systems. We also note
that there are a few cases in which LS is much worse that RJ-MCMC. Hence, the
average model fit for LS is deteriorated by the fact that the method fails completely
from “time to time”. This is not the case for the proposed RJ-MCMC sampler
(nor for the ARD-MCMC sampler), which suggests that the proposed method is
more robust to variations in the data.

It is interesting to review a typical case with a large difference in model fit between
the two methods. Data from such a case is shown in the lower part of Figure 1.
Here, we see a large jump in the system state. The ARX model with Student’s
t distributed innovations can, due to the heavy tails of the noise distribution,
accommodate for the large output values better than the model with Gaussian
noise. The model fit for this system was 46.15% for the RJ-MCMC method and
14.98% for the LS methods.

It is important to note that the use of the LS method is due to its simplicity.
For the problem under study the LS method is the maximum likelihood (ML)
solution to an ARX model with Gaussian noise and a given model order. The
ML problem can of course also be posed for the case where t distributed noise is
assumed. Another alternative would be to make use of a prediction error method
with a robust norm, such as the Huber or Vapnik norm. A cross validation scheme
could also be used to handle the automatic order determination in this setting by
an exhaustive search of the model set.

5.2 Robustness to outliers and missing data
We continue by evaluating the proposed models and inference algorithms in the
presence of missing data or outliers in the observations. The hypothesis is that,
due to the use of Student’s t innovations in the model, we should be more robust
to such data anomalies than an LS estimate (based on a Gaussian assumption).

In these experiments, the innovations used in the data generation are drawn from
a Gaussian distribution with unit variance. We then add outliers or missing obser-
vations to the outputs of the systems (i.e. this can be interpreted as an effect of
sensor imperfections or measurement noise). This is done by randomly selecting
between 1–3 % of the observations in the estimation data, which are modified as

5 Numerical illustrations 225

−100 −50 0 50 100

−
1

0
0

−
5

0
0

5
0

1
0

0

Observations

P
re

d
ic

ti
o

n
s

LS

−100 −50 0 50 100

−
1

0
0

−
5

0
0

5
0

1
0

0

Observations

P
re

d
ic

ti
o

n
s

RJ−MCMC

−100 −50 0 50 100

−
1

0
0

−
5

0
0

5
0

1
0

0

Observations

P
re

d
ic

ti
o

n
s

LS

−100 −50 0 50 100

−
1

0
0

−
5

0
0

5
0

1
0

0

Observations

P
re

d
ic

ti
o

n
s

RJ−MCMC

Figure 2: Predictions versus observations for data with outliers (upper) and
data with missing observations (lower). The model fit values for the outlier
data example are 91.6% for the RJ-MCMC (blue stars) and 40.2% for LS (red
dots). The corresponding values for the missing data example are 94.4% and
75.7%.

226 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

Outliers Missing data
Method Mean CI Mean CI

LS 39.13 [37.86 40.41] 75.20 [74.00 76.40]
RJ-MCMC 70.54 [69.03 72.04] 80.18 [78.74 81.62]
ARD-MCMC 72.46 [71.02 73.91] 81.57 [80.24 82.90]

Table 2: The mean and 95% CIs for the model fit (in percent) from 1, 000 systems
with outliers and missing data, respectively.

described below. In the first set of experiments we add outliers to the selected
observations. The size of the outliers are sampled from a uniform distribution
U(−5y+, 5y+), with y+ = max |yt|. In the second set of experiment, we instead
replace the selected observations by zero-mean Gaussian noise with variance 0.01.
This is to represent missing data due to sensor errors, resulting in values close to
zero compared with the actual observations.

For each scenario, we generate 1, 000 random ARX systems and simulate T = 450
observations from each. We then apply the proposed MCMC samplers and LS
with cross validation, similarly to the previous sections, but with the modifica-
tions described above. Table 2 gives the average results over the 1, 000 randomly
generated models with added outliers and missing values, respectively. Here, we
have not corrupted the test data by adding outliers or missing observations, not
to overshadow the results3.

The mean results show statistically certain differences between the LS approach
and the two proposed methods. We conclude that, in general the proposed MCMC
based methods are more robust to data anomalies such as missing observations or
outliers.

In Figure 2, the predicted versus the corresponding observed data points are shown
for the RJ-MCMC method (blue stars) and the LS approach (red dots), for two of
the data batches. It is clearly visible that the LS method is unable to handle the
problem with outliers, and the predictions are systematically too small (in absolute
value). LS performs better in the situation with missing data, but the variance of
the prediction errors is still clearly larger than for the RJ-MCMC method.

