A soft-typing system for Erlang

Sven-Olof Nystrom
Department of Information Technology,
Uppsala University, Sweden

svenolof@csd.uu.se

ABSTRACT

This paper presents a soft-typing system for the program-
ming language Erlang. The system is based on two concepts;
a (forward) data flow analysis that determines upper ap-
proximations of the possible values of expressions and other
constructs, and a specification language that allows the pro-
grammer to specify the interface of a module. We examine
Erlang and point to various aspects of the language that
make it hard to type. In particular, it does not seem possi-
ble to find a satisfactory scheme for typing Erlang processes.
We present experimental result of applying the soft-typing
system to some previously written programs. It turns out
that none of the programs examined had any type errors.

1. INTRODUCTION

Erlang is a functional and concurrent programming lan-
guage, developed at Ericsson [2] and intended for telecom
applications. Erlang is dynamically typed, i.e., no type dec-
larations are required (or allowed), and there is no require-
ment that an Erlang program should be examined by a type
checker before it is run. Instead, each value carries dynamic
type information.

One of the primary advantages with dynamic typing is that
the language design is simplified. Also, it is often argued
that dynamic typing helps rapid development, especially for
prototyping and testing (see for example [17]). Another ad-
vantage is that it is possible to write general routines for
writing and reading data of any type. This is particularly
useful for Erlang’s intended applications, as it allows com-
munication over untyped channels.

However, most functional programming languages use static
typing. Types are either given in explicit declarations, or
computed automatically using type inference. Among the
advantages with static typing is that many errors are dis-
covered at compile time, instead of during testing. The type
system might also discover errors that would have been dif-
ficult to catch by testing the program. Static type declara-

An earlier version of this paper was presented at the Erlang Workshop,
Uppsala, Sweden, 2003.

tions can serve as documentation, and as they are checked
by the compiler, they are always up to date. It has often
been argued that that static typing helps reliability [4, 19],
but this view is contradicted by our investigation of exist-
ing Erlang programs (Section 8) which suggests that careful
testing tends to discover all type errors.

A static type system added to an existing dynamically typed
programming language is often referred to as a soft-typing
system. Generally speaking, a soft typing system might
serve two purposes; it can produce type information to help
compiler optimizations, and it can be used, just like a static
type system, to help the programmer find bugs and incon-
sistencies in the program.

When used as a development tool, a soft typing system can
either be used when programs are written from scratch, or
be applied to existing programs. Any soft typing system
will be sensitive to the choice of data representation and
control structures, so it is much easier to develop a system
that works well on programs written for the system. In Sec-
tion 8 we relate some experiences when applying the system
to programs that were not developed using the soft-typing
system.

The soft-typing system presented here is based on two con-
cepts; a forward data flow analysis that determines upper
approximations of the possible values of expressions and
other constructs, and a specification language that allows
the programmer to specify the interface of a module. The
soft-typing system checks one Erlang module at a time, uses
the specification module as a starting point, and checks for
each specified function that the function computes the value
given by the specification.

The specification language allows parametric type and func-
tion specifications, Type specifications may be local to a
module, public, i.e., accessible to other modules, or abstract,
i.e., other modules may refer to the type but only the defin-
ing module has access to the representation.

The specification language also allows specification of pro-
cess communication and process dictionaries. However, the
checking of the specifications is not complete in the sense
that the system may fail to detect programs that violate the
specifications.

One advantage with basing the type system on a data flow

analysis is that it is relatively easy to extend the system
to handle constructs that would be very difficult to capture
in a regular type system. For example, handling Erlang’s
meta-call (where the destination of a call is computed dy-
namically) is straight-forward in a flow analysis. As the
data flow analysis only propagates type information in one
direction (forward), the spread of incorrect type informa-
tion is limited. This makes it practical to allow the analysis
to proceed, even after inconsistencies have been detected.
Thus, the system can provide useful information, even for
programs that are not completely type-correct.

Section 2 presents related work. Section 3 gives a brief
overview of the programming language Erlang. Section 4
provides a more detailed discussion features of Erlang that
influenced the design of the soft type system. The specifica-
tion language is described in Section 5 and Section 6 deals
with the inner workings of the soft-typing system. Section 7
explains some implementation details. Section 8 relates the
results of applying the soft-typing system to some previously
written Erlang programs. Finally, in Section 9 we discuss
the experimental results and in Section 10 give some con-
cluding remarks.

2. RELATED WORK

The soft typing systems designed by Cartwright and Fa-
gan [6] and Wright [21] target Scheme and Lisp. The main
objective is to to provide type information for the compiler,
but the soft typing systems also provide debugging informa-
tion. They handle all programs, i.e., even programs with
type errors will be annotated with type information. They
use a generalization of Hindley-Milner type inference, rely-
ing on the presence of identifiable constructors. When the
type systems detectes a potential type error, they warn the
programmer that the program might contain a type error
and insert an explicit run-time type check.

Flanagan et. al [10] presented a tool for static debugging of
Scheme programs. The system uses set-based analysis [20,
12] to identify potential run-time errors.

Lindgren’s [14] soft-typing system for Erlang was based on
a constraint solver by Aiken [1]. The constraint solver could
not represent types corresponding to individual atoms, a
rather severe restriction as most Erlang programs use atoms
to distinguish between different data types. Lindgren con-
cludes that the constraint solver is not suitable for Erlang.

While the previously described soft-typing systems could
handle any legal program, the soft-typing system presented
by Marlow and Wadler [15] simply refused to type programs
where matching or case expressions might fail. Thus, it de-
fined, in effect, a new programming language consisting of
those Erlang programs that it could type. As in the earlier
soft-typing systems by Cartwright, Fagan and Wright, the
identification of data type constructors is crucial. Two types
of constructors are used; tuples {T1, ..., Tn} and {c, T1,

.., Tn} where c is an atom. The type system is based on
sub-typing, so that, for example, {c, T2} may be a subtype
of {T1, T2}. Unlike the system presented in this paper,
their system can deduce function types from function defi-
nitions. However, the system fails to deduce the expected
type for some very simple function definitions. For example,

consider the following function:

and (true,true) -> true;
and(false,X) -> false;
and(X,false) -> false.

Their system uses pattern match compilation to transform
the above into a system of simpler case-expressions. Given
that the arguments of and are X and Y, the body of the
function and will contain an expression

case Y of
false -> false

From this the type system concludes that the type of Y (the
second argument) must be the atom false. Given this, the
system then (correctly) finds that the first argument may
be any value. Thus, the type for the function is

and(any(), false) -> true + false.

One may wonder whether a simple modification of Marlow
and Wadler’s system could improve the situation. Note,
however, that the type deduced by Marlow and Wadler’s
system is technically correct. Before considering modifica-
tions to their system one should explain in formal terms why
the above type should be rejected.

Arts and Armstrong developed a system called “The Spec-
ification Web” [3], which given declaration files generates a
collection of html pages, the specification web, which pro-
vides cross-references between function definitions and their
uses, type definitions, and so on. Their system assumes that
each exported function in a module is declared.

Huch [13] presents an approach for the verification of Erlang
programs using abstract interpretation and model checking.
He defines a core fragment of Erlang, defines its operational
semantics, an abstraction of process state which reduces the
set of process states to a finite set, and an ‘abstract’ op-
erational semantics over abstract states. To determine the
behavior of a program is now a matter of enumerating the
abstract states reachable in the abstract operational seman-
tics. One difficulty with this approach is that even very
small program are likely to generate an excessive number of
abstract states.

Flanagan et al. [11] presents a static checking system for
Java. While Java is statically typed, many checks are still
performed at run-time. The system resembles the system
presented in this article in that the checking is modular,
i.e., the programmer is expected to annotate parameters and
variables so that a source-code file can be checked in isola-
tion. Methods are verified under the assumption that the
annotations hold, and at call-sites it is verified that the an-
notations are not violated. The system addresses two types
of runtime errors; a null derefencing and array bounds vi-
olations. (Even though explicit type conversions are very
common in Java programs, and might cause run-time er-
rors, the system does not seem to handle them.)

CCured [16, 7] is a system that adds memory safety guar-
antees to C programs. The system includes extends point-
ers with additional type information which is checked at
run-time (the latter is similar to the mechanism present in
Erlang and other dynamically typed languages). A static
type system is used to recogize situations where pointers
are type-safe and the dynamic checks can be eliminated,
thus improving run-time performance.

3. THE ERLANG PROGRAMMING LAN-
GUAGE

3.1 Sequential programming in Erlang

The sequential component of Erlang is a (mostly) pure func-
tional programming language. Data structures consist of
atoms, integers, floating-point numbers, lists and tuples. As
in logic programming languages, we distinguish variables
from atoms by writing variables with an initial capital letter.

