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ABSTRACTThis paper presents a soft-typing system for the program-ming language Erlang. The system is based on two onepts;a (forward) data ow analysis that determines upper ap-proximations of the possible values of expressions and otheronstruts, and a spei�ation language that allows the pro-grammer to speify the interfae of a module. We examineErlang and point to various aspets of the language thatmake it hard to type. In partiular, it does not seem possi-ble to �nd a satisfatory sheme for typing Erlang proesses.We present experimental result of applying the soft-typingsystem to some previously written programs. It turns outthat none of the programs examined had any type errors.
1. INTRODUCTIONErlang is a funtional and onurrent programming lan-guage, developed at Erisson [2℄ and intended for teleomappliations. Erlang is dynamially typed, i.e., no type de-larations are required (or allowed), and there is no require-ment that an Erlang program should be examined by a typeheker before it is run. Instead, eah value arries dynamitype information.One of the primary advantages with dynami typing is thatthe language design is simpli�ed. Also, it is often arguedthat dynami typing helps rapid development, espeially forprototyping and testing (see for example [17℄). Another ad-vantage is that it is possible to write general routines forwriting and reading data of any type. This is partiularlyuseful for Erlang's intended appliations, as it allows om-muniation over untyped hannels.However, most funtional programming languages use statityping. Types are either given in expliit delarations, oromputed automatially using type inferene. Among theadvantages with stati typing is that many errors are dis-overed at ompile time, instead of during testing. The typesystem might also disover errors that would have been dif-�ult to ath by testing the program. Stati type delara-
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tions an serve as doumentation, and as they are hekedby the ompiler, they are always up to date. It has oftenbeen argued that that stati typing helps reliability [4, 19℄,but this view is ontradited by our investigation of exist-ing Erlang programs (Setion 8) whih suggests that arefultesting tends to disover all type errors.A stati type system added to an existing dynamially typedprogramming language is often referred to as a soft-typingsystem. Generally speaking, a soft typing system mightserve two purposes; it an produe type information to helpompiler optimizations, and it an be used, just like a statitype system, to help the programmer �nd bugs and inon-sistenies in the program.When used as a development tool, a soft typing system aneither be used when programs are written from srath, orbe applied to existing programs. Any soft typing systemwill be sensitive to the hoie of data representation andontrol strutures, so it is muh easier to develop a systemthat works well on programs written for the system. In Se-tion 8 we relate some experienes when applying the systemto programs that were not developed using the soft-typingsystem.The soft-typing system presented here is based on two on-epts; a forward data ow analysis that determines upperapproximations of the possible values of expressions andother onstruts, and a spei�ation language that allowsthe programmer to speify the interfae of a module. Thesoft-typing system heks one Erlang module at a time, usesthe spei�ation module as a starting point, and heks foreah spei�ed funtion that the funtion omputes the valuegiven by the spei�ation.The spei�ation language allows parametri type and fun-tion spei�ations, Type spei�ations may be loal to amodule, publi, i.e., aessible to other modules, or abstrat,i.e., other modules may refer to the type but only the de�n-ing module has aess to the representation.The spei�ation language also allows spei�ation of pro-ess ommuniation and proess ditionaries. However, theheking of the spei�ations is not omplete in the sensethat the system may fail to detet programs that violate thespei�ations.One advantage with basing the type system on a data ow1



analysis is that it is relatively easy to extend the systemto handle onstruts that would be very diÆult to apturein a regular type system. For example, handling Erlang'smeta-all (where the destination of a all is omputed dy-namially) is straight-forward in a ow analysis. As thedata ow analysis only propagates type information in onediretion (forward), the spread of inorret type informa-tion is limited. This makes it pratial to allow the analysisto proeed, even after inonsistenies have been deteted.Thus, the system an provide useful information, even forprograms that are not ompletely type-orret.Setion 2 presents related work. Setion 3 gives a briefoverview of the programming language Erlang. Setion 4provides a more detailed disussion features of Erlang thatinuened the design of the soft type system. The spei�a-tion language is desribed in Setion 5 and Setion 6 dealswith the inner workings of the soft-typing system. Setion 7explains some implementation details. Setion 8 relates theresults of applying the soft-typing system to some previouslywritten Erlang programs. Finally, in Setion 9 we disussthe experimental results and in Setion 10 give some on-luding remarks.
2. RELATED WORKThe soft typing systems designed by Cartwright and Fa-gan [6℄ and Wright [21℄ target Sheme and Lisp. The mainobjetive is to to provide type information for the ompiler,but the soft typing systems also provide debugging informa-tion. They handle all programs, i.e., even programs withtype errors will be annotated with type information. Theyuse a generalization of Hindley-Milner type inferene, rely-ing on the presene of identi�able onstrutors. When thetype systems detetes a potential type error, they warn theprogrammer that the program might ontain a type errorand insert an expliit run-time type hek.Flanagan et. al [10℄ presented a tool for stati debugging ofSheme programs. The system uses set-based analysis [20,12℄ to identify potential run-time errors.Lindgren's [14℄ soft-typing system for Erlang was based ona onstraint solver by Aiken [1℄. The onstraint solver ouldnot represent types orresponding to individual atoms, arather severe restrition as most Erlang programs use atomsto distinguish between di�erent data types. Lindgren on-ludes that the onstraint solver is not suitable for Erlang.While the previously desribed soft-typing systems ouldhandle any legal program, the soft-typing system presentedby Marlow and Wadler [15℄ simply refused to type programswhere mathing or ase expressions might fail. Thus, it de-�ned, in e�et, a new programming language onsisting ofthose Erlang programs that it ould type. As in the earliersoft-typing systems by Cartwright, Fagan and Wright, theidenti�ation of data type onstrutors is ruial. Two typesof onstrutors are used; tuples fT1, : : :, Tng and f, T1,: : :, Tng where  is an atom. The type system is based onsub-typing, so that, for example, f, T2g may be a subtypeof fT1, T2g. Unlike the system presented in this paper,their system an dedue funtion types from funtion de�-nitions. However, the system fails to dedue the expetedtype for some very simple funtion de�nitions. For example,

onsider the following funtion:and(true,true) -> true;and(false,X) -> false;and(X,false) -> false.Their system uses pattern math ompilation to transformthe above into a system of simpler ase-expressions. Giventhat the arguments of and are X and Y, the body of thefuntion and will ontain an expressionase Y offalse -> falseFrom this the type system onludes that the type of Y (theseond argument) must be the atom false. Given this, thesystem then (orretly) �nds that the �rst argument maybe any value. Thus, the type for the funtion isand(any(), false) -> true + false.One may wonder whether a simple modi�ation of Marlowand Wadler's system ould improve the situation. Note,however, that the type dedued by Marlow and Wadler'ssystem is tehnially orret. Before onsidering modi�a-tions to their system one should explain in formal terms whythe above type should be rejeted.Arts and Armstrong developed a system alled \The Spe-i�ation Web" [3℄, whih given delaration �les generates aolletion of html pages, the spei�ation web, whih pro-vides ross-referenes between funtion de�nitions and theiruses, type de�nitions, and so on. Their system assumes thateah exported funtion in a module is delared.Huh [13℄ presents an approah for the veri�ation of Erlangprograms using abstrat interpretation and model heking.He de�nes a ore fragment of Erlang, de�nes its operationalsemantis, an abstration of proess state whih redues theset of proess states to a �nite set, and an `abstrat' op-erational semantis over abstrat states. To determine thebehavior of a program is now a matter of enumerating theabstrat states reahable in the abstrat operational seman-tis. One diÆulty with this approah is that even verysmall program are likely to generate an exessive number ofabstrat states.Flanagan et al. [11℄ presents a stati heking system forJava. While Java is statially typed, many heks are stillperformed at run-time. The system resembles the systempresented in this artile in that the heking is modular,i.e., the programmer is expeted to annotate parameters andvariables so that a soure-ode �le an be heked in isola-tion. Methods are veri�ed under the assumption that theannotations hold, and at all-sites it is veri�ed that the an-notations are not violated. The system addresses two typesof runtime errors; a null derefening and array bounds vi-olations. (Even though expliit type onversions are veryommon in Java programs, and might ause run-time er-rors, the system does not seem to handle them.)2



CCured [16, 7℄ is a system that adds memory safety guar-antees to C programs. The system inludes extends point-ers with additional type information whih is heked atrun-time (the latter is similar to the mehanism present inErlang and other dynamially typed languages). A statitype system is used to reogize situations where pointersare type-safe and the dynami heks an be eliminated,thus improving run-time performane.
3. THE ERLANG PROGRAMMING LAN-