5.3 Real EEG data
We now present some results from real world EEG data, which often include large
outliers (and therefore deviates from normality). Therefore this data serves as a
good example for when the propose methods are useful in a practical setting. The
deviations from normality can be seen in Figure 3, by observing the signal and the
QQ-plot, i.e. a comparison between two distributions by plotting their quantiles
against each other (Wilk and Gnanadesikan, 1968).

3If an outlier is added to the test data, the model fit can be extremely low even if there is a
good fit for all time points apart from the one where the outlier occurs.

5 Numerical illustrations 227

0 50 100 150 200 250 300 350

2
5

0
0

3
0

0
0

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

5
5

0
0

Time (s)

S
ig

n
a

l
(y

)

340.9 341.0 341.1 341.2

4
3

5
0

4
4

0
0

4
4

5
0

4
5

0
0

Time (s)

S
ig

n
a

l
(y

)

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Model order

P
ro

b
a

b
ili

ty

1 2 3 4 5 6 7 −4 −2 0 2 4

2
0

0
0

3
0

0
0

4
0

0
0

5
0

0
0

6
0

0
0

Standard Gaussian quantiles

S
a

m
p

le
 q

u
a

n
ti
le

s

Figure 3: Upper: the EEG signal (black) collected on one specific channel
and patient with the one-step-ahead predictions (red). Middle: the last 100
samples from the upper graph. Lower left: The estimated posterior model
order density from the RJ-MCMC method. Lower right: The QQ-plot for the
data set. The model fit for the results in this figure is 85.6%.

228 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

The RJ-MCMC method with Student’s t innovations is used to estimate an AR
model for this data set. The resulting estimated posterior density for the model
order is shown in the lower left part of Figure 3. Knowing this posterior, allows for
e.g. weighting several different models together using the estimated density values.

In addition, we can also estimate the posterior density of the DOF of the inno-
vations. This density is useful for quantifying deviations from normality, as the
Gaussian distribution is asymptotically recovered from the Student’s t distribution
with infinite DOF. As the maximum posterior value is attained at approximately
4.0 DOF, this confirm non-Gaussian innovations.

We have thereby illustrated the usefulness of the proposed methods, both for
parameter inference but also for estimating useful posterior densities not easily
obtainable in the LS framework.

6 Conclusions and Future work
We have considered hierarchical Bayesian ARX model with Student’s t distributed
innovations. This was considered to be able to capture non-Gaussian elements in
the data and to increase robustness. Furthermore, both models contain a mecha-
nism for automatic order selection. To perform inference in these models, we also
derived two MCMC samplers: a reversible jump MCMC (RJ-MCMC) sampler and
a standard Gibbs sampler.

Three numerical examples have been presented, providing evidence that the pro-
posed models provide increased robustness to data anomalies, such as outliers and
missing data. We have shown that the proposed methods perform on average as
good as (ARD-MCMC) or better (RJ-MCMC) than LS with cross validation, when
the true system is in the model class. Another benefit with the proposed methods
is that they provide a type of information which is not easily attainable using more
standard techniques. As an example, this can be the posterior distribution over
the model orders, as illustrated in Figure 3.

There are several interesting avenues for future research, and we view the present
work as a stepping stone for estimating more complex models. The next step is to
generalize the proposed methods to encompass e.g. OE and ARMAX models. A
more far reaching step is to generalize the methods to nonlinear systems, possibly
by using Particle MCMC methods (Andrieu et al., 2010). It is also interesting to
further analyse the use of sparseness priors in this setting.

Acknowledgements
The EEG data was kindly provided by Eline Borch Petersen and Thomas Lunner
at Eriksholm Research Centre, Oticon A/S, Denmark.

Bibliography 229

Bibliography
C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 72(3):269–342, 2010.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
USA, 2006.

S. P. Brooks, P. Giudici, and G. O. Roberts. Efficient construction of reversible
jump Markov chain Monte Carlo proposal distributions. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 65(1):3–55, February
2003.

J. Christmas and R. Everson. Robust autoregression: Student-t innovations using
variational Bayes. IEEE Transactions on Signal Processing, 59(1):48–57, 2011.

