
A soft-typing system for Erlang

Sven-Olof Nyström
Department of Information Technology,

Uppsala University, Sweden

svenolof@csd.uu.se

ABSTRACTThis paper presents a soft-typing system for the program-ming language Erlang. The system is based on two
on
epts;a (forward) data
ow analysis that determines upper ap-proximations of the possible values of expressions and other
onstru
ts, and a spe
i�
ation language that allows the pro-grammer to spe
ify the interfa
e of a module. We examineErlang and point to various aspe
ts of the language thatmake it hard to type. In parti
ular, it does not seem possi-ble to �nd a satisfa
tory s
heme for typing Erlang pro
esses.We present experimental result of applying the soft-typingsystem to some previously written programs. It turns outthat none of the programs examined had any type errors.
1. INTRODUCTIONErlang is a fun
tional and
on
urrent programming lan-guage, developed at Eri
sson [2℄ and intended for tele
omappli
ations. Erlang is dynami
ally typed, i.e., no type de
-larations are required (or allowed), and there is no require-ment that an Erlang program should be examined by a type
he
ker before it is run. Instead, ea
h value
arries dynami
type information.One of the primary advantages with dynami
 typing is thatthe language design is simpli�ed. Also, it is often arguedthat dynami
 typing helps rapid development, espe
ially forprototyping and testing (see for example [17℄). Another ad-vantage is that it is possible to write general routines forwriting and reading data of any type. This is parti
ularlyuseful for Erlang's intended appli
ations, as it allows
om-muni
ation over untyped
hannels.However, most fun
tional programming languages use stati
typing. Types are either given in expli
it de
larations, or
omputed automati
ally using type inferen
e. Among theadvantages with stati
 typing is that many errors are dis-
overed at
ompile time, instead of during testing. The typesystem might also dis
over errors that would have been dif-�
ult to
at
h by testing the program. Stati
 type de
lara-
An earlier version of this paper was presented at the Erlang Workshop,
Uppsala, Sweden, 2003.

tions
an serve as do
umentation, and as they are
he
kedby the
ompiler, they are always up to date. It has oftenbeen argued that that stati
 typing helps reliability [4, 19℄,but this view is
ontradi
ted by our investigation of exist-ing Erlang programs (Se
tion 8) whi
h suggests that
arefultesting tends to dis
over all type errors.A stati
 type system added to an existing dynami
ally typedprogramming language is often referred to as a soft-typingsystem. Generally speaking, a soft typing system mightserve two purposes; it
an produ
e type information to help
ompiler optimizations, and it
an be used, just like a stati
type system, to help the programmer �nd bugs and in
on-sisten
ies in the program.When used as a development tool, a soft typing system
aneither be used when programs are written from s
rat
h, orbe applied to existing programs. Any soft typing systemwill be sensitive to the
hoi
e of data representation and
ontrol stru
tures, so it is mu
h easier to develop a systemthat works well on programs written for the system. In Se
-tion 8 we relate some experien
es when applying the systemto programs that were not developed using the soft-typingsystem.The soft-typing system presented here is based on two
on-
epts; a forward data
ow analysis that determines upperapproximations of the possible values of expressions andother
onstru
ts, and a spe
i�
ation language that allowsthe programmer to spe
ify the interfa
e of a module. Thesoft-typing system
he
ks one Erlang module at a time, usesthe spe
i�
ation module as a starting point, and
he
ks forea
h spe
i�ed fun
tion that the fun
tion
omputes the valuegiven by the spe
i�
ation.The spe
i�
ation language allows parametri
 type and fun
-tion spe
i�
ations, Type spe
i�
ations may be lo
al to amodule, publi
, i.e., a

essible to other modules, or abstra
t,i.e., other modules may refer to the type but only the de�n-ing module has a

ess to the representation.The spe
i�
ation language also allows spe
i�
ation of pro-
ess
ommuni
ation and pro
ess di
tionaries. However, the
he
king of the spe
i�
ations is not
omplete in the sensethat the system may fail to dete
t programs that violate thespe
i�
ations.One advantage with basing the type system on a data
ow1

analysis is that it is relatively easy to extend the systemto handle
onstru
ts that would be very diÆ
ult to
apturein a regular type system. For example, handling Erlang'smeta-
all (where the destination of a
all is
omputed dy-nami
ally) is straight-forward in a
ow analysis. As thedata
ow analysis only propagates type information in onedire
tion (forward), the spread of in
orre
t type informa-tion is limited. This makes it pra
ti
al to allow the analysisto pro
eed, even after in
onsisten
ies have been dete
ted.Thus, the system
an provide useful information, even forprograms that are not
ompletely type-
orre
t.Se
tion 2 presents related work. Se
tion 3 gives a briefoverview of the programming language Erlang. Se
tion 4provides a more detailed dis
ussion features of Erlang thatin
uen
ed the design of the soft type system. The spe
i�
a-tion language is des
ribed in Se
tion 5 and Se
tion 6 dealswith the inner workings of the soft-typing system. Se
tion 7explains some implementation details. Se
tion 8 relates theresults of applying the soft-typing system to some previouslywritten Erlang programs. Finally, in Se
tion 9 we dis
ussthe experimental results and in Se
tion 10 give some
on-
luding remarks.
2. RELATED WORKThe soft typing systems designed by Cartwright and Fa-gan [6℄ and Wright [21℄ target S
heme and Lisp. The mainobje
tive is to to provide type information for the
ompiler,but the soft typing systems also provide debugging informa-tion. They handle all programs, i.e., even programs withtype errors will be annotated with type information. Theyuse a generalization of Hindley-Milner type inferen
e, rely-ing on the presen
e of identi�able
onstru
tors. When thetype systems dete
tes a potential type error, they warn theprogrammer that the program might
ontain a type errorand insert an expli
it run-time type
he
k.Flanagan et. al [10℄ presented a tool for stati
 debugging ofS
heme programs. The system uses set-based analysis [20,12℄ to identify potential run-time errors.Lindgren's [14℄ soft-typing system for Erlang was based ona
onstraint solver by Aiken [1℄. The
onstraint solver
ouldnot represent types
orresponding to individual atoms, arather severe restri
tion as most Erlang programs use atomsto distinguish between di�erent data types. Lindgren
on-
ludes that the
onstraint solver is not suitable for Erlang.While the previously des
ribed soft-typing systems
ouldhandle any legal program, the soft-typing system presentedby Marlow and Wadler [15℄ simply refused to type programswhere mat
hing or
ase expressions might fail. Thus, it de-�ned, in e�e
t, a new programming language
onsisting ofthose Erlang programs that it
ould type. As in the earliersoft-typing systems by Cartwright, Fagan and Wright, theidenti�
ation of data type
onstru
tors is
ru
ial. Two typesof
onstru
tors are used; tuples fT1, : : :, Tng and f
, T1,: : :, Tng where
 is an atom. The type system is based onsub-typing, so that, for example, f
, T2g may be a subtypeof fT1, T2g. Unlike the system presented in this paper,their system
an dedu
e fun
tion types from fun
tion de�-nitions. However, the system fails to dedu
e the expe
tedtype for some very simple fun
tion de�nitions. For example,

onsider the following fun
tion:and(true,true) -> true;and(false,X) -> false;and(X,false) -> false.Their system uses pattern mat
h
ompilation to transformthe above into a system of simpler
ase-expressions. Giventhat the arguments of and are X and Y, the body of thefun
tion and will
ontain an expression
ase Y offalse -> falseFrom this the type system
on
ludes that the type of Y (these
ond argument) must be the atom false. Given this, thesystem then (
orre
tly) �nds that the �rst argument maybe any value. Thus, the type for the fun
tion isand(any(), false) -> true + false.One may wonder whether a simple modi�
ation of Marlowand Wadler's system
ould improve the situation. Note,however, that the type dedu
ed by Marlow and Wadler'ssystem is te
hni
ally
orre
t. Before
onsidering modi�
a-tions to their system one should explain in formal terms whythe above type should be reje
ted.Arts and Armstrong developed a system
alled \The Spe
-i�
ation Web" [3℄, whi
h given de
laration �les generates a
olle
tion of html pages, the spe
i�
ation web, whi
h pro-vides
ross-referen
es between fun
tion de�nitions and theiruses, type de�nitions, and so on. Their system assumes thatea
h exported fun
tion in a module is de
lared.Hu
h [13℄ presents an approa
h for the veri�
ation of Erlangprograms using abstra
t interpretation and model
he
king.He de�nes a
ore fragment of Erlang, de�nes its operationalsemanti
s, an abstra
tion of pro
ess state whi
h redu
es theset of pro
ess states to a �nite set, and an `abstra
t' op-erational semanti
s over abstra
t states. To determine thebehavior of a program is now a matter of enumerating theabstra
t states rea
hable in the abstra
t operational seman-ti
s. One diÆ
ulty with this approa
h is that even verysmall program are likely to generate an ex
essive number ofabstra
t states.Flanagan et al. [11℄ presents a stati

he
king system forJava. While Java is stati
ally typed, many
he
ks are stillperformed at run-time. The system resembles the systempresented in this arti
le in that the
he
king is modular,i.e., the programmer is expe
ted to annotate parameters andvariables so that a sour
e-
ode �le
an be
he
ked in isola-tion. Methods are veri�ed under the assumption that theannotations hold, and at
all-sites it is veri�ed that the an-notations are not violated. The system addresses two typesof runtime errors; a null derefen
ing and array bounds vi-olations. (Even though expli
it type
onversions are very
ommon in Java programs, and might
ause run-time er-rors, the system does not seem to handle them.)2

CCured [16, 7℄ is a system that adds memory safety guar-antees to C programs. The system in
ludes extends point-ers with additional type information whi
h is
he
ked atrun-time (the latter is similar to the me
hanism present inErlang and other dynami
ally typed languages). A stati
type system is used to re
ogize situations where pointersare type-safe and the dynami

he
ks
an be eliminated,thus improving run-time performan
e.
3. THE ERLANG PROGRAMMING LAN-

GUAGE
3.1 Sequential programming in ErlangThe sequential
omponent of Erlang is a (mostly) pure fun
-tional programming language. Data stru
tures
onsist ofatoms, integers,
oating-point numbers, lists and tuples. Asin logi
 programming languages, we distinguish variablesfrom atoms by writing variables with an initial
apital letter.A de�nition of a fun
tion
onsists of a sequen
e of
lausesf(Pattern1; : : : ;Patternn) when Guard ! Bodywhere the guard is optional. When a fun
tion is
alled, the
lauses are tried in sequen
e. For ea
h
lause the a
tual pa-rameters are mat
haed against the
orresponding patterns,and the guard tests are evaluated. The �rst
lause wherethe mat
hing and the guard tests su

eed is sele
ted andthe expressions in its body are exe
uted.We
on
lude with two simple examples. First, the fun
tionappend whi
h appends two lists:append([X | Y℄, Z) ->[X | append(Y, Z)℄;append(([℄, Z) -> Z.Se
ond, a fun
tion whi
h looks in a list for an element whi
his larger then the one already given.larger(X, [A | L℄) when A > X ->{value, A};larger(X, [_ | L℄) ->larger(X, L);larger(X, [℄) ->none.
3.2 ModulesAn Erlang program
onsists of a set of sour
e
ode �leswhere ea
h �le de�nes a module with the same name. Ea
hmodule lists a set of exported fun
tions. All other fun
tionsare only a

essible by fun
tions in the same module.
3.3 Concurrent programming in ErlangThe
on
urren
y primitives of Erlang are imperative oper-ations that depend on the
urrent state of the system andmay
hange it.