GUAGE
3.1 Sequential programming in ErlangThe sequential omponent of Erlang is a (mostly) pure fun-tional programming language. Data strutures onsist ofatoms, integers, oating-point numbers, lists and tuples. Asin logi programming languages, we distinguish variablesfrom atoms by writing variables with an initial apital letter.A de�nition of a funtion onsists of a sequene of lausesf(Pattern1; : : : ;Patternn) when Guard ! Bodywhere the guard is optional. When a funtion is alled, thelauses are tried in sequene. For eah lause the atual pa-rameters are mathaed against the orresponding patterns,and the guard tests are evaluated. The �rst lause wherethe mathing and the guard tests sueed is seleted andthe expressions in its body are exeuted.We onlude with two simple examples. First, the funtionappend whih appends two lists:append([X | Y℄, Z) ->[X | append(Y, Z)℄;append(([℄, Z) -> Z.Seond, a funtion whih looks in a list for an element whihis larger then the one already given.larger(X, [A | L℄) when A > X ->{value, A};larger(X, [_ | L℄) ->larger(X, L);larger(X, [℄) ->none.
3.2 ModulesAn Erlang program onsists of a set of soure ode �leswhere eah �le de�nes a module with the same name. Eahmodule lists a set of exported funtions. All other funtionsare only aessible by funtions in the same module.
3.3 Concurrent programming in ErlangThe onurreny primitives of Erlang are imperative oper-ations that depend on the urrent state of the system andmay hange it.

A all self() returns the proess identi�er (pid) of the ur-rent proess. (For our purposes, there is no need to onsiderthe distintion between proesses and proess identi�ers.)A all spawn(M, F, [A1, ..., An℄) reates a proess exe-uting the funtion F in module M with arguments A1 throughAn. The all returns the pid of the reated proess.If the variable P is bound to a proess identi�er and V toan arbitrary value, the expression P!V will send the valueof V as a message to the proess P. The messages sent to aproess are stored in a mailbox (a �rst-in-�rst-out queue).When a proess wants to aess its mailbox, it exeutes areeive statement. A reeive statement has the general formreeivePattern ! Body: : :Pattern ! Bodyafter TimeOutExpr ! Body endThe reeive statement traverses the messages in the mail-box, in the order in whih they arrived, and tries to matheah pattern against the massage. If a mathing sueeds,the message is removed from the mailbox and exeution on-tinues with the body of the lause. If no mathing messagewas found, the reeive is suspended until a message arrives.However, if the reeive ontains an after lause, the expres-sion in the lause is evaluated to give a value in milliseonds.If no mathing message has been reeived after waiting thistime, exeution ontinues with the body of the after lause.We onlude this setion by onsidering some simple exam-ples of the use of reeive.reeiveX -> XendThe �rst reeive simply returns the �rst message in the mail-box. If the mailbox is empty, it waits until a message arrives.reeivefoo -> fooendThe seond reeive waits for a message onsisting of theatom `foo',reeivefoo -> fooafter 0 -> barendThe last reeive looks for a message onsisting of the atom`foo'. If the atom is not found in the mailbox (for example,if the mailbox is empty) the atom `bar' is returned.3



4. ERLANG AND SOFT TYPINGThe desription above might give an impression of Erlangas a simple programming language with a straight-forwardsemantis. Unfortunately, Erlang has a number of featuresthat make reasoning about programs more ompliated andneed to be taken into aount when designing a soft-typingsystem.
4.1 ConstructorsIn statially typed programming languages suh as SML,eah data onstrutor is assoiated with a data type. Onean introdue a new data type with assoiated onstrutorsby writing, say,datatype tree =NODE of tree * tree| LEAF of datawhih introdues a type tree with onstrutors NODE andLEAF. Now, the type system will assume that eah use of ofthese onstrutors follows the de�nition above, Thus, givenan expressionNODE(x, y)the type system infers not only that the returned value is oftype tree, but also that the types of the arguments, x andy, are of type tree.In ontrast, Erlang has only two ways to build omplex ob-jets; tuples and lists. To express trees (as in the SML ex-ample above), an Erlang program might use valuess of theforms{node, Left, Right}and{leaf, Data}.When we build a omplex data struture using a tuple wherethe �rst element is a spei� atom (with a name hosen toreet the purpose of the data struture) we eliminate therisk of onfusion with other, similar, data strutures reatedfor di�erent purposes. Many Erlang programs follow theonvention illustrated above and use tuples with a spei�atoms in �rst position as type onstrutors.There is of ourse nothing that guarantees that the `dataonstrutor' {node, _, _} will not be used for some unre-lated purpose in some other part of the program. Still, pro-grams that follow the onvention above are relatively easyto type. The soft-typing system presented in this paperhandles suh programs, even when the same onstrutor isused for di�erent purposes in di�erent parts of the program.Marlow andWadler's type system also seems to handle them(at least when a onstrutor is only used for one purpose); itseems that the reason they used a sub-typing system was so

they ould say that the type representing the set of valuesof the form {leaf, Data} is a subtype of the type of binarytuples.There are, unfortunately, many programs that don't followthe onvention. For example, when traing a proess, theoperations of that proess is represented as a sequene ofmessages{trae, Pid, Operation, Data}where `Pid' identi�es the proess, `Operation' the opera-tion performed, and `Data' desribes what the operation isapplied to. Among the trae messages we �nd{trae, Pid, 'reeive', Message}{trae, Pid, all, {M,F,A}}{trae, Pid, link, Pid2}In the ase of a all, the data �eld is a three-element tupleindiating module, name and arity of the reeiving proess.For the link operation, the data �eld is the pid of anotherproess. Thus, we have a data type (trae messages) wherethe type of one �eld depends on the value stored in another�eld.As another example of an Erlang program whih uses a datarepresentation whih may be hard to type, onsider the fun-tion flatten from the lists standard library.flatten(List) ->flatten(List, [℄, [℄).flatten([H|T℄, Cont, Tail) when list(H) ->flatten(H, [T|Cont℄, Tail);flatten([H|T℄, Cont, Tail) ->[H|flatten(T, Cont, Tail)℄;flatten([℄, [H|Cont℄, Tail) ->flatten(H, Cont, Tail);flatten([℄, [℄, Tail) ->Tail.Flatten assumes as input a deeply nested list, i.e., a listwhih may ontain other deeply nested lists or arbitraryvaluess (whih are not lists). To distinguish between thetwo ases, the �rst lause of flatten/3 ontains a guardlist(H). Now, the result of a all to atten is a list on-sisting of values that are not lists. If a soft-typing systemis expeted to type this funtion, it must be able to rea-son about the e�ets of the guard, i.e., that when the guardsueeds, H is always a list, and when it fails, H is not a list.
4.2 Records and the preprocessorErlang is unique among the funtional programming lan-guages in its use of a C-style preproessor, maros and header�les. Reasoning about preproessing, header �les and maroexpansion in the soft-typing system would have introduedompliations, so we hose to let the soft-typing operate onode that had been passed through the preproessor.4



Header �les often ontain reord de�nitions suh as the fol-lowing:-reord(node, {left, right}).-reord(leaf, {data}).Given the above de�nitions, an expression#node{left = Left, right = Right}will reate a reord with �elds left and right given byvariables Left and Right, respetively. If X is a node, theexpression X#node.left extrats the �rst �eld. An expres-sion X#node{left = NewLeft} reates a new node where the�rst �eld has been hanged.Internally, a reord with n �elds is represented with an n+1-tuple where the �rst position is the name of the reord.Nothing prevents an Erlang appliation from diretly a-essing this representation. A soft-typing system for Erlangmust of ourse handle reords, even allowing for programsthat aess the internal representation. The soft-typing sys-tem presented in this paper is applied to ode where opera-tions on reords have been expanded into the orrespondingtuple operations.Now, the use of reords should in priniple be ompletelyunproblemati as they are expanded into other Erlang on-struts. However, we must make sure that the soft-typingsystem an reason about the ode that the preproessor gen-erates for reords.For example, given the soure ode expression#node{left = Left, right = Right},the preproessor will produe a all element(2,X) whihextrats the seond element of X, if X is a tuple.For expressions that update the �eld of a reord, a allto setelement/3 is generated. Thus, the analysis must`know' the semantis of the built-in funtions element/2 andsetelement/3. On the other hand, there is also ode thatuses tuples to represent arrays and lets an index run throughall positions of a tuple.To summarize, a tuple is sometimes used as a data onstru-tor and a type system for Erlang must allow for alls tobuilt-in funtions element(2, X) and element(3, X) to re-turn values of di�erent types. In other situations, the tuplesare used as onstant arrays, whose size may be unknown,and the type system should also allow for this possibility.
4.3 ProcessesHere we will argue that regardless of the underlying typesystem, it is impossible to �nd a reasonable typing of Erlangproesses.A reasonable goal of a type system for proess ommunia-tion would be to ensure that messages reeived by a proessan be properly handled.

