Retargetable Graph-Coloring Register
Allocation for Irregular Architectures

Johan Runeson and Sven-Olof Nystrom

Department of Information Technology
Uppsala University
{jruneson,svenolof }Quser.it.uu.se

Abstract. Global register allocation is one of the most important opti-
mizations in a compiler. Since the early 80’s, register allocation by graph
coloring has been the dominant approach. The traditional formulation
of graph-coloring register allocation implicitly assumes a single bank of
non-overlapping general-purpose registers and does not handle irregu-
lar architectural features like overlapping register pairs, special purpose
registers, and multiple register banks. We present a generalization of
graph-coloring register allocation that can handle all such irregularities.
The algorithm is parameterized on a formal target description, allowing
fully automatic retargeting. We report on experiments conducted with a
prototype implementation in a framework based on a commercial com-
plier.

1 Introduction

Embedded applications are growing larger and more complex, often reaching
more than 100.000 lines of C code. To develop and maintain such an application
requires a fast compiler. However, due to constraints on memory space, power
consumption and other system resources, the compiler must also produce high-
quality code. State-of-the-art optimization techniques from high-end RISC com-
pilers are not always applicable, because embedded processor architectures are
often irregular. Furthermore, the large number of different architectures means
the compiler techniques must also be retargetable.

In this paper we focus on global register allocation, one of the most im-
portant transformations in a modern optimizing compiler [10] (page 92). For
RISC-machines, Chaitin-style graph-coloring [6] is the dominant approach, as
witnessed by its prominence in modern compiler construction textbooks [1,16,
17]. It gives high-quality allocations, runs fast in practice, and is supported by
a large body of research work (eg. [5, 8]). Unfortunately, the algorithm assumes
a regular register architecture consisting of a single, homogenous set of general-
purpose registers.

We propose a generalization of Chaitin’s algorithm which allows it to be
used with a wide range of irreqular architectures, featuring for example register
pairs or other clusters, and non-orthogonal constraints on the operands of certain
instructions. The generalized algorithm is parameterized by an expressive formal

description of the register architecture, allowing fully automatic retargeting. It
has the same time complexity as the original algorithm and is provably correct for
any applicable architecture. The changes compared to the original algorithm are
modest and sufficiently localized that most existing improvements and extensions
can be incorporated with little or no work.

2 Background

We assume that the register allocator is presented with low-level intermediate
code, where the instructions correspond to target assembly language instruc-
tions, but where wvariables (taken from an unlimited set of names) are used
instead of registers.

The goal of register allocation is to determine where to store each variable
— in a particular register or in memory — in the most cost-effective way, and
to rewrite the program to reflect these decisions. Local register allocation works
in the scope of a single basic block. Global register allocation considers a whole
function at a time.

Register allocation for a regular architecture can be formulated as a graph-
coloring problem. A variable is live if it holds a value which may be used later in
the program. Two variables which are live simultaneously are said to interfere,
since they can not use the same register resources. Using liveness analysis, an
interference graph can be built, where each node represents a variable, and where
there is an edge between two nodes if their variables interfere. A k-coloring of a
graph is an assignment of one of at most k colors to each node, such that no two
neighbors have the same color. For a regular architecture with k registers, a k-
coloring of the interference graph represents a solution to the register allocation
problem, where all nodes with the same color share the same register.

Graph coloring is known to be an NP-complete problem, so heuristic tech-
niques are used to perform register allocation in practice. Chaitin et al. [6] pre-
sented the first heuristic global register allocation algorithm based on graph
coloring. Although it has a worst-case time complexity of O(n?), experiments
in [5] indicate that in practice it run in less than O(nlogn) time. Due to space
limitations, we can not give the full algorithm here. For the interested reader,
we refer to the description by Briggs [5], or the more elaborate presentation in
our technical report [19].

3 Retargetability through Parameterization

In modern retargetable compilers, target descriptions are often used to parame-
terize code generation and optimization passes in order to achieve retargetabil-
ity [18,4]. We use the same approach for our register allocator. For simplicity,
our target descriptions deal only with architectural features that affect register
allocation. They can easily be incorporated in or derived from more extensive
target descriptions.

