
Storage Allocation for Embedded Processors*

Jan Sjödin
Uppsala University

Department of Information Technology
Box 337

SE-751 05 Uppsala
Sweden

jans@csd.uu.se

Carl von Platen
IAR Systems

Malmö Slagthus
Carlsgatan 12 A

SE-211 20 Malmö
Sweden

carl.von.platen@iar.se

ABSTRACT
In an embedded system, it is common to have several mem-
ory areas with different properties, such as access time and
size. An access to a specific memory area is usually re-
stricted to certain native pointer types. Different pointer
types vary in size and cost. For example, it is typically
cheaper to use an 8-bit pointer than a 16-bit pointer. The
problem is to allocate data and select pointer types in the
most effective way. Frequently accessed variables should be
allocated in fast memory, and frequently used pointers and
pointer expressions should be assigned cheap pointer types.
Common practice is to perform this task manually.
We present a model for storage allocation that is capable

of describing architectures with irregular memory organiza-
tion and with several native pointer types. This model is
used in an integer linear programming (ILP) formulation of
the problem. An ILP solver is applied to get an optimal
solution under the model. We describe allocation of global
variables and local variables with static storage duration.
A whole program optimizing C compiler prototype was

used to implement the allocator. Experiments were per-
formed on the Atmel AVR 8-bit microcontroller [2] using
small to medium sized C programs. The results varied with
the benchmarks, with up to 8% improvement in execution
speed and 10% reduction in code size.

1. INTRODUCTION
Most embedded systems have an irregular memory orga-

nization. By this, we mean that the memory consists of
several memory areas with different characteristics. For ex-
ample, on-chip memory (small and fast internal memory) is
a common feature where frequently used data can be stored

∗This work has been conducted under the Whole Program
Optimization for Embedded Systems project. This is an
ongoing project at Uppsala University, in collaboration with
IAR Systems, and is sponsored by the Advanced Software
Technology (ASTEC) competence center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’01, November 16-17, 2001, Atlanta, Georgia, USA.
Copyright 2001 ACM 1-58113-399-5/01/0011 ...$5.00.

to improve program performance. Similarly, it is common to
have different native pointer types to access different types
of memories. By effectively using these types of memories
and smaller (cheaper) pointer types, both execution speed
and program size can be improved. This, in turn, affects
other important parameters such as energy consumption,
production cost and even the physical size of the system.
The allocation problem consists of:

• Allocating each static variable of a program in a mem-
ory segment.

• Assigning a native pointer type to each pointer expres-
sion of the same program.

Native pointer type assignment is dependent on the storage
allocation. We must use pointer types that can access the
memory areas where data has been stored. If allocation is
done first, without taking the pointer types into account,
the code quality may not be as good as if both are done
simultaneously.
Currently, programmers must manually locate variables

and select native pointer types. This is typically done by
annotating code using non-standard mechanisms, such as
pragmas or keywords. It is a time-consuming task and it
renders the source code non-portable. If an application is
moved to a different platform, a new allocation must be done
and the source code must be modified.
We propose a model that is capable of describing architec-

tures with irregular memory organization and with several
native pointer types. From this model we can derive an in-
teger linear program (ILP). A solution to the ILP directly
corresponds to a solution to the allocation problem. Under
the assumptions made in the model, the solution is optimal.
In order to perform variable allocation, all memory ac-

cesses in the program must be known. If only parts of the
user code is provided it is not possible to modify the address-
ing mode used to access the variables. If a restricted pointer
type is used, the set of objects a pointer may point to, known
as the points-to set, must be allocated in the memory acces-
sible by that pointer type. For example, if we have disjoint
address spaces, the entire points-to set must be allocated in
the same space. If an object in the points-to set is located
outside the memory accessible by a pointer, the resulting
program is incorrect. Thus, pointers are able to impose re-
strictions on how we can allocate variables. This means that
whole program optimization (WPO) is required both for the
allocation and the native pointer type assignment.

15

Storage allocation in on-chip memory has previously been
explored by Panda et al. [10], as a solution to reduce cache
conflicts. The algorithm used was heuristic and did not take
code size into consideration. Similarly, Cooper and Har-
vey [4] evaluate the use of on-chip memory as a spill area
for register allocation to minimize the risk of cache conflicts.
Memory bank and register allocation for ASIPs using sim-
ulated annealing was done by Sudarsanam and Malik [14].
There has been a lot of work done on storage allocation (us-
ing graph coloring) for DSPs [9, 11], where the data layout
is critical for pre- and post-increment/decrement memory
operations. ILP has been used by Goodwin and Wilen [5],
and Appel and George [1] for spilling strategies for register
allocation. Kandemir et al. [8] used ILP for optimizing cache
locality. Bixby et al. [3] describe a 0-1 integer programming
solution to data layout of arrays for parallel programs.
The authors have previously described allocation in on-

chip memory as a 0-1 knapsack problem [12]. This is a
special case of the model described in this paper.