Clearly, the type of an Erlang proess should inlude in-formation about the messages it reeives and handles|wewant to be able to tell whether a send P ! {message, ...}is type-orret. Sine a proess is reated with a refereneto a funtion in, say, P = spawn(m, f, [X1, ..., Xn℄), itfollows that funtions must also be typed with what theyreeive.What makes reasoning about proess types in Erlang awk-ward is the way \internal" ommuniation is expressed. Ifa funtion f ontains ommuniation with some proess P,it is typially expressed using the following pattern:f(...) ->P ! {query, ..., self()},reeive{answer, P, Data} -> ...end,i.e., the funtion sends a message {query, ...} to the pro-ess P. The message ontaining a referene to the urrentproess. Next, the urrent proess waits for a reply. Theproess P is expeted to send a reply of the form{answer, self(), ...}.Sine the reive statement in f only mathes messages ofthe form fanswer, P, Datag, we an be reasonably surethat only messages from the proess P will be seleted bythe reeive.Examples of ode following this pattern an be found in theio standard library and any appliation written using thegen_server library. Even the simplest example of proessommuniation given in the Erlang textbook by Armstronget al. [2℄, the ounter proess (page 72), follows this pattern.In the above example, we must inlude in the type of thefuntion f information that it may reeive messages of theform {answer, ...} (sine any proess exeuting f may re-eive suh messages). This is unpleasant, as the ommuni-ation with P is part of the implementation of f, and notintended to be part of the external interfae. Further, thesame information must be added to the type of any funtionthat alls f. To onsider a onrete example, the funtionhello() ->io:format("Hello, world!~n", [℄).will have a rather ompliated proess type, as the all toformat will result in internal proess ommuniations.Marlow and Wadler [15℄ propose a mehanism for typingproesses similar to the one skethed above. They do notdisuss the problem of aomodating \internal" ommuni-ation. Dagnat and Pantel [8℄ propose a type system forErlang that makes a distintion between messages that maybe sent to the proess and messages that a proess will han-dle. However, the onlusions from the disussion above stillapply.5



To summarize, a safe typing of proess ommuniation wouldrequire that eah funtion has a proess type that desribedany ommuniation that may result from a all to the fun-tion. For example, if the funtion ontains a all to a libraryfuntion, and the implementation of the library funtioninvolves proess ommuniation, then that ommuniationneeds to be part of the proess type of the funtion.Clearly, we would not do the programmer any favor by for-ing him to deal with the internals of various libraries. Inthe system presented in this paper, we have hosen a sim-pler approah whih allows the programmer to delare, fora module, or a funtion, the messages that ode in this par-tiular part of the program are expeted to reeive.
4.4 Process dictionariesEah Erlang proess maintains a mapping from keys to val-ues (both keys and values may be arbitrary Erlang values)whih is aessed by the built-in funtions get and put. Safetyping of proess ditionaries requires that the type systemguarantees that di�erent aesses to the proess ditionaryare onsistent. If the type system relies on spei�ations ofthe external interfae, as the soft-typing system desribed inthis paper, every aess to the proess ditionary, diret orindiret, must be reorded in the spei�ation of a funtion.Adding a all to put in one funtion might require hangesto a large number of spei�ation modules. Sine this isobviously impratial and unreasonable, we hose the sim-pler (and unsafe) approah to allow delarations of proessditionaries in ode that aesses the ditionary diretly.
4.5 Meta-callMany built-in funtions in Erlang use meta-all. A typialexample is apply. A all to apply has the form apply(M,F, A), where A should be an atom giving the module ofthe funtion being alled, F should also be an atom, givingthe name of the funtion, and A should be a list, givingthe list of arguments in the all. Of ourse, the argumentsto apply an be passed as arguments, read from a �le, oreven omputed at run-time. Thus, a meta-all may all anyexported funtion of any module.The main problem with meta-all is that onstrution of aall-graph is diÆult or impossible. One solution might beto replae eah meta-all with a large ase-statement withone lause for eah exported funtion of eah module in thesystem. Sine Erlang has a large standard library, and ap-pliations are often very large, it is lear that this approahwould not be pratial; analysing a meta-all where themodule or funtion name is unknown would be extremelytime-onsuming and the result would almost ertainly notbe useful.We have taken a simpler approah. First, the very ommonase where the destination an be immediately determined ishandled as a speial ase. If the set of possible values of the�rst argument of the meta-all (giving the module) is amongthe set of known modules, the set of possible destinationsan be enumerated, and the result of the meta-all an bedetermined by ombining the results of all these alls. In themost general ase, if the destination of a all is unknown theresult is also unknown.

5. THE SPECIFICATION LANGUAGEThe syntax of the spei�ation language is inuened by thespei�ations used by Marlow and Wadler [15℄ and Arts andArmstrong [3℄.As a �rst example, onsider a simple funtion de�nition.foo(X, Y) ->R = X + Y,R.One possible spei�ation for this funtion might be:foo(int(), int()) -> int().As a seond example, onsider the de�nition of the funtionappend/2.-module(append).append([X | L1℄, L2) ->[X | append(L1, L2)℄;append([℄, L) ->L.Most programmers would probably argue that the followingspei�ation of append is the orret one:-module(append).-type list(X) = [℄ | [X | list(X)℄.append(list(X), list(X)) ->list(X).However, it is worth noting that other spei�ations are on-sistent with the funtion de�nition, for example, if appendis alled with the empty list as �rst argument and a oating-point value as seond it will always return a oating-pointvalue. Thus append is also a orret implementation of thefollowing spei�ation:append([℄, float()) -> float().
5.1 Function specificationsFuntion spei�ations are of the formf(t1, ..., tn) -> t0.where eah of t0, t1, : : :, tn are type expressions. Themeaning of the spei�ation is: When the funtion is alledwith arguments aording to t1, : : :, tn the result will beaording to t0.
5.2 Type expressionsA type expression is one of the following:6



1. a primitive type, int(), float(), pid(), or atom().2. An atomi value, suh as foo, true, false, 42, or 3.14.3. The universal type: any().4. The empty type: none().5. A union, for exampleint() + float() + true + false.6. Complex types, i.e., lists and tuples, for example{foo, int(), float()} or [1, 2, 3.14℄.7. Funtion types, i.e., fun (int()) -> int() end.8. In parametri de�nitions, we also allow type variables,written with initial apital letters, say, X, Key, or Table.9. Referenes to de�ned types, for example list(int()).
5.3 Type definitionsIn its simplest form, a type de�nition simply gives a short-hand for a more omplex expression.-type bool() =true + false.The type bool() is only aessible loally. It is synonymousto true + false.A type de�nition an also be reursive.-type intlist() =[℄ + [int() | intlist()℄.The de�ned type intlist() an be used in funtion spei-�ations:append(intlist(), intlist()) ->intlist().map(fun int() -> intlist() end, intlist()) ->intlist().
5.4 Parametric specificationsMany Erlang funtions are polymorphi, that is, they aredesigned to work with many di�erent data types. To speifysuh funtions, we allow funtion spei�ations with typevariables.-type list(X) =[℄ + [X | list(X)℄.-type tree(K, V) =nil + {K, V, tree(K, V), tree(K, V)}.Examples of parametri funtion spei�ations:

append(list(X), list(X)) ->list(X).lookup(K, tree(K, V)) ->not_found + {found, V}.map(fun(X) -> Y end, list(X)) ->list(Y).
5.5 Abstract typesType de�nitions with the `type' keyword are only visiblewithin the spei�ation module where they are given. Sup-pose that an Erlang module de�nes an abstrat data type,i.e., a data struture with a set of operations to reate andoperate on the struture, where the intention is that no otherode should aess the data struture diretly. In the spe-i�ation language, this an be expressed using the keywordabstype.-abstype tree(K, V) =nil + {K, V, tree(K, V), tree(K, V)}.An abstrat type an be referened from other modules.However, during type heking, a referene to an abstrattype de�ned in an other module, say,m:tree(int(), list(int())),is treated as a data type onstrutor. It is of ourse possibleto write a module that examines the internal representationof an abstrat type, but this module will not be aepted bythe type system.Thus, an abstrat type has two faes; to the module whereit is de�ned it is just another de�ned type, but to othermodules it is a data type onstrutor, i.e., a type whihannot be deomposed into other types.
5.6 Public typesPubli types are just like ordinary (type) type de�nitions,exept that they are aessible from all modules. For exam-ple, it may be inonvenient to repeat the de�nition of thelist type in every module. A better approah may be togive a single de�nition, for example, in the lists library,and make it publi.-publi_type list(X) =[X | list(X)℄ + [℄.A publi type de�nition an be referred to in any spei�a-tion module by the syntax lists:list(int()).
5.7 Unsafe extensionsAs disussed in Setion 4.3 there does not seem to be anyreasonable way to speify the type of an Erlang proesswhih allows uses of the proess to be heked for orret-ness. Still, delaring the type of a proess is useful in on-veying the programmer's intentions and in showing what7