A
all self() returns the pro
ess identi�er (pid) of the
ur-rent pro
ess. (For our purposes, there is no need to
onsiderthe distin
tion between pro
esses and pro
ess identi�ers.)A
all spawn(M, F, [A1, ..., An℄)
reates a pro
ess exe-
uting the fun
tion F in module M with arguments A1 throughAn. The
all returns the pid of the
reated pro
ess.If the variable P is bound to a pro
ess identi�er and V toan arbitrary value, the expression P!V will send the valueof V as a message to the pro
ess P. The messages sent to apro
ess are stored in a mailbox (a �rst-in-�rst-out queue).When a pro
ess wants to a

ess its mailbox, it exe
utes are
eive statement. A re
eive statement has the general formre
eivePattern ! Body: : :Pattern ! Bodyafter TimeOutExpr ! Body endThe re
eive statement traverses the messages in the mail-box, in the order in whi
h they arrived, and tries to mat
hea
h pattern against the massage. If a mat
hing su

eeds,the message is removed from the mailbox and exe
ution
on-tinues with the body of the
lause. If no mat
hing messagewas found, the re
eive is suspended until a message arrives.However, if the re
eive
ontains an after
lause, the expres-sion in the
lause is evaluated to give a value in millise
onds.If no mat
hing message has been re
eived after waiting thistime, exe
ution
ontinues with the body of the after
lause.We
on
lude this se
tion by
onsidering some simple exam-ples of the use of re
eive.re
eiveX -> XendThe �rst re
eive simply returns the �rst message in the mail-box. If the mailbox is empty, it waits until a message arrives.re
eivefoo -> fooendThe se
ond re
eive waits for a message
onsisting of theatom `foo',re
eivefoo -> fooafter 0 -> barendThe last re
eive looks for a message
onsisting of the atom`foo'. If the atom is not found in the mailbox (for example,if the mailbox is empty) the atom `bar' is returned.3

4. ERLANG AND SOFT TYPINGThe des
ription above might give an impression of Erlangas a simple programming language with a straight-forwardsemanti
s. Unfortunately, Erlang has a number of featuresthat make reasoning about programs more
ompli
ated andneed to be taken into a

ount when designing a soft-typingsystem.
4.1 ConstructorsIn stati
ally typed programming languages su
h as SML,ea
h data
onstru
tor is asso
iated with a data type. One
an introdu
e a new data type with asso
iated
onstru
torsby writing, say,datatype tree =NODE of tree * tree| LEAF of datawhi
h introdu
es a type tree with
onstru
tors NODE andLEAF. Now, the type system will assume that ea
h use of ofthese
onstru
tors follows the de�nition above, Thus, givenan expressionNODE(x, y)the type system infers not only that the returned value is oftype tree, but also that the types of the arguments, x andy, are of type tree.In
ontrast, Erlang has only two ways to build
omplex ob-je
ts; tuples and lists. To express trees (as in the SML ex-ample above), an Erlang program might use valuess of theforms{node, Left, Right}and{leaf, Data}.When we build a
omplex data stru
ture using a tuple wherethe �rst element is a spe
i�
 atom (with a name
hosen tore
e
t the purpose of the data stru
ture) we eliminate therisk of
onfusion with other, similar, data stru
tures
reatedfor di�erent purposes. Many Erlang programs follow the
onvention illustrated above and use tuples with a spe
i�
atoms in �rst position as type
onstru
tors.There is of
ourse nothing that guarantees that the `data
onstru
tor' {node, _, _} will not be used for some unre-lated purpose in some other part of the program. Still, pro-grams that follow the
onvention above are relatively easyto type. The soft-typing system presented in this paperhandles su
h programs, even when the same
onstru
tor isused for di�erent purposes in di�erent parts of the program.Marlow andWadler's type system also seems to handle them(at least when a
onstru
tor is only used for one purpose); itseems that the reason they used a sub-typing system was so

they
ould say that the type representing the set of valuesof the form {leaf, Data} is a subtype of the type of binarytuples.There are, unfortunately, many programs that don't followthe
onvention. For example, when tra
ing a pro
ess, theoperations of that pro
ess is represented as a sequen
e ofmessages{tra
e, Pid, Operation, Data}where `Pid' identi�es the pro
ess, `Operation' the opera-tion performed, and `Data' des
ribes what the operation isapplied to. Among the tra
e messages we �nd{tra
e, Pid, 're
eive', Message}{tra
e, Pid,
all, {M,F,A}}{tra
e, Pid, link, Pid2}In the
ase of a
all, the data �eld is a three-element tupleindi
ating module, name and arity of the re
eiving pro
ess.For the link operation, the data �eld is the pid of anotherpro
ess. Thus, we have a data type (tra
e messages) wherethe type of one �eld depends on the value stored in another�eld.As another example of an Erlang program whi
h uses a datarepresentation whi
h may be hard to type,
onsider the fun
-tion flatten from the lists standard library.flatten(List) ->flatten(List, [℄, [℄).flatten([H|T℄, Cont, Tail) when list(H) ->flatten(H, [T|Cont℄, Tail);flatten([H|T℄, Cont, Tail) ->[H|flatten(T, Cont, Tail)℄;flatten([℄, [H|Cont℄, Tail) ->flatten(H, Cont, Tail);flatten([℄, [℄, Tail) ->Tail.Flatten assumes as input a deeply nested list, i.e., a listwhi
h may
ontain other deeply nested lists or arbitraryvaluess (whi
h are not lists). To distinguish between thetwo
ases, the �rst
lause of flatten/3
ontains a guardlist(H). Now, the result of a
all to
atten is a list
on-sisting of values that are not lists. If a soft-typing systemis expe
ted to type this fun
tion, it must be able to rea-son about the e�e
ts of the guard, i.e., that when the guardsu

eeds, H is always a list, and when it fails, H is not a list.
4.2 Records and the preprocessorErlang is unique among the fun
tional programming lan-guages in its use of a C-style prepro
essor, ma
ros and header�les. Reasoning about prepro
essing, header �les and ma
roexpansion in the soft-typing system would have introdu
ed
ompli
ations, so we
hose to let the soft-typing operate on
ode that had been passed through the prepro
essor.4

Header �les often
ontain re
ord de�nitions su
h as the fol-lowing:-re
ord(node, {left, right}).-re
ord(leaf, {data}).Given the above de�nitions, an expression#node{left = Left, right = Right}will
reate a re
ord with �elds left and right given byvariables Left and Right, respe
tively. If X is a node, theexpression X#node.left extra
ts the �rst �eld. An expres-sion X#node{left = NewLeft}
reates a new node where the�rst �eld has been
hanged.Internally, a re
ord with n �elds is represented with an n+1-tuple where the �rst position is the name of the re
ord.Nothing prevents an Erlang appli
ation from dire
tly a
-
essing this representation. A soft-typing system for Erlangmust of
ourse handle re
ords, even allowing for programsthat a

ess the internal representation. The soft-typing sys-tem presented in this paper is applied to
ode where opera-tions on re
ords have been expanded into the
orrespondingtuple operations.Now, the use of re
ords should in prin
iple be
ompletelyunproblemati
 as they are expanded into other Erlang
on-stru
ts. However, we must make sure that the soft-typingsystem
an reason about the
ode that the prepro
essor gen-erates for re
ords.For example, given the sour
e
ode expression#node{left = Left, right = Right},the prepro
essor will produ
e a
all element(2,X) whi
hextra
ts the se
ond element of X, if X is a tuple.For expressions that update the �eld of a re
ord, a
allto setelement/3 is generated. Thus, the analysis must`know' the semanti
s of the built-in fun
tions element/2 andsetelement/3. On the other hand, there is also
ode thatuses tuples to represent arrays and lets an index run throughall positions of a tuple.To summarize, a tuple is sometimes used as a data
onstru
-tor and a type system for Erlang must allow for
alls tobuilt-in fun
tions element(2, X) and element(3, X) to re-turn values of di�erent types. In other situations, the tuplesare used as
onstant arrays, whose size may be unknown,and the type system should also allow for this possibility.
4.3 ProcessesHere we will argue that regardless of the underlying typesystem, it is impossible to �nd a reasonable typing of Erlangpro
esses.A reasonable goal of a type system for pro
ess
ommuni
a-tion would be to ensure that messages re
eived by a pro
ess
an be properly handled.