2. MEMORY ORGANIZATION
A feature found in most embedded processors is on-chip

memory, which can be accessed efficiently. In contrast, ac-
cess to external memory requires external buses to be driven
and, typically, causes latency. Another common feature is a
specific address range, known as the zero page. Data located
in the zero page can be accessed using fast and compact code
since smaller pointer types can be used. The ”near” seg-
ment of a segmented memory architecture is similar in that
access within this segment is fast and compact; whereas, ac-
cess to ”far” data generally requires specific code for bank
switching. Another common example is modified Harvard
architectures. In this case it is beneficial to allocate constant
data in the program address space. Different native pointer
representations and addressing modes are used for data in
the program and data address spaces.
Some architectures have separate address spaces. Separate

address spaces result in disjoint sets of pointer types, where
the pointers in one set cannot access the memory areas ac-
cessible in any other set. All data that may be accessed
by a pointer p must be located in the address space that p
can access. To allocate data for these types of processors
we must know the points-to sets to ensure that no pointer
restrictions are violated. The hardware may use separate
address buses to access separate physical memories. This is
usually reflected in the instruction set by several types of
load and store instructions that also takes different pointer
types as operands.
In contrast, if we have a single address space, there is

always a general native pointer type that may access the
entire memory. There is no restriction on where the variables
are allocated since general pointers may always be used.
However, we may want to use more restricted pointer types
to optimize the program. In this case, information about
the points-to set is needed to determine if a more restricted
pointer type can be used.
Consider the Atmel AVR, an 8-bit microcontroller. The

AVR typically has between 0 and 4KB on-chip memory. Fig-
ure 1 shows the memory configuration of an AVR with 4KB
internal memory. It has a single address space. The shaded
area represents the internal memory. An access to internal
memory takes 2 clock cycles, while an access to external
memory with zero wait states takes 3 clock cycles. We have

8−bit ptr

24−bit ptr
16−bit ptr

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

����
����
����
����
����

����
����
����
����
����

2562550

tiny near far
16MB65535 65536

Internal memory

Figure 1: AVR RAM Configuration

(0)??main_0:
(1) MOV R16,R24 ;
(2) MOV R17,R25 ;
(3) LSL R16 ;
(4) ROL R17 ;
(5) MOV R30,R16 ;
(6) MOV R31,R17 ;
(7) SUBI R30,LOW((-(b) & 0xFFFFFF)) ; [b]
(8) SBCI R31,HIGH((-(b) & 0xFFFFFF)); [b]
(9) LDI R19,(b) >> 16 ; [b]
(10) OUT 0x3B,R19 ;
(11) LD R20,Z ; b
(12) LDD R21,Z+1 ; (b + 1)
(13) MOV R16,R24 ;
(14) MOV R17,R25 ;
(15) LSL R16 ;
(16) ROL R17 ;
(17) MOV R30,R16 ;
(18) MOV R31,R17 ;
(19) SUBI R30,LOW((-(a) & 0xFFFFFF)) ; [a]
(20) SBCI R31,HIGH((-(a) & 0xFFFFFF)); [a]
(21) LDI R19,(a) >> 16 ; [a]
(22) OUT 0x3B,R19 ;
(23) ST Z,R20 ; a
(24) STD Z+1,R21 ; (a + 1)
(25) ADIW R25 : R24,1 ;
(26) CPI R24,10 ;
(27) LDI R16,0 ;
(28) CPC R25,R16 ;
(29) BRLT ??main_0 ; [??main_0] BRANCH

Figure 2: Array copy with arrays in the far segment.

three native pointer types: 8-bit, 16-bit and 24-bit. Using
the 8-bit pointer may require only one instruction compared
to three instructions with the 24-bit pointer. Figure 2 shows
an assembly listing of a simple copy from one array b to an-
other array a, where both arrays have been allocated in the
far segment. The loop contains 29 instructions. Figure 3
shows the same loop, but the arrays are located in the tiny
segment and is only 19 instructions. By using the tiny seg-
ment, code size is decreased, since cheaper addressing modes
can be used. Speed is improved since fewer instructions are
executed and we save one clock cycle per memory operation
since on-chip memory is accessed.

3. AN ABSTRACT MEMORY MODEL
The memory model is described by a number of mem-

ory segments, which represent subsets of the total memory
space. There is also a number of pointer types, and a rela-
tion between the pointer types and the memory segments.
Each memory segment is uniform with respect to proper-
ties, such as the memory speed and the set of admissible
addressing modes.