In Chaitin’s algorithm, the target is characterized only by the number of
registers, k. It is assumed that the architecture is regular, i.e. that all registers
are interchangeable in every situation. This assumption does not hold for ir-
regular architectures. In the generalized algorithm, the target is characterized
by an expressive target model, defined below, which allows features like overlap-
ping register pairs, special purpose registers, and multiple register banks to be
described. No further assumptions are made, so any architecture which can be
described by a target model is applicable.

3.1 Target Models

@ (b) x y

A: [rolr]re|rs] a&—®w
B: &)

Fig. 1. A simple example: (a) target model diagram, (b) generalized interference graph

We define a target model to be a tuple
(Regs, Conflict, Classes) ,
where

1. Regs is a set of register names,

2. Conflict is a symmetric and reflexive relation over the registers, and

3. Classes is a set of register classes, where each register class is a non-empty
subset of Regs.

For a given architecture, we include a register name in Regs if there is an in-
struction which accepts that name as a register operand. There does not have
to be a one-to-one mapping between register names and physical registers. Some
register names may represent register pairs or other clusters, which overlap other
registers wholly or partially.

Two register names (r, ') are in Conflict if they can not be allocated simul-
taneously, typically because they overlap. For example, a register pair conflicts
with its component registers. The set Regs and the relation Conflict form a con-
flict graph, which describes how the register resources in the processor interact.

A register class C is included in Classes if there are operations which restrict
a variable to be from the set C' only. These restrictions are mostly imposed by the
instruction set architecture, which may require, for example, that a particular
operand for a particular instruction is an aligned register pair, or that the result
of a particular instruction be placed in a particular register or set of registers.
The run-time system may also affect the choice of register classes, by reserving

certain registers for system use, or specifying that the arguments to a function
are passed in particular registers.

We use register classes to enforce constraints on the operands to certain
instructions. If a variable is used as an operand to an instruction which only
allows that operand to be from a set R C Regs, that variable is given a register
class which is included in R. A variable which is used in more than one operation
must satisfy the constraints from each of those operations, and will consequently
be given a register class which is included in the intersection of the register classes
required by those operations.

As an example, consider a simple architecture with four basic registers RO-R3,
which some instructions use as pairs WO=R0O:R1 and W1=R2:R3. In the target
model for this architecture, Regs is the set {R0,R1,R2,R3,W0,W1}. The Conflict
relation is defined so that each register in Regs conflicts with itself, and the
pairs conflict with their components: WO with RO and R1, and W1 with R2 and R3,
respectively. We define two register classes A and B, where A is {R0O,R1,R2,R3}
and B is {W0,W1}. These two classes make up the set Classes.

The diagram in Fig. 1(a) illustrates this target model. Each box is a register,
and each row gives the name and members of one register class. Furthermore,
the boxes are arranged so that two registers conflict if they appear in the same
column. More examples of target models can be found in Sect. 6, and in [19].

3.2 Generalized Interference Graphs

For a given target model we define a generalized interference graph to be a
tuple (N, E, class) where N and E form an interference graph (N, E'), and the
function class : N — Classes maps each node to a register class. The nodes in
N correspond to variables, and there is an edge in E between two nodes if their
variables are simultaneously live at some point in the program.

The register class for a node constrains what registers may be assigned to
that node by the allocator: We define an assignment for M C N to be a mapping
A from M to Regs such that A(m) is in class(m) for all m € M. Furthermore,
we say that an assignment A for M is a coloring iff there are no neighboring
pairs of nodes m and m’ in M such that A(m) conflicts with A(m')).

Given a target model and a generalized interference graph, the register allo-
cation problem reduces to the problem of finding a coloring for the graph.

Register allocation for regular architectures is a special case of the more
general problem, with a target model consisting of a single class of k registers
and an identity conflict relation. It follows that the problem of finding a coloring
for a generalized interference graph is NP-hard.

Figure 1(b) shows a generalized interference graph under the target model
in (a). The nodes z, y and z are annotated with register classes (A, A, and
B, respectively), and from the interference edges we can see that the variables
corresponding to the nodes are all live simultaneously.

4 Local Colorability

Chaitin’s graph-coloring algorithm is based on a concept which we call local
colorability!. In a generalized interference graph (N, E, class), a node n € N is
locally colorable iff, for any assignment of registers to the neighbors of n, there
exists a register r in class(n) which does not conflict with any register assigned
to a neighbor of n.