J. Dahlin, F. Lindsten, T. B. Schön, and A. Wills. Hierarchical Bayesian ARX
models for robust inference. In Proceedings of the 16th IFAC Symposium on
System Identification (SYSID), Brussels, Belgium, July 2012.

S. Godsill. On the relationship between Markov chain Monte Carlo methods for
model uncertainty. Journal of Computational and Graphical Statistics, 10(2):
230–248, 2001.

P. J. Green. Reversible jumpMarkov chain Monte Carlo computation and Bayesian
model determination. Biometrica, 82(4):711–732, 1995.

L. Ljung. System identification: theory for the user. Prentice Hall, 1999.

D. J. C. MacKey. Bayesian non-linear modelling for the prediction competition.
ASHRAE Transactions, 100(2):1053–1062, 1994.

R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2 edition,
2004.

L. Tierney. Markov chains for exploring posterior distributions. The Annals of
Statistics, 22(4):1701–1728, 1994.

P. T. Troughton and S. J. Godsill. A reversible jump sampler for autoregres-
sive time series. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 1998.

M. B. Wilk and R. Gnanadesikan. Probability plotting methods for the analysis
of data. Biometrika, 55(1):1–17, March 1968.

230 Paper E Hierarchical Bayesian approaches for robust inference in ARX models

Licentiate Theses
Division of Automatic Control

Linköping University
P. Andersson: Adaptive Forgetting through Multiple Models and Adaptive Control of
Car Dynamics. Thesis No. 15, 1983.
B. Wahlberg: On Model Simplification in System Identification. Thesis No. 47, 1985.
A. Isaksson: Identification of Time Varying Systems and Applications of System Identifi-
cation to Signal Processing. Thesis No. 75, 1986.
G. Malmberg: A Study of Adaptive Control Missiles. Thesis No. 76, 1986.
S. Gunnarsson: On the Mean Square Error of Transfer Function Estimates with Applica-
tions to Control. Thesis No. 90, 1986.
M. Viberg: On the Adaptive Array Problem. Thesis No. 117, 1987.
K. Ståhl: On the Frequency Domain Analysis of Nonlinear Systems. Thesis No. 137,
1988.
A. Skeppstedt: Construction of Composite Models from Large Data-Sets. Thesis No. 149,
1988.
P. A. J. Nagy: MaMiS: A Programming Environment for Numeric/Symbolic Data Pro-
cessing. Thesis No. 153, 1988.
K. Forsman: Applications of Constructive Algebra to Control Problems. Thesis No. 231,
1990.
I. Klein: Planning for a Class of Sequential Control Problems. Thesis No. 234, 1990.
F. Gustafsson: Optimal Segmentation of Linear Regression Parameters. Thesis No. 246,
1990.
H. Hjalmarsson: On Estimation of Model Quality in System Identification. Thesis
No. 251, 1990.
S. Andersson: Sensor Array Processing; Application to Mobile Communication Systems
and Dimension Reduction. Thesis No. 255, 1990.
K. Wang Chen: Observability and Invertibility of Nonlinear Systems: A Differential
Algebraic Approach. Thesis No. 282, 1991.
J. Sjöberg: Regularization Issues in Neural Network Models of Dynamical Systems. The-
sis No. 366, 1993.
P. Pucar: Segmentation of Laser Range Radar Images Using Hidden Markov Field Models.
Thesis No. 403, 1993.
H. Fortell: Volterra and Algebraic Approaches to the Zero Dynamics. Thesis No. 438,
1994.
T. McKelvey: On State-Space Models in System Identification. Thesis No. 447, 1994.
T. Andersson: Concepts and Algorithms for Non-Linear System Identifiability. Thesis
No. 448, 1994.
P. Lindskog: Algorithms and Tools for System Identification Using Prior Knowledge.
Thesis No. 456, 1994.
J. Plantin: Algebraic Methods for Verification and Control of Discrete Event Dynamic
Systems. Thesis No. 501, 1995.
J. Gunnarsson: On Modeling of Discrete Event Dynamic Systems, Using Symbolic Alge-
braic Methods. Thesis No. 502, 1995.
A. Ericsson: Fast Power Control to Counteract Rayleigh Fading in Cellular Radio Systems.
Thesis No. 527, 1995.
M. Jirstrand: Algebraic Methods for Modeling and Design in Control. Thesis No. 540,
1996.
K. Edström: Simulation of Mode Switching Systems Using Switched Bond Graphs. Thesis
No. 586, 1996.