happens when the proess reeives the messages given inthe delarations. The spei�ation language allows spei�-ations suh as+mbox = inrement + stop + {pid(), int()}.or+mbox(loop/1) = inrement + {pid(), int()} + stop.(Unsafe type spei�ations are written with an initial `+'.)The �rst delaration reads: the messages reeived from themailbox while exeuting in the urrent module are eitherthe atom inrement, the atom stop, or a tuple of a pid andan integer). The seond delaration refers to the situationwhen exeuting the funtion loop/1.It is also possible to delare the ontents of the proess di-tionary. A delaration from one of the spei�ation �les ofthe analysis:+dit = (max_ontexts -> int();weight_table -> weight_table();strata_table -> strata_table()).The delaration gives the types of values assoiated withthe keys max_ontexts, weight_table, and strata_table.The expressions weight_table() and strata_table() referto types de�ned elsewhere.
6. THE SOFT-TYPING SYSTEMThis setion deals with the inner workings of the soft-typingsystem. Readers mainly interested in the use of the systeman skip this setion.Generally speaking, to verify that a funtion behaves a-ording to spei�ation, the following basi steps must beperformed:1. Generate funtion arguments aording to the spei�-ation.2. Use data ow analysis to determine an approximationof the result of the funtion all.3. Chek whether the result mathes the result type givenin the spei�ation.For an Erlang module foo.erl, we assume that the spei�-ations are written in a separate �le foo.spe. The spei�-ation module should ontain spei�ations of funtions thatthe module exports and de�nitions of various data types.The dataow analysis is based on analysis tehniques suhas 0CFA [20℄ or set-based analysis [12℄. The generator andthe mather operate on the same representation of type in-formation.We assume that all external modules are spei�ed, thus, themather heks that the arguments of the external all are ofthe spei�ed type and the generator gives the return value.

6.1 ProgramsIn the presentation of the analysis, we assume that all data-types (for example atoms, integers, oating-point numbers,lists and tuples) are expressed using a set of type onstru-tors, C 2 Con , where eah onstrutor has a given arity.We also assume a set of pre-de�ned funtions p 2 Pre and aset of program-de�ned funtions f 2 Funtion and a set oflabels, Lab.Let a program be a set of de�nitions of the formf(x1; : : : ; xn)! E;where expressions are de�ned aording toE ::= x j C[E1; : : : ; En℄ j if E1 then E2 else E3j f(E1; : : : ; En) j funl (x1; : : : ; xn)! E1j E0(E1; : : : ; En)l j p(E1; : : : ; En)We assume that there is a program-de�ned funtion fe 2Funtion . The intention is that fe will serve as an entrypoint in the analysis.
6.2 SpecificationsA spei�ation module onsists of a set of funtion spei�-ations of the form f(T1; : : : ; Tn)! T0;and a set of type de�nitionsd(T1; : : : ; Tn) = T0where type spei�ations are de�ned aording to:T ::= x j any j C[T1; : : : ; Tn℄j T1 + : : : + Tnj funl (T1; : : : ; Tn)! T0j d(T1; : : : ; Tn)
6.3 Basic structuresThe state of the analysis is a store, mapping analysis vari-ables to terms.Analysis variables are used to store intermediate and �nalresults. To make the analysis polyvariant, it is neessary tolet analysis variables range over ontexts. Thus, for ontexts 2 Context , let Var be one of the following1. Arg(f; k; ) 2 Var , where f is a program-de�ned fun-tion with arity n � k.2. Res(f; ) 2 Var , where f is as above.3. FunArg(l; k; ) 2 Var , where l 2 Lab is the label of afun expression.4. FunRes(l; );ApplyRes(l; ); IfRes(l; ) 2 Var , where l isthe label of a all to a higher-order funtion.Let t 2 Term , the set of terms, be the least set suh that1. Var � Term.2. any 2 Term.8



3. C[t1 : : : tn℄ 2 Term , where onstrutor C has arity nand t1; : : : ; tn 2 Term.4. FunTerm(l; ) 2 Term , where l is the label of a funexpression.The implementation divides the type heking problem intoa set of subproblems, tasks. A task may be one of the fol-lowing problems:1. analyze a funtion f in ontext ,2. generate analysis information aording to a type def-inition, and3. hek that generated analysis information mathes atype de�nition.The set of tasks is listed in Setion 6.8. Let Work be the setof tasks. The analysis will maintain a worklist, ontaining asubset of Work .A ow analysis omputes, for eah variable and subexpres-sion in the program, an approximation of the set of pos-sible values. An analysis whih simply assoiates valuesto di�erent parts of the program (i.e., a monovariant orontext-insensitive analysis) su�ers from the problem that ifa funtion is alled from di�erent parts of the program, theanalysis will set the result of the di�erent alls to be unionof all alls to the funtion. For polymorphi funtions, thiswill of ourse give lower preision, but funtions that arenot polymorphi may also be a�eted. Consider for exam-ple the funtion append. If there is one all site where thetype of the seond argument is unknown, the result will alsobe unknown. Thus, a monovariant analysis may propagatea low-preision result to all all sites where a polyvariantanalysis would on�ne it to one part of the program.To allow funtions to be typed as polymorphi, we use amehanism for polyvariant analysis desribed in more detailelsewhere [18℄.The mehanism we use involves a set of ontexts, 2 Context ;and a funtion Call(f; l; ) = 0whih, given a funtion f , a all site l and a ontext  returnsa new ontext. We also assume an initial ontext, 0. Theidea is that if a all to funtion f ours at label l in ontext, the body of f will be analyzed in ontext 0. To guaranteetermination, the set of ontexts must be �nite.
6.4 Implementation of set abstractionThe store will assoiate with eah analysis variable X thefollowing:1. X:value � Term , a set of terms whih are not analysisvariables.

Lookup(X):1: Add urrent task to X:depend2: Return X:valueAdd(t;X):1: Test if t is ontained in X:value2: If not,3: set X:value to X:value [ ftg,4: put all tasks in X:depend on work list,5: for eah variable Y 2 X:link, do Add(t; Y ).Add(X;Y ):1: if X is a member of Y:link,2: do nothing3: if not,4: add X to Y:link,5: let t = Y:value and6: do Add(t;X)Contains(t1; t2):1: Return true if either2: t1 = t2,3: t2 = any, or4: t2 is a variable X, and Contains(t1; t0) holds, for somet0 2 Lookup(X).5: Return false otherwise.Figure 1: Implementation of set abstration.2. X:link � Var , a set of variables.3. X:depend �Work , a set of analysis tasks.When the analysis is �nished, the relevant information foreah variable is olleted in X:value. For example, for afuntion f , Arg(f; 1; ):value gives an approximation of thevalues that may be passed in the �rst argument of f .For eah variable X we also store X:link, a set of variablessuh that X � Y , for eah Y 2 X:link, and X:depend, a setof analysis tasks whose result may depend on the value ofX. Thus, if the value of X hanges, the tasks in X:dependwill be put in the worklist.We de�ne the following operations on the store.1. Lookup(X). Determine the urrent value of X.2. Add(t;X). Add the term t to the value of X.3. Add(X;Y ). Add the value of X to Y , i.e., make X asubset of Y .We assume that during any point in the analysis, it is pos-sible to determine the urrent analysis task (an element ofWork). By dividing the analysis problem into a set of sepa-rate tasks, it is possible to devise a worklist oriented strategywhere a portion of the program only needs to be re-analyzedwhen a value on whih it depends on has hanged. The9



purpose of the link �eld is to represent inlusion relationsexpliitly. The implementation of the operations is given inFigure 1.
6.5 Analyzing Erlang expressionsAnalysis of an expression takes1. the expression to be analyzed,2. an environment mapping program variables to terms,3. the urrent ontext, and4. a storeand returns1. a term and2. an updated store.When analyzing expressions onsisting of a single variable,simply look up the value of the variable in the urrent envi-ronment.Analyze(x; E ; ):1: return E()Expressions involving a onstrutor simply build a orre-sponding term.Analyze(C[E1; : : : ; En℄; E ; ):1: let tk = Analyze(Ek; E ; ), for k � n2: onstrut the term C[t1; : : : ; tn℄ and3: return it as the result of the analysis.The analysis of omplex expressions is given in Figure 2.In the analysis of alls to program-de�ned funtions, we usethe funtion Call to ompute a new ontext. When a allis analyzed for the �rst time, a new analysis task onsistingof the alled funtion and the new ontext is added to theworklist.In the analysis presented here, losures are not polymor-phi. A polymorphi analysis would be more omplex, andas most Erlang appliations make very little use of higher-order funtions the added omplexity and ost of an analysisthat ould treat losure appliations polymorphially annotbe justi�ed. See [18℄ for a detailed disussion.Analyzing alls to higher-order funtions is similar to ana-lyzing alls to user-de�ned funtions, but slightly ompli-ated by the fat that the analysis is used to determinethe destination of the all. For a fun-expression (a losure)funl (x1; : : : xn)! E0, we use analysis variables FunArg(l; 1; )through FunArg(l; n; ) to represent the arguments, i.e., theset of possible values that may be passed as arguments to thefuntion. In a similar way, the set of values that may be re-turned by the funtion is stored in the variable FunRes(l; ).