Clearly, the type of an Erlang pro
ess should in
lude in-formation about the messages it re
eives and handles|wewant to be able to tell whether a send P ! {message, ...}is type-
orre
t. Sin
e a pro
ess is
reated with a referen
eto a fun
tion in, say, P = spawn(m, f, [X1, ..., Xn℄), itfollows that fun
tions must also be typed with what theyre
eive.What makes reasoning about pro
ess types in Erlang awk-ward is the way \internal"
ommuni
ation is expressed. Ifa fun
tion f
ontains
ommuni
ation with some pro
ess P,it is typi
ally expressed using the following pattern:f(...) ->P ! {query, ..., self()},re
eive{answer, P, Data} -> ...end,i.e., the fun
tion sends a message {query, ...} to the pro-
ess P. The message
ontaining a referen
e to the
urrentpro
ess. Next, the
urrent pro
ess waits for a reply. Thepro
ess P is expe
ted to send a reply of the form{answer, self(), ...}.Sin
e the re
ive statement in f only mat
hes messages ofthe form fanswer, P, Datag, we
an be reasonably surethat only messages from the pro
ess P will be sele
ted bythe re
eive.Examples of
ode following this pattern
an be found in theio standard library and any appli
ation written using thegen_server library. Even the simplest example of pro
ess
ommuni
ation given in the Erlang textbook by Armstronget al. [2℄, the
ounter pro
ess (page 72), follows this pattern.In the above example, we must in
lude in the type of thefun
tion f information that it may re
eive messages of theform {answer, ...} (sin
e any pro
ess exe
uting f may re-
eive su
h messages). This is unpleasant, as the
ommuni-
ation with P is part of the implementation of f, and notintended to be part of the external interfa
e. Further, thesame information must be added to the type of any fun
tionthat
alls f. To
onsider a
on
rete example, the fun
tionhello() ->io:format("Hello, world!~n", [℄).will have a rather
ompli
ated pro
ess type, as the
all toformat will result in internal pro
ess
ommuni
ations.Marlow and Wadler [15℄ propose a me
hanism for typingpro
esses similar to the one sket
hed above. They do notdis
uss the problem of a

omodating \internal"
ommuni-
ation. Dagnat and Pantel [8℄ propose a type system forErlang that makes a distin
tion between messages that maybe sent to the pro
ess and messages that a pro
ess will han-dle. However, the
on
lusions from the dis
ussion above stillapply.5

To summarize, a safe typing of pro
ess
ommuni
ation wouldrequire that ea
h fun
tion has a pro
ess type that des
ribedany
ommuni
ation that may result from a
all to the fun
-tion. For example, if the fun
tion
ontains a
all to a libraryfun
tion, and the implementation of the library fun
tioninvolves pro
ess
ommuni
ation, then that
ommuni
ationneeds to be part of the pro
ess type of the fun
tion.Clearly, we would not do the programmer any favor by for
-ing him to deal with the internals of various libraries. Inthe system presented in this paper, we have
hosen a sim-pler approa
h whi
h allows the programmer to de
lare, fora module, or a fun
tion, the messages that
ode in this par-ti
ular part of the program are expe
ted to re
eive.
4.4 Process dictionariesEa
h Erlang pro
ess maintains a mapping from keys to val-ues (both keys and values may be arbitrary Erlang values)whi
h is a

essed by the built-in fun
tions get and put. Safetyping of pro
ess di
tionaries requires that the type systemguarantees that di�erent a

esses to the pro
ess di
tionaryare
onsistent. If the type system relies on spe
i�
ations ofthe external interfa
e, as the soft-typing system des
ribed inthis paper, every a

ess to the pro
ess di
tionary, dire
t orindire
t, must be re
orded in the spe
i�
ation of a fun
tion.Adding a
all to put in one fun
tion might require
hangesto a large number of spe
i�
ation modules. Sin
e this isobviously impra
ti
al and unreasonable, we
hose the sim-pler (and unsafe) approa
h to allow de
larations of pro
essdi
tionaries in
ode that a

esses the di
tionary dire
tly.
4.5 Meta-callMany built-in fun
tions in Erlang use meta-
all. A typi
alexample is apply. A
all to apply has the form apply(M,F, A), where A should be an atom giving the module ofthe fun
tion being
alled, F should also be an atom, givingthe name of the fun
tion, and A should be a list, givingthe list of arguments in the
all. Of
ourse, the argumentsto apply
an be passed as arguments, read from a �le, oreven
omputed at run-time. Thus, a meta-
all may
all anyexported fun
tion of any module.The main problem with meta-
all is that
onstru
tion of a
all-graph is diÆ
ult or impossible. One solution might beto repla
e ea
h meta-
all with a large
ase-statement withone
lause for ea
h exported fun
tion of ea
h module in thesystem. Sin
e Erlang has a large standard library, and ap-pli
ations are often very large, it is
lear that this approa
hwould not be pra
ti
al; analysing a meta-
all where themodule or fun
tion name is unknown would be extremelytime-
onsuming and the result would almost
ertainly notbe useful.We have taken a simpler approa
h. First, the very
ommon
ase where the destination
an be immediately determined ishandled as a spe
ial
ase. If the set of possible values of the�rst argument of the meta-
all (giving the module) is amongthe set of known modules, the set of possible destinations
an be enumerated, and the result of the meta-
all
an bedetermined by
ombining the results of all these
alls. In themost general
ase, if the destination of a
all is unknown theresult is also unknown.

5. THE SPECIFICATION LANGUAGEThe syntax of the spe
i�
ation language is in
uen
ed by thespe
i�
ations used by Marlow and Wadler [15℄ and Arts andArmstrong [3℄.As a �rst example,
onsider a simple fun
tion de�nition.foo(X, Y) ->R = X + Y,R.One possible spe
i�
ation for this fun
tion might be:foo(int(), int()) -> int().As a se
ond example,
onsider the de�nition of the fun
tionappend/2.-module(append).append([X | L1℄, L2) ->[X | append(L1, L2)℄;append([℄, L) ->L.Most programmers would probably argue that the followingspe
i�
ation of append is the
orre
t one:-module(append).-type list(X) = [℄ | [X | list(X)℄.append(list(X), list(X)) ->list(X).However, it is worth noting that other spe
i�
ations are
on-sistent with the fun
tion de�nition, for example, if appendis
alled with the empty list as �rst argument and a
oating-point value as se
ond it will always return a
oating-pointvalue. Thus append is also a
orre
t implementation of thefollowing spe
i�
ation:append([℄, float()) -> float().
5.1 Function specificationsFun
tion spe
i�
ations are of the formf(t1, ..., tn) -> t0.where ea
h of t0, t1, : : :, tn are type expressions. Themeaning of the spe
i�
ation is: When the fun
tion is
alledwith arguments a

ording to t1, : : :, tn the result will bea

ording to t0.
5.2 Type expressionsA type expression is one of the following:6

1. a primitive type, int(), float(), pid(), or atom().2. An atomi
 value, su
h as foo, true, false, 42, or 3.14.3. The universal type: any().4. The empty type: none().5. A union, for exampleint() + float() + true + false.6. Complex types, i.e., lists and tuples, for example{foo, int(), float()} or [1, 2, 3.14℄.7. Fun
tion types, i.e., fun (int()) -> int() end.8. In parametri
 de�nitions, we also allow type variables,written with initial
apital letters, say, X, Key, or Table.9. Referen
es to de�ned types, for example list(int()).
5.3 Type definitionsIn its simplest form, a type de�nition simply gives a short-hand for a more
omplex expression.-type bool() =true + false.The type bool() is only a

essible lo
ally. It is synonymousto true + false.A type de�nition
an also be re
ursive.-type intlist() =[℄ + [int() | intlist()℄.The de�ned type intlist()
an be used in fun
tion spe
i-�
ations:append(intlist(), intlist()) ->intlist().map(fun int() -> intlist() end, intlist()) ->intlist().
5.4 Parametric specificationsMany Erlang fun
tions are polymorphi
, that is, they aredesigned to work with many di�erent data types. To spe
ifysu
h fun
tions, we allow fun
tion spe
i�
ations with typevariables.-type list(X) =[℄ + [X | list(X)℄.-type tree(K, V) =nil + {K, V, tree(K, V), tree(K, V)}.Examples of parametri
 fun
tion spe
i�
ations:

append(list(X), list(X)) ->list(X).lookup(K, tree(K, V)) ->not_found + {found, V}.map(fun(X) -> Y end, list(X)) ->list(Y).
5.5 Abstract typesType de�nitions with the `type' keyword are only visiblewithin the spe
i�
ation module where they are given. Sup-pose that an Erlang module de�nes an abstra
t data type,i.e., a data stru
ture with a set of operations to
reate andoperate on the stru
ture, where the intention is that no other
ode should a

ess the data stru
ture dire
tly. In the spe
-i�
ation language, this
an be expressed using the keywordabstype.-abstype tree(K, V) =nil + {K, V, tree(K, V), tree(K, V)}.An abstra
t type
an be referen
ed from other modules.However, during type
he
king, a referen
e to an abstra
ttype de�ned in an other module, say,m:tree(int(), list(int())),is treated as a data type
onstru
tor. It is of
ourse possibleto write a module that examines the internal representationof an abstra
t type, but this module will not be a

epted bythe type system.Thus, an abstra
t type has two fa
es; to the module whereit is de�ned it is just another de�ned type, but to othermodules it is a data type
onstru
tor, i.e., a type whi
h
annot be de
omposed into other types.
5.6 Public typesPubli
 types are just like ordinary (type) type de�nitions,ex
ept that they are a

essible from all modules. For exam-ple, it may be in
onvenient to repeat the de�nition of thelist type in every module. A better approa
h may be togive a single de�nition, for example, in the lists library,and make it publi
.-publi
_type list(X) =[X | list(X)℄ + [℄.A publi
 type de�nition
an be referred to in any spe
i�
a-tion module by the syntax lists:list(int()).
5.7 Unsafe extensionsAs dis
ussed in Se
tion 4.3 there does not seem to be anyreasonable way to spe
ify the type of an Erlang pro
esswhi
h allows uses of the pro
ess to be
he
ked for
orre
t-ness. Still, de
laring the type of a pro
ess is useful in
on-veying the programmer's intentions and in showing what7