16

(0)??main_0:
(1) MOV R16,R24 ;
(2) LSL R16 ;
(3) MOV R30,R16 ;
(4) SUBI R30,(-(b) & 0xFF) ; [b]
(5) LDI R31,0 ;
(6) OUT 0x3B,R31 ;
(7) LD R20,Z ; b
(8) LDD R21,Z+1 ; (b + 1)
(9) MOV R16,R24 ;
(10) LSL R16 ;
(11) MOV R30,R16 ;
(12) SUBI R30,(-(a) & 0xFF) ; [a]
(13) ST Z,R20 ; a
(14) STD Z+1,R21 ; (a + 1)
(15) ADIW R25 : R24,1 ;
(16) CPI R24,10 ;
(17) LDI R16,0 ;
(18) CPC R25,R31 ;
(19) BRLT ??main_0 ; [??main_0] BRANCH

Figure 3: Array copy with arrays in the tiny seg-
ment.

Non-uniform address spaces are modeled by a subdivision
into memory segments which are uniform with respect to
all properties relevant to storage allocation. The memory
model of a target architecture is defined in the following
way:
Let M1, M2, ..., MS , be the set of memory segments of a

target architecture. The size of a memory segment Mj , de-
noted Size(Mj), is the number of addressable units of stor-
age (typically bytes) in Mj . Let P1, P2, ..., PT be the set of
pointer types, for the same target architecture. The set of
memory segments to which a pointer type Pk can refer to is
given by

Mem(Pk) = {j | Pk can point to Mj}
Any number of additional properties can be associated with
the memory segments and the pointer types. The exact
form of these properties, which are used to formulate the
feasibility and the cost of a given storage allocation, is im-
plementation dependent.

3.1 Example: AVR
In this example, we model the memory of an AVR with

4KB on-chip memory as described in Section 2. The three
pointer types are 8-bit (P1), 16-bit (P2) and 24-bit (P3). The
AVR also has native pointer types for ROM or flash memory,
but to simplify the presentation, we will not consider these.
Data memory is divided into 4 segments: one segment M1

(internal) that may be accessed by an 8-bit pointer (M1),
two segments M2 (internal) and M3 (external) for the 16-bit
pointer accesses and M4 for 24-bit accesses. Table 1 shows
the memory model.

3.2 Example: 8051
Intel 8051 [6] has three separate address spaces: inter-

nal data memory, external data memory and code memory.
There are three native pointer types: an 8-bit pointer to
the internal memory (P1), a 16-bit pointer to the exter-
nal memory (P2) and a 16-bit pointer to the code memory
(P3). Figure 4 shows the memory organization and the na-
tive pointer types. For convenience, a fourth pointer type
(P4), that is capable of accessing any of the three address

Mj Size(Mj) Pk Mem(Pk)

M1(tiny) 256 P1 {M1}
M2(near) 3480 P2 {M1, M2, M3}
M3(near) 61440 P3 {M1, M2, M3, M4}
M4(far) 64K-16M

Table 1: Atmel AVR Memory Model with 4K inter-
nal RAM

P1 (8−bit)

P3 (16−bit)

(16−bit)P2

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

2550 127 128

0 65535

0 65535255 256

5M (code memory)

M 3 M 4

21M M

Figure 4: 8051 Memory Configuration

spaces, is emulated in software using a 24-bit pointer format.
Using a 24-bit pointer type is extremely expensive. The in-
ternal data memory space is not uniform and must be split
into two memory segments. The first 128 bytes (M1) can be
accessed very efficiently using the direct addressing mode,
whereas the remaining 128 bytes (M2) can only be accessed
using register indirect addressing. Similarly, there is a 256-
byte segment (M3) of the external memory space that is
accessed more efficiently than the rest of the 64K byte ad-
dress space (M4). Code memory (M5) can only be used for
constant data. The 8051 benefits from storage allocation in
the same way as the AVR. Cheaper pointers and on-chip
memory can be used to improve program performance.

3.3 Example: ARM
A target system based on an ARM [7] core may have both

fast, on-chip memory and significantly slower external mem-
ory. The memory organization would be modeled by two
segments, on-chip memory (M1) and external memory (M2).
A single pointer type (P1) is capable of accessing the entire
address space.
Storage allocation has little or no impact on the code size

of the ARM-based system. Apart from possible differences
in instruction scheduling, the exact same code sequence is
generated regardless of storage allocation. In this case, the

Mj Size(Mj) Pk Mem(Pk)

M1 128 P1 {M1, M2}
M2 128 P2 {M3, M4}
M3 256 P3 {M5}
M4 65280 P4 {M1, M2, M3, M4, M5}
M5 65536

Table 2: Intel 8051 Memory Model

17

objective instead is to allocate frequently accessed variables
in the fast on-chip memory.