Analyze(x; E ; ):1: return E()Analyze(if E1 then E2 else E3; E ; ):1: let t1 = Analyze(E1; E ; )2: if Contains(true; t1) holds,3: let t2 = Analyze(E2; E ; )4: Add(t2; IfRes(l; ))5: if Contains(false; t1) holds,6: let t3 = Analyze(E3; E ; )7: Add(t3; IfRes(l; ))8: return IfRes(l; ).Analyze(f(E1; : : : ; En)l; E ; ):1: let tk = Analyze(Ek; E ; ) for k � n2: let 0 = Call(f; l; ),3: Add(tk;Arg(f; k; 0)), for k � n4: unless hf; 0i has been analyzed before, add hf; 0i towork list5: return Res(f; 0)Analyze(funl (x1; : : : ; xn)! E0; E ; ):1: reate a new environment E1 by extending old environ-ment E with bindings xk 7! FunArg(l; k; ), for k � n2: let t = Analyze(E0; E1; )3: Add(t;FunRes(l; ))4: return FunTerm(l; )Analyze(E0(E1; : : : ; En)l; E ; ):1: let tk = Analyze(Ek; E ; ) for 0 � k � n2: for eah l0, suh that Contains(FunTerm(l0; 0); t0),3: Add(tk;FunArg(l0; k; 0)), for 1 � k � n4: Add(FunRes(l0; 0);ApplyRes(l; ))5: Return ApplyRes(l; )Figure 2: Analyzing expressions.
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However, we will still distinguish between di�erent instanesof a losure. Thus, a losure is represented by a term of theform FunTerm(l; ), to distinguish between losures reatedat the same program point but in di�erent ontexts.
6.6 GenerationFrom a given type spei�ation we generate type informationin the internal representation used by the data ow analysis.In this setion, we will only onsider simple type de�nitions.Generally speaking, generation assumes1. a type expression,2. an environment (mapping type variables to terms),and3. a ontext,and returns1. a term, and2. an updated storeThe type of a type variable is obtained from the environ-ment.Gen(x;A; ):1: return A(x)Handling of the universal type and onstrutors is straight-forward.Gen(any;A; ):1: return the term anyGen(C[T1; : : : ; Tn℄;A; ):1: let tk = Gen(Tk;A; ), for k � n2: return C[t1; : : : ; tn℄If the type expression is a funtion type, generating typeinformation onsists of three parts; reate a term indiatinga funtion objet, math the arguments against the argu-ments given in the funtion type, and return the funtionterm.Gen(funl (T1; : : : ; Tn)! T0;A; ):1: Math(Tk;FunArg(l; k; );, ,) for 1 � k � n2: If any of the mathings fail, report bad funtion argu-ment at urrent fnid.3: Let t0 = Gen(T0;A; )4: Add(t;FunRes(l; ))5: Return FunTerm(l; )

The representation of a union type is easy, sine there is aninternal representation of unions.Gen(T1 + : : : + Tn;A; ):1: let tk = Gen(Tk;A; ), for 1 � k � n2: return t1 + : : : + tnAs mentioned above, we assume that d is a loal type de�-nition.Gen(d(T1; : : : ; Tn)l;A; ):1: let tk = Gen(Tk;A; ), for k � n2: let 0 = Call(d; l; ),3: Add(tkArg(f; k; 0);), for k � n4: if hGen; f; i is not already ative,5: make hGen; f; i ative, and6: put hGen; f; i on worklist7: Return Res(f; 0)
6.7 MatchingMathing a term against a type expression assumes1. a type expression,2. a term,3. an environment (mapping type variables to (analysis)variables,4. a ontext, and5. a storeand returns an updated store.We use an analysis variable MathRes() to pass informationabout the suess of the mathing done in ontext , if themathing fails, a term fail is added to MathRes().Type variables an be enountered in four situations; atthe top-level (when heking a funtion with a polymorphispei�ation), when analysing a funtion all to a spei�edfuntion, and during mathing or generation of a type spe-i�ation ontaining a de�ned type.Suppose that we are heking a funtion with a polymorphispei�ation, for example the funtion append:append(list(A), list(A)) -> list(A).Here, the type variable A is impliitly universally quanti�ed,i.e., the spei�ation implies that the implementation shouldoperate on lists of any type. Thus, a funtion that onlyoperated on lists of integers should be rejeted by the typesystem.To be able to hek that the program makes no assumptionson type variables introdued in polymorphi spei�ations,11



we introdue a new lass of onstrutors, parameters, onefor eah type variable. A parameter an only be mathedagainst it self (or an unbound variable). Thus, the typesystem an hek that no assumptions are made about typespassed as parameters.The other three uses of type variables are handled by bindingthe type variables to fresh analysis variables.In the mathing of a type variable against a term (below), wedistinguish between the two ases|either x is bound to ananalysis variable in whih ase mathing always sueeds, orx is bound to a parameter in whih ase mathing sueedsif and only if the term t is that parameter.Math(x; t;A; ):1: if A(x) is an analysis variable X,2: Add(t;X)3: otherwise, if Contains(t;A(x)) does4: not hold, report that mathing failed by5: Add(fail;MathRes())Mathing the universal type is of ourse straight-forward.Math(any; t;A; ):1: (nothing needs to be done)When mathing a type expression with a onstrutor, wehek that the term is of the same form and then proeedreursively with the sub-terms.Math(C[T1; : : : ; Tn℄; t;A; ):1: if t is an analysis variable,2: let t0 = Lookup(t),3: do Math(C[T1; : : : ; Tn℄; t0;A; )4: otherwise, if t is a union t1 + : : :+ tn,5: do Math(C[T1; : : : ; Tn℄; tk;A; ), for k � n6: otherwise, if t is of the form C[t1; : : : ; tn℄,7: do Math(Tk; tk;A; ), for k � n8: otherwise, report that mathing failed by9: Add(fail;MathRes())To math a term against a union of type spei�ations we as-sume two funtions Extrat and Remove whih given a termand a spei�ation produe new terms. Computing Extratand Remove exatly is a diÆult problem, so we will settlefor rather rude approximations. Keep in mind that eahterm represents a set of possible values. Assume that St isthe set of values represented by the term t, and that ST isthe set of values mathed by the type T . Now, Extrat andRemove an be spei�ed as follows:1. If t0 = Extrat(T; t;A; ), then t0 represents a supersetof all values represented by t that are also mathed byspei�ation T , i.e., St0 � St \ST , where St0 is the set