J. Palmqvist: On Integrity Monitoring of Integrated Navigation Systems. Thesis No. 600,
1997.
A. Stenman: Just-in-Time Models with Applications to Dynamical Systems. Thesis
No. 601, 1997.
M. Andersson: Experimental Design and Updating of Finite Element Models. Thesis
No. 611, 1997.
U. Forssell: Properties and Usage of Closed-Loop Identification Methods. Thesis No. 641,
1997.
M. Larsson: On Modeling and Diagnosis of Discrete Event Dynamic systems. Thesis
No. 648, 1997.
N. Bergman: Bayesian Inference in Terrain Navigation. Thesis No. 649, 1997.
V. Einarsson: On Verification of Switched Systems Using Abstractions. Thesis No. 705,
1998.
J. Blom, F. Gunnarsson: Power Control in Cellular Radio Systems. Thesis No. 706, 1998.
P. Spångéus: Hybrid Control using LP and LMI methods – Some Applications. Thesis
No. 724, 1998.
M. Norrlöf: On Analysis and Implementation of Iterative Learning Control. Thesis
No. 727, 1998.
A. Hagenblad: Aspects of the Identification of Wiener Models. Thesis No. 793, 1999.
F. Tjärnström: Quality Estimation of Approximate Models. Thesis No. 810, 2000.
C. Carlsson: Vehicle Size and Orientation Estimation Using Geometric Fitting. Thesis
No. 840, 2000.
J. Löfberg: Linear Model Predictive Control: Stability and Robustness. Thesis No. 866,
2001.
O. Härkegård: Flight Control Design Using Backstepping. Thesis No. 875, 2001.
J. Elbornsson: Equalization of Distortion in A/D Converters. Thesis No. 883, 2001.
J. Roll: Robust Verification and Identification of Piecewise Affine Systems. Thesis
No. 899, 2001.
I. Lind: Regressor Selection in System Identification using ANOVA. Thesis No. 921, 2001.
R. Karlsson: Simulation Based Methods for Target Tracking. Thesis No. 930, 2002.
P.-J. Nordlund: Sequential Monte Carlo Filters and Integrated Navigation. Thesis
No. 945, 2002.
M. Östring: Identification, Diagnosis, and Control of a Flexible Robot Arm. Thesis
No. 948, 2002.
C. Olsson: Active Engine Vibration Isolation using Feedback Control. Thesis No. 968,
2002.
J. Jansson: Tracking and Decision Making for Automotive Collision Avoidance. Thesis
No. 965, 2002.
N. Persson: Event Based Sampling with Application to Spectral Estimation. Thesis
No. 981, 2002.
D. Lindgren: Subspace Selection Techniques for Classification Problems. Thesis No. 995,
2002.
E. Geijer Lundin: Uplink Load in CDMA Cellular Systems. Thesis No. 1045, 2003.
M. Enqvist: Some Results on Linear Models of Nonlinear Systems. Thesis No. 1046,
2003.
T. Schön: On Computational Methods for Nonlinear Estimation. Thesis No. 1047, 2003.
F. Gunnarsson: On Modeling and Control of Network Queue Dynamics. Thesis No. 1048,
2003.
S. Björklund: A Survey and Comparison of Time-Delay Estimation Methods in Linear
Systems. Thesis No. 1061, 2003.