A definition of a function consists of a sequence of clauses
f(Pattern, ..., Pattern,) when Guard — Body

where the guard is optional. When a function is called, the
clauses are tried in sequence. For each clause the actual pa-
rameters are matchaed against the corresponding patterns,
and the guard tests are evaluated. The first clause where
the matching and the guard tests succeed is selected and
the expressions in its body are executed.

We conclude with two simple examples. First, the function
append which appends two lists:

append([X | Y], Z) ->
[X | append(Y, Z)];

append (([1, 2) —> Z.

Second, a function which looks in a list for an element which
is larger then the one already given.

larger(X, [A | L]) when A > X >
{value, A};

larger(X, [_ | L1) —>
larger(X, L);

larger(X, [1) ->
none.

3.2 Modules

An Erlang program consists of a set of source code files
where each file defines a module with the same name. Each
module lists a set of exported functions. All other functions
are only accessible by functions in the same module.

3.3 Concurrent programming in Erlang

The concurrency primitives of Erlang are imperative oper-
ations that depend on the current state of the system and
may change it.

A call self () returns the process identifier (pid) of the cur-
rent process. (For our purposes, there is no need to consider
the distinction between processes and process identifiers.)

A call spawn(M, F, [A1, ., An]) creates a process exe-
cuting the function F in module M with arguments A1 through
An. The call returns the pid of the created process.

If the variable P is bound to a process identifier and V to
an arbitrary value, the expression P!V will send the value
of V as a message to the process P. The messages sent to a
process are stored in a mailboz (a first-in-first-out queue).

When a process wants to access its mailbox, it executes a
receive statement. A receive statement has the general form

receive

Pattern — Body

Pattern — Body
after TimeOutEzpr — Body end

The receive statement traverses the messages in the mail-
box, in the order in which they arrived, and tries to match
each pattern against the massage. If a matching succeeds,
the message is removed from the mailbox and execution con-
tinues with the body of the clause. If no matching message
was found, the receive is suspended until a message arrives.
However, if the receive contains an after clause, the expres-
sion in the clause is evaluated to give a value in milliseconds.
If no matching message has been received after waiting this
time, execution continues with the body of the after clause.

We conclude this section by considering some simple exam-
ples of the use of receive.

receive
X > X
end

The first receive simply returns the first message in the mail-
box. If the mailbox is empty, it waits until a message arrives.

receive
foo -> foo
end

The second receive waits for a message consisting of the
atom ‘foo’,

receive
foo -> foo
after 0 -> bar
end

The last receive looks for a message consisting of the atom
‘foo’. If the atom is not found in the mailbox (for example,
if the mailbox is empty) the atom ‘bar’ is returned.

4. ERLANG AND SOFT TYPING

The description above might give an impression of Erlang
as a simple programming language with a straight-forward
semantics. Unfortunately, Erlang has a number of features
that make reasoning about programs more complicated and
need to be taken into account when designing a soft-typing
system.

4.1 Constructors

In statically typed programming languages such as SML,
each data constructor is associated with a data type. One
can introduce a new data type with associated constructors
by writing, say,

datatype tree =
NODE of tree * tree
| LEAF of data

which introduces a type tree with constructors NODE and
LEAF. Now, the type system will assume that each use of of
these constructors follows the definition above, Thus, given
an expression

NODE(x, y)

the type system infers not only that the returned value is of
type tree, but also that the types of the arguments, x and
y, are of type tree.

In contrast, Erlang has only two ways to build complex ob-
jects; tuples and lists. To express trees (as in the SML ex-
ample above), an Erlang program might use valuess of the
forms

{node, Left, Right}

and

{leaf, Data}.

When we build a complex data structure using a tuple where
the first element is a specific atom (with a name chosen to
reflect the purpose of the data structure) we eliminate the
risk of confusion with other, similar, data structures created
for different purposes. Many Erlang programs follow the
convention illustrated above and use tuples with a specific
atoms in first position as type constructors.

There is of course nothing that guarantees that the ‘data
constructor’ {node, _, _} will not be used for some unre-
lated purpose in some other part of the program. Still, pro-
grams that follow the convention above are relatively easy
to type. The soft-typing system presented in this paper
handles such programs, even when the same constructor is
used for different purposes in different parts of the program.
Marlow and Wadler’s type system also seems to handle them
(at least when a constructor is only used for one purpose); it
seems that the reason they used a sub-typing system was so

they could say that the type representing the set of values
of the form {leaf, Datal} is a subtype of the type of binary
tuples.

There are, unfortunately, many programs that don’t follow
the convention. For example, when tracing a process, the
operations of that process is represented as a sequence of
messages

{trace, Pid, Operation, Data}

where ‘Pid’ identifies the process, ‘Operation’ the opera-
tion performed, and ‘Data’ describes what the operation is
applied to. Among the trace messages we find

{trace, Pid, ’receive’, Message}
{trace, Pid, call, {M,F,A}}
{trace, Pid, link, Pid2}

In the case of a call, the data field is a three-element tuple
indicating module, name and arity of the receiving process.
For the link operation, the data field is the pid of another
process. Thus, we have a data type (trace messages) where
the type of one field depends on the value stored in another
field.

As another example of an Erlang program which uses a data
representation which may be hard to type, consider the func-
tion flatten from the lists standard library.

flatten(List) ->
flatten(List, [1, [1).

flatten([H|T], Cont, Tail) when list(H) ->
flatten(H, [T|Cont], Tail);
flatten([HIT], Cont, Tail) —>
[H|flatten(T, Cont, Tail)]l;
flatten([], [HICont], Tail) ->
flatten(H, Cont, Tail);
flatten([], [1, Tail) ->
Tail.

Flatten assumes as input a deeply nested list, i.e., a list
which may contain other deeply nested lists or arbitrary
valuess (which are not lists). To distinguish between the
two cases, the first clause of flatten/3 contains a guard
list (H). Now, the result of a call to flatten is a list con-
sisting of values that are not lists. If a soft-typing system
is expected to type this function, it must be able to rea-
son about the effects of the guard, i.e., that when the guard
succeeds, H is always a list, and when it fails, H is not a list.

4.2 Records and the preprocessor

Erlang is unique among the functional programming lan-
guages in its use of a C-style preprocessor, macros and header
files. Reasoning about preprocessing, header files and macro
expansion in the soft-typing system would have introduced
complications, so we chose to let the soft-typing operate on
code that had been passed through the preprocessor.

Header files often contain record definitions such as the fol-
lowing;:

-record(node, {left, right}).
-record(leaf, {data}).

Given the above definitions, an expression
#node{left = Left, right = Right}

will create a record with fields left and right given by
variables Left and Right, respectively. If X is a node, the
expression X#node.left extracts the first field. An expres-
sion X#node{left = NewLeft} creates a new node where the
first field has been changed.

Internally, a record with n fields is represented with an n+1-
tuple where the first position is the name of the record.
Nothing prevents an Erlang application from directly ac-
cessing this representation. A soft-typing system for Erlang
must of course handle records, even allowing for programs
that access the internal representation. The soft-typing sys-
tem presented in this paper is applied to code where opera-
tions on records have been expanded into the corresponding
tuple operations.

Now, the use of records should in principle be completely
unproblematic as they are expanded into other Erlang con-
structs. However, we must make sure that the soft-typing
system can reason about the code that the preprocessor gen-
erates for records.

For example, given the source code expression
#node{left = Left, right = Right},

the preprocessor will produce a call element(2,X) which
extracts the second element of X, if X is a tuple.

For expressions that update the field of a record, a call
to setelement/3 is generated. Thus, the analysis must
‘know’ the semantics of the built-in functions element/2 and
setelement/3. On the other hand, there is also code that
uses tuples to represent arrays and lets an index run through
all positions of a tuple.

To summarize, a tuple is sometimes used as a data construc-
tor and a type system for Erlang must allow for calls to
built-in functions element (2, X) and element(3, X) to re-
turn values of different types. In other situations, the tuples
are used as constant arrays, whose size may be unknown,
and the type system should also allow for this possibility.

4.3 Processes

Here we will argue that regardless of the underlying type
system, it is impossible to find a reasonable typing of Erlang
processes.

A reasonable goal of a type system for process communica-
tion would be to ensure that messages received by a process
can be properly handled.

Clearly, the type of an Erlang process should include in-
formation about the messages it receives and handles—we
want to be able to tell whether a send P ! {message, ...}
is type-correct. Since a process is created with a reference
to a function in, say, P = spawn(m, f, [X1, ., Xnl), it
follows that functions must also be typed with what they
receive.

What makes reasoning about process types in Erlang awk-
ward is the way “internal” communication is expressed. If
a function f contains communication with some process P,
it is typically expressed using the following pattern:

£(...) =
P ! {query, ., self()},
receive

{answer, P, Data} -> ...
end,

i.e., the function sends a message {query, ...} to the pro-
cess P. The message containing a reference to the current
process. Next, the current process waits for a reply. The
process P is expected to send a reply of the form

{answer, self(), ...}.