Extrat(T; t;A; n):1: Extrat(any; t;A; n) = t2: Extrat(none; t;A; n) = none3: Extrat(C[: : :℄; V;A; n) =4: fExtrat(C[:::℄; t;A; n � 1) j t 2 V:valueg5: Extrat(C[T1; : : : ; Tm℄; C[t1; : : : ; tm℄;A; n) =6: C[t01; : : : ; t0m℄;7: where t0k = Extrat(Tk; tk; n), for k � m.8: Extrat(C[: : :℄; C0[: : :℄;A; n) = none, if C 6= C09: Extrat(T1 + T2; t;A; n) = t1 + t210: where t1 = Extrat(T1; T;A; n)11: and t2 = Extrat(T2; T;A; n)12: Extrat(funl (: : :) ! : : : ; t;A; n) = t, if t represents afuntion type13: Extrat(funl (: : :)! : : : ; t;A; n) = none, otherwise14: Extrat(d(T1; : : : ; Tm); t;A; 0) = t15: Extrat(d(T1; : : : ; Tm); t;A; n) = Extrat(T 0; t;A; n�1)16: where d(X1; : : : ; Xm) = T;17: and T 0 is the result of replaing eah ourrene of18: Xk in T with Tk, for k � m and n > 0Figure 3: Implementation of extrat operation.
Remove(T; t;A; ):1: Remove(any; t;A; n) = none2: Remove(none; t;A; n) = t3: Remove(T = C[:::℄; V;A; n) =4: fRemove(T; t;A; n � 1)jt 2 V:valueg5: Remove(C[T1; : : : Tm℄; C[t1; : : : ; tm℄;A; n) =6: fC[t01; : : : ; t0m℄ j,7: where for some k, t0k = Remove(Tk; tk;A; n);8: and tk 6= none9: and t0l = tl; l 6= kg10: Remove(C[: : :℄;A; t) = C0[: : :℄; n) = t11: Remove(T1 + T2; t;A; n) =12: Remove(T1;Remove(T2; t;A; n);A; n)13: Remove(funl : : :! : : : ; t; n) = t;14: Remove(d(T1; : : : ; Tm); t;A; 0) = t15: Remove(d(T1; : : : ; Tm); t;A; n) = Remove(T 0; t;A; n �1)16: where d(X1; : : : ; Xm) = T;17: and T 0 is the result of replaing eah ourrene of18: Xk in T with Tk, for k � m and n > 0Figure 4: Implementation of remove operation.
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of values represented by t0.2. If t0 = Remove(T; t;A; ), then t0 represents a supersetof all values represented by t that are not mathed byspei�ation T , i.e., St0 � St n ST .Given Extrat and Remove, the mathing of unions is straight-forward.Math(T1 + : : : + Tn; t;A; ):1: let t1 = Extrat(T1; t;A; )2: let tr = Remove(T1; t;A; )3: Math(T1; t1;A; )4: Math(T2 + : : :+ Tn; tr;A; )Figures 3 and 4 show simpli�ed versions of the extrat andremove operations used in the analysis. When mathing atype expression funl (T1; : : : ; Tn) ! T0 with a term t, wemust hek that t is indeed a losure, and then verify thatt returns a value of type T0 when alled with arguments oftype T1 through Tn.Math(funl (T1; : : : ; Tn)! T0; t;A; ):1: If t is an analysis variable,2: all Math(funl (T1; : : : ; Tn)! T0; t0;A; )3: for eah t0 2 t:value.4: if t is not an analysis variable,5: if t is a term FunTerm(l0; 0), for some l0 and 0,6: let tk = Gen(Tk;A; ), for 1 � k � n7: Add(tk;FunArg(l0; k; 0)), for k � n8: do Math(T0;FunRes(l; );A;)9: if t is any other term, report that mathing failed byAdd(fail;MathRes()).Referenes to de�ned types are treated in a manner similarto the handling of funtion alls in the analysis. A newontext is reated, a new task is reated for the mathing ofthe body of d (i.e., the right-hand side of the de�nition ofd) against the \result". Sine the diretion of data ow isbakwards, the term t is added to the result of the all andthe formal arguments T1 through Tn are mathed againstthe atual arguments t1 through tn.Math(d(T1; : : : ; Tn)l; t;A; ):1: let 0 = Call(d; l; ),2: Add(MathRes(0);MathRes())3: If hMath; d; 0i is not already ative,4: make hMath; d; 0i ative, and5: put hMath; d; 0i on worklist6: Add(Res(d; 0); t)7: let tk = Arg(d; k; 0), for k � n8: Math(Tk; tk;A; ), for k � n
6.8 The main loop

The soft-typing system is based on a worklist algorithm|the problems of analysis, mathing and generation are rep-resented as tasks in the worklist. The use of a worklistallows a fairly straight-forward handling of reursive fun-tions and reursive type de�nitions. Similarly, the treatmentof parametri types resembles the passing of arguments tofuntions.The main loop maintains a worklist of tasks. A task is oneof the following.1. hAnalyze; f; i, analyze funtion f in ontext ,2. hGen; d; i, generate type information aoring to typede�nition d,3. hMath; d; i, math against de�ned type d,4. hChek; f; i, hek that funtion f behavesaordingto spei�ation,5. hUseSpe; f; i, use spei�ation of f when omputingthe result of a all to f.Sine the relevant arguments and results are passed in thestore (assoiated with the ontext), the task only needs toontain funtion and ontext.The main loop will simply remove a task from the worklistand preform the orresponding operation until the worklistis empty.AnalyzeProgram:1: For eah funtion f mentioned in the spei�ation, puthChek; f; 0i in WorkList.2: Exeute MainLoop.MainLoop:1: if WorkList is empty,2: terminate analysis3: if WorkList is not empty,4: remove a task from WorkList,5: if the task is hAnalyze; f; i, do Analyze(f; )6: if the task is hGen; d; i, do Gen(d; )7: if the task is hMath; d; i, do Math(d; )8: if the task is hChek; f; i, do ChekSpe(f; )9: if the task is hUseSpe; f; i, do UseSpe(f; )10: ontinue MainLoop until WorkList is emptyTo ompute the e�ets of a all to a funtion f in ontext ,we build an environment mapping eah formal parameter toa term Arg(f; k; ). Similarly, the result of the all is passedbak to the aller in analysis variable Res(f; ).Analyze(f; ):1: Let the de�nition of f be f(x1; : : : ; xn)! E2: Create environment E mapping eah of xk to the termArg(f; k; ), for k � n13



3: let t = Analyze(E; E ; )4: Add(t;Res(f; ))To generate a term from a type expression d(t1; : : : ; tn),where d is a de�ned type, an analysis task is reated forthe body of the de�nition. As in the analysis of funtionalls, the arguments and results are passed in the store.Gen(d; ):1: Let the de�nition of d be d(T1; : : : ; Tn) = T02: Let x1; : : : ; xm be the free variables of T0; : : : ; Tn3: Create type environment A mapping eah of xk to aterm Univ(k; ), for 0 � k � m.4: Math(Tk;Arg(d; k; );A; ), for 1 � k � n5: let t = Gen(T0;A; )6: Add(t;Res(d; ))Mathing a de�ned type to a given term is similar, but dataows in the opposite diretion. We assume that the term isgiven in the analysis variable t = Res(d; ), whih in othersituations is assoiated with the result.Math(d; ):1: Let the de�nition of d be d(T1; : : : ; Tn) = T02: Let x1; : : : ; xm be the free variables of T0; : : : ; Tn3: Create type environment A mapping eah of xk to aterm Univ(k; ), for 0 � k � m.4: Let t = Res(d; )5: let Math(T0; t;A; )6: Let tk = Gen(A; Tk; ), for 1 � k � n7: and Add(tk;Arg(d; k; ))The initial task in the worklist will be the heking of aspei�ation of a funtion f . We assume that there is botha funtion de�nition and a spei�ation of f . We generateterms for the arguments aording to the argument types inthe spei�ation, then use the ow analysis to determine theresult of a funtion all, and then math the result againstthe result type in the spei�ation.ChekSpe(f; ):1: Let the spei�ation of f be f(T1; : : : ; Tn)! T0 and the2: de�nition f(x1; : : : ; xn)! E3: Let y1; : : : ; ym be the free variables of T0; : : : ; Tn4: Create type environment A mapping eah of xk to aterm Parameter(k; ), for 0 � k � m.5: Let tk = Gen(A; Tk; ), for k � n,6: and reate environment E mapping eah of xk to tk.7: Let t = Analyze(E;E ; )8: If Math(T0; t;A; ) fails, report a warning to the user.If a funtion f is alled, and there is no de�nition of thefuntion, i.e., there is no Erlang ode, but there is a spe-