4. COST MODEL
The program is modeled by the set of variables appear-

ing in the program and the statements of the intermediate
representation which are relevant for storage allocation. We
assume that the source program is represented in a form
similar to three-address code and that the instructions are
typed. Thereby, the pointer operations can be separated
from integer operations. We consider only the instructions
that are relevant for the variable allocation problem along
with the variables of the program.
Let V = {v1, ..., vN}, be the set of variables referred to

in the source program. The size of a variable v, denoted
Size(v), is the number of allocation units (bytes) required
by v.
Let STMTR, be the set of individual occurrences of three-

address instructions which are relevant for the problem of
variable allocation. These would be the memory operations
(loads and stores) and instructions in where the assigned
register is a pointer (pointer arithmetic and address calcu-
lations).
Let E = {e1, ..., eM}, be the set of pointer expressions.

The function PtrExp maps the instructions in STMTR to a
pointer expression in E. We assume that PtrExp is defined in
a way that allows the client of the storage allocator to modify
the type of a single pointer expression independently.
A solution to the storage allocation problem consists of

two parts: the memory segment of each variable, v ∈ V , de-
noted Seg(v) and a pointer type for each pointer expression,
e ∈ E denoted PtrT(e).
We assume that the cost of a particular solution can be

expressed as the sum of the cost contribution of each variable
and each pointer expression treated in isolation. We will
demonstrate that this model is insufficient in some cases. A
generalization of the model, which handles these cases, is
discussed in Section 5.1.
For each pointer expression e ∈ E, each pointer type

t ∈ P , and each statement S ∈ STMTR we let ptrcostS(e, t)
denote the cost contribution of selecting type t for e in state-
ment S. Similarly, we denote the cost contribution for each
variable v located in memory segment m with varcostS(v, m),
where S ∈ STMTR.
To allow accurate modeling of addressing modes and other

machine idioms for pointer operations, we assume that a
target-dependent matching is performed on the intermedi-
ate code. In this way, several intermediate statements may
be combined into a single operation that subsumes the in-
dividual statements and contributes to the overall cost only
once. A particularly common machine idiom is the absolute
(or direct) addressing mode by which a variable is accessed
directly. This also reduces the total number of variables
needed in the binary integer program described in Section 5.
The cost of a particular solution of the storage allocation

problem is defined in terms of the cost contribution of each
statement S in STMTR.

Cost(S) =
∑

e∈E

ptrcostS(e,PtrT(e))

+
∑

v∈V

varcostS(v,Mem(v))

When modeling a static cost, such as the size of a program,
the sum of all statements in STMTR is formed. When mod-
eling a dynamic cost, such as the execution time, the cost
contribution first needs to be scaled by the (estimated) ex-
ecution frequency of the statement.

5. BIP FORMULATION
The storage allocation problem is formulated as a binary

integer program (BIP). This formulation is based on the
model of a processor’s memory organization and the cost
model.
A feasible solution of the storage allocation problem has to

satisfy two conditions. First, the total size of the variables
placed in a single memory segment must not exceed the
size of the segment. Second, any pointer expression that
may point to a particular variable must be of a type that
can access the memory segment where the variable has been
allocated. Among the feasible solutions, we are interested in
one with minimal cost. It is possible to express both static
costs (code size) and, using execution profiles, dynamic costs
(execution time).
A binary integer program (BIP) follows directly from the

definition of feasible solutions and the cost of a particular
solution. Each variable vi of the source program is repre-
sented by S boolean variables xi1, ..., xiS in the BIP, where S
is the number of memory segments. The meaning of xim = 1
is that variable vi is allocated in memory segment Mm. We
require each variable to be placed in exactly one memory
segment, that is:

xi1 + ... + xiS = 1, 1 ≤ i ≤ N

where N is the number of source-program variables. Fur-
thermore, we require the total size of the variables in a par-
ticular segment to be no greater than the size of the segment.

Size(v1)x1m + ... + Size(vN)xNm ≤ Size(Mm),

1 ≤ m ≤ S

Each pointer expression ej is represented by T boolean vari-
ables yj1, ..., xjT , where T is the number of pointer types.
The intuition is that of yjk = 1 when pointer expression ej

has type Pk. We require each pointer expression to have a
unique type, that is:

yj1 + ... + yjT = 1, 1 ≤ j ≤ M

where M is the number of pointer expressions. We also re-
quire the type of each pointer expression ej to be sufficiently
general for all the variables in its points-to set:

Seg(v) ∈ Mem(PtrT(ej)), v ∈ Pt(ej)

or
∑

i∈Pt(ej)

∑

m∈Mem(Pk)

xim ≥ |Pt(ej)| yjk

1 ≤ j ≤ M, 1 ≤ k ≤ T

The summation is performed over all variables that are in
the points-to set of the pointer expression ej in all memory
segments, which a Pk -pointer can access. Since each vari-
able is located in exactly one memory segment, the sum can,
at the most, be the size of the points-to set; yjk = 1 does not
violate the constraint in this case. If some variable in the
points-to set is not accessible by a Pk -pointer, yjk is zero.