happens when the pro
ess re
eives the messages given inthe de
larations. The spe
i�
ation language allows spe
i�-
ations su
h as+mbox = in
rement + stop + {pid(), int()}.or+mbox(loop/1) = in
rement + {pid(), int()} + stop.(Unsafe type spe
i�
ations are written with an initial `+'.)The �rst de
laration reads: the messages re
eived from themailbox while exe
uting in the
urrent module are eitherthe atom in
rement, the atom stop, or a tuple of a pid andan integer). The se
ond de
laration refers to the situationwhen exe
uting the fun
tion loop/1.It is also possible to de
lare the
ontents of the pro
ess di
-tionary. A de
laration from one of the spe
i�
ation �les ofthe analysis:+di
t = (max_
ontexts -> int();weight_table -> weight_table();strata_table -> strata_table()).The de
laration gives the types of values asso
iated withthe keys max_
ontexts, weight_table, and strata_table.The expressions weight_table() and strata_table() referto types de�ned elsewhere.
6. THE SOFT-TYPING SYSTEMThis se
tion deals with the inner workings of the soft-typingsystem. Readers mainly interested in the use of the system
an skip this se
tion.Generally speaking, to verify that a fun
tion behaves a
-
ording to spe
i�
ation, the following basi
 steps must beperformed:1. Generate fun
tion arguments a

ording to the spe
i�-
ation.2. Use data
ow analysis to determine an approximationof the result of the fun
tion
all.3. Che
k whether the result mat
hes the result type givenin the spe
i�
ation.For an Erlang module foo.erl, we assume that the spe
i�-
ations are written in a separate �le foo.spe
. The spe
i�-
ation module should
ontain spe
i�
ations of fun
tions thatthe module exports and de�nitions of various data types.The data
ow analysis is based on analysis te
hniques su
has 0CFA [20℄ or set-based analysis [12℄. The generator andthe mat
her operate on the same representation of type in-formation.We assume that all external modules are spe
i�ed, thus, themat
her
he
ks that the arguments of the external
all are ofthe spe
i�ed type and the generator gives the return value.

6.1 ProgramsIn the presentation of the analysis, we assume that all data-types (for example atoms, integers,
oating-point numbers,lists and tuples) are expressed using a set of type
onstru
-tors, C 2 Con , where ea
h
onstru
tor has a given arity.We also assume a set of pre-de�ned fun
tions p 2 Pre and aset of program-de�ned fun
tions f 2 Fun
tion and a set oflabels, Lab.Let a program be a set of de�nitions of the formf(x1; : : : ; xn)! E;where expressions are de�ned a

ording toE ::= x j C[E1; : : : ; En℄ j if E1 then E2 else E3j f(E1; : : : ; En) j funl (x1; : : : ; xn)! E1j E0(E1; : : : ; En)l j p(E1; : : : ; En)We assume that there is a program-de�ned fun
tion fe 2Fun
tion . The intention is that fe will serve as an entrypoint in the analysis.
6.2 SpecificationsA spe
i�
ation module
onsists of a set of fun
tion spe
i�-
ations of the form f(T1; : : : ; Tn)! T0;and a set of type de�nitionsd(T1; : : : ; Tn) = T0where type spe
i�
ations are de�ned a

ording to:T ::= x j any j C[T1; : : : ; Tn℄j T1 + : : : + Tnj funl (T1; : : : ; Tn)! T0j d(T1; : : : ; Tn)
6.3 Basic structuresThe state of the analysis is a store, mapping analysis vari-ables to terms.Analysis variables are used to store intermediate and �nalresults. To make the analysis polyvariant, it is ne
essary tolet analysis variables range over
ontexts. Thus, for
ontexts
 2 Context , let Var be one of the following1. Arg(f; k;
) 2 Var , where f is a program-de�ned fun
-tion with arity n � k.2. Res(f;
) 2 Var , where f is as above.3. FunArg(l; k;
) 2 Var , where l 2 Lab is the label of afun expression.4. FunRes(l;
);ApplyRes(l;
); IfRes(l;
) 2 Var , where l isthe label of a
all to a higher-order fun
tion.Let t 2 Term , the set of terms, be the least set su
h that1. Var � Term.2. any 2 Term.8

3. C[t1 : : : tn℄ 2 Term , where
onstru
tor C has arity nand t1; : : : ; tn 2 Term.4. FunTerm(l;
) 2 Term , where l is the label of a funexpression.The implementation divides the type
he
king problem intoa set of subproblems, tasks. A task may be one of the fol-lowing problems:1. analyze a fun
tion f in
ontext
,2. generate analysis information a

ording to a type def-inition, and3.
he
k that generated analysis information mat
hes atype de�nition.The set of tasks is listed in Se
tion 6.8. Let Work be the setof tasks. The analysis will maintain a worklist,
ontaining asubset of Work .A
ow analysis
omputes, for ea
h variable and subexpres-sion in the program, an approximation of the set of pos-sible values. An analysis whi
h simply asso
iates valuesto di�erent parts of the program (i.e., a monovariant or
ontext-insensitive analysis) su�ers from the problem that ifa fun
tion is
alled from di�erent parts of the program, theanalysis will set the result of the di�erent
alls to be unionof all
alls to the fun
tion. For polymorphi
 fun
tions, thiswill of
ourse give lower pre
ision, but fun
tions that arenot polymorphi
 may also be a�e
ted. Consider for exam-ple the fun
tion append. If there is one
all site where thetype of the se
ond argument is unknown, the result will alsobe unknown. Thus, a monovariant analysis may propagatea low-pre
ision result to all
all sites where a polyvariantanalysis would
on�ne it to one part of the program.To allow fun
tions to be typed as polymorphi
, we use ame
hanism for polyvariant analysis des
ribed in more detailelsewhere [18℄.The me
hanism we use involves a set of
ontexts,
 2 Context ;and a fun
tion Call(f; l;
) =
0whi
h, given a fun
tion f , a
all site l and a
ontext
 returnsa new
ontext. We also assume an initial
ontext,
0. Theidea is that if a
all to fun
tion f o

urs at label l in
ontext
, the body of f will be analyzed in
ontext
0. To guaranteetermination, the set of
ontexts must be �nite.
6.4 Implementation of set abstractionThe store will asso
iate with ea
h analysis variable X thefollowing:1. X:value � Term , a set of terms whi
h are not analysisvariables.

Lookup(X):1: Add
urrent task to X:depend2: Return X:valueAdd(t;X):1: Test if t is
ontained in X:value2: If not,3: set X:value to X:value [ftg,4: put all tasks in X:depend on work list,5: for ea
h variable Y 2 X:link, do Add(t; Y).Add(X;Y):1: if X is a member of Y:link,2: do nothing3: if not,4: add X to Y:link,5: let t = Y:value and6: do Add(t;X)Contains(t1; t2):1: Return true if either2: t1 = t2,3: t2 = any, or4: t2 is a variable X, and Contains(t1; t0) holds, for somet0 2 Lookup(X).5: Return false otherwise.Figure 1: Implementation of set abstra
tion.2. X:link � Var , a set of variables.3. X:depend �Work , a set of analysis tasks.When the analysis is �nished, the relevant information forea
h variable is
olle
ted in X:value. For example, for afun
tion f , Arg(f; 1;
):value gives an approximation of thevalues that may be passed in the �rst argument of f .For ea
h variable X we also store X:link, a set of variablessu
h that X � Y , for ea
h Y 2 X:link, and X:depend, a setof analysis tasks whose result may depend on the value ofX. Thus, if the value of X
hanges, the tasks in X:dependwill be put in the worklist.We de�ne the following operations on the store.1. Lookup(X). Determine the
urrent value of X.2. Add(t;X). Add the term t to the value of X.3. Add(X;Y). Add the value of X to Y , i.e., make X asubset of Y .We assume that during any point in the analysis, it is pos-sible to determine the
urrent analysis task (an element ofWork). By dividing the analysis problem into a set of sepa-rate tasks, it is possible to devise a worklist oriented strategywhere a portion of the program only needs to be re-analyzedwhen a value on whi
h it depends on has
hanged. The9

purpose of the link �eld is to represent in
lusion relationsexpli
itly. The implementation of the operations is given inFigure 1.
6.5 Analyzing Erlang expressionsAnalysis of an expression takes1. the expression to be analyzed,2. an environment mapping program variables to terms,3. the
urrent
ontext, and4. a storeand returns1. a term and2. an updated store.When analyzing expressions
onsisting of a single variable,simply look up the value of the variable in the
urrent envi-ronment.Analyze(x; E ;
):1: return E(
)Expressions involving a
onstru
tor simply build a
orre-sponding term.Analyze(C[E1; : : : ; En℄; E ;
):1: let tk = Analyze(Ek; E ;
), for k � n2:
onstru
t the term C[t1; : : : ; tn℄ and3: return it as the result of the analysis.The analysis of
omplex expressions is given in Figure 2.In the analysis of
alls to program-de�ned fun
tions, we usethe fun
tion Call to
ompute a new
ontext. When a
allis analyzed for the �rst time, a new analysis task
onsistingof the
alled fun
tion and the new
ontext is added to theworklist.In the analysis presented here,
losures are not polymor-phi
. A polymorphi
 analysis would be more
omplex, andas most Erlang appli
ations make very little use of higher-order fun
tions the added
omplexity and
ost of an analysisthat
ould treat
losure appli
ations polymorphi
ally
annotbe justi�ed. See [18℄ for a detailed dis
ussion.Analyzing
alls to higher-order fun
tions is similar to ana-lyzing
alls to user-de�ned fun
tions, but slightly
ompli-
ated by the fa
t that the analysis is used to determinethe destination of the
all. For a fun-expression (a
losure)funl (x1; : : : xn)! E0, we use analysis variables FunArg(l; 1;
)through FunArg(l; n;
) to represent the arguments, i.e., theset of possible values that may be passed as arguments to thefun
tion. In a similar way, the set of values that may be re-turned by the fun
tion is stored in the variable FunRes(l;
).