Since the recive statement in f only matches messages of
the form {answer, P, Data}, we can be reasonably sure
that only messages from the process P will be selected by
the receive.

Examples of code following this pattern can be found in the
io standard library and any application written using the
gen_server library. Even the simplest example of process
communication given in the Erlang textbook by Armstrong
et al. [2], the counter process (page 72), follows this pattern.

In the above example, we must include in the type of the
function f information that it may receive messages of the
form {answer, ...} (since any process executing f may re-
ceive such messages). This is unpleasant, as the communi-
cation with P is part of the implementation of £, and not
intended to be part of the external interface. Further, the
same information must be added to the type of any function
that calls £. To consider a concrete example, the function

hello() —>
io:format ("Hello, world!~n", [1).

will have a rather complicated process type, as the call to
format will result in internal process communications.

Marlow and Wadler [15] propose a mechanism for typing
processes similar to the one sketched above. They do not
discuss the problem of accomodating “internal” communi-
cation. Dagnat and Pantel [8] propose a type system for
Erlang that makes a distinction between messages that may
be sent to the process and messages that a process will han-
dle. However, the conclusions from the discussion above still

apply.

To summarize, a safe typing of process communication would
require that each function has a process type that described
any communication that may result from a call to the func-
tion. For example, if the function contains a call to a library
function, and the implementation of the library function
involves process communication, then that communication
needs to be part of the process type of the function.

Clearly, we would not do the programmer any favor by forc-
ing him to deal with the internals of various libraries. In
the system presented in this paper, we have chosen a sim-
pler approach which allows the programmer to declare, for
a module, or a function, the messages that code in this par-
ticular part of the program are expected to receive.

4.4 Process dictionaries

Each Erlang process maintains a mapping from keys to val-
ues (both keys and values may be arbitrary Erlang values)
which is accessed by the built-in functions get and put. Safe
typing of process dictionaries requires that the type system
guarantees that different accesses to the process dictionary
are consistent. If the type system relies on specifications of
the external interface, as the soft-typing system described in
this paper, every access to the process dictionary, direct or
indirect, must be recorded in the specification of a function.
Adding a call to put in one function might require changes
to a large number of specification modules. Since this is
obviously impractical and unreasonable, we chose the sim-
pler (and unsafe) approach to allow declarations of process
dictionaries in code that accesses the dictionary directly.

45 Meta-call

Many built-in functions in Erlang use meta-call. A typical
example is apply. A call to apply has the form apply (M,
F, A), where A should be an atom giving the module of
the function being called, F should also be an atom, giving
the name of the function, and A should be a list, giving
the list of arguments in the call. Of course, the arguments
to apply can be passed as arguments, read from a file, or
even computed at run-time. Thus, a meta-call may call any
exported function of any module.

The main problem with meta-call is that construction of a
call-graph is difficult or impossible. One solution might be
to replace each meta-call with a large case-statement with
one clause for each exported function of each module in the
system. Since Erlang has a large standard library, and ap-
plications are often very large, it is clear that this approach
would not be practical;, analysing a meta-call where the
module or function name is unknown would be extremely
time-consuming and the result would almost certainly not
be useful.

We have taken a simpler approach. First, the very common
case where the destination can be immediately determined is
handled as a special case. If the set of possible values of the
first argument of the meta-call (giving the module) is among
the set of known modules, the set of possible destinations
can be enumerated, and the result of the meta-call can be
determined by combining the results of all these calls. In the
most general case, if the destination of a call is unknown the
result is also unknown.

5. THE SPECIFICATION LANGUAGE

The syntax of the specification language is influenced by the
specifications used by Marlow and Wadler [15] and Arts and
Armstrong [3].

As a first example, consider a simple function definition.

foo(X, Y) —>
R=X+1Y,
R.

One possible specification for this function might be:
foo(int(), int()) -> int().

As a second example, consider the definition of the function
append/2.

-module (append) .

append ([X | L1], L2) ->
[X | append(L1, L2)]1;
append([1, L) ->
L.

Most programmers would probably argue that the following
specification of append is the correct one:

-module (append) .
-type list(X) = [1 | [X | 1list(X)].

append (list (X), 1list(X)) ->
list(X).

However, it is worth noting that other specifications are con-
sistent with the function definition, for example, if append
is called with the empty list as first argument and a floating-
point value as second it will always return a floating-point
value. Thus append is also a correct implementation of the
following specification:

append([], float()) -> float().

5.1 Function specifications

Function specifications are of the form
£(t1, ..., tn) -> t0.

where each of t0, t1, ..., tn are type expressions. The
meaning of the specification is: When the function is called
with arguments according to t1, ..., tn the result will be
according to tO.

5.2 Type expressions
A type expression is one of the following:

1. a primitive type, int (), float (), pid(), or atom().
2. An atomic value, such as foo, true, false, 42, or 3.14.
3. The universal type: any().

4. The empty type: none().

5. A union, for example
int() + float() + true + false.

6. Complex types, i.e., lists and tuples, for example
{foo, int(), float()} or [1, 2, 3.14].

7. Function types, i.e., fun (int()) -> int() end.

8. In parametric definitions, we also allow type variables,
written with initial capital letters, say, X, Key, or Table.

9. References to defined types, for example 1ist (int()).

5.3 Type definitions
In its simplest form, a type definition simply gives a short-
hand for a more complex expression.

-type bool() =
true + false.

The type bool() is only accessible locally. It is synonymous
to true + false.

A type definition can also be recursive.

-type intlist() =
[0 + [int(O) | intlistQO].

The defined type intlist() can be used in function speci-
fications:

append (intlist(), intlist()) ->
intlist().

map(fun int() -> intlist() end, intlist()) ->
intlist().

5.4 Parametric specifications

Many Erlang functions are polymorphic, that is, they are
designed to work with many different data types. To specify
such functions, we allow function specifications with type
variables.

-type list(X) =
[0+ X] list(X].
-type tree(K, V) =
nil + {K, V, tree(X, V), tree(K, V)}.

Examples of parametric function specifications:

append (list(X), list(X)) ->
list(X).

lookup (K, tree(X, V)) ->
not_found + {found, V}.

map (fun(X) -> Y end, 1list(X)) ->
list(Y).

5.5 Abstract types

Type definitions with the ‘type’ keyword are only visible
within the specification module where they are given. Sup-
pose that an Erlang module defines an abstract data type,
i.e., a data structure with a set of operations to create and
operate on the structure, where the intention is that no other
code should access the data structure directly. In the spec-
ification language, this can be expressed using the keyword
abstype.

-abstype tree(K, V) =
nil + {K, V, tree(X, V), tree(K, V)}.

An abstract type can be referenced from other modules.
However, during type checking, a reference to an abstract
type defined in an other module, say,

m:tree(int (), list(int())),

is treated as a data type constructor. It is of course possible
to write a module that examines the internal representation
of an abstract type, but this module will not be accepted by
the type system.

Thus, an abstract type has two faces; to the module where
it is defined it is just another defined type, but to other
modules it is a data type constructor, i.e., a type which
cannot be decomposed into other types.

5.6 Public types

Public types are just like ordinary (type) type definitions,
except that they are accessible from all modules. For exam-
ple, it may be inconvenient to repeat the definition of the
list type in every module. A better approach may be to
give a single definition, for example, in the lists library,
and make it public.

-public_type list(X) =
X | list(X)] + [I.

A public type definition can be referred to in any specifica-
tion module by the syntax lists:1list(int()).

5.7 Unsafe extensions

As discussed in Section 4.3 there does not seem to be any
reasonable way to specify the type of an Erlang process
which allows uses of the process to be checked for correct-
ness. Still, declaring the type of a process is useful in con-
veying the programmer’s intentions and in showing what

happens when the process receives the messages given in
the declarations. The specification language allows specifi-
cations such as

+mbox = increment + stop + {pid(), int()}.
or
+mbox (loop/1) = increment + {pid(), int()} + stop.

(Unsafe type specifications are written with an initial ‘+.)
The first declaration reads: the messages received from the
mailbox while executing in the current module are either
the atom increment, the atom stop, or a tuple of a pid and
an integer). The second declaration refers to the situation
when executing the function loop/1.

It is also possible to declare the contents of the process dic-
tionary. A declaration from one of the specification files of
the analysis:

+dict = (max_contexts -> int();
weight_table -> weight_table();
strata_table -> strata_table()).

The declaration gives the types of values associated with
the keys max_contexts, weight_table, and strata_table.
The expressions weight_table() and strata_table() refer
to types defined elsewhere.

6. THE SOFT-TYPING SYSTEM

This section deals with the inner workings of the soft-typing
system. Readers mainly interested in the use of the system
can skip this section.