18

Pointer Type Segment M1 Segment M2

P1 2 bytes 3 bytes
P2 4 bytes 6 bytes

Table 3: Correlated Costs

The objective function (to be minimized) is the cost of the
solution, which can be expressed as a linear combination of
the variables xim and yjp:

N∑

i=1

S∑

m=1

aimxim +
M∑

j=1

T∑

k=1

bjkyjk

where

aim =
∑

varcostS(vi, Mm),

S ∈ STMTR

and

bjk =
∑

ptrcostS(rj , Pk),

S ∈ STMTR

5.1 Discussion
The scalability of the proposed optimization is of ma-

jor concern. The problem size depends on the number of
variables and the number of pointer expressions. Both of
which are likely to grow linearly in the size of the source
program. The number of memory segments and the number
of pointer types are, however, parameters of the target archi-
tecture and can be considered constant. Although the BIP-
formulation presented in this paper can be improved, we
expect that finding an optimal solution for large programs
is impractical in general. Finding a heuristic allocation al-
gorithm is important if the allocator should be implemented
in a production compiler.
The accuracy of the cost model is essential to the quality

of the solution. Fundamental to the model is that the cost of
a single statement can be expressed as a linear combination
of cost contributions from variables and pointer expressions.
There is a particularly common case that cannot be mod-
eled precisely in this way. Some target architectures may
represent pointers using multiple machine words. Loading a
pointer from memory may thus require several instructions.
The cost of this operation depends on the size (type) of the
pointer to be loaded and the memory segment of the variable
from which the pointer is loaded. Consider the pointer types
shown in Table 3: P1 takes one load instruction, and P2

takes two load instructions. The size of the instructions are
2 and 3 bytes for the memory segments M1 and M2, respec-
tively. We see that the cost cannot be expressed as a linear
combination. The cost model can be extended to reflect cost
contributions of pairs of pointer expressions and variables.
In BIP-formulation, the pairs would be represented by aux-
iliary variables. In the example given above, one auxiliary
variable per pointer-typed load operation would be required.
We also note that, by modifying the model slightly, we can

represent address spaces with different units of addressable
storage. A common case for Harvard architectures is that
the data space is byte addressable, and the program space
is addressable in units of instruction words. In this case, the

C−code Modified
ICCAVR

Object File

One BIG C file
Preprocess WPO

Prototype

C−code

Allocation

Figure 5: Compiler Framework

Size function would be dependent not only on the variable,
vi, but also on the memory segment Mm.

6. IMPLEMENTATION
In this section, we describe how we implemented the al-

location. Figure 5 shows the compiler framework. We have
implemented a whole program optimization framework to
do the analysis and to solve the allocation problem. The
information is then read by a modified production compiler
(ICCAVR) for the AVR microcontroller in order to generate
executable code. This approach eliminated transformations
that can can arise when other optimizations get a larger
scope, e.g., inlining. This would have occurred if we had
generated code from the WPO framework directly.

6.1 WPO Prototype
To analyze an entire application, we have implemented a

whole program optimization compiler (ICCWPO) based on
an IAR Systems production compiler. We added a prepro-
cessing stage that resolves all preprocessor definitions (e.g.,
macros) and concatenates the resulting files into one large
file containing all code. ICCWPO reads the file and pro-
duces an allocation, which is then used by a modified IAR
Systems AVR compiler.

6.1.1 Points-to Analysis
We needed a good estimate of the points-to set of each

pointer in the program. If we have an unknown function,
it may modify all global pointers and all pointers passed to
the function. Since whole program analysis was used, this
problem was eliminated. The points-to analysis [13] used is
an interprocedural unification-based, flow-insensitive analy-
sis. There is no information about which fields of structured
data may be accessed through a pointer; each complex ob-
ject is treated as a unit. Calls to library procedures with
known effects are treated as special cases.

6.1.2 ILP Solver
We have integrated lp solve into our prototype compiler.

lp solve is a freely available LP/MILP solver written by
Michel Berkelaar at Eindhoven University of Technology.
Information about all global variables and pointers in the
program is collected and put into lp solve to get an alloca-
tion.

6.2 Modified ICCAVR
The modified ICCAVR compiler compiles the original C

code and uses the allocation information produced by the
WPO compiler to modify the memory attributes of the al-
located variables. The allocation information is used during
the parsing stage to modify the memory attributes of the

19

variables. The result is essentially the same as if the source
code was annotated with keywords.