The coloring problem can be simplified by removing a node n which is locally
colorable: given a coloring for the rest of the graph, the local colorability property
guarantees that we can always find a free register to assign to n. If we can
recursively simplify the graph until it is empty, then by induction it is possible
to construct a coloring by assigning colors to the nodes in the reverse order from
which they were removed.

4.1 Approximating Colorability

In a regular architecture with k registers, a node n is locally colorable iff it has
less than k neighbors in the interference graph. Chaitin’s algorithm therefore
removes nodes with degree < k.

For irregular architectures, the degree < k test is not always a good indica-
tor of local colorability. Consider the example in Fig. 1. It is easy to see that
regardless of how we assign registers to y and z, there is always a free register
for z. In other words, x is locally colorable, and by symmetry, the same goes for
y. Now consider z. If we assign RO to x, and R2 to y, then there is no free register
for z, which is therefore not locally colorable.

All three nodes in the example have degree = 2, but only two of them are
locally colorable. Consequently, the degree < k test is not an accurate indication
of local colorability in this case.

If we can not use the degree < k test, what can we use instead? The definition
of local colorability in Sect. 4 suggests a test based on generating and checking
all possible assignments of registers to the neighbors of a node. Since there is an
exponential number of possible assignments, we expect that such a test would
be too expensive to use in practice.

Fortunately, the coloring algorithm does not require a precise test for local
colorability. In order to guarantee that it is possible to color the nodes in the
reverse order from which they were removed from the graph, it is enough if the
test implies local colorability. What we need is therefore an inexpensive test
which safely approximates local colorability with minimal inaccuracy.

4.2 The (p,q) Test

We propose the following approximation of the local colorability test. Given a
target model as defined in Sect. 3.1, let pp and ¢p.c be defined for all classes B

! Briggs uses the term “trivial colorability”. For an irregular architecture, determining
local colorability is not always trivial.

and C by

pp = |B]
qgp.c = maz |{rp € B|(rc,rp) € Conflict}|
rceC

In other words, pp is the number of registers in the class B, and ¢p ¢ is the
largest number of registers in B that a single register from C' can conflict with.
A node n of class B in (N, E, class) is locally colorable if

Z 4B,C < PB-

(n.j)ekE
C=class(j)

We will call this the (p,q) test.

The intuition behind the (p, q) test is as follows. To begin with there are pp
registers available for assigning to n. Each neighbor may block some of these
registers. In the worst case, a neighbor from class C' can block gp ¢ registers in
B. If the sum of the maximum number of registers each neighbor can block is
less than the number of available registers, then it is safe to say that we will be
able to find a free register for n. In Sect. 4.3 we prove formally that the (p, q)
test is a safe approximation of local colorability in any generalized interference
graph, for any given target model.

The (p, q) test is efficient: Since p and ¢ are fixed for a given target model, they
can be pre-computed and stored in static lookup tables. This makes it possible
to evaluate the (p, ¢) test with the same time complexity as the degree < k test.

For a regular architecture with k registers, we get p = k and ¢ = 1, which
means that the (p,q) test degenerates to the precise degree < k test. Any im-
precision in the (p,q) test is thus induced only by the irregular features of the
architecture.

Note that for two disjoint register classes B and C, we get ¢p,c = 0. Inter-
ference edges between nodes from disjoint classes therefore do not contribute
to the sum in the (p,q) test. Also, for a self-overlapping class B (eg. a class of
unaligned pairs), gg,p > 1, since a single register from B can conflict with both
itself and one or more other registers in B.

4.3 Proof of Safety

We will show for a given target model
(Regs, Conflict, Classes)

that in any generalized interference graph G = (N, E, class), if a node is not
locally colorable, then the (p, ¢) test for that node is false.

Let n be a node which is not locally colorable in G. Let B be the register
class of n, and J the set of neighbors of n in G. Since n is not locally colorable,
there must exist an assignment A of registers to the neighbors of n, such that
for all registers rp in B, rp conflicts with A(j) for some j in J.

This allows us to express B as follows.