Analyze(x; E ;
):1: return E(
)Analyze(if E1 then E2 else E3; E ;
):1: let t1 = Analyze(E1; E ;
)2: if Contains(true; t1) holds,3: let t2 = Analyze(E2; E ;
)4: Add(t2; IfRes(l;
))5: if Contains(false; t1) holds,6: let t3 = Analyze(E3; E ;
)7: Add(t3; IfRes(l;
))8: return IfRes(l;
).Analyze(f(E1; : : : ; En)l; E ;
):1: let tk = Analyze(Ek; E ;
) for k � n2: let
0 = Call(f; l;
),3: Add(tk;Arg(f; k;
0)), for k � n4: unless hf;
0i has been analyzed before, add hf;
0i towork list5: return Res(f;
0)Analyze(funl (x1; : : : ; xn)! E0; E ;
):1:
reate a new environment E1 by extending old environ-ment E with bindings xk 7! FunArg(l; k;
), for k � n2: let t = Analyze(E0; E1;
)3: Add(t;FunRes(l;
))4: return FunTerm(l;
)Analyze(E0(E1; : : : ; En)l; E ;
):1: let tk = Analyze(Ek; E ;
) for 0 � k � n2: for ea
h l0, su
h that Contains(FunTerm(l0;
0); t0),3: Add(tk;FunArg(l0; k;
0)), for 1 � k � n4: Add(FunRes(l0;
0);ApplyRes(l;
))5: Return ApplyRes(l;
)Figure 2: Analyzing expressions.

10

However, we will still distinguish between di�erent instan
esof a
losure. Thus, a
losure is represented by a term of theform FunTerm(l;
), to distinguish between
losures
reatedat the same program point but in di�erent
ontexts.
6.6 GenerationFrom a given type spe
i�
ation we generate type informationin the internal representation used by the data
ow analysis.In this se
tion, we will only
onsider simple type de�nitions.Generally speaking, generation assumes1. a type expression,2. an environment (mapping type variables to terms),and3. a
ontext,and returns1. a term, and2. an updated storeThe type of a type variable is obtained from the environ-ment.Gen(x;A;
):1: return A(x)Handling of the universal type and
onstru
tors is straight-forward.Gen(any;A;
):1: return the term anyGen(C[T1; : : : ; Tn℄;A;
):1: let tk = Gen(Tk;A;
), for k � n2: return C[t1; : : : ; tn℄If the type expression is a fun
tion type, generating typeinformation
onsists of three parts;
reate a term indi
atinga fun
tion obje
t, mat
h the arguments against the argu-ments given in the fun
tion type, and return the fun
tionterm.Gen(funl (T1; : : : ; Tn)! T0;A;
):1: Mat
h(Tk;FunArg(l; k;
);, ,) for 1 � k � n2: If any of the mat
hings fail, report bad fun
tion argu-ment at
urrent fnid.3: Let t0 = Gen(T0;A;
)4: Add(t;FunRes(l;
))5: Return FunTerm(l;
)

The representation of a union type is easy, sin
e there is aninternal representation of unions.Gen(T1 + : : : + Tn;A;
):1: let tk = Gen(Tk;A;
), for 1 � k � n2: return t1 + : : : + tnAs mentioned above, we assume that d is a lo
al type de�-nition.Gen(d(T1; : : : ; Tn)l;A;
):1: let tk = Gen(Tk;A;
), for k � n2: let
0 = Call(d; l;
),3: Add(tkArg(f; k;
0);), for k � n4: if hGen; f;
i is not already a
tive,5: make hGen; f;
i a
tive, and6: put hGen; f;
i on worklist7: Return Res(f;
0)
6.7 MatchingMat
hing a term against a type expression assumes1. a type expression,2. a term,3. an environment (mapping type variables to (analysis)variables,4. a
ontext, and5. a storeand returns an updated store.We use an analysis variable Mat
hRes(
) to pass informationabout the su

ess of the mat
hing done in
ontext
, if themat
hing fails, a term fail is added to Mat
hRes(
).Type variables
an be en
ountered in four situations; atthe top-level (when
he
king a fun
tion with a polymorphi
spe
i�
ation), when analysing a fun
tion
all to a spe
i�edfun
tion, and during mat
hing or generation of a type spe
-i�
ation
ontaining a de�ned type.Suppose that we are
he
king a fun
tion with a polymorphi
spe
i�
ation, for example the fun
tion append:append(list(A), list(A)) -> list(A).Here, the type variable A is impli
itly universally quanti�ed,i.e., the spe
i�
ation implies that the implementation shouldoperate on lists of any type. Thus, a fun
tion that onlyoperated on lists of integers should be reje
ted by the typesystem.To be able to
he
k that the program makes no assumptionson type variables introdu
ed in polymorphi
 spe
i�
ations,11

we introdu
e a new
lass of
onstru
tors, parameters, onefor ea
h type variable. A parameter
an only be mat
hedagainst it self (or an unbound variable). Thus, the typesystem
an
he
k that no assumptions are made about typespassed as parameters.The other three uses of type variables are handled by bindingthe type variables to fresh analysis variables.In the mat
hing of a type variable against a term (below), wedistinguish between the two
ases|either x is bound to ananalysis variable in whi
h
ase mat
hing always su

eeds, orx is bound to a parameter in whi
h
ase mat
hing su

eedsif and only if the term t is that parameter.Mat
h(x; t;A;
):1: if A(x) is an analysis variable X,2: Add(t;X)3: otherwise, if Contains(t;A(x)) does4: not hold, report that mat
hing failed by5: Add(fail;Mat
hRes(
))Mat
hing the universal type is of
ourse straight-forward.Mat
h(any; t;A;
):1: (nothing needs to be done)When mat
hing a type expression with a
onstru
tor, we
he
k that the term is of the same form and then pro
eedre
ursively with the sub-terms.Mat
h(C[T1; : : : ; Tn℄; t;A;
):1: if t is an analysis variable,2: let t0 = Lookup(t),3: do Mat
h(C[T1; : : : ; Tn℄; t0;A;
)4: otherwise, if t is a union t1 + : : :+ tn,5: do Mat
h(C[T1; : : : ; Tn℄; tk;A;
), for k � n6: otherwise, if t is of the form C[t1; : : : ; tn℄,7: do Mat
h(Tk; tk;A;
), for k � n8: otherwise, report that mat
hing failed by9: Add(fail;Mat
hRes(
))To mat
h a term against a union of type spe
i�
ations we as-sume two fun
tions Extra
t and Remove whi
h given a termand a spe
i�
ation produ
e new terms. Computing Extra
tand Remove exa
tly is a diÆ
ult problem, so we will settlefor rather
rude approximations. Keep in mind that ea
hterm represents a set of possible values. Assume that St isthe set of values represented by the term t, and that ST isthe set of values mat
hed by the type T . Now, Extra
t andRemove
an be spe
i�ed as follows:1. If t0 = Extra
t(T; t;A;
), then t0 represents a supersetof all values represented by t that are also mat
hed byspe
i�
ation T , i.e., St0 � St \ST , where St0 is the set

Extra
t(T; t;A; n):1: Extra
t(any; t;A; n) = t2: Extra
t(none; t;A; n) = none3: Extra
t(C[: : :℄; V;A; n) =4: fExtra
t(C[:::℄; t;A; n � 1) j t 2 V:valueg5: Extra
t(C[T1; : : : ; Tm℄; C[t1; : : : ; tm℄;A; n) =6: C[t01; : : : ; t0m℄;7: where t0k = Extra
t(Tk; tk; n), for k � m.8: Extra
t(C[: : :℄; C0[: : :℄;A; n) = none, if C 6= C09: Extra
t(T1 + T2; t;A; n) = t1 + t210: where t1 = Extra
t(T1; T;A; n)11: and t2 = Extra
t(T2; T;A; n)12: Extra
t(funl (: : :) ! : : : ; t;A; n) = t, if t represents afun
tion type13: Extra
t(funl (: : :)! : : : ; t;A; n) = none, otherwise14: Extra
t(d(T1; : : : ; Tm); t;A; 0) = t15: Extra
t(d(T1; : : : ; Tm); t;A; n) = Extra
t(T 0; t;A; n�1)16: where d(X1; : : : ; Xm) = T;17: and T 0 is the result of repla
ing ea
h o

urren
e of18: Xk in T with Tk, for k � m and n > 0Figure 3: Implementation of extra
t operation.
Remove(T; t;A;
):1: Remove(any; t;A; n) = none2: Remove(none; t;A; n) = t3: Remove(T = C[:::℄; V;A; n) =4: fRemove(T; t;A; n � 1)jt 2 V:valueg5: Remove(C[T1; : : : Tm℄; C[t1; : : : ; tm℄;A; n) =6: fC[t01; : : : ; t0m℄ j,7: where for some k, t0k = Remove(Tk; tk;A; n);8: and tk 6= none9: and t0l = tl; l 6= kg10: Remove(C[: : :℄;A; t) = C0[: : :℄; n) = t11: Remove(T1 + T2; t;A; n) =12: Remove(T1;Remove(T2; t;A; n);A; n)13: Remove(funl : : :! : : : ; t; n) = t;14: Remove(d(T1; : : : ; Tm); t;A; 0) = t15: Remove(d(T1; : : : ; Tm); t;A; n) = Remove(T 0; t;A; n �1)16: where d(X1; : : : ; Xm) = T;17: and T 0 is the result of repla
ing ea
h o

urren
e of18: Xk in T with Tk, for k � m and n > 0Figure 4: Implementation of remove operation.