Generally speaking, to verify that a function behaves ac-
cording to specification, the following basic steps must be
performed:

1. Generate function arguments according to the specifi-
cation.

2. Use data flow analysis to determine an approximation
of the result of the function call.

3. Check whether the result matches the result type given
in the specification.

For an Erlang module foo.erl, we assume that the specifi-
cations are written in a separate file foo.spec. The specifi-
cation module should contain specifications of functions that
the module exports and definitions of various data types.

The dataflow analysis is based on analysis techniques such
as 0CFA [20] or set-based analysis [12]. The generator and
the matcher operate on the same representation of type in-
formation.

We assume that all external modules are specified, thus, the
matcher checks that the arguments of the external call are of
the specified type and the generator gives the return value.

6.1 Programs

In the presentation of the analysis, we assume that all data-
types (for example atoms, integers, floating-point numbers,
lists and tuples) are expressed using a set of type construc-
tors, C € Con, where each constructor has a given arity.
We also assume a set of pre-defined functions p € Pre and a

set of program-defined functions f € Function and a set of
labels, Lab.

Let a program be a set of definitions of the form
f(x1,...,xy) > E,

where expressions are defined according to

E =z |C[E,...,E,] | if E; then E> else Ej
| f(Er,...,En) | fun (z1,...,2,) = E1
| Eo(Er,...,En) | p(E,..., En)

We assume that there is a program-defined function f. €
Function. The intention is that f. will serve as an entry
point in the analysis.

6.2 Specifications

A specification module consists of a set of function specifi-
cations of the form

f(Tu,...,Tn) = To,
and a set of type definitions
d(Th,...,Ty) =To

where type specifications are defined according to:

|

| Tl + + 15

| fun! (T1,...,Tn) = To
| d(Tla aTn)

6.3 Basic structures

The state of the analysis is a store, mapping analysis vari-
ables to terms.

Analysis variables are used to store intermediate and final
results. To make the analysis polyvariant, it is necessary to
let analysis variables range over contexts. Thus, for contexts
¢ € Contezt, let Var be one of the following

1. Arg(f,k,c) € Var, where f is a program-defined func-
tion with arity n > k.

2. Res(f,c) € Var, where f is as above.

3. FunArg(l,k,c) € Var, where | € Lab is the label of a
fun expression.

4. FunRes(l, c), ApplyRes(l, c), IfRes(l,c) € Var, where [is
the label of a call to a higher-order function.

Let t € Term, the set of terms, be the least set such that

1. Var C Term.

2. any € Term.

3. Cft1...tn] € Term, where constructor C has arity n
and t1,...,t, € Term.

4. FunTerm(l,c) € Term, where [is the label of a fun
expression.

The implementation divides the type checking problem into
a set of subproblems, tasks. A task may be one of the fol-
lowing problems:

1. analyze a function f in context c,

2. generate analysis information according to a type def-
inition, and

3. check that generated analysis information matches a
type definition.

The set of tasks is listed in Section 6.8. Let Work be the set
of tasks. The analysis will maintain a worklist, containing a
subset of Work.

A flow analysis computes, for each variable and subexpres-
sion in the program, an approximation of the set of pos-
sible values. An analysis which simply associates values
to different parts of the program (i.e., a monovariant or
contert-insensitive analysis) suffers from the problem that if
a function is called from different parts of the program, the
analysis will set the result of the different calls to be union
of all calls to the function. For polymorphic functions, this
will of course give lower precision, but functions that are
not polymorphic may also be affected. Consider for exam-
ple the function append. If there is one call site where the
type of the second argument is unknown, the result will also
be unknown. Thus, a monovariant analysis may propagate
a low-precision result to all call sites where a polyvariant
analysis would confine it to one part of the program.

To allow functions to be typed as polymorphic, we use a
mechanism for polyvariant analysis described in more detail
elsewhere [18].

The mechanism we use involves a set of contexts,
c € Contert,

and a function
Call(f,l,¢) = ¢

which, given a function f, a call site [and a context ¢ returns
a new context. We also assume an initial context, co. The
idea is that if a call to function f occurs at label [in context
¢, the body of f will be analyzed in context ¢’. To guarantee
termination, the set of contexts must be finite.

6.4 Implementation of set abstraction
The store will associate with each analysis variable X the
following:

1. X.value C Term, a set of terms which are not analysis
variables.

Lookup(X):
1: Add current task to X.depend
2: Return X.value

Add(t, X):
1: Test if ¢ is contained in X.value
2: If not,
3: set X.value to X.valueU {t},
4: put all tasks in X.depend on work list,
5: for each variable Y € X.link, do Add(¢,Y").

Add(X,Y):
1: if X is a member of Y.link,
2: do nothing
3: if not,
4: add X to Ylink,
5: let t = Y.value and
6: do Add(t, X)

Contains(t1, t2):

1: Return true if either

2: t; = to,

3: ta = any, or

4: t5 is a variable X, and Contains(t1,t’) holds, for some
t' € Lookup(X).

5: Return false otherwise.

Figure 1: Implementation of set abstraction.

2. X.link C Var, a set of variables.

3. X.depend C Work, a set of analysis tasks.

When the analysis is finished, the relevant information for
each variable is collected in X.value. For example, for a
function f, Arg(f,1,c).value gives an approximation of the
values that may be passed in the first argument of f.

For each variable X we also store X.link, a set of variables
such that X C Y, for each Y € X.link, and X.depend, a set
of analysis tasks whose result may depend on the value of
X. Thus, if the value of X changes, the tasks in X.depend
will be put in the worklist.

We define the following operations on the store.

1. Lookup(X). Determine the current value of X.
2. Add(t, X). Add the term ¢ to the value of X.

3. Add(X,Y). Add the value of X to Y, i.e., make X a
subset of Y.

We assume that during any point in the analysis, it is pos-
sible to determine the current analysis task (an element of
Work). By dividing the analysis problem into a set of sepa-
rate tasks, it is possible to devise a worklist oriented strategy
where a portion of the program only needs to be re-analyzed
when a value on which it depends on has changed. The

purpose of the link field is to represent inclusion relations
explicitly. The implementation of the operations is given in
Figure 1.

6.5 Analyzing Erlang expressions
Analysis of an expression takes

1. the expression to be analyzed,
. an environment mapping program variables to terms,

. the current context, and

=~ W N

. a store

and returns

1. a term and

2. an updated store.

When analyzing expressions consisting of a single variable,
simply look up the value of the variable in the current envi-
ronment.

Analyze(z, £, c):
1: return £(c)

Expressions involving a constructor simply build a corre-
sponding term.

Analyze(C[En,..., Ey], €, c):
1: let ty, = Analyze(Ey,E,c), for k< n
2: construct the term Clti,...,¢,] and
3: return it as the result of the analysis.

The analysis of complex expressions is given in Figure 2.

In the analysis of calls to program-defined functions, we use
the function Call to compute a new context. When a call
is analyzed for the first time, a new analysis task consisting
of the called function and the new context is added to the
worklist.

In the analysis presented here, closures are not polymor-
phic. A polymorphic analysis would be more complex, and
as most Erlang applications make very little use of higher-
order functions the added complexity and cost of an analysis
that could treat closure applications polymorphically cannot
be justified. See [18] for a detailed discussion.

Analyzing calls to higher-order functions is similar to ana-
lyzing calls to user-defined functions, but slightly compli-
cated by the fact that the analysis is used to determine
the destination of the call. For a fun-expression (a closure)

fun' (z1,...2,) = Ep, we use analysis variables FunArg(l, 1, ¢

through FunArg(l,n,c) to represent the arguments, i.e., the
set of possible values that may be passed as arguments to the
function. In a similar way, the set of values that may be re-
turned by the function is stored in the variable FunRes(l, c).

Analyze(z, £, c):
1: return £(c)

Analyze(if Ei then E> else E3,&,c¢):
: let t1 = Analyze(E1, €, ¢)
if Contains(true, 1) holds,
let t» = Analyze(E», £, c)
Add(ts, IfRes(l, ¢))
if Contains(false, t1) holds,
let t3 = Analyze(Es, &,)
Add(ts, IfRes(l, c))
return IfRes(l, ¢).

Analyze(f(Ei, ..., En)" €, ¢):

: let ¢, = Analyze(Ey, E,c) for k <n

2 let ¢ = Call(f,1,¢),

: Add(tx, Arg(f, k,c')), for k< n

: unless (f,c') has been analyzed before, add (f,c') to
work list

5: return Res(f,c’)

=W N =

Analyze(fun' (z1,...,2,) = Eo,&,c¢):
1: create a new environment £ by extending old environ-
ment £ with bindings x;, — FunArg(l,k,c), for k < n
2: let t = Analyze(Ey, £1,c¢)
3: Add(t, FunRes(l, c))
4: return FunTerm(l,c)

Analyze(Eo(E1, ..., E,)', E,¢):

: let tr, = Analyze(Ey,E,c) for 0 <k <n

: for each I', such that Contains(FunTerm(l’,¢c'), t0),
Add(tg, FunArg(l', k,c')), for 1 <k <n
Add(FunRes(I’, '), ApplyRes(l, c))

: Return ApplyRes(l,)

Figure 2: Analyzing expressions.