M. Gerdin: Parameter Estimation in Linear Descriptor Systems. Thesis No. 1085, 2004.
A. Eidehall: An Automotive Lane Guidance System. Thesis No. 1122, 2004.
E. Wernholt: On Multivariable and Nonlinear Identification of Industrial Robots. Thesis
No. 1131, 2004.
J. Gillberg: Methods for Frequency Domain Estimation of Continuous-Time Models.
Thesis No. 1133, 2004.
G. Hendeby: Fundamental Estimation and Detection Limits in Linear Non-Gaussian
Systems. Thesis No. 1199, 2005.
D. Axehill: Applications of Integer Quadratic Programming in Control and Communica-
tion. Thesis No. 1218, 2005.
J. Sjöberg: Some Results On Optimal Control for Nonlinear Descriptor Systems. Thesis
No. 1227, 2006.
D. Törnqvist: Statistical Fault Detection with Applications to IMU Disturbances. Thesis
No. 1258, 2006.
H. Tidefelt: Structural algorithms and perturbations in differential-algebraic equations.
Thesis No. 1318, 2007.
S. Moberg: On Modeling and Control of Flexible Manipulators. Thesis No. 1336, 2007.
J. Wallén: On Kinematic Modelling and Iterative Learning Control of Industrial Robots.
Thesis No. 1343, 2008.
J. Harju Johansson: A Structure Utilizing Inexact Primal-Dual Interior-Point Method for
Analysis of Linear Differential Inclusions. Thesis No. 1367, 2008.
J. D. Hol: Pose Estimation and Calibration Algorithms for Vision and Inertial Sensors.
Thesis No. 1370, 2008.
H. Ohlsson: Regression on Manifolds with Implications for System Identification. Thesis
No. 1382, 2008.
D. Ankelhed: On low order controller synthesis using rational constraints. Thesis
No. 1398, 2009.
P. Skoglar: Planning Methods for Aerial Exploration and Ground Target Tracking. Thesis
No. 1420, 2009.
C. Lundquist: Automotive Sensor Fusion for Situation Awareness. Thesis No. 1422, 2009.
C. Lyzell: Initialization Methods for System Identification. Thesis No. 1426, 2009.
R. Falkeborn: Structure exploitation in semidefinite programming for control. Thesis
No. 1430, 2010.
D. Petersson: Nonlinear Optimization Approaches to H2-Norm Based LPV Modelling
and Control. Thesis No. 1453, 2010.
Z. Sjanic: Navigation and SAR Auto-focusing in a Sensor Fusion Framework. Thesis
No. 1464, 2011.
K. Granström: Loop detection and extended target tracking using laser data. Thesis
No. 1465, 2011.
J. Callmer: Topics in Localization and Mapping. Thesis No. 1489, 2011.
F. Lindsten: Rao-Blackwellised particle methods for inference and identification. Thesis
No. 1480, 2011.
M. Skoglund: Visual Inertial Navigation and Calibration. Thesis No. 1500, 2011.
S. Khoshfetrat Pakazad: Topics in Robustness Analysis. Thesis No. 1512, 2011.
P. Axelsson: On Sensor Fusion Applied to Industrial Manipulators. Thesis No. 1511,
2011.
A. Carvalho Bittencourt: On Modeling and Diagnosis of Friction and Wear in Industrial
Robots. Thesis No. 1516, 2012.

P. Rosander: Averaging level control in the presence of frequent inlet flow upsets . Thesis
No. 1527, 2012.
N. Wahlström: Localization using Magnetometers and Light Sensors. Thesis No. 1581,
2013.
R. Larsson: System Identification of Flight Mechanical Characteristics. Thesis No. 1599,
2013.
Y. Jung: Estimation of Inverse Models Applied to Power Amplifier Predistortion. Thesis
No. 1605, 2013.
M. Syldatk: On Calibration of Ground Sensor Networks. Thesis No. 1611, 2013.
M. Roth: Kalman Filters for Nonlinear Systems and Heavy-Tailed Noise. Thesis No. 1613,
2013.
D. Simon: Model Predictive Control in Flight Control Design — Stability and Reference
Tracking. Thesis No. 1642, 2014.
J. Dahlin: Sequential Monte Carlo for inference in nonlinear state space models. Thesis
No. 1652, 2014.

	Abstract
	Populärvetenskaplig sammanfattning
	Acknowledgments
	Contents
	Notation
	I Background
	1 Introduction
	1.1 Examples of applications
	1.1.1 Predicting GDP growth
	1.1.2 Rendering photorealistic images

	1.2 Thesis outline and contributions
	1.3 Publications

	2 Nonlinear state space models and statistical inference
	2.1 State space models and inference problems
	2.2 Some motivating examples
	2.2.1 Linear Gaussian model
	2.2.2 Volatility models in econometrics and finance
	2.2.3 Earthquake count model in geology
	2.2.4 Daily rainfall models in meteorology

	2.3 Maximum likelihood parameter inference
	2.4 Bayesian parameter inference

	3 State inference using particle methods
	3.1 Filtering and smoothing recursions
	3.2 Monte Carlo and importance sampling
	3.3 Particle filtering
	3.3.1 The auxiliary particle filter
	3.3.2 State inference using the auxiliary particle filter
	3.3.3 Statistical properties of the auxiliary particle filter
	3.3.4 Estimation of the likelihood and log-likelihood