B = U {rp € B|(A(j),rB) € Conflict}

Jj€J

By definition, pp = | B|, so we have

ps = |B| = ||J{rs € BI(A(j),rB) € Conflict}
jeJ

Now, the size of a union of sets is less than or equal to the sum of the sizes of
the individual sets, so we can limit the size of the big union as follows.

pp < Z H{rs € B|(A(j),rB) € Conflict}|
jed

But, for any node j, the number of registers in B in conflict with A(j) can not
be more than the maximum number of registers from B in conflict with any
register from class(j), which is exactly the definition of ¢p,¢.

pp < E mag {rp € B|(rc,rp) € Conflict}| = g qB,c
ro
jeJ jeJ
C:glass(j) C:glass(j)

Thus, if n is not locally colorable in G, then the (p,q) test for n is false. Con-
versely, if the (p,q) test is true, then n is locally colorable. This proves that
the (p, q) test is a safe approximation of local colorability, for any graph in any
target model.

5 The Complete Algorithm

For simplicity, we present the algorithm without coalescing and optimistic col-
oring. These extensions are discussed separately below.

Given a target model as in Sect. 3.1, we use the formulae in Sect. 4.2 to
pre-compute pg and gp,c for all classes B and C.

The algorithm is divided into four phases (Fig. 2).

(=

— Build » Simplify » Select |——»

Fig. 2. Phases of the basic register allocation algorithm

1. Build constructs the generalized interference graph.

2. Simplify initializes an empty stack, and then repeatedly removes nodes from
the graph which satisfy the (p, ¢) test. Each node which is removed is pushed
on the stack.

This continues until either the graph is empty, in which case the algorithm
proceeds to Select, or there are no more nodes in the graph which satisfy the
test. In that case, Simplify has failed, and we go to the Spill phase.

3. Select rebuilds the graph by re-inserting the nodes in the opposite order to
which Simplify removed them. Each time a node n is popped from the stack,
it is assigned a register r from class(n) such that r does not conflict with
the registers assigned to any of the neighbors of n.

When Select finishes, it has produced a complete register allocation for the
input program, and the algorithm terminates.

4. Spill is invoked if Simplify fails to remove all nodes in the graph. It picks
one of the remaining nodes to spill, and inserts a load before each use of the
variable, and a store after each definition. After the program is rewritten,
the algorithm is restarted from the Build phase.

Select always finds a free register for each node, because the (p, ¢) test in Simplify
guarantees that the node was locally colorable in the graph which it was removed
from, and the use of a stack guarantees that it is reinserted into the same graph.

In Chaitin’s original algorithm, there are no register classes. Nodes are re-
moved in Simplify when their degree < k, and in Select registers conflict only
with themselves. Other than that, the algorithms are identical.

5.1 A Simple Example

As a simple example, we run the generalized algorithm on the problem in Fig. 1.
Based on the target model illustrated in (a), we compute the following param-
eters: pa =4, pp =2, qa,4 =1, qa.B =2, ¢gB,a = 1, g, = 1. Computing the
(p, q) test for all the nodes of the graph in (b), we see that it is true for 2 and
y, but not for z.

We pick one of the colorable nodes, x, remove it from the graph, and push
it on the stack. In the resulting simplified graph, the (p, ¢) test is true not just
for y, but for z as well. We therefore remove y and z, and proceed to the Select
phase.

The first node to be popped is z. None of z’s neighbors have been inserted in
the graph yet, so we only have to worry about picking a node from the correct
register class. Out of the class B, we select register WO for z. The next node to
be popped is y. Since y interferes with 2z, we can not assign registers RO or R1 to
it, because these registers conflict with W0. Therefore, we select R2 for y. Finally,
we reinsert = into the graph. The only register available for x is R3.

5.2 Extensions

Optimistic coloring [5] is an important extension to Chaitin’s algorithm, where
spilling decisions are postponed from the Simplify to the Select phase: If Simplify

can find no more locally colorable nodes, one node is picked to be removed
anyway and pushed on the stack optimistically. When it is popped in Select,
it may be possible to color it, for example if two neighbors have been assigned
the same color. If so, there is no need to spill. Nodes which are popped later
and which were locally colorable when pushed are still guaranteed to find a free
color. Optimistic coloring often reduces the number of spills significantly, and
can hide much of the imprecision of an approximating local colorability test [5].
It is completely orthogonal to the modifications presented here, and can (and
should) be implemented just like in a regular graph coloring register allocator.

Another standard extension is coalescing [6], where copy-related non-interfering
nodes are merged before the Simplify phase. If nodes n and n’ are merged into
m, then m must obey the constraints imposed on both n and n’. Therefore, it
is given a register class from the intersection of the classes for n and n’. (If the
intersection is empty, coalescing is not possible.)