However, we will still distinguish between different instances
of a closure. Thus, a closure is represented by a term of the
form FunTerm(l,c), to distinguish between closures created
at the same program point but in different contexts.

6.6 Generation
From a given type specification we generate type information
in the internal representation used by the data flow analysis.

In this section, we will only consider simple type definitions.
Generally speaking, generation assumes

1. a type expression,

2. an environment (mapping type variables to terms),
and

3. a context,
and returns

1. a term, and

2. an updated store

The type of a type variable is obtained from the environ-
ment.

Gen(z, A, c):
1: return A(z)

Handling of the universal type and constructors is straight-
forward.

Gen(any, A, ¢):
1: return the term any

Gen(C[Th,...,Tn], A, c):
1: let ty, = Gen(Ty, A, c), for k <n
2: return C[t1,...,txs]

If the type expression is a function type, generating type
information consists of three parts; create a term indicating
a function object, match the arguments against the argu-
ments given in the function type, and return the function
term.

Gen(fun! (T1,...,T,) = To, A, c):

1: Match(T%, FunArg(l, k,c),, ,) for 1 <k <mn

2: If any of the matchings fail, report bad function argu-
ment at current fnid.

3: Let to = Gen(To, A, c)

: Add(t,FunRes(l, c))

5: Return FunTerm(l, c)

W~

11

The representation of a union type is easy, since there is an
internal representation of unions.

Gen(Th + ...+ Ty, A, c):
1: let tr, = Gen(Ty, A,c), for 1 <k <n
2: return t1 + ... +tn

As mentioned above, we assume that d is a local type defi-
nition.

Gen(d(Ty, ..., Ty, A, ¢):
1: let tr, = Gen(Ty, A,c), for k<n

2: let ¢’ = Call(d, 1, ¢),

3: Add(trArg(f,k,c'),), for k<n

4: if (Gen, f, c) is not already active,
5: make (Gen, f,c) active, and

6: put (Gen, f,c) on worklist

7: Return Res(f,c)

6.7 Matching

Matching a term against a type expression assumes

1. a type expression,
2. a term,

3. an environment (mapping type variables to (analysis)
variables,

4. a context, and

5. a store

and returns an updated store.

We use an analysis variable MatchRes(c) to pass information
about the success of the matching done in context ¢, if the
matching fails, a term fail is added to MatchRes(c).

Type variables can be encountered in four situations; at
the top-level (when checking a function with a polymorphic
specification), when analysing a function call to a specified
function, and during matching or generation of a type spec-
ification containing a defined type.

Suppose that we are checking a function with a polymorphic
specification, for example the function append:

append (1ist(A), 1list(A)) -> list(A).

Here, the type variable A is implicitly universally quantified,
i.e., the specification implies that the implementation should
operate on lists of any type. Thus, a function that only
operated on lists of integers should be rejected by the type
system.

To be able to check that the program makes no assumptions
on type variables introduced in polymorphic specifications,

we introduce a new class of constructors, parameters, one
for each type variable. A parameter can only be matched
against it self (or an unbound variable). Thus, the type
system can check that no assumptions are made about types
passed as parameters.

The other three uses of type variables are handled by binding
the type variables to fresh analysis variables.

In the matching of a type variable against a term (below), we
distinguish between the two cases—either z is bound to an
analysis variable in which case matching always succeeds, or
z is bound to a parameter in which case matching succeeds
if and only if the term ¢ is that parameter.

Match(z,t, A, ¢):

if A(z) is an analysis variable X,
Add(t, X)

otherwise, if Contains(t,.A(z)) does

not hold, report that matching failed by
Add(fail, MatchRes(c))

Matching the universal type is of course straight-forward.

Match(any, t, A, c):
1: (nothing needs to be done)

When matching a type expression with a constructor, we
check that the term is of the same form and then proceed
recursively with the sub-terms.

Match(C[T1,...,Th],t, A, c):
if ¢ is an analysis variable,
let t' = Lookup(t),
do Match(C[T1,...,Ta],t', A, c)
otherwise, if ¢ is a union t1 + ... + t,,
do Match(C[T, ..., Th],tk, A, c), for k <n
otherwise, if ¢ is of the form Clti,.. ., tx],
do Match(Ty, tx, A, c), for k <n
otherwise, report that matching failed by
Add(fail, MatchRes(c))

To match a term against a union of type specifications we as-
sume two functions Extract and Remove which given a term
and a specification produce new terms. Computing Extract
and Remove exactly is a difficult problem, so we will settle
for rather crude approximations. Keep in mind that each
term represents a set of possible values. Assume that S; is
the set of values represented by the term ¢, and that St is
the set of values matched by the type T. Now, Extract and
Remove can be specified as follows:

1. If t' = Extract(T,t, A, c), then t' represents a superset
of all values represented by ¢ that are also matched by
specification 7', i.e., Sy D SN St, where Sy is the set

Extract(7,t, A, n):

1: Extract(any,t, A,n) =t

2: Extract(none, t,.4,n) = none

3: Extract(C[...],V,; A,n) =

4: {Extract(C[...],t, A,n —1) | t € V.value}

5: Extract(C[Th,...,Tm],Clt1,---,tm], A,n) =

6. C[tll7""t{rrl]7

7: where t}, = Extract(T}, tx, n), for k < m.

8: Extract(C]...],C'[...], A, n) = none, if C # C’

9: EXtrBCt(Tl + Tz, t, A, n) =11 + 1o
10: where t; = Extract(T:1, T, A, n)
11: and t» = Extract(T>,T, A, n)
12: Extract(fun' (...) — ...,¢,A,n) = t, if t represents a

function type

13: Extract(fun' (...) = ...,t, A, n) = none, otherwise

14: Extract(d(Ti,...,Tm),t,A,0) =t
15: Extract(d(Ti,...,Tm),t, A, n) = Extract(T', ¢, A,n—1)
16: where d(X1,...,Xm) =T,

17: and T' is the result of replacing each occurrence of
18: X in T with T, for k <m and n >0

Figure 3: Implementation of extract operation.

Remove(T,t, A, ¢):

1: Remove(any,t, A, n) = none

2: Remove(none,t, A,n) =t

3: Remove(T =C[...],V,A,n) =

4: {Remove(T,t, A,n —1)|t € V.value}

5: Remove(C[T1,...Tn],Clt1,-..,tm], A,n) =

6 {Clth,.] |,

7: where for some k, tj, = Remove (T}, tx, A, n),

8: and tj # none

9: andt;=¢t,l#k}

10: Remove(C[...], A4,t) =C'[...],n) =t

11: Remove(T: + T»,t, A,n) =

12: Remove(T1, Remove(T»,t, A, n), A, n)

13: Remove(fun' ... = ... t,n) =1t,

14: Remove(d(Th,. .., Tw),t,A,0) =t

15: Remove(d(Tt,...,Tm),t, A,n) = Remove(T',t, A,n —
1)

16: where d(X1,..., X)) =T,

17: and T' is the result of replacing each occurrence of

18: Xy in T with T}, for k <m and n >0

Figure 4: Implementation of remove operation.

of values represented by #'.

2. If t' = Remove(T,t, A, c), then ¢’ represents a superset
of all values represented by ¢ that are not matched by
specification T, i.e., Sy D S; \ St.

Given Extract and Remove, the matching of unions is straight-
forward.

Match(Ti + ...+ Tn,t, A c¢):

1: let t1 = Extract(T1,t, A, c)

2: let t, = Remove(Th,t, A, c)
3: Match(T,t1,A,c)

4: Match(T> + ...+ Tn,t,, A, c)

Figures 3 and 4 show simplified versions of the extract and
remove operations used in the analysis. When matching a
type expression fun' (T1,...,T,) — To with a term ¢, we
must check that ¢ is indeed a closure, and then verify that
t returns a value of type To when called with arguments of
type T through T,.

Match(fun’ (T4, ...,T,) = To,t, A, c):
: If t is an analysis variable,
call Match(fun' (T,...,T,) — To,t', A, c)
for each t' € t.value.
if ¢ is not an analysis variable,
if t is a term FunTerm(l’,c’), for some I’ and ¢,
let t, = Gen(Tk, A,c), for 1 <k <mn
Add(ty, FunArg(l', k,c")), for k <mn
do Match(Ty, FunRes(l, ¢), A,)
if ¢ is any other term, report that matching failed by
Add(fail, MatchRes(c)).