12

of values represented by t0.2. If t0 = Remove(T; t;A;
), then t0 represents a supersetof all values represented by t that are not mat
hed byspe
i�
ation T , i.e., St0 � St n ST .Given Extra
t and Remove, the mat
hing of unions is straight-forward.Mat
h(T1 + : : : + Tn; t;A;
):1: let t1 = Extra
t(T1; t;A;
)2: let tr = Remove(T1; t;A;
)3: Mat
h(T1; t1;A;
)4: Mat
h(T2 + : : :+ Tn; tr;A;
)Figures 3 and 4 show simpli�ed versions of the extra
t andremove operations used in the analysis. When mat
hing atype expression funl (T1; : : : ; Tn) ! T0 with a term t, wemust
he
k that t is indeed a
losure, and then verify thatt returns a value of type T0 when
alled with arguments oftype T1 through Tn.Mat
h(funl (T1; : : : ; Tn)! T0; t;A;
):1: If t is an analysis variable,2:
all Mat
h(funl (T1; : : : ; Tn)! T0; t0;A;
)3: for ea
h t0 2 t:value.4: if t is not an analysis variable,5: if t is a term FunTerm(l0;
0), for some l0 and
0,6: let tk = Gen(Tk;A;
), for 1 � k � n7: Add(tk;FunArg(l0; k;
0)), for k � n8: do Mat
h(T0;FunRes(l;
);A;)9: if t is any other term, report that mat
hing failed byAdd(fail;Mat
hRes(
)).Referen
es to de�ned types are treated in a manner similarto the handling of fun
tion
alls in the analysis. A new
ontext is
reated, a new task is
reated for the mat
hing ofthe body of d (i.e., the right-hand side of the de�nition ofd) against the \result". Sin
e the dire
tion of data
ow isba
kwards, the term t is added to the result of the
all andthe formal arguments T1 through Tn are mat
hed againstthe a
tual arguments t1 through tn.Mat
h(d(T1; : : : ; Tn)l; t;A;
):1: let
0 = Call(d; l;
),2: Add(Mat
hRes(
0);Mat
hRes(
))3: If hMat
h; d;
0i is not already a
tive,4: make hMat
h; d;
0i a
tive, and5: put hMat
h; d;
0i on worklist6: Add(Res(d;
0); t)7: let tk = Arg(d; k;
0), for k � n8: Mat
h(Tk; tk;A;
), for k � n
6.8 The main loop

The soft-typing system is based on a worklist algorithm|the problems of analysis, mat
hing and generation are rep-resented as tasks in the worklist. The use of a worklistallows a fairly straight-forward handling of re
ursive fun
-tions and re
ursive type de�nitions. Similarly, the treatmentof parametri
 types resembles the passing of arguments tofun
tions.The main loop maintains a worklist of tasks. A task is oneof the following.1. hAnalyze; f;
i, analyze fun
tion f in
ontext
,2. hGen; d;
i, generate type information a

oring to typede�nition d,3. hMat
h; d;
i, mat
h against de�ned type d,4. hChe
k; f;
i,
he
k that fun
tion f behavesa

ordingto spe
i�
ation,5. hUseSpe
; f;
i, use spe
i�
ation of f when
omputingthe result of a
all to f.Sin
e the relevant arguments and results are passed in thestore (asso
iated with the
ontext), the task only needs to
ontain fun
tion and
ontext.The main loop will simply remove a task from the worklistand preform the
orresponding operation until the worklistis empty.AnalyzeProgram:1: For ea
h fun
tion f mentioned in the spe
i�
ation, puthChe
k; f;
0i in WorkList.2: Exe
ute MainLoop.MainLoop:1: if WorkList is empty,2: terminate analysis3: if WorkList is not empty,4: remove a task from WorkList,5: if the task is hAnalyze; f;
i, do Analyze(f;
)6: if the task is hGen; d;
i, do Gen(d;
)7: if the task is hMat
h; d;
i, do Mat
h(d;
)8: if the task is hChe
k; f;
i, do Che
kSpe
(f;
)9: if the task is hUseSpe
; f;
i, do UseSpe
(f;
)10:
ontinue MainLoop until WorkList is emptyTo
ompute the e�e
ts of a
all to a fun
tion f in
ontext
,we build an environment mapping ea
h formal parameter toa term Arg(f; k;
). Similarly, the result of the
all is passedba
k to the
aller in analysis variable Res(f;
).Analyze(f;
):1: Let the de�nition of f be f(x1; : : : ; xn)! E2: Create environment E mapping ea
h of xk to the termArg(f; k;
), for k � n13

3: let t = Analyze(E; E ;
)4: Add(t;Res(f;
))To generate a term from a type expression d(t1; : : : ; tn),where d is a de�ned type, an analysis task is
reated forthe body of the de�nition. As in the analysis of fun
tion
alls, the arguments and results are passed in the store.Gen(d;
):1: Let the de�nition of d be d(T1; : : : ; Tn) = T02: Let x1; : : : ; xm be the free variables of T0; : : : ; Tn3: Create type environment A mapping ea
h of xk to aterm Univ(k;
), for 0 � k � m.4: Mat
h(Tk;Arg(d; k;
);A;
), for 1 � k � n5: let t = Gen(T0;A;
)6: Add(t;Res(d;
))Mat
hing a de�ned type to a given term is similar, but data
ows in the opposite dire
tion. We assume that the term isgiven in the analysis variable t = Res(d;
), whi
h in othersituations is asso
iated with the result.Mat
h(d;
):1: Let the de�nition of d be d(T1; : : : ; Tn) = T02: Let x1; : : : ; xm be the free variables of T0; : : : ; Tn3: Create type environment A mapping ea
h of xk to aterm Univ(k;
), for 0 � k � m.4: Let t = Res(d;
)5: let Mat
h(T0; t;A;
)6: Let tk = Gen(A; Tk;
), for 1 � k � n7: and Add(tk;Arg(d; k;
))The initial task in the worklist will be the
he
king of aspe
i�
ation of a fun
tion f . We assume that there is botha fun
tion de�nition and a spe
i�
ation of f . We generateterms for the arguments a

ording to the argument types inthe spe
i�
ation, then use the
ow analysis to determine theresult of a fun
tion
all, and then mat
h the result againstthe result type in the spe
i�
ation.Che
kSpe
(f;
):1: Let the spe
i�
ation of f be f(T1; : : : ; Tn)! T0 and the2: de�nition f(x1; : : : ; xn)! E3: Let y1; : : : ; ym be the free variables of T0; : : : ; Tn4: Create type environment A mapping ea
h of xk to aterm Parameter(k;
), for 0 � k � m.5: Let tk = Gen(A; Tk;
), for k � n,6: and
reate environment E mapping ea
h of xk to tk.7: Let t = Analyze(E;E ;
)8: If Mat
h(T0; t;A;
) fails, report a warning to the user.If a fun
tion f is
alled, and there is no de�nition of thefun
tion, i.e., there is no Erlang
ode, but there is a spe
-

i�
ation, we use the spe
i�
ation to
ompute the expe
tedresult. Universially quanti�ed variables in the spe
i�
ationare bound to analysis variables, Univ(k;
), where k is the po-sition of the variable and
 is the
ontext. We �rst mat
h theargument types in the spe
i�
ation against the argumentsin the
all. Next we generate the result of the fun
tion
alla

ording to the result type in the spe
i�
ation.UseSpe
(f; x):1: Let the spe
i�
ation of f be f(T1; : : : ; Tn)! T02: Let x1; : : : ; xm be the free variables of T0; : : : ; Tn3: Create type environment A mapping ea
h of xk to aterm Univ(k;
), for 0 � k � m.4: For 1 � k � n do Mat
h(Tk;Arg(f; k;
);A;
),5: Let t = Gen(T0;A;
) and6: Add(t;Res(d;
)).
7. THE IMPLEMENTATIONThe analysis is written in Erlang. As Erlang is (apart fromthe
on
urren
y primitives) a pure fun
tional programminglanguage and la
ks arrays and hash tables, the store is rep-resented as a balan
ed binary sear
h tree.
7.1 ModulesThe analysis is applied to a single Erlang module. Spe
i�-
ation �les were written for the module and other modulesthat were referen
ed by the module being analyzed.
7.2 Core ErlangEven though Erlang may on the surfa
e appear to be a sim-ple language, it is a non-trivial proje
t to write a front endwhi
h handles all aspe
ts of the Erlang language. To avoiddealing with these details, the analysis instead operates onthe Core Erlang intermediate
ode [5℄. The translation isperformed using the
ompiler of the OTP distribution.
8. EXPERIENCESIn this se
tion we study the performan
e of the type systemwhen applied to Erlang modules that were not written to
onform to the type system. All measurements were madeon an Intel Xeon 2.4 GHz with 1 GB of RAM and 512 KB
a
he, running Linux.
8.1 The lists moduleWe �rst
onsider the standard module lists that de�nesvarious lists operations. The module
ontains 595 lines of
ode. Many fun
tions, for example append/1 (whi
h ap-pends a list of lists), append/2, map/2 and foldl/3 resem-ble those found in the standard libraries of other fun
tionalprogramming languages. The lists module also de�nes op-erations on deeply nested lists (for example flatten/1 andflatlength/1), and operations on lists of tuples (for exam-ple keysear
h/3 and keysort/2). Operations on lists oftuples typi
ally takes an integer as argument, indi
ating onwhi
h element in the tuples to index. Thus, keysear
h/3looks for tuples with a given element in the position givenby the index, and keysort sorts a list of tuples with re-spe
t to the values stored in a given position in the tuples.Instead of having an expli
it string representation, Erlang14

represents strings as lists of
hara
ter
odes. The fun
tion
on
at/1 takes a deeply nested list of obje
ts and returnsa string
onsisting of the
on
atenation of the string repre-sentations of the obje
ts. The soft-typing system gives 29warnings when
he
king the list module.The type de�nitions are straight-forward.-type list(X) = [℄ + [X | list(X)℄.-type deeplist(X) = list(deeplist(X) + X).Many fun
tions are analyzed without warnings. This holdsfor typi
al fun
tions on lists su
h as append/1, append/2,reverse/1 map/2 and foldl/3. For example, the systemderives the following information for append/1:Fun
tion lists:append/1:'{result,{fnid,lists|...}}' = A'{arg,1,{fnid|...}}' = BwhereA = [parameter('A')|A℄ + [℄B = [A|B℄ + [℄As one example of a fun
tion whi
h
orre
tly generates awarning,
onsider nth/2, whi
h takes an integer and a list,and returns the element of the list indi
ated with the integer(where the �rst element has index one):nth(int(), list(A)) -> A.nth(1, [H|_℄) -> H;nth(N, [_|T℄) when N > 1 ->nth(N - 1, T).The system warns that the fun
tion may throw an ex
eption.This is
orre
t, sin
e nth/2 may indeed throw an ex
eptionwhen the index is out of range. The same holds for allfun
tions that index on lists or tuples (keysear
h/3 is oneexample of the latter).Surprisingly,
he
king flatten/1 gives no false alarms. Thederived information states (
orre
tly) that
atten takes adeeply nested list of some data type and returns a list ofthat data type.Fun
tion lists:flatten/1:'{result,{fnid,lists|...}}' = A'{arg,1,{fnid|...}}' = BwhereA = [parameter('X')|A℄ + [℄B = [C|B℄ + [℄C = parameter('X') + [C|B℄ + [℄Higher-order fun
tions su
h as map/2 and foldl/3 pose noproblems.