Aggressive coalescing may sometimes cause unnecessary spills, when a node
which is simple to color is merged with a node which is hard to color [5]. There-
fore, conservative coalescing only merges two nodes if it can be guaranteed that
the merged node will be locally colorable. It is straightforward to replace the
degree < k test with the (p,q) test to take register classes into account when
doing this.

The spill metric, used to determine which node to pick for spilling, also
deserves mention. It, too, should take register classes into account. We achieve
this by picking the node with the smallest ratio

cost(n)/benefit(n).

However, rather than using degree(n) as a measure of the benefit of removing
that node, we define

benefit(n) = Z (9c,B / PC).

(n.j)eE
C=class(j)

Dividing gc, g by pc allows us to compare the benefits for neighbors of different
classes.

Some further extensions are discussed in [19], including an alternative local
colorability test which is slower, but has higher precision.

6 Experiments

6.1 Implementation

The algorithm from Sect. 5 has been implemented in a prototype framework
designed to test different register allocators. The framework is based on a com-
mercial C compiler from IAR Systems [11]. The existing register allocator, which
is closely tied to the code selection phase, is short-circuited so that it produces
assembly code with virtual registers rather than physical registers. The virtual

reg32low [ROJR1JR2[R3[R4[RE[R6[R7]|

reg64low |[RO_1[R2_3[R4 5|R6.7]
(R7_0)[R1_2[R3_.4[R5_6]R7_0

reg9s

r0123
spill132 [RO[R1[R2JR3[R4[R5[RE[R7|

R14

Fig. 3. Target model diagram for the Thumb architecture.

registers are annotated with register classes. We insert the new allocator after the
code generator, just prior to the low-level optimization stage. The new allocator
rewrites the code with physical registers and spill code, after which ordinary
compilation is resumed.

Although the compiler is retargetable?, incorporation of the register alloca-
tion framework requires substantial changes in the target-dependent parts of the
backend. Therefore, we only generate code for a single target: the Thumb mode
of the ARM/Thumb architecture [12].

In ARM mode, the ARM/Thumb is a RISC-like 32-bit processor with 16
registers. In Thumb mode, a compressed instruction encoding is used, with 16-
bit instructions. Most instructions in Thumb mode are two-address, and can
only access the first 8 registers.

Fig. 3 illustrates the target model that we use, derived from the register
classes that the framework generates for us. There are classes for 32-bit and
64-bit data (in unaligned pairs), for individual 32-bit and 64-bit values (used in
the calling convention), a larger class of 32-bit registers which can sometimes
be used for spilling to registers, and some classes of 96 and 128-bit values used
for passing structs into functions. Registers R13 and R15 are dedicated by the
runtime system. Registers R8-R11 are too expensive to use profitably in Thumb
mode.

Table 1. Computed p and g values for Thumb.

==
CIETNE
S1218 (315 Al
0| b0 | B0 |- | 1 1 | o<
classpﬁﬁﬁﬁ%ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
reg32low|[8 ||1 (2|3 (4|1 |1|1(1|1(2]2]2]3|3|0]0
reg64low| 8 ||2 (3 |4(5]|2|2(2(2(2(3]3|3[4({4|0]0
regd6|(| 2 (|2|2|2(2|2|1|2|2(1|2]|2|2(2|2|0]|0
r0.1 2311|111)1|1|1{1f{1|1|1|{1|1]|1]|0]|0
spill32|{10|f 1|2 |3 (4|1 |1|1|1|1|2]2|2]3|3|1]|1
rof{1]f1]1]{1]1{1]1{0|{0|0|1|{0]|0|1]|0|0|O0O
ri|{1]|{1]1]{1|1{1]|0|1]{0|0|1|{1]{0|1]|1]|0|O0
r2||{1]f1}{1]{1|1{1]|]0|0|1|0|0O|1|1|1]|1]|0|O0
r3|{1]l1]1]1]1{1]0{0|0|1|0|0[|1|0|1]|0|O0
rO1||1|{1{1]1|1]1|1|1{0(0|1|1]{0|1]|1]|0]0O
ri2|1|1|1|1|1]1|0|1|1(0|1|1|{1|1]|1]|0|0
r23||1|(1|1]1|1]1|0|0|1|1|]0|1|1|1]|1]|0]O
ro1 2| 1|1 |1|1f{1|1|{1|1|1{0f1|1]|1({1|1]|0]|O
ri23(11|11 ({1|1|{0of1|1f{1f{1|1]|1({1|1]|0]|O
ri2|{1]/0{0|{0|0{1]0|{0|0|0|0O|0|0|O|O|1]O0O
ri4|{1]/0{0{0|0|{1]|0|0|0|0O|0O|0O|0O|O|0O|O|1

2 Currently, IAR Systems supports over 30 different target architecture families with
its suite of development tools.

Table 1 shows the p and g values that we compute for the target model in
Fig. 3. (The value of ¢p ¢ is located in the row for B and the column for C.)