References to defined types are treated in a manner similar
to the handling of function calls in the analysis. A new
context is created, a new task is created for the matching of
the body of d (i.e., the right-hand side of the definition of
d) against the “result”. Since the direction of data flow is
backwards, the term ¢ is added to the result of the call and
the formal arguments T} through T, are matched against
the actual arguments ¢; through ¢,.

Match(d(T1, ..., Tn)', ¢, A, c):

: let ¢ = Call(d, 1,),

: Add(MatchRes(c'), MatchRes(c))

: If (Match, d, ¢’} is not already active,
make (Match,d, c’) active, and
put (Match, d, ¢’} on worklist

: Add(Res(d, '), t)

7 let tr = Arg(d,k,c), for k <n
Match(Tk, tx, A, c), for k <n

®

6.8 The main loop

13

The soft-typing system is based on a worklist algorithm—
the problems of analysis, matching and generation are rep-
resented as tasks in the worklist. The use of a worklist
allows a fairly straight-forward handling of recursive func-
tions and recursive type definitions. Similarly, the treatment
of parametric types resembles the passing of arguments to
functions.

The main loop maintains a worklist of tasks. A task is one
of the following.

1. (Analyze, f, ¢), analyze function f in context c,

2. (Gen, d, c), generate type information accoring to type
definition d,

3. (Match, d, ¢}, match against defined type d,

4. (Check, f,c), check that function f behavesaccording
to specification,

5. (UseSpec, f, ¢), use specification of f when computing
the result of a call to f.

Since the relevant arguments and results are passed in the
store (associated with the context), the task only needs to
contain function and context.

The main loop will simply remove a task from the worklist
and preform the corresponding operation until the worklist
is empty.

AnalyzeProgram:
1: For each function f mentioned in the specification, put
(Check, f,co) in WorkList.
2: Execute MainLoop.

MainLoop:

1: if WorkList is empty,

2 terminate analysis

3: if WorkList is not empty,

4: remove a task from WorkList,

5: if the task is (Analyze, f,c), do Analyze(f,c)
6: if the task is (Gen,d, c), do Gen(d,c)

7: if the task is (Match, d, c), do Match(d, c)

8 if the task is (Check, f, c), do CheckSpec(f, c)
9: if the task is (UseSpec, f,c), do UseSpec(f, c)
0 continue MainLoop until WorkList is empty

[y

To compute the effects of a call to a function f in context c,
we build an environment mapping each formal parameter to
a term Arg(f,k,c). Similarly, the result of the call is passed
back to the caller in analysis variable Res(f,c).

Analyze(f, c):
1: Let the definition of f be f(z1,...,2,) > E

2: Create environment £ mapping each of z; to the term
Arg(f,k,c), for k<n

3: let t = Analyze(E, £, c)
4: Add(t,Res(f,c))

To generate a term from a type expression d(ti,...,tn),
where d is a defined type, an analysis task is created for
the body of the definition. As in the analysis of function
calls, the arguments and results are passed in the store.

Gen(d, c):
1: Let the definition of d be d(T1,...,T,) =To
2: Let z1,...,zm be the free variables of Ty, ..., T,
3: Create type environment A mapping each of xj to a
term Univ(k,c), for 0 < k < m.

4: Match(Ty, Arg(d, k,c), A,c), for 1 <k <mn

: let t = Gen(To, A, ¢)

6: Add(t,Res(d,c))

ot

Matching a defined type to a given term is similar, but data
flows in the opposite direction. We assume that the term is
given in the analysis variable ¢ = Res(d, ¢), which in other
situations is associated with the result.

Match(d, c):

1: Let the definition of d be d(T1,...,T,) =To

2: Let z1,...,zm be the free variables of Ty, ..., T,

3: Create type environment A mapping each of x; to a
term Univ(k,c), for 0 < k < m.

: Let t = Res(d, ¢)

: let Match(7o,t, A, c)

: Let t, = Gen(A, Tk,c), for 1<k <mn

: and Add(ty, Arg(d, k, c))

~ O Ot =

The initial task in the worklist will be the checking of a
specification of a function f. We assume that there is both
a function definition and a specification of f. We generate
terms for the arguments according to the argument types in
the specification, then use the flow analysis to determine the
result of a function call, and then match the result against
the result type in the specification.

CheckSpec(f, c):

1: Let the specification of f be f(T1,...
2: definition f(z1,...,zn) > E

3: Let y1,...,ym be the free variables of Ty, ..., T,

4: Create type environment A mapping each of z; to a

term Parameter(k,c), for 0 < k < m.

5: Let tp = Gen(A, Tk,), for k < n,

6: and create environment £ mapping each of zj to t.

7: Let t = Analyze(E, €,)

8: If Match(7b,t, A, c) fails, report a warning to the user.

,T) — To and the

If a function f is called, and there is no definition of the
function, i.e., there is no Erlang code, but there is a spec-

14

ification, we use the specification to compute the expected
result. Universially quantified variables in the specification
are bound to analysis variables, Univ(k, ¢), where k is the po-
sition of the variable and ¢ is the context. We first match the
argument types in the specification against the arguments
in the call. Next we generate the result of the function call
according to the result type in the specification.

UseSpec(f, z):

1: Let the specification of f be f(T4,...,T,) = To

2: Let z1,...,zm be the free variables of Ty, ..., T,

3: Create type environment A mapping each of x; to a
term Univ(k,c), for 0 < k < m.

4: For 1 < k < n do Match(Ty, Arg(f, k,c), A, c),

: Let t = Gen(Tp, A, ¢) and

6: Add(t, Res(d, c)).

ot

7. THE IMPLEMENTATION

The analysis is written in Erlang. As Erlang is (apart from
the concurrency primitives) a pure functional programming
language and lacks arrays and hash tables, the store is rep-
resented as a balanced binary search tree.

7.1 Modules

The analysis is applied to a single Erlang module. Specifi-
cation files were written for the module and other modules
that were referenced by the module being analyzed.

7.2 Core Erlang

Even though Erlang may on the surface appear to be a sim-
ple language, it is a non-trivial project to write a front end
which handles all aspects of the Erlang language. To avoid
dealing with these details, the analysis instead operates on
the Core Erlang intermediate code [5]. The translation is
performed using the compiler of the OTP distribution.

8. EXPERIENCES

In this section we study the performance of the type system
when applied to Erlang modules that were not written to
conform to the type system. All measurements were made
on an Intel Xeon 2.4 GHz with 1 GB of RAM and 512 KB
cache, running Linux.

8.1 The lists module

We first consider the standard module lists that defines
various lists operations. The module contains 595 lines of
code. Many functions, for example append/1 (which ap-
pends a list of lists), append/2, map/2 and foldl/3 resem-
ble those found in the standard libraries of other functional
programming languages. The 1lists module also defines op-
erations on deeply nested lists (for example flatten/1 and
flatlength/1), and operations on lists of tuples (for exam-
ple keysearch/3 and keysort/2). Operations on lists of
tuples typically takes an integer as argument, indicating on
which element in the tuples to index. Thus, keysearch/3
looks for tuples with a given element in the position given
by the index, and keysort sorts a list of tuples with re-
spect to the values stored in a given position in the tuples.
Instead of having an explicit string representation, Erlang

represents strings as lists of character codes. The function
concat/1 takes a deeply nested list of objects and returns
a string consisting of the concatenation of the string repre-
sentations of the objects. The soft-typing system gives 29
warnings when checking the list module.

The type definitions are straight-forward.

-type 1list(X) = [1 + [X | 1list(X)].
-type deeplist(X) = list(deeplist(X) + X).

Many functions are analyzed without warnings. This holds
for typical functions on lists such as append/1, append/2,
reverse/1 map/2 and foldl/3. For example, the system
derives the following information for append/1:

Function lists:append/1:

’{result,{fnid,lists|...}}’ = A
’{arg,1,{fnid|...}}’ = B

where
A = [parameter(’A’)[|A] + []
B = [AIB] + []

As one example of a function which correctly generates a
warning, consider nth/2, which takes an integer and a list,
and returns the element of the list indicated with the integer
(where the first element has index one):

nth(int(), 1list(A)) -> A.

nth(1, [H|_]) -> H;
nth(N, [_IT]) when N > 1 >
nth(N - 1, T).

The system warns that the function may throw an exception.
This is correct, since nth/2 may indeed throw an exception
when the index is out of range. The same holds for all
functions that index on lists or tuples (keysearch/3 is one
example of the latter).

Surprisingly, checking flatten/1 gives no false alarms. The
derived information states (correctly) that flatten takes a
deeply nested list of some data type and returns a list of
that data type.

Function lists:flatten/1:

’{result,{fnid,lists|...}}’ = A
>{arg,1,{fnid|...}}’ = B

where

A = [parameter(’X’)|A] + []

B =[CIB] + (I

C = parameter (’X’) + [CIB] + []

Higher-order functions such as map/2 and foldl/3 pose no
problems.