7. EXPERIMENTS AND RESULTS
To evaluate the performance of our allocation scheme, we

measured the execution time and code size of 6 benchmarks.
The code was compiled with the prototype compiler using
both speed and size optimization. The allocation does not
include constant strings since these are rarely used. The
results were compared with code compiled on the standard
ICCAVR compiler. The code was executed in a simulator
to get the execution times (in clock cycles).
The AVR microcontroller comes in several different ver-

sions, where the size of the internal memory can vary from
0 to 4KB or more. We wanted to see the effects of hav-
ing different sizes of internal RAM. As reference points, we
also measured “internal” memory sizes of 64KB (entire near
memory segment) and 16MB (full address space). With
64KB internal memory, we may include part of the pro-
gram stack, or even the entire stack, depending on the total
size of the global variables. With 16MB internal memory,
all accesses are counted as internal.
Table 4 shows a list of our benchmarks. Appendix A has

information of where to obtain the benchmarks and a short
description of what they do. The tables in Appendix B show
the results. The results vary a lot with the benchmarks.
This is expected since some programs are CPU intensive,
while others are memory intensive.

7.1 Code Size Results
The code size decreased slightly for most benchmarks.

The one notable exception is the Statemate program. When
the program was optimized for size, the code size was 90%
compared to non-allocated code. When optimized for speed,
the result was 73%. The Statemate program is quite special
since it was automatically generated. It has very many di-
rect accesses to global variables which all can be allocated at
lower memory addresses. This allows us to use fewer instruc-
tions for address calculations to access the global variables.
A few benchmarks had slightly increased code size for allo-

cated code. The reason for the size increase is that the code
factoring optimization finds fewer identical instruction se-
quences; therefore, the code cannot be compressed as much.

7.2 Execution Time Results
The execution times were improved for most benchmarks.

The best result came from the Statemate benchmark shown
in Table 6. When the program was optimized for speed,
there was an 8% speedup compared to the non-allocated
code. For size optimized code, the result was 20%. The rea-
son for the high speedup on size-optimized code is partly be-
cause of more memory accesses since less code is inlined and
common sub-expression elimination cannot eliminate redun-
dant loads. We can, however, see a correlation between ex-
ecution times for speed and size-optimized programs. Both
Table 6 and Table 5 show that good speedup on speed-
optimized code give better speedup on size-optimized code.
This can be very useful since the execution time penalty for
optimizing size can be reduced with a good allocator.

Name Lines # Globals Total Size (bytes)

MM 93 4 15002
Minver 206 7 220
Jfdctint 382 1 126
Anagram 655 10 267
KS 835 14 22564
Statemate 1274 106 212

Table 4: Benchmarks

8. FUTURE WORK
In the future, we would like to look at a number of issues

regarding our storage allocation framework.

• We would like to verify how exact our model is in pre-
dicting the improvements in execution speed and code
size reduction.

• An ILP solver is generally not practical. Therefore,
we would like to explore different heuristic methods
for storage allocation.

• We would like to implement the allocator on a micro-
controller with separate address spaces. If no alloca-
tion is done, the compiler may only use the default
address space. Therefore, we could possibly gain more
on these types of architectures.

• The points-to analysis we used could possibly prevent
some allocation opportunities. A more precise analysis
could improve this.

• Many programs do not have large amounts of global
data. We would like to extend the allocation to in-
clude for example local variables and possibly individ-
ual fields in structs.

9. CONCLUSION
In this paper, we have described a model of memory hier-

archies for storage allocation which is applicable to a wide
range of embedded processors. We have used this model to
implement a memory allocator using ILP to get an optimal
allocation with respect to the model.
By taking advantage of the different memory segments

and native pointer types, we can improve both program
speed and size. The experimental results show a speedup
of up to 8% for speed-optimized programs. Code size was
not affected very much except for programs with many static
references to global data. The best result was a benchmark
with a 10% smaller code size.
The tedious task of manually allocating data has been

eliminated. By automatically allocating data we improve
code quality without sacrificing portability. Code robustness
is also improved because the programmer no longer needs to
include target-specific information in the source code.

10. REFERENCES
[1] A. Appel and L. George. Optimal spilling for CISC

machines with few registers. ACM SIGPLAN Notices,
36(5):243–253, May 2001.

[2] Atmel Corporation. The AVR Instruction Set.
http://www.atmel.com/atmel/acrobat/doc0865.pdf.

20

[3] R. Bixby, K. Kennedy, and U. Kremer. Automatic
data layout using 0-1 integer programming. In
Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques
(PACT), volume A-50, pages 111–122, 1994.

[4] K. D. Cooper and T. J. Harvey. Compiler-controlled
memory. In Proceedings of the Eighth International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 100–104, San
Jose, California, 1998.

[5] D. W. Goodwin and K. D. Wilken. Optimal and
near-optimal global register allocation using 0-1
integer programming. Software—Practice and
Experience, 26(8):929–965, Aug. 1996.

[6] Intel Corporation. Embedded Microcontrollers and
Processors Vol. I, 1992.