Due to some simplifying design decisions, the prototype framework generates
spill code which is less efficient than what would be acceptable in a produc-
tion compiler. This exaggerates the negative effects of spilling somewhat, which
should be taken into account when looking at the experimental results.

6.2 Results
Table 2. Results compiling benchmark programs

Benchmark |funcs Full Local Worst-Case
spills| size|cycles (k)||spills| size|cycles (k) |spills| size|cycles (k)
crc32 6 1} 472 3416 26|1012 12618|| 183| 2288 30731
dijkstra 7 1{1080| 154339|| 29|1744| 188772|| 405| 5488| 979790
gsort_small 3 0| 324| 136729|| 10| 592| 142556| 131| 1532 152005
stringsearch 3 2|1824 1597 61(3564 1970|| 565| 9116 3023

| Total] 19]] 4[3700] 296079]] 126]6912] 345913] 1284]18424] 1165548|

We have implemented three different variants of the allocator.

1. Full is the full allocator described above, including the extensions from
Sect. 5.2.

2. Local is the same allocator, but made to spill all variables that are live across
basic block boundaries.

3. Worst-Case spills all variables.

The Local allocator is intended to mimic heuristic local register allocators such
as used in eg. Lee [7]. The Worst-Case allocator represents the worst case, and
gives a base line for the comparisons.

We have compiled four benchmarks from the MiBench suite [9], and used the
TAR C-SPY simulator/debugger [11] to execute them.

For each variant of the allocator, we report for each benchmark the number
of spilled variables, the size of the generated code, and the cycle count (divided
by 1000) from the simulated run. Column two gives the number of functions in
each benchmark. The number of variables can be found in the spills column of
the Worst-Case allocator, since it spills everything.

7 Related Work

Briggs’ [5] approach to handling multiple register classes (in part suggested al-
ready by [6]) is to add the physical registers to the interference graph, and make
each node interfere with all registers it can not be allocated to. Edges between

nodes from non-overlapping classes are removed. To handle register pairs, mul-
tiple edges are used between nodes where one is a pair. Thus, the interference
graph is modified to represent both architectural and program-dependent con-
straints, leaving the graph-coloring algorithm unchanged.

Our approach is fundamentally different, in that we separate the constraints
of the program from those of the architecture and run-time system into different
structures. Instead of modifying the interference graph, we change the inter-
pretation of the graph based on a separate data structure. We believe that our
approach leads to a simpler and more intuitive algorithm, which avoids increas-
ing the size of the interference graphs before simplification, and where expensive
calculations relating to architectural constraints can be performed off-line.

For an architecture with aligned register pairs, the solution proposed by
Briggs is equivalent to ours in terms of precision. However, Briggs gives only
vague rules (“add enough edges”) for adapting the algorithm to other irregular
architectures [5]. Our generalized algorithm, on the other hand, works for any
architecture that can be described by a target model.

The scheme proposed by Smith and Holloway [21] is more similar to ours,
in that it also leaves the interference graph (largely) unchanged. Their inter-
pretation of the graph is based on assigning class-dependent weights to each
node. Rules for assigning weights are given for a handful of common classes of
irregular architectures. In contrast, our algorithm covers a much wider range of
architectures without requiring classification, we give sufficient details to gen-
erate allocators automatically from target descriptions, and we prove that our
local colorability test is safe for arbitrary target models.

Scholz and Eckstein [20] have recently described a new technique based on
expressing global register allocation as a boolean quadratic problem, which is
solved heuristically. The range of architectures which can be handled by their
technique is slightly larger than what can be represented by our target models.
Practical experience with this new approach is limited, however, and it is not
supported by the large body of research work that exists for Chaitin-style graph
coloring.