15

8.2 Othello

Next we consider a program downloaded from the Erlang
user contributions directory which plays the game Othello.
It consists of three modules; othello, the main module
which (among other things) implements alpha-beta search,
othello_adt which implements the board as an abstract
data type, takes care of evaluation, computes the of possi-
ble moves and so on. The module othello_board interfaces
with a GUI library.

Specification files were written for the three modules. We
will only consider the checking of two modules; othello
and othello_adt, as checking othello_board would require
writing a specification file for the pxw graphics library.

As examples of type declarations in the specification files,
consider the representation of the board. The board is rep-
resented as a pair, where the second element is a 64-element
tuple, representing the contents of the board, and the first
element is a list of all positions which are empty and adjoin
an occupied position. (ordsets is a library module which
represents sets as lists.)

-type boolean() = true + false.
-type list(X) = [1 + [X | 1list(X)].

-public_type color() = grey + white + black.

-public_type player_color() = white + black.
-type squares() =
tuple(list(color())).

-abstype board() =
{ordsets:set(int()), squares()}.

In the above, color() is public, as other modules in the
program also rely on the same representation of colors. The
type squares() represents the contents of the board. The
type constructor tuple(...) represents, when applied to a
list type, the set of all tuples with the same length and type
as the lists types. The type squares () is the set of all tuples
where the elements are the atoms grey, white and black.
The type board() is declared as abstract as other modules
do not access the internal representation of boards. The
type player_color() represents the color of a player.

Next we consider some of the function specifications.

new(t) ->
board ().

all_pos(board()) ->
list({int (), color(O}).

evaluate_board(player_color(), board()) ->
int ().

inv(black+white) ->

player_color().

is_draw(int(), player_color(), board()) ->
boolean().

possible_draws (player_color(), board()) ->
list(int()).

set(int (), player_color(), board()) ->
board ().

The function new/1 creates a new board. (For some rea-
son, it expects the atom t as argument.) all_pos() takes a
board and returns a list of pairs, consisting of a position and
the color at that position. As one might expect, the func-
tion evaluate_board/2 evaluates the board from a player’s
point of view. is_draw/3 checks if a particular move is le-
gal, possible_draw/2 returns the set of possible moves, and
set/3 returns the updated board after one of the players has
put a piece on a given position.

Checking the module othello_adt.erl against the specifi-
cation took 11 seconds. This is rather long, considering that
the module is only 345 lines of code. Other modules of sim-
ilar size took less than one second to check. At the time of
writing, the author does not have a satisfactory explanation
to why checking module othello_adt.erl requires so much
time.

The type system gives 5 warnings. Three of the warnings
are due to the use of the catch/throw mechanism of Erlang
to break out of a recursion. For example, the function which
checks if a move is legal throws an exception when it discov-
ers that the requirements for a legal move are satisfied. The
analysis makes no attempts to track exceptions, and con-
servatively assumes that a catch expression may return any
value, thus we have two warnings because a result obtained
through a catch is too general, and one warning because a
function throws an exception.

One function expects a pair of two integers in the interval
1...8, representing row and column of the board. Because
of the way these integers are computed, and since the anal-
ysis does not reason about integer ranges, the analysis fails
to determine that the integers lie in the desired interval and
warns that the function might throw an exception (as it
might if called with integers outside the interval).

Finally, the system warns that the function set/3 may re-
turn the result invalid_position. (It seems that this could
only happen if there is a bug in the program.) The warning is
completely correct, but as the functions in module othello
that call set/3 do not handle the result invalid_position
it seemed appropriate to exclude the result from the return

type.

The module othello has a much simpler interface. The

complete specification file is shown below.

-module (othello) .
-type init() = first_time + restart.

16

startl(any(), othello_adt:player_color(),
othello_adt:player_color(), int(),
init()) ->
any () .

new_game (othello_adt:player_color(),
othello_adt:player_color(), int(),
init()) ->
any ().

Checking module othello, 173 lines of code (excluding blank
lines and comments) takes 0.1 seconds. The systems gives
7 warnings. 5 warnings are due to the use of catch-throw
in the implementation of the alpha-beta search algorithm.
One warning is because the system fails to determine that
when the following function is called (with arguments Value,
Alpha, Beta and NoDs of integer type) one clause will always
be selected.

cutoff(...,Value,...,Alpha,Beta,...,Nods)
when Value >= Beta ->

cutoff(...,Value,...,Alpha,Beta,...,Nods)
when Alpha < Value, Value < Beta ->

cutoff(...,Value,...,Alpha,Beta,...,Nods)
when Value == Alpha, NoDs < 13 ->

cutoff(...,Value,...,Alpha,Beta,...,Nods)
when Value =< Alpha ->

(Variables not relevant for the case analysis were omitted.)
To analyze this function correctly would require some rather
advanced reasoning about integer ranges.

The final warning occurs in the expression

case random:uniform(2) of

The library function random:uniform/1 will indeed return
either 1 or 2, but the analysis does not have such detailed
knowledge about the function, nor can it reason in such
detail about integer ranges,

8.3 Lines

Lines is a module downloaded from the Erlang user contri-
butions directory. The module implements an abstract data
type which maintains an abstract sequence of lines, i.e., ob-
jects indexed by their relative position in the structure. The
module allows insertion and removal of a line anywhere in
the sequence, and as the sequence is represented as a binary
tree, operations should usually be logarithmic in the depth
of the tree.

The lines module is 164 lines of code, excluding blank lines
and comments. Checking the module required 0.6 seconds.
Even though the module implements a relatively simple data
structure, the soft-typing system generates 17 warnings.

Consider, for example insert/3, which performs insertion
at a given position and tries to re-balance the tree. Type-
checking this function gives 6 warnings. Three warnings
are due to the handling of if-expressions. Unfortunately,
the Core Erlang front end translates a guard true into a
call erlang:’=:=’(true, true) (this will be fixed in future
releases). The analysis knows that the former expression will
always succeed, but assumes conservatively that the latter
expression may either succeed or fail. Thus the soft-typing
system issues warnings that the if-expression may throw an
exception.

One warning is due to the fact that the function insert may
give an exception if the index is out of range.

The remaining two warnings are due to the fact that the
analysis assumes that an index may be out of range, even
though a preceeding test ensures that this is not the case.

8.4 Gb-trees

The standard library module gb_trees implements balanced
binary search trees. As it was originally developed as part
of the soft-typing system, the author had expected that it
would pass through the type checker without any warnings
at all. However, the type checker gives 9 warnings.

The tree type is abstract. We give the specification of the
tree type and the function insert/3,

-abstype tree(K, V) = {int(), treel(X, V)}.

-type treel(K, V) =
nil + {K, V, treel(X, V), treel(K, V)}.

insert (K, V, tree(K, V)) ->
tree(K, V).

To allow an efficient implementation of the balancing algo-
rithm each tree stores a count of the number of nodes in the
tree.

The gb_trees module consists of 202 lines of code, check-
ing the module took 0.4 seconds. As mentioned, the system
will report 9 warnings. Among them, four warnings con-
cern exceptions that may actually take place. For example,
insert/3 assumes that the key being inserted is not present
in the tree, update/3 assumes that it is present, and so does
delete/2. The function take_smallest/1 assumes that the
tree is non-empty. In other words, the functions are written
to throw exceptions when called with the wrong data, and
the type checker warns us that this might indeed happen.

The other five warnings concern the passing of values be-
tween different functions in the module. For example, the
function insert/3 calls an internal function insert_1 which
will either return a one-element tuple containing a balanced

17

tree, or a tuple of three elements containing an unbalanced
tree plus some additional information. Now, the properties
of the algorithm guarantees that insert_1 when applied to
a complete tree will always return a balanced tree, so the call
to insert_1 is written so that an exception will be thrown if
this is not the case. As the type system does not understand
the algorithm, it warns that there may be an exception. Sim-
ilarly, there is one function call in the balancing algorithm
which should always return a tuple where the second ele-
ment is an empty list. The program is deliberately written
so that an exception will be thrown if this is not the case.
The remaining three warnings are similar; we know that a
particular intermediate value should be of a particular form,
so we check that this is indeed the case—there is no point
in handling any other situation gracefully as it must be due
to a bug.

8.5 Counter

As an example of a program with process communication,
we consider the simple counter process from [2].

start() ->
spawn (counter, loop, [0]).

increment (Counter) ->
Counter ! increment.

value(Counter) ->
Counter ! {self(), value},
receive
{Counter, Value} ->
Value
end.

stop(Counter) ->
Counter ! stop.

loop(Val) ->
receive
increment ->
loop(Val+ 1);
{From, value} ->
From ! {self(), Val},
loop(Val);
stop —>
true;
>
loop(Val)
end.

The function start() spawns a process which executes the
function loop(). Three functions handle communication
with the process; increment/1, value/1 and stop/1.

