
A polyvariant type analysis for ErlangSven-Olof Nystr�omDepartment of Information Te
hnology,Uppsala University, Swedensvenolof�
sd.uu.seAbstra
t. This paper presents a type analysis for the programminglanguage Erlang. The analysis
omputes interpro
edural
ontrol-
ow anddata-
ow information, and should be appli
able to any higher-order fun
-tional programming language with
all-by-value semanti
s. The analysisuses a novel method for polyvarian
e, stati
 limiting, where an approx-imation of the
all graph is analyzed to determine whether a fun
tionshould be treated as polyvariant or monovariant. A general frameworkfor polyvariant analysis is presented. This framework is used for experi-mental investigations to evaluate the
ost and potential bene�ts of poly-variant analysis and to
ompare di�erent apporoa
hes to polyvariantanalysis. The experimental results show that stati
 limiting gives thesame or better pre
ision as the other polyvariant analyses, while havingmore predi
table analysis times. However, the experiments show onlysmall improvements in pre
ision for the various polyvariant analyses.1 Introdu
tionErlang is a fun
tional and
on
urrent programming language, developed at Er-i
sson [2℄ and intended for tele
om appli
ations. Erlang is dynami
ally typed,i.e., no type de
larations are required (or allowed), and there is no requirementthat an Erlang program should be examined by a type
he
ker before it is run.Instead, ea
h value
arries dynami
 type information.One of the primary advantages with dynami
 typing is that the languagedesign is simpli�ed. Also, it is often argued that dynami
 typing helps rapid de-velopment, espe
ially for prototyping and testing (see for example [11℄). Anotheradvantage is that it is possible to write general routines for writing and readingdata of any type. This is parti
ularly useful for Erlang's intended appli
ations,as it allows
ommuni
ation over untyped
hannels.One disadvantage with dynami
 typing is that its implementation usually re-quires a large number of run-time type
he
ks. Every primitive operation must
he
k that its arguments are of the intended type. Absen
e of stati
 type infor-mation also
ompli
ates the implementation of various
ompiler optimizations.This paper presents a data
ow analysis whi
h determines an approximationof the possible types of variables and expressions in the program. In the paper wefo
us on one aspe
t of the analysis, that it is polyvariant (
ontext-dependent). Ithas long been re
ognized [13, 14℄ that an interpro
edural program analysis will

2obtain better pre
ision if it distinguishes di�erent
alls to a fun
tion. We presenta polyvariant analysis that uses a novel te
hnique, stati
 limiting, to
ontrol the
ost of polyvarian
e.The work presented here
an be seen as a generalization of monovariantanalysis te
hniques su
h as 0CFA [14℄ or set-based analysis [8℄. Shivers alsoproposed a simple polyvariant analysis, kCFA, whi
h distinguished
alls basedon the k most re
ent
all sites.Cartwright and Fagan's soft-typing system [5℄ tried to apply type inferen
e todynami
ally typed languages, in parti
ular S
heme. The system was intended toserve two purposes, to help the programmer by dete
ting possible programmingerrors and to help the
ompiler by providing type information. Marlow andWadler's soft-typing system for Erlang [10℄ had a di�erent goal. Instead of typingall Erlang programs, their system refused programs it
ould not type. Thus,it de�ned, in e�e
t, a new programming language
onsisting of those Erlangprograms that it
ould type.Other work on type analysis for fun
tional programming languages in
ludepolyvariant analyses by Ashley and Dybvig [3℄ and Wright and Jagannathan [16℄.2 Polyvariant analysisA
ow analysis
omputes, for ea
h variable and subexpression in the program, anapproximation of the set of possible values. An analysis whi
h simply asso
iatesvalues to di�erent parts of the program (i.e., amonovariant or
ontext-insensitiveanalysis) su�ers from the problem that if a fun
tion is
alled with from di�erentparts of the program, the analysis will set the result of the di�erent
alls tobe union of all
alls to the fun
tion. For polymorphi
 fun
tions, this will of
ourse give lower pre
ision, but fun
tions that are not polymorphi
 may alsobe a�e
ted. Consider for example a fun
tion where the result depends on itsargument (perhaps it simply returns the argument). If there is one
all site wherethe type of the argument is unknown, the result will also be unknown. Thus, amonovariant analysis may propagate a low-pre
ision result where a polyvariantanalysis would
on�ne it to one part of the program.Generally speaking, a polyvariant analysis will be more expensive sin
e somefun
tions are analyzed many times. In theory, a monovariant analysis might takelonger to
ompute sin
e time is spent propagating an over-approximation.The me
hanism we use involves a set of
ontexts,
 2 Context , and a fun
tionCall(f; l;
) =
0whi
h, given a fun
tion f , a
all site l and a
ontext
 returns a new
ontext. Wealso assume an initial
ontext,
0. The idea is that if a
all to fun
tion f o

ursat label l in
ontext
, the body of f will be analyzed in
ontext
0. Within thissimple framework it is possible to express analyses with a wide range of pre
isionand eÆ
ien
y.One
hoi
e is to set Context = f
0g, i.e, use a minimal set of
ontexts, andto de�ne Call as Call(f; l;
0) =
0;