There have been some attempts to use integer linear programming techniques
to find optimal or near-optimal solutions to the global register allocation problem
for irregular architectures [14,2]. These methods give allocations of very high
quality, but, like other high-complexity techniques, they are much too slow to
be useful for large applications.

Some people argue that longer compile times are justified for certain em-
bedded systems with extremely high performance requirements [15]. This has
prompted researchers to look into compiler techniques with worse time com-
plexity that what is usually accepted for desk-top computing, often integrating
register allocation with scheduling and/or code selection. For example, Bashford
and Leupers [3] describe a backtracking algorithm with either O(n*) or expo-
nential complexity, depending on strategy. Kessler and Bednarski [13] give an
optimal algorithm for integrated code selection, register allocation and schedul-
ing, based on dynamic programming. Still, with embedded applications reaching

several 100.000 lines of C code, there is a need for fast techniques such as ours,
for compilers in the middle of the code-compile-test loop.

8 Conclusions

With our simple modifications, Chaitin-style graph-coloring register allocation
can be used for irregular architectures. It is easy to incorporate well-known
extensions into the generalized algorithm, allowing compiler writers to leverage
the existing body of supporting research. The register allocator is parameterized
on a formal target description, and we give sufficient details to allow automatic
retargeting.

9 Acknowledgements

This work was conducted within the WPO project, a part of the ASTEC com-
petence center.

Johan Runeson is an industrial Ph.D. student at Uppsala University and IAR
Systems.

The register allocation framework used for the experiments in this paper was
implemented by Daniel Widenfalk at IAR Systems. The register allocator itself
was implemented by Axel Burstrom as a part of his Masters’ thesis project.

The authors wish to thank Carl von Platen for fruitful discussions and com-
ments on drafts of this paper.

References

1. A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

2. A. W. Appel and L. George. Optimal spilling for CISC machines with few registers.
In PLDI, 2001.

3. S. Bashford and R. Leupers. Phase-coupled mapping of data flow graphs to irreg-
ular data paths. In Design Automation for Embedded Systems, volume 4, pages
1-50. Kluwer Academic Publishers, June 1999.

4. D. G. Bradlee, R. R. Henry, and S. J. Eggers. The Marion system for retargetable
instruction scheduling. In PLDI, 1991.

5. P. Briggs. Register allocation via graph coloring. PhD thesis, Rice University, April
1992.

6. G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and
P. W. Markstein. Register allocation via coloring. Computer Languages, 6:47-57,
1981.

7. C. W. Fraser and D. R. Hanson. Simple register spilling in a retargetable compiler.
Software - Practice and Ezperience, 22(1):85-99, 1992.

8. L. George and A. W. Appel. Iterated register coalescing. TOPLAS, 18(3):300-324,
May 1996.

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown. MiBench: A free, commercially representative embedded benchmark suite.
In IEEFE jth Annual Workshop on Workload Characterization, 2001.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach, Second Edition. Morgan Kaufmann Publishers, 1996.

TAR Systems. EWARM. http://wuw.iar.com/Products/?name=EWARM.

D. Jagger and D. Seal. ARM Architecture Reference Manual (2nd Edition).
Addison-Wesley, 2000.

C. Kessler and A. Bednarski. Optimal integrated code generation for clustered
VLIW architectures. In LCTES, pages 102-111. ACM Press, 2002.

T. Kong and K. D. Wilken. Precise register allocation for irregular register archi-
tectures. In Proc. Int’l Symp. on Microarchitecture, 1998.

P. Marwedel and G. Goosens. Code Generation for Embedded Processors. Kluwer,
1995.

R. Morgan. Building an Optimizing Compiler. Digital Press, 1998.

S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

N. Ramsey and J. W. Davidson. Machine descriptions to build tools for embedded
systems. In LCTES, Springer LNCS 1474, pages 176188, 1998.

J. Runeson and S.-O. Nystrom. Generalizing Chaitin’s algorithm: Graph-coloring
register allocation for irregular architectures. Technical Report 021, Department
of Information Technology, Uppsala University, Sweden, May 2002.

B. Scholz and E. Eckstein. Register allocation for irregular architectures. In
LCTES-SCOPES. ACM Press, 2002.

M. D. Smith and G. Holloway. Graph-coloring register allocation for
architectures with irregular register resources. Unpublished manuscript,
www.eecs.harvard.edu/machsuif/publications/publications.html, 2001.