i�ation, we use the spei�ation to ompute the expetedresult. Universially quanti�ed variables in the spei�ationare bound to analysis variables, Univ(k; ), where k is the po-sition of the variable and  is the ontext. We �rst math theargument types in the spei�ation against the argumentsin the all. Next we generate the result of the funtion allaording to the result type in the spei�ation.UseSpe(f; x):1: Let the spei�ation of f be f(T1; : : : ; Tn)! T02: Let x1; : : : ; xm be the free variables of T0; : : : ; Tn3: Create type environment A mapping eah of xk to aterm Univ(k; ), for 0 � k � m.4: For 1 � k � n do Math(Tk;Arg(f; k; );A; ),5: Let t = Gen(T0;A; ) and6: Add(t;Res(d; )).
7. THE IMPLEMENTATIONThe analysis is written in Erlang. As Erlang is (apart fromthe onurreny primitives) a pure funtional programminglanguage and laks arrays and hash tables, the store is rep-resented as a balaned binary searh tree.
7.1 ModulesThe analysis is applied to a single Erlang module. Spei�-ation �les were written for the module and other modulesthat were referened by the module being analyzed.
7.2 Core ErlangEven though Erlang may on the surfae appear to be a sim-ple language, it is a non-trivial projet to write a front endwhih handles all aspets of the Erlang language. To avoiddealing with these details, the analysis instead operates onthe Core Erlang intermediate ode [5℄. The translation isperformed using the ompiler of the OTP distribution.
8. EXPERIENCESIn this setion we study the performane of the type systemwhen applied to Erlang modules that were not written toonform to the type system. All measurements were madeon an Intel Xeon 2.4 GHz with 1 GB of RAM and 512 KBahe, running Linux.
8.1 The lists moduleWe �rst onsider the standard module lists that de�nesvarious lists operations. The module ontains 595 lines ofode. Many funtions, for example append/1 (whih ap-pends a list of lists), append/2, map/2 and foldl/3 resem-ble those found in the standard libraries of other funtionalprogramming languages. The lists module also de�nes op-erations on deeply nested lists (for example flatten/1 andflatlength/1), and operations on lists of tuples (for exam-ple keysearh/3 and keysort/2). Operations on lists oftuples typially takes an integer as argument, indiating onwhih element in the tuples to index. Thus, keysearh/3looks for tuples with a given element in the position givenby the index, and keysort sorts a list of tuples with re-spet to the values stored in a given position in the tuples.Instead of having an expliit string representation, Erlang14



represents strings as lists of harater odes. The funtiononat/1 takes a deeply nested list of objets and returnsa string onsisting of the onatenation of the string repre-sentations of the objets. The soft-typing system gives 29warnings when heking the list module.The type de�nitions are straight-forward.-type list(X) = [℄ + [X | list(X)℄.-type deeplist(X) = list(deeplist(X) + X).Many funtions are analyzed without warnings. This holdsfor typial funtions on lists suh as append/1, append/2,reverse/1 map/2 and foldl/3. For example, the systemderives the following information for append/1:Funtion lists:append/1:'{result,{fnid,lists|...}}' = A'{arg,1,{fnid|...}}' = BwhereA = [parameter('A')|A℄ + [℄B = [A|B℄ + [℄As one example of a funtion whih orretly generates awarning, onsider nth/2, whih takes an integer and a list,and returns the element of the list indiated with the integer(where the �rst element has index one):nth(int(), list(A)) -> A.nth(1, [H|_℄) -> H;nth(N, [_|T℄) when N > 1 ->nth(N - 1, T).The system warns that the funtion may throw an exeption.This is orret, sine nth/2 may indeed throw an exeptionwhen the index is out of range. The same holds for allfuntions that index on lists or tuples (keysearh/3 is oneexample of the latter).Surprisingly, heking flatten/1 gives no false alarms. Thederived information states (orretly) that atten takes adeeply nested list of some data type and returns a list ofthat data type.Funtion lists:flatten/1:'{result,{fnid,lists|...}}' = A'{arg,1,{fnid|...}}' = BwhereA = [parameter('X')|A℄ + [℄B = [C|B℄ + [℄C = parameter('X') + [C|B℄ + [℄Higher-order funtions suh as map/2 and foldl/3 pose noproblems.

8.2 OthelloNext we onsider a program downloaded from the Erlanguser ontributions diretory whih plays the game Othello.It onsists of three modules; othello, the main modulewhih (among other things) implements alpha-beta searh,othello_adt whih implements the board as an abstratdata type, takes are of evaluation, omputes the of possi-ble moves and so on. The module othello_board interfaeswith a GUI library.Spei�ation �les were written for the three modules. Wewill only onsider the heking of two modules; othelloand othello_adt, as heking othello_board would requirewriting a spei�ation �le for the pxw graphis library.As examples of type delarations in the spei�ation �les,onsider the representation of the board. The board is rep-resented as a pair, where the seond element is a 64-elementtuple, representing the ontents of the board, and the �rstelement is a list of all positions whih are empty and adjoinan oupied position. (ordsets is a library module whihrepresents sets as lists.)-type boolean() = true + false.-type list(X) = [℄ + [X | list(X)℄.-publi_type olor() = grey + white + blak.-publi_type player_olor() = white + blak.-type squares() =tuple(list(olor())).-abstype board() ={ordsets:set(int()), squares()}.In the above, olor() is publi, as other modules in theprogram also rely on the same representation of olors. Thetype squares() represents the ontents of the board. Thetype onstrutor tuple(...) represents, when applied to alist type, the set of all tuples with the same length and typeas the lists types. The type squares() is the set of all tupleswhere the elements are the atoms grey, white and blak.The type board() is delared as abstrat as other modulesdo not aess the internal representation of boards. Thetype player_olor() represents the olor of a player.Next we onsider some of the funtion spei�ations.new(t) ->board().all_pos(board()) ->list({int(), olor()}).evaluate_board(player_olor(), board()) ->int().inv(blak+white) ->15



player_olor().is_draw(int(), player_olor(), board()) ->boolean().possible_draws(player_olor(), board()) ->list(int()).set(int(), player_olor(), board()) ->board().The funtion new/1 reates a new board. (For some rea-son, it expets the atom t as argument.) all_pos() takes aboard and returns a list of pairs, onsisting of a position andthe olor at that position. As one might expet, the fun-tion evaluate_board/2 evaluates the board from a player'spoint of view. is_draw/3 heks if a partiular move is le-gal, possible_draw/2 returns the set of possible moves, andset/3 returns the updated board after one of the players hasput a piee on a given position.Cheking the module othello_adt.erl against the spei�-ation took 11 seonds. This is rather long, onsidering thatthe module is only 345 lines of ode. Other modules of sim-ilar size took less than one seond to hek. At the time ofwriting, the author does not have a satisfatory explanationto why heking module othello_adt.erl requires so muhtime.The type system gives 5 warnings. Three of the warningsare due to the use of the ath/throw mehanism of Erlangto break out of a reursion. For example, the funtion whihheks if a move is legal throws an exeption when it disov-ers that the requirements for a legal move are satis�ed. Theanalysis makes no attempts to trak exeptions, and on-servatively assumes that a ath expression may return anyvalue, thus we have two warnings beause a result obtainedthrough a ath is too general, and one warning beause afuntion throws an exeption.One funtion expets a pair of two integers in the interval1 : : : 8, representing row and olumn of the board. Beauseof the way these integers are omputed, and sine the anal-ysis does not reason about integer ranges, the analysis failsto determine that the integers lie in the desired interval andwarns that the funtion might throw an exeption (as itmight if alled with integers outside the interval).Finally, the system warns that the funtion set/3 may re-turn the result invalid_position. (It seems that this ouldonly happen if there is a bug in the program.) The warning isompletely orret, but as the funtions in module othellothat all set/3 do not handle the result invalid_positionit seemed appropriate to exlude the result from the returntype.The module othello has a muh simpler interfae. Theomplete spei�ation �le is shown below.-module(othello).-type init() = first_time + restart.

start1(any(), othello_adt:player_olor(),othello_adt:player_olor(), int(),init()) ->any().new_game(othello_adt:player_olor(),othello_adt:player_olor(), int(),init()) ->any().Cheking module othello, 173 lines of ode (exluding blanklines and omments) takes 0:1 seonds. The systems gives7 warnings. 5 warnings are due to the use of ath-throwin the implementation of the alpha-beta searh algorithm.One warning is beause the system fails to determine thatwhen the following funtion is alled (with arguments Value,Alpha, Beta and NoDs of integer type) one lause will alwaysbe seleted.utoff(...,Value,...,Alpha,Beta,...,Nods)when Value >= Beta ->...utoff(...,Value,...,Alpha,Beta,...,Nods)when Alpha < Value, Value < Beta ->...utoff(...,Value,...,Alpha,Beta,...,Nods)when Value == Alpha, NoDs < 13 ->...utoff(...,Value,...,Alpha,Beta,...,Nods)when Value =< Alpha ->...(Variables not relevant for the ase analysis were omitted.)To analyze this funtion orretly would require some ratheradvaned reasoning about integer ranges.The �nal warning ours in the expressionase random:uniform(2) of1 -> ...;2 -> ...endThe library funtion random:uniform/1 will indeed returneither 1 or 2, but the analysis does not have suh detailedknowledge about the funtion, nor an it reason in suhdetail about integer ranges,
8.3 LinesLines is a module downloaded from the Erlang user ontri-butions diretory. The module implements an abstrat datatype whih maintains an abstrat sequene of lines, i.e., ob-jets indexed by their relative position in the struture. Themodule allows insertion and removal of a line anywhere inthe sequene, and as the sequene is represented as a binarytree, operations should usually be logarithmi in the depthof the tree.16