	3.4 Particle smoothing
	3.4.1 State inference using the particle fixed-lag smoother
	3.4.2 Estimation of additive state functionals
	3.4.3 Statistical properties of the particle fixed-lag smoother

	3.5 SMC for Image Based Lighting

	4 Parameter inference using sampling methods
	4.1 Overview of computational methods for parameter inference
	4.1.1 Maximum likelihood parameter inference
	4.1.2 Bayesian parameter inference

	4.2 Metropolis-Hastings
	4.2.1 Statistical properties of the MH algorithm
	4.2.2 Proposals using Langevin and Hamiltonian dynamics

	4.3 Particle Metropolis-Hastings
	4.4 Bayesian optimisation
	4.4.1 Gaussian processes as surrogate functions
	4.4.2 Acquisition rules
	4.4.3 Gaussian process optimisation

	5 Concluding remarks and future work
	5.1 Summary of the contributions
	5.2 Outlook and future work
	5.2.1 Particle Metropolis-Hastings
	5.2.2 Gaussian process optimisation using the particle filter
	5.2.3 Input design in SSMs

	5.3 Source code and data

	Bibliography

	II Publications
	A PMH using gradient and Hessian information
	1 Introduction
	2 Particle Metropolis-Hastings
	2.1 MH sampling with unbiased likelihoods
	2.2 Constructing the first and second order proposals
	2.3 Properties of the first and second order proposals

	3 Estimation of likelihoods, gradients, and Hessians
	3.1 Auxiliary particle filter
	3.2 Estimation of the likelihood
	3.3 Estimation of the gradient
	3.4 Estimation of the Hessian
	3.5 Accuracy of the estimated gradients and Hessians
	3.6 Resulting SMC algorithm

	4 Numerical illustrations
	4.1 Estimation of the log-likelihood and the gradient
	4.2 Burn-in and scale-invariance
	4.3 The mixing of the Markov chains at stationarity

	5 Discussion and future work
	Bibliography

	B Particle filter-based GPO for parameter inference
	1 Introduction
	2 Maximum likelihood estimation with a surrogate cost function
	3 Estimating the log-likelihood
	3.1 The particle filter
	3.2 Estimation of the likelihood
	3.3 Estimation of the log-likelihood

	4 Modelling the surrogate function
	4.1 Gaussian process model
	4.2 Updating the model and the hyperparameters
	4.3 Example of log-likelihood modelling

	5 Acquisition rules
	5.1 Expected improvement

	6 Numerical illustrations
	6.1 Implementation details
	6.2 Linear Gaussian state space model
	6.3 Nonlinear stochastic volatility model

	7 Conclusions
	Bibliography

	C Approximate inference in SSMs with intractable likelihoods using GPO
	1 Introduction
	2 An intuitive overview
	3 Estimating the posterior distribution
	3.1 State inference
	3.2 Estimation of the log-likelihood

	4 Gaussian process optimisation
	4.1 Constructing the surrogate function
	4.2 The acquisition rule

	5 Putting the algorithm together
	6 Numerical illustrations
	6.1 Inference in -stable data
	6.2 Linear Gaussian model
	6.3 Stochastic volatility model with -stable returns

	7 Conclusions and outlook
	Bibliography
	A -stable distributions
	A.1 Definitions
	A.2 Simulating random variables
	A.3 Parameter estimation

	D A graph/particle-based method for experiment design
	1 Introduction
	2 Problem formulation
	3 New input design method
	3.1 Graph theoretical input design
	3.2 Estimation of the score function
	3.3 Monte Carlo-based optimisation
	3.4 Summary of the method

	4 Numerical examples
	4.1 Linear Gaussian state space model
	4.2 Nonlinear growth model

	5 Conclusion
	Bibliography

	E Hierarchical Bayesian approaches for robust inference in ARX models
	1 Introduction
	2 Hierarchical Bayesian ARX Models
	2.1 Student's t distributed innovations
	2.2 Parametric model order
	2.3 Automatic relevance determination

	3 Markov chain Monte Carlo
	4 Posteriors and proposal distributions
	4.1 Model order
	4.2 ARX coefficients
	4.3 ARX coefficients variance
	4.4 Latent variance variables
	4.5 Innovation scale parameter
	4.6 Innovation DOF

	5 Numerical illustrations
	5.1 Average model performance
	5.2 Robustness to outliers and missing data
	5.3 Real EEG data

	6 Conclusions and Future work
	Bibliography