8.2 OthelloNext we
onsider a program downloaded from the Erlanguser
ontributions dire
tory whi
h plays the game Othello.It
onsists of three modules; othello, the main modulewhi
h (among other things) implements alpha-beta sear
h,othello_adt whi
h implements the board as an abstra
tdata type, takes
are of evaluation,
omputes the of possi-ble moves and so on. The module othello_board interfa
eswith a GUI library.Spe
i�
ation �les were written for the three modules. Wewill only
onsider the
he
king of two modules; othelloand othello_adt, as
he
king othello_board would requirewriting a spe
i�
ation �le for the pxw graphi
s library.As examples of type de
larations in the spe
i�
ation �les,
onsider the representation of the board. The board is rep-resented as a pair, where the se
ond element is a 64-elementtuple, representing the
ontents of the board, and the �rstelement is a list of all positions whi
h are empty and adjoinan o

upied position. (ordsets is a library module whi
hrepresents sets as lists.)-type boolean() = true + false.-type list(X) = [℄ + [X | list(X)℄.-publi
_type
olor() = grey + white + bla
k.-publi
type player
olor() = white + bla
k.-type squares() =tuple(list(
olor())).-abstype board() ={ordsets:set(int()), squares()}.In the above,
olor() is publi
, as other modules in theprogram also rely on the same representation of
olors. Thetype squares() represents the
ontents of the board. Thetype
onstru
tor tuple(...) represents, when applied to alist type, the set of all tuples with the same length and typeas the lists types. The type squares() is the set of all tupleswhere the elements are the atoms grey, white and bla
k.The type board() is de
lared as abstra
t as other modulesdo not a

ess the internal representation of boards. Thetype player_
olor() represents the
olor of a player.Next we
onsider some of the fun
tion spe
i�
ations.new(t) ->board().all_pos(board()) ->list({int(),
olor()}).evaluate_board(player_
olor(), board()) ->int().inv(bla
k+white) ->15

player_
olor().is_draw(int(), player_
olor(), board()) ->boolean().possible_draws(player_
olor(), board()) ->list(int()).set(int(), player_
olor(), board()) ->board().The fun
tion new/1
reates a new board. (For some rea-son, it expe
ts the atom t as argument.) all_pos() takes aboard and returns a list of pairs,
onsisting of a position andthe
olor at that position. As one might expe
t, the fun
-tion evaluate_board/2 evaluates the board from a player'spoint of view. is_draw/3
he
ks if a parti
ular move is le-gal, possible_draw/2 returns the set of possible moves, andset/3 returns the updated board after one of the players hasput a pie
e on a given position.Che
king the module othello_adt.erl against the spe
i�-
ation took 11 se
onds. This is rather long,
onsidering thatthe module is only 345 lines of
ode. Other modules of sim-ilar size took less than one se
ond to
he
k. At the time ofwriting, the author does not have a satisfa
tory explanationto why
he
king module othello_adt.erl requires so mu
htime.The type system gives 5 warnings. Three of the warningsare due to the use of the
at
h/throw me
hanism of Erlangto break out of a re
ursion. For example, the fun
tion whi
h
he
ks if a move is legal throws an ex
eption when it dis
ov-ers that the requirements for a legal move are satis�ed. Theanalysis makes no attempts to tra
k ex
eptions, and
on-servatively assumes that a
at
h expression may return anyvalue, thus we have two warnings be
ause a result obtainedthrough a
at
h is too general, and one warning be
ause afun
tion throws an ex
eption.One fun
tion expe
ts a pair of two integers in the interval1 : : : 8, representing row and
olumn of the board. Be
auseof the way these integers are
omputed, and sin
e the anal-ysis does not reason about integer ranges, the analysis failsto determine that the integers lie in the desired interval andwarns that the fun
tion might throw an ex
eption (as itmight if
alled with integers outside the interval).Finally, the system warns that the fun
tion set/3 may re-turn the result invalid_position. (It seems that this
ouldonly happen if there is a bug in the program.) The warning is
ompletely
orre
t, but as the fun
tions in module othellothat
all set/3 do not handle the result invalid_positionit seemed appropriate to ex
lude the result from the returntype.The module othello has a mu
h simpler interfa
e. The
omplete spe
i�
ation �le is shown below.-module(othello).-type init() = first_time + restart.

start1(any(), othello_adt:player_
olor(),othello_adt:player_
olor(), int(),init()) ->any().new_game(othello_adt:player_
olor(),othello_adt:player_
olor(), int(),init()) ->any().Che
king module othello, 173 lines of
ode (ex
luding blanklines and
omments) takes 0:1 se
onds. The systems gives7 warnings. 5 warnings are due to the use of
at
h-throwin the implementation of the alpha-beta sear
h algorithm.One warning is be
ause the system fails to determine thatwhen the following fun
tion is
alled (with arguments Value,Alpha, Beta and NoDs of integer type) one
lause will alwaysbe sele
ted.
utoff(...,Value,...,Alpha,Beta,...,Nods)when Value >= Beta ->...
utoff(...,Value,...,Alpha,Beta,...,Nods)when Alpha < Value, Value < Beta ->...
utoff(...,Value,...,Alpha,Beta,...,Nods)when Value == Alpha, NoDs < 13 ->...
utoff(...,Value,...,Alpha,Beta,...,Nods)when Value =< Alpha ->...(Variables not relevant for the
ase analysis were omitted.)To analyze this fun
tion
orre
tly would require some ratheradvan
ed reasoning about integer ranges.The �nal warning o

urs in the expression
ase random:uniform(2) of1 -> ...;2 -> ...endThe library fun
tion random:uniform/1 will indeed returneither 1 or 2, but the analysis does not have su
h detailedknowledge about the fun
tion, nor
an it reason in su
hdetail about integer ranges,
8.3 LinesLines is a module downloaded from the Erlang user
ontri-butions dire
tory. The module implements an abstra
t datatype whi
h maintains an abstra
t sequen
e of lines, i.e., ob-je
ts indexed by their relative position in the stru
ture. Themodule allows insertion and removal of a line anywhere inthe sequen
e, and as the sequen
e is represented as a binarytree, operations should usually be logarithmi
 in the depthof the tree.16

The lines module is 164 lines of
ode, ex
luding blank linesand
omments. Che
king the module required 0.6 se
onds.Even though the module implements a relatively simple datastru
ture, the soft-typing system generates 17 warnings.Consider, for example insert/3, whi
h performs insertionat a given position and tries to re-balan
e the tree. Type-
he
king this fun
tion gives 6 warnings. Three warningsare due to the handling of if-expressions. Unfortunately,the Core Erlang front end translates a guard true into a
all erlang:'=:='(true, true) (this will be �xed in futurereleases). The analysis knows that the former expression willalways su

eed, but assumes
onservatively that the latterexpression may either su

eed or fail. Thus the soft-typingsystem issues warnings that the if-expression may throw anex
eption.One warning is due to the fa
t that the fun
tion insert maygive an ex
eption if the index is out of range.The remaining two warnings are due to the fa
t that theanalysis assumes that an index may be out of range, eventhough a pre
eeding test ensures that this is not the
ase.
8.4 Gb-treesThe standard library module gb_trees implements balan
edbinary sear
h trees. As it was originally developed as partof the soft-typing system, the author had expe
ted that itwould pass through the type
he
ker without any warningsat all. However, the type
he
ker gives 9 warnings.The tree type is abstra
t. We give the spe
i�
ation of thetree type and the fun
tion insert/3,-abstype tree(K, V) = {int(), tree1(K, V)}.-type tree1(K, V) =nil + {K, V, tree1(K, V), tree1(K, V)}.insert(K, V, tree(K, V)) ->tree(K, V).To allow an eÆ
ient implementation of the balan
ing algo-rithm ea
h tree stores a
ount of the number of nodes in thetree.The gb_trees module
onsists of 202 lines of
ode,
he
k-ing the module took 0.4 se
onds. As mentioned, the systemwill report 9 warnings. Among them, four warnings
on-
ern ex
eptions that may a
tually take pla
e. For example,insert/3 assumes that the key being inserted is not presentin the tree, update/3 assumes that it is present, and so doesdelete/2. The fun
tion take_smallest/1 assumes that thetree is non-empty. In other words, the fun
tions are writtento throw ex
eptions when
alled with the wrong data, andthe type
he
ker warns us that this might indeed happen.The other �ve warnings
on
ern the passing of values be-tween di�erent fun
tions in the module. For example, thefun
tion insert/3
alls an internal fun
tion insert_1 whi
hwill either return a one-element tuple
ontaining a balan
ed

tree, or a tuple of three elements
ontaining an unbalan
edtree plus some additional information. Now, the propertiesof the algorithm guarantees that insert_1 when applied toa
omplete tree will always return a balan
ed tree, so the
allto insert_1 is written so that an ex
eption will be thrown ifthis is not the
ase. As the type system does not understandthe algorithm, it warns that there may be an ex
eption. Sim-ilarly, there is one fun
tion
all in the balan
ing algorithmwhi
h should always return a tuple where the se
ond ele-ment is an empty list. The program is deliberately writtenso that an ex
eption will be thrown if this is not the
ase.The remaining three warnings are similar; we know that aparti
ular intermediate value should be of a parti
ular form,so we
he
k that this is indeed the
ase|there is no pointin handling any other situation gra
efully as it must be dueto a bug.
8.5 CounterAs an example of a program with pro
ess
ommuni
ation,we
onsider the simple
ounter pro
ess from [2℄.start() ->spawn(
ounter, loop, [0℄).in
rement(Counter) ->Counter ! in
rement.value(Counter) ->Counter ! {self(), value},re
eive{Counter, Value} ->Valueend.stop(Counter) ->Counter ! stop.loop(Val) ->re
eivein
rement ->loop(Val+ 1);{From, value} ->From ! {self(), Val},loop(Val);stop ->true;_ ->loop(Val)end.The fun
tion start() spawns a pro
ess whi
h exe
utes thefun
tion loop(). Three fun
tions handle
ommuni
ationwith the pro
ess; in
rement/1, value/1 and stop/1.The spe
i�
ation �le is as follows:-module(
ounter).start() ->pid().17