The lines module is 164 lines of ode, exluding blank linesand omments. Cheking the module required 0.6 seonds.Even though the module implements a relatively simple datastruture, the soft-typing system generates 17 warnings.Consider, for example insert/3, whih performs insertionat a given position and tries to re-balane the tree. Type-heking this funtion gives 6 warnings. Three warningsare due to the handling of if-expressions. Unfortunately,the Core Erlang front end translates a guard true into aall erlang:'=:='(true, true) (this will be �xed in futurereleases). The analysis knows that the former expression willalways sueed, but assumes onservatively that the latterexpression may either sueed or fail. Thus the soft-typingsystem issues warnings that the if-expression may throw anexeption.One warning is due to the fat that the funtion insert maygive an exeption if the index is out of range.The remaining two warnings are due to the fat that theanalysis assumes that an index may be out of range, eventhough a preeeding test ensures that this is not the ase.
8.4 Gb-treesThe standard library module gb_trees implements balanedbinary searh trees. As it was originally developed as partof the soft-typing system, the author had expeted that itwould pass through the type heker without any warningsat all. However, the type heker gives 9 warnings.The tree type is abstrat. We give the spei�ation of thetree type and the funtion insert/3,-abstype tree(K, V) = {int(), tree1(K, V)}.-type tree1(K, V) =nil + {K, V, tree1(K, V), tree1(K, V)}.insert(K, V, tree(K, V)) ->tree(K, V).To allow an eÆient implementation of the balaning algo-rithm eah tree stores a ount of the number of nodes in thetree.The gb_trees module onsists of 202 lines of ode, hek-ing the module took 0.4 seonds. As mentioned, the systemwill report 9 warnings. Among them, four warnings on-ern exeptions that may atually take plae. For example,insert/3 assumes that the key being inserted is not presentin the tree, update/3 assumes that it is present, and so doesdelete/2. The funtion take_smallest/1 assumes that thetree is non-empty. In other words, the funtions are writtento throw exeptions when alled with the wrong data, andthe type heker warns us that this might indeed happen.The other �ve warnings onern the passing of values be-tween di�erent funtions in the module. For example, thefuntion insert/3 alls an internal funtion insert_1 whihwill either return a one-element tuple ontaining a balaned

tree, or a tuple of three elements ontaining an unbalanedtree plus some additional information. Now, the propertiesof the algorithm guarantees that insert_1 when applied toa omplete tree will always return a balaned tree, so the allto insert_1 is written so that an exeption will be thrown ifthis is not the ase. As the type system does not understandthe algorithm, it warns that there may be an exeption. Sim-ilarly, there is one funtion all in the balaning algorithmwhih should always return a tuple where the seond ele-ment is an empty list. The program is deliberately writtenso that an exeption will be thrown if this is not the ase.The remaining three warnings are similar; we know that apartiular intermediate value should be of a partiular form,so we hek that this is indeed the ase|there is no pointin handling any other situation graefully as it must be dueto a bug.
8.5 CounterAs an example of a program with proess ommuniation,we onsider the simple ounter proess from [2℄.start() ->spawn(ounter, loop, [0℄).inrement(Counter) ->Counter ! inrement.value(Counter) ->Counter ! {self(), value},reeive{Counter, Value} ->Valueend.stop(Counter) ->Counter ! stop.loop(Val) ->reeiveinrement ->loop(Val+ 1);{From, value} ->From ! {self(), Val},loop(Val);stop ->true;_ ->loop(Val)end.The funtion start() spawns a proess whih exeutes thefuntion loop(). Three funtions handle ommuniationwith the proess; inrement/1, value/1 and stop/1.The spei�ation �le is as follows:-module(ounter).start() ->pid().17



inrement(pid()) ->inrement.+mbox(value/1) = {pid(), int()}.value(pid()) ->int().stop(pid()) ->stop.+mbox(loop/1) =inrement + {pid(), value} + stop.loop(int()) ->true.First, the spei�ation of start/1 indiates that it will re-turn a proess identi�er. The funtion inrement is spei�edto take a pid as argument and return the atom inrement.Similarly, the funtions value and stop take a pid as argu-ment and return an integer and the atom stop, respetively.Sine value ontains a reeive expression in whih it expetsa message onsisting of a tuple of a pid and an integer, weindiate this in the spei�ation. Similarly, we indiate themessages that the funtion loop reeives.Cheking this module gives no warnings. Still, there aremany ways to use the module without breaking the spei�-ation that will give strange results. Consider, for examplef() ->P = ounter:start(),self() ! {P, foo},V = ounter:value(P).This funtion funtion reates a ounter proess, and thenasks for its urrent value. However, before it asks the ques-tion it forges a reply from the proess. Now, the funtionvalue will pik up the �rst message in the mailbox and re-turn the value foo.It is unlikely that the above ode would our in pratie,but the example shows that the proess types do not guar-antee safety.
9. DISCUSSIONThere are a number of aspets of the Erlang programminglanguage that are hard to ombine with stati typing. Thefat that all omplex data strutures are onstruted usinglists and tuples makes it diÆult to distinguish objets ofdi�erent types. Erlang's meta-all allows the destinationof a funtion all to be omputed at run-time. In general,any exported funtion of any module may be alled. WhileErlang's mehanism for proess ommuniation has manyattrative features, it is problemati that there is no distin-tion between external ommuniation, i.e., messages relatedto the servie o�ered by the proess, and internal ommuni-ation, i.e., messages that the proess may send and reeiveas part of the implementation of this servie.

Statially typed programming languages are of ourse de-signed to failitate stati typing. Further, sine the typesystem is integrated in the implementation, a programmeris fored to obey the disipline of the type system|any pro-gram that does not type won't ompile. In a language withdynami typing this disipline is missing|it is perfetly pos-sible to run a program that exhibits some inonsistent useof types. For example, the Othello program disussed inSetion 8 has a funtion that either returns an integer (ifan operation is suessful) or the atom false (if the oper-ation failed). In Erlang, this is ompletely unproblemati,but in for example SML suh a program would have to berewritten.It is also worth noting that stati and dynamially typedprogramming languages reveal di�erenes in programmingstyle; in a dynamially typed programming language onewrites ode so that the presene of a bug will ause it torash as soon as possible|the sooner one disovers thatan input or an intermediate result is inorret the better.For example, if we expet that a funtion should return anon-empty list, we make sure that any other result gives anexeption. Paradoxially, making the program rash soonermakes it more robust, as it gives us more opportunities todetet bugs during testing. The use of this tehnique om-pensates to a ertain degree for the lak of early detetionof errors provided by stati typing. (Also, it seems that im-plementations of dynamially typed programming languagesdo a better job in providing useful debugging informationwhen the program throws an exeption.) The di�erene inprogramming style makes it diÆult to add stati typing toa program written for dynami typing|preisely what wedo in a language with dynami typing to make the programsmore robust also make them harder to type.Another problem is that adding stati types to a programwritten for a language with dynami typing requires under-standing of the program, espeially if one is to modify theprogram to �t the type system. On other hand, sometimesthe type system helped reveal the inner workings of pro-grams.One argument against adding stati types in retrospet isthat if the programs have already been debugged and tested,the hanes that the type system will disover any remainingbugs are slim. In the experiments reported in Setion 8, andin other attempts to to type previously written programs,the author never found any bugs due to type errors. How-ever, applying the type system to untested toy programssometimes revealed aidental type errors.One of the main motivations for using a stati type system isthat it disovers bugs. However, as areful testing tends toreveal these bugs, it seems that best way to use a stati typesystem is to apply it before the program is tested. Also, itmay happen that a program has to be re-written to �t thetype system. This also supports the view that stati typesystems should be applied early in the development pro-ess, perhaps as an integrated part of the ompiler. Findleret al. [9℄ appear to have drawn similar onlusions. Theydesribe a development system for Sheme, a dynamiallytyped programming language, with an integrated stati typesystem.18



10. CONCLUSIONWe have presented a soft-typing system for Erlang. Thesystem is based on two ideas|use a spei�ation languageto give the interfae of eah module, and use a data owanalysis to verify that the implementation of the modulemathes the spei�ation.As we saw in the experimental setion, the system an rea-son about substantial programs and produe useful results.It is worth noting that even though the programs were de-bugged and tested, the type system still produed warnings.Almost all warnings onerned programming onstruts thatthe data ow analysis ould not analyze preisely and whereone would not expet any other stati typing system to givebetter results.One interesting result is that the experiments did not un-over a single type error in programs that had already beentested and debugged. The explanation for this result is prob-ably that areful testing tends to reveal most type errors.
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