[7] D. Jaggerl. ARM Architecture Reference Manual.
Addison-Wesley, 2000.

[8] M. Kandemir, P. Banerjee, A. Choudhary,
J. Ramanujam, and E. Ayguade. An integer linear
programming approach for optimizing cache locality.
In Proceedings of the 1999 Conference on
Supercomputing, pages 500–509, 1999.

[9] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang. Storage assignment to decrease code size.
ACM Transactions on Programming Languages and
Systems, 18(3):235–253, May 1996.

[10] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory
data organization for improved cache performance in
embedded processor applications. ACM Transactions
on Design Automation of Electronic Systems,
2(4):384–409, Jan. 1997.

[11] A. Rao and S. Pande. Storage assignment
optimizations to generate compact and efficient code
on embedded DSPs. In Proceedings of the ACM
SIGPLAN ’99 Conference on Programming Language
Design and Implementation, pages 128–138, Atlanta,
Georgia, 1999.

[12] J. Sjödin, B. Fröderberg, and T. Lindgren”. Allocation
of global data object in on-chip ram. Presented at the
CASES’98 workshop, http://www.capsl.udel.edu/
conferences/cases99/cases98/paper04.ps.

[13] B. Steensgard. Points-to analysis in almost linear
time. In Proceedings 23rd SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
January 1996.

[14] A. Sudarsanam and S. Malik. Simultaneous reference
allocation in code generation for dual data memory
bank ASIPs. ACM Transactions on Design
Automation of Electronic Systems., 5(2):242–264, Jan.
2000.

APPENDIX

A. Benchmarks
The following list describes each benchmark.

MM - Matrix multiplication

Minver - Matrix inversion

Jfdctint - JPEG integer implementation of the forward
discrete cosine function

Anagram - Finds anagrams in a dictionary

KS - Kernighan-Schweikert graph partitioning

Statemate - Automatically generated code by the STAte-
chard Real-time-Code generator STARC.

Anagram and KS were taken from the Pointer-Intensive Bench-
mark Suite, by Todd Austin at:
http://www.cs.wisc.edu/~austin/austin.html.
The other benchmarks were obtained from the benchmark

repository for WCET analysis at C-LAB:
http://www.c-lab.de/home/en/download.html#wcet.

B. Tables
The tables show the execution times and code sizes for six
benchmarks. Rows labeled S show the results for program
compiled for speed with the standard compiler. SA shows
the results for a program compiled for speed and variable
allocation with the modified compiler. Z and AZ is for size-
optimized compilation. Rows labeled Speedup shows the
speedup for allocated programs and rows labeled Code Size
show the code size ratio allocated code compared to regular
code.

21

MINVER Runtimes (clock cycles)
Internal Memory Size (bytes)

0 256 512 1024 2048 4096 64K 16M

S 55879 55879 55879 55879 55879 55771 52879 52879
AS 55044 54059 54059 53915 53915 53915 52435 52435
Speedup 1.0152 1.0337 1.0337 1.0364 1.0364 1.0344 1.0085 1.0085
Z 71566 71566 71566 71566 71458 71458 68676 68676
AZ 63179 64037 64037 63893 63893 63893 62497 62497
Speedup 1.1327 1.1176 1.1176 1.1201 1.1184 1.1184 1.0989 1.0989

MINVER Code Size (bytes)
S 5537
AS 5131 5127 5127 5127 5127 5127 5127 5127
Code Size 0.9267 0.9260 0.9260 0.9260 0.9260 0.9260 0.9260 0.9260
Z 4595
AZ 4503 4527 4527 4527 4527 4527 4527 4527
Code Size 0.9800 0.9852 0.9852 0.9852 0.9852 0.9852 0.9852 0.9852

Table 5: Minver

STATEMATE Runtime (clock cycles)
Internal Memory Size (bytes)

0 256 512 1024 2048 4096 64K 16M

S 24867 24867 24867 24867 24867 24867 21852 21852
AS 23890 23157 23157 22969 22969 22969 20698 20698
Speedup 1.0409 1.0738 1.0738 1.0826 1.0826 1.0826 1.0558 1.0558
Z 29176 29176 29176 29176 29176 29176 26131 26131
AZ 25935 24392 24392 24204 24204 24204 21095 21095
Speedup 1.1250 1.1961 1.1961 1.2054 1.2054 1.2054 1.2387 1.2387

STATEMATE Code Size (bytes)
S 9481
AS 7551 6957 6957 6957 6957 6957 6957 6957
Code Size 0.7964 0.7338 0.7338 0.7338 0.7338 0.7338 0.7338 0.7338
Z 6577
AZ 6443 5979 5979 5979 5979 5979 5979 5979
Code Size 0.9796 0.9091 0.9091 0.9091 0.9091 0.9091 0.9091 0.9091