in
rement(pid()) ->in
rement.+mbox(value/1) = {pid(), int()}.value(pid()) ->int().stop(pid()) ->stop.+mbox(loop/1) =in
rement + {pid(), value} + stop.loop(int()) ->true.First, the spe
i�
ation of start/1 indi
ates that it will re-turn a pro
ess identi�er. The fun
tion in
rement is spe
i�edto take a pid as argument and return the atom in
rement.Similarly, the fun
tions value and stop take a pid as argu-ment and return an integer and the atom stop, respe
tively.Sin
e value
ontains a re
eive expression in whi
h it expe
tsa message
onsisting of a tuple of a pid and an integer, weindi
ate this in the spe
i�
ation. Similarly, we indi
ate themessages that the fun
tion loop re
eives.Che
king this module gives no warnings. Still, there aremany ways to use the module without breaking the spe
i�-
ation that will give strange results. Consider, for examplef() ->P =
ounter:start(),self() ! {P, foo},V =
ounter:value(P).This fun
tion fun
tion
reates a
ounter pro
ess, and thenasks for its
urrent value. However, before it asks the ques-tion it forges a reply from the pro
ess. Now, the fun
tionvalue will pi
k up the �rst message in the mailbox and re-turn the value foo.It is unlikely that the above
ode would o

ur in pra
ti
e,but the example shows that the pro
ess types do not guar-antee safety.
9. DISCUSSIONThere are a number of aspe
ts of the Erlang programminglanguage that are hard to
ombine with stati
 typing. Thefa
t that all
omplex data stru
tures are
onstru
ted usinglists and tuples makes it diÆ
ult to distinguish obje
ts ofdi�erent types. Erlang's meta-
all allows the destinationof a fun
tion
all to be
omputed at run-time. In general,any exported fun
tion of any module may be
alled. WhileErlang's me
hanism for pro
ess
ommuni
ation has manyattra
tive features, it is problemati
 that there is no distin
-tion between external
ommuni
ation, i.e., messages relatedto the servi
e o�ered by the pro
ess, and internal
ommuni-
ation, i.e., messages that the pro
ess may send and re
eiveas part of the implementation of this servi
e.

Stati
ally typed programming languages are of
ourse de-signed to fa
ilitate stati
 typing. Further, sin
e the typesystem is integrated in the implementation, a programmeris for
ed to obey the dis
ipline of the type system|any pro-gram that does not type won't
ompile. In a language withdynami
 typing this dis
ipline is missing|it is perfe
tly pos-sible to run a program that exhibits some in
onsistent useof types. For example, the Othello program dis
ussed inSe
tion 8 has a fun
tion that either returns an integer (ifan operation is su

essful) or the atom false (if the oper-ation failed). In Erlang, this is
ompletely unproblemati
,but in for example SML su
h a program would have to berewritten.It is also worth noting that stati
 and dynami
ally typedprogramming languages reveal di�eren
es in programmingstyle; in a dynami
ally typed programming language onewrites
ode so that the presen
e of a bug will
ause it to
rash as soon as possible|the sooner one dis
overs thatan input or an intermediate result is in
orre
t the better.For example, if we expe
t that a fun
tion should return anon-empty list, we make sure that any other result gives anex
eption. Paradoxi
ally, making the program
rash soonermakes it more robust, as it gives us more opportunities todete
t bugs during testing. The use of this te
hnique
om-pensates to a
ertain degree for the la
k of early dete
tionof errors provided by stati
 typing. (Also, it seems that im-plementations of dynami
ally typed programming languagesdo a better job in providing useful debugging informationwhen the program throws an ex
eption.) The di�eren
e inprogramming style makes it diÆ
ult to add stati
 typing toa program written for dynami
 typing|pre
isely what wedo in a language with dynami
 typing to make the programsmore robust also make them harder to type.Another problem is that adding stati
 types to a programwritten for a language with dynami
 typing requires under-standing of the program, espe
ially if one is to modify theprogram to �t the type system. On other hand, sometimesthe type system helped reveal the inner workings of pro-grams.One argument against adding stati
 types in retrospe
t isthat if the programs have already been debugged and tested,the
han
es that the type system will dis
over any remainingbugs are slim. In the experiments reported in Se
tion 8, andin other attempts to to type previously written programs,the author never found any bugs due to type errors. How-ever, applying the type system to untested toy programssometimes revealed a

idental type errors.One of the main motivations for using a stati
 type system isthat it dis
overs bugs. However, as
areful testing tends toreveal these bugs, it seems that best way to use a stati
 typesystem is to apply it before the program is tested. Also, itmay happen that a program has to be re-written to �t thetype system. This also supports the view that stati
 typesystems should be applied early in the development pro-
ess, perhaps as an integrated part of the
ompiler. Findleret al. [9℄ appear to have drawn similar
on
lusions. Theydes
ribe a development system for S
heme, a dynami
allytyped programming language, with an integrated stati
 typesystem.18

10. CONCLUSIONWe have presented a soft-typing system for Erlang. Thesystem is based on two ideas|use a spe
i�
ation languageto give the interfa
e of ea
h module, and use a data
owanalysis to verify that the implementation of the modulemat
hes the spe
i�
ation.As we saw in the experimental se
tion, the system
an rea-son about substantial programs and produ
e useful results.It is worth noting that even though the programs were de-bugged and tested, the type system still produ
ed warnings.Almost all warnings
on
erned programming
onstru
ts thatthe data
ow analysis
ould not analyze pre
isely and whereone would not expe
t any other stati
 typing system to givebetter results.One interesting result is that the experiments did not un-
over a single type error in programs that had already beentested and debugged. The explanation for this result is prob-ably that
areful testing tends to reveal most type errors.
AcknowledgementsThe resear
h was supported by the ASTEC (Advan
ed Soft-ware Te
hnology)
ompeten
e
enter and Eri
sson. Thanksto the anonymous reviewers of the Erlang workshop for help-ful
omments, and thanks to Ri
hard Carlsson for
omment-ing on an earlier version of this paper.
11. REFERENCES[1℄ Alexander Aiken. Illyria demo, May 1995.[2℄ Joe Armstrong, Robert Virding, Claes Wikstr�om, andMike Williams. Con
urrent Programming in Erlang,Se
ond Edition. Prenti
e-Hall, 1996.[3℄ Thomas Arts and Joe Armstrong. A pra
ti
al typesystem for Erlang. In Erlang User Conferen
e,September 1998.[4℄ Gilad Bra
ha and David Griswold. Strongtalk:type
he
king smalltalk in a produ
tion environment.In Pro
eedings of the eighth annual
onferen
e onObje
t-oriented programming systems, languages, andappli
ations, pages 215{230. ACM Press, 1993.[5℄ R. Carlsson, B. Gustavsson, E. Johansson,T. Lindgren, S. Nystr�om, M. Pettersson, andR. Virding. Core Erlang 1.0 language spe
i�
ation.Te
hni
al Report 030, Information Te
hnologyDepartment, Uppsala University, November 2000.[6℄ Robert Cartwright and Mike Fagan. Soft typing. InPLDI, pages 278{292, 1991.[7℄ Jeremy Condit, Matthew Harren, S
ott M
Peak,George C. Ne
ula, and Westley Weimer. C
ured in thereal world. In Pro
eedings of the ACM SIGPLAN 2003
onferen
e on Programming language design andimplementation, pages 232{244. ACM Press, 2003.[8℄ Fabien Dagnat and Mar
 Pantel. Stati
 analysis of
ommuni
ations for Erlang. In Pro
eedings of 8thInternational Erlang/OTP User Conferen
e, 2002.

[9℄ Robert Bru
e Findler, John Clements, Corma
Flanagan, Matthew Flatt, Shriram Krishnamurthi,Paul Ste
kler, and Matthias Felleisen. DrS
heme: aprogramming environment for S
heme. Journal ofFun
tional Programming, 12(2):59{182, Mar
h 2002.[10℄ Corma
 Flanagan, Matthew Flatt, ShriramKrishnamurthi, Stephanie Weiri
h, and MatthiasFelleisen. Cat
hing bugs in the web of programinvariants. In PLDI, volume 31 of ACM SIGPLANNoti
es, pages 23{32, 1996.[11℄ Corma
 Flanagan, K. Rustan Leino, Mark Lillibridge,Greg Nelson, James B. Saxe, and Raymie Stata.Extended stati

he
king for Java. In PLDI'02, pages234{245, 2002.[12℄ N. Heintze. Set-based analysis of ML programs. InACM Conferen
e on Lisp and Fun
tionalProgramming, pages 306{317, 1994.[13℄ Frank Hu
h. Veri�
ation of Erlang programs usingabstra
t interpretation and model
he
king. InPro
eedings of the Fourth ACM SIGPLANInternational Conferen
e on Fun
tional Programming(ICFP'99), pages 261{272, September 1999.[14℄ Anders Lindgren. A prototype of a soft type systemfor Erlang. Master's thesis, Uppsala University, April1996.[15℄ Simon Marlow and Philip Wadler. A pra
ti
alsubtyping system for Erlang. ACM SIGPLAN Noti
es,32(8):136{149, August 1997.[16℄ George C. Ne
ula, S
ott M
Peak, and WestleyWeimer. CCured: type-safe retro�tting of lega
y
ode.In Symposium on Prin
iples of ProgrammingLanguages, pages 128{139, 2002.[17℄ Peter Norvig. Paradigms of arti�
ial intelligen
eprogramming:
ase studies in Common LISP. MorganKaufmann Publishers, Los Altos, CA 94022, USA,1992.[18℄ Sven-Olof Nystr�om. A polyvariant type analysis forErlang. Te
hni
al Report 045, Department ofInformation Te
hnology, Uppsala University,September 2003.[19℄ Jens Palsberg and Mi
hael I. S
hwartzba
h.Obje
t-oriented type inferen
e. In Conferen
epro
eedings on Obje
t-oriented programming systems,languages, and appli
ations, pages 146{161. ACMPress, 1991.[20℄ O. Shivers. Control
ow analysis in S
heme. InPro
eedings of the SIGPLAN '88 Conferen
e onProgramming Language Design and Implementation,pages 164{174, 1988.[21℄ Andrew K. Wright and Robert Cartwright. Apra
ti
al soft type system for S
heme. ACMTransa
tions on Programming Languages andSystems, 19(1):87{152, January 1997.19