The specification file is as follows:

-module (counter) .

start() ->
pid().

increment (pid()) ->
increment.

+mbox (value/1) = {pid(), int()}.

value(pid()) ->
int ().

stop(pid()) ->
stop.

+mbox (loop/1) =
increment + {pid(), value} + stop.

loop(int()) ->
true.

First, the specification of start/1 indicates that it will re-
turn a process identifier. The function increment is specified
to take a pid as argument and return the atom increment.
Similarly, the functions value and stop take a pid as argu-
ment and return an integer and the atom stop, respectively.
Since value contains a receive expression in which it expects
a message consisting of a tuple of a pid and an integer, we
indicate this in the specification. Similarly, we indicate the
messages that the function loop receives.

Checking this module gives no warnings. Still, there are
many ways to use the module without breaking the specifi-
cation that will give strange results. Consider, for example

£f0O) >
P = counter:start(),
self() ! {P, foo},
V = counter:value(P).

This function function creates a counter process, and then
asks for its current value. However, before it asks the ques-
tion it forges a reply from the process. Now, the function
value will pick up the first message in the mailbox and re-
turn the value foo.

It is unlikely that the above code would occur in practice,
but the example shows that the process types do not guar-
antee safety.

9. DISCUSSION

There are a number of aspects of the Erlang programming
language that are hard to combine with static typing. The
fact that all complex data structures are constructed using
lists and tuples makes it difficult to distinguish objects of
different types. Erlang’s meta-call allows the destination
of a function call to be computed at run-time. In general,
any exported function of any module may be called. While
Erlang’s mechanism for process communication has many
attractive features, it is problematic that there is no distinc-
tion between external communication, i.e., messages related
to the service offered by the process, and internal communi-
cation, i.e., messages that the process may send and receive
as part of the implementation of this service.

18

Statically typed programming languages are of course de-
signed to facilitate static typing. Further, since the type
system is integrated in the implementation, a programmer
is forced to obey the discipline of the type system—any pro-
gram that does not type won’t compile. In a language with
dynamic typing this discipline is missing—it is perfectly pos-
sible to run a program that exhibits some inconsistent use
of types. For example, the Othello program discussed in
Section 8 has a function that either returns an integer (if
an operation is successful) or the atom false (if the oper-
ation failed). In Erlang, this is completely unproblematic,
but in for example SML such a program would have to be
rewritten.

It is also worth noting that static and dynamically typed
programming languages reveal differences in programming
style; in a dynamically typed programming language one
writes code so that the presence of a bug will cause it to
crash as soon as possible—the sooner one discovers that
an input or an intermediate result is incorrect the better.
For example, if we expect that a function should return a
non-empty list, we make sure that any other result gives an
exception. Paradoxically, making the program crash sooner
makes it more robust, as it gives us more opportunities to
detect bugs during testing. The use of this technique com-
pensates to a certain degree for the lack of early detection
of errors provided by static typing. (Also, it seems that im-
plementations of dynamically typed programming languages
do a better job in providing useful debugging information
when the program throws an exception.) The difference in
programming style makes it difficult to add static typing to
a program written for dynamic typing—precisely what we
do in a language with dynamic typing to make the programs
more robust also make them harder to type.

Another problem is that adding static types to a program
written for a language with dynamic typing requires under-
standing of the program, especially if one is to modify the
program to fit the type system. On other hand, sometimes
the type system helped reveal the inner workings of pro-
grams.

One argument against adding static types in retrospect is
that if the programs have already been debugged and tested,
the chances that the type system will discover any remaining
bugs are slim. In the experiments reported in Section 8, and
in other attempts to to type previously written programs,
the author never found any bugs due to type errors. How-
ever, applying the type system to untested toy programs
sometimes revealed accidental type errors.

One of the main motivations for using a static type system is
that it discovers bugs. However, as careful testing tends to
reveal these bugs, it seems that best way to use a static type
system is to apply it before the program is tested. Also, it
may happen that a program has to be re-written to fit the
type system. This also supports the view that static type
systems should be applied early in the development pro-
cess, perhaps as an integrated part of the compiler. Findler
et al. [9] appear to have drawn similar conclusions. They
describe a development system for Scheme, a dynamically
typed programming language, with an integrated static type
system.

10. CONCLUSION

We have presented a soft-typing system for Erlang. The
system is based on two ideas—use a specification language
to give the interface of each module, and use a data flow
analysis to verify that the implementation of the module
matches the specification.

As we saw in the experimental section, the system can rea-
son about substantial programs and produce useful results.
It is worth noting that even though the programs were de-
bugged and tested, the type system still produced warnings.
Almost all warnings concerned programming constructs that
the data flow analysis could not analyze precisely and where
one would not expect any other static typing system to give
better results.

One interesting result is that the experiments did not un-
cover a single type error in programs that had already been
tested and debugged. The explanation for this result is prob-
ably that careful testing tends to reveal most type errors.

Acknowledgements

The research was supported by the ASTEC (Advanced Soft-
ware Technology) competence center and Ericsson. Thanks
to the anonymous reviewers of the Erlang workshop for help-
ful comments, and thanks to Richard Carlsson for comment-
ing on an earlier version of this paper.

11. REFERENCES
[1] Alexander Aiken. Illyria demo, May 1995.

[2] Joe Armstrong, Robert Virding, Claes Wikstrom, and
Mike Williams. Concurrent Programming in Erlang,
Second Edition. Prentice-Hall, 1996.

[3] Thomas Arts and Joe Armstrong. A practical type
system for Erlang. In Erlang User Conference,

September 1998.

[4

Gilad Bracha and David Griswold. Strongtalk:
typechecking smalltalk in a production environment.
In Proceedings of the eighth annual conference on
Object-oriented programming systems, languages, and
applications, pages 215—230. ACM Press, 1993.

[5] R. Carlsson, B. Gustavsson, E. Johansson,
T. Lindgren, S. Nystrém, M. Pettersson, and
R. Virding. Core Erlang 1.0 language specification.
Technical Report 030, Information Technology
Department, Uppsala University, November 2000.

[6

Robert Cartwright and Mike Fagan. Soft typing. In
PLDI, pages 278-292, 1991.

[7

Jeremy Condit, Matthew Harren, Scott McPeak,
George C. Necula, and Westley Weimer. Ccured in the
real world. In Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and
implementation, pages 232-244. ACM Press, 2003.

8

Fabien Dagnat and Marc Pantel. Static analysis of
communications for Erlang. In Proceedings of 8th
International Erlang/OTP User Conference, 2002.

19

[9] Robert Bruce Findler, John Clements, Cormac
Flanagan, Matthew Flatt, Shriram Krishnamurthi,
Paul Steckler, and Matthias Felleisen. DrScheme: a
programming environment for Scheme. Journal of
Functional Programming, 12(2):59-182, March 2002.

[10] Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, Stephanie Weirich, and Matthias
Felleisen. Catching bugs in the web of program
invariants. In PLDI, volume 31 of ACM SIGPLAN

Notices, pages 23-32, 1996.

Cormac Flanagan, K. Rustan Leino, Mark Lillibridge,
Greg Nelson, James B. Saxe, and Raymie Stata.
Extended static checking for Java. In PLDI’02, pages
234-245, 2002.

N. Heintze. Set-based analysis of ML programs. In
ACM Conference on Lisp and Functional
Programming, pages 306317, 1994.

Frank Huch. Verification of Erlang programs using
abstract interpretation and model checking. In
Proceedings of the Fourth ACM SIGPLAN
International Conference on Functional Programming
(ICFP’99), pages 261-272, September 1999.

Anders Lindgren. A prototype of a soft type system
for Erlang. Master’s thesis, Uppsala University, April
1996.

Simon Marlow and Philip Wadler. A practical
subtyping system for Erlang. ACM SIGPLAN Notices,
32(8):136-149, August 1997.

George C. Necula, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy code.
In Symposium on Principles of Programming
Languages, pages 128-139, 2002.

Peter Norvig. Paradigms of artificial intelligence
programming: case studies in Common LISP. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA,
1992.

[17]

[18] Sven-Olof Nystrom. A polyvariant type analysis for
Erlang. Technical Report 045, Department of
Information Technology, Uppsala University,

September 2003.

[19] Jens Palsberg and Michael I. Schwartzbach.
Object-oriented type inference. In Conference
proceedings on Object-oriented programming systems,
languages, and applications, pages 146-161. ACM

Press, 1991.

[20] O. Shivers. Control flow analysis in Scheme. In
Proceedings of the SIGPLAN 88 Conference on
Programming Language Design and Implementation,

pages 164-174, 1988.

[21] Andrew K. Wright and Robert Cartwright. A
practical soft type system for Scheme. ACM
Transactions on Programming Languages and

Systems, 19(1):87-152, January 1997.