Table 6: Statemate

JFDCTINT Runtime (clock cycles)
Internal Memory Size (bytes)

0 256 512 1024 2048 4096 64K 16M

S 162202 162202 162202 162202 162202 162202 159240 159239
AS 160325 159305 159305 159305 159305 159305 157623 157622
Speedup 1.0117 1.0182 1.0182 1.0182 1.0182 1.0182 1.0103 1.0103
Z 175830 175830 175830 175830 175830 175830 172794 172793
AZ 173672 172652 172652 172652 172652 172652 170816 170815
Speedup 1.0124 1.0184 1.0184 1.0184 1.0184 1.0184 1.0116 1.0116

JFDCTINT Code Size (bytes)
S 4571
AS 4441 4441 4441 4441 4441 4441 4441 4441
Code Size 0.9716 0.9716 0.9716 0.9716 0.9716 0.9716 0.9716 0.9716
Z 3519
AZ 3463 3463 3463 3463 3463 3463 3463 3463
Code Size 0.9841 0.9841 0.9841 0.9841 0.9841 0.9841 0.9841 0.9841

Table 7: Jfdctint

22

ANAGRAM Runtimes (clock cycles)
Internal Memory Size (bytes)

0 256 512 1024 2048 4096 64K 16M

S 3008.7K 3008.7K 3008.7K 3008.7K 3008.7K 3008.7K 2745.9K 2622.6K
AS 2997.7K 2980.7K 2980.7K 2980.4K 2980.4K 2980.4K 2716.8K 2607.1K
Speedup 1.0037 1.0094 1.0094 1.0089 1.0095 1.0088 1.0107 1.0059
Z 4111.8K 4111.8K 4111.8K 4111.9K 4111.8K 4111.7K 3837.0K 3713.7K
AZ 4055.0K 3974.4K 3974.4K 3974.2K 3974.2K 3974.1K 3699.8K 3590.1K
Speedup 1.0140 1.0346 1.0346 1.0346 1.0346 1.0346 1.0371 1.0344

ANAGRAM Code Size (bytes)
S 8054
AS 7948 7956 7956 7956 7956 7956 7956 7956
Code Size 0.9868 0.9878 0.9878 0.9878 0.9878 0.9878 0.9878 0.9878
Z 6898
AZ 6938 6952 6952 6952 6952 6952 6952 6952
Code Size 1.0058 1.0078 1.0078 1.0078 1.0078 1.0078 1.0078 1.0078

Table 8: Anagram

KS Runtimes (clock cycles)
Internal Memory Size (bytes)

0 256 512 1024 2048 4096 64K 16M

S 136.75M 136.75M 136.75M 136.75M 136.75M 136.75M 119.24M 116.62M
AS 136.74M 136.72M 136.72M 136.70M 136.70M 136.68M 118.68M 116.32M
Speedup 1.0001 1.0002 1.0002 1.0004 1.0004 1.0005 1.0047 1.0025
Z 238.89M 238.89M 238.89M 238.89M 238.89M 238.89M 221.27M 218.64M
AZ 239.57M 239.55M 239.55M 245.30M 245.29M 242.02M 224.28M 221.92M
Speedup 0.9971333 0.9972186 0.9972 0.9739 0.9739 0.9870 0.9866 0.9852

KS Code Size (bytes)
S 15448
AS 15320 15320 15320 15322 15322 15344 15310
Code Size 0.9917 0.9917 0.9917 0.9918 0.9918 0.9933 0.9911 0.9911
Z 12304
AZ 12240 12240 12240 12276 12276 12332 12314 12314
Code Size 0.9948 0.9948 0.9948 0.9977 0.9977 1.0023 1.0008 1.0008

Table 9: KS

MM Runtime (clock cycles)
Internal Memory Size (bytes)

0 256 512 1024 2048 4096 64K 16M

S 26742K 26742K 26742K 26742K 26742K 26742K 24175K 24175K
AS 26742K 26722K 26722K 26722K 26722K 26722K 23972K 23972K
Speedup 1.0000 1.0007 1.0007 1.0007 1.0007 1.0007 1.0085 1.0085
Z 33487K 33487K 33487K 33487K 33487K 33487K 31425K 31425K
AZ 33532K 33512K 33512K 33512K 33512K 33512K 31267K 31267K
Speedup 0.9987 0.9992 0.9992 0.9992 0.9992 0.9992 1.0051 1.0051

MM Code Size (bytes)
S 2637
AS 2643 2643 2643 2643 2643 2643 2641 2641
Code Size 1.0022753 1.0022753 1.0022753 1.0023 1.0023 1.0023 1.0015 1.0015
Z 2479
AZ 2483 2483 2483 2483 2483 2483 2481 2481
Code Size 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0008 1.0008

Table 10: Matrix Multiply

23