3for all f and l. This will give us a monovariant analysis.One simple way to get a polyvariant analysis is to set Context = Lab [fstartg,i.e., let the
ontexts be the set of labels plus one additional element to be usedin the beginning of the analysis. With the de�nitionCall(f; l;
) = l;this would give us a very limited form of polymorphism.The reason for polyvariant analysis is that we want to keep unrelated
allsseparate, but there must be some limit on the number of
ontexts generated, toguarantee termination, and to make sure that the number of
ontexts does notbe
ome ex
essive for large programs. In the following se
tion, we will dis
uss anumber of te
hniques for
ontrolling the number of
ontexts.2.1 k-limitingThis is an adaption of the te
hnique proposed by Shivers [14℄. There are somedi�eren
es due to the di�eren
es in programming languages (for example, Shiversassumes that the program is in
ontinuation-passing style).In a
omputation, ea
h invo
ation of a fun
tion
an be identi�ed by a se-quen
e of
all sites (labels). Thus, by letting the set of
ontexts
onsist of arbi-trary sequen
es of labels we would be able to treat ea
h invo
ation of a fun
tionseparately. The problem is that the set of
ontexts would be in�nite, and thusthe analysis would not terminate! Shivers' solution to this problem is to set amaximum length (k) to sequen
es of
all sites. This gives usContext = fl1 : : : ln j n � kgand Call(f; l; l1 : : : ln) = (ll1 : : : ln; if n < kll1 : : : ln�1; if n = kBy limiting the size of a
ontext to k, we
an guarantee that the set of
ontexts is�nite. However, sin
e the number of
ontexts is exponential in k, we are for
ed tosettle for rather small values of k. Also, it is un
lear that the strategy of keepingthe most re
ent part of the
all sta
k and forgetting the earlier parts is the rightone. For example, if a fun
tion
ontains a single re
ursive
all (at label l), therewill be a
ontext l : : : l
orresponding to the situation after at least k re
ursive
alls. If the fun
tion is
alled from many di�erent parts of the program, we willalways arrive at the same
ontext after
onsidering k re
ursive
alls.2.2 Dynami
 dete
tion of re
ursionIn a fun
tion with a re
ursive
all, the arguments given in the re
ursive
all tendto have the same type as the arguments in the �rst
all to the fun
tion. Thus,

4it would make sense to evaluate the two
alls in the same
ontext. If we let the
ontexts in
lude, for ea
h
all site, information on whi
h fun
tion is
alledContext = f
 2 (Lab� Fun
tion)� j ea
h f 2 Fun
tiono

urs at most on
e in
gand de�ne Call to look for the previous
all to the same fun
tionCall(f; l;
) = (hf; li
; if f does not o

ur in

0; if f o

urs in
 and
0 = hf; : : :i : : : is a suÆx of
we guarantee that the set of
ontexts is �nite.2.3 Stati
 dete
tion of re
ursionWhat about mutually re
ursive fun
tions? There are some situations where it isnatural to express an algorithm as a set of mutually re
ursive fun
tions. A statema
hine
an be implemented with one fun
tion for ea
h state, and a tail-
allsbetween fun
tions for ea
h transition. Re
ursive-des
ent parsers will typi
ally
ontain systems of mutually re
ursive fun
tions (depending on the grammar, of
ourse). Similarly, any tool that traverses syntax trees is likely to
ontain systemsof mutually re
ursive fun
tions.A system of mutually re
ursive fun
tions might indu
e a large number of
ontexts. Suppose, for example, that there is a system of n mutually re
ursivefun
tions, and that ea
h fun
tion de�nition
ontains a
all to ea
h of the otherfun
tions. Now, any of the n! possible orderings of the fun
tions may o

ur in a
ontext, giving an analysis with exponential
omplexity.The problem
an be avoided by building a synta
ti

all graph of program-de�ned fun
tions, su
h that there is an edge from fun
tion f1 to fun
tion f2 if thebody of f1
ontains an
all to f2. Compute the strongly
onne
ted
omponents(s

s). Ea
h set of mutually re
ursive fun
tions will form an s

. With SCCequal to the set of strongly
onne
ted
omponents,Context = f
 2 (Lab� SCC)� j ea
h s 2 SCC o

urs at most on
e in
gand letting Call
he
k if a re
ursive
all is to the same s

 or not, we improvethe behavior in the
ase of mutual re
ursion. In the de�nition below, let sf bethe strongly
onne
ted
omponent
ontaining f .Call(f; l;
) = (
; if
 = hsf ; li
0, for some
0hsf ; li
; otherwiseBy using stati
 dete
tion of re
ursion, we eliminate polyvarian
e within sets ofmutually re
ursive fun
tions. A similar situation
an be found in programminglanguages su
h as ML, where synta
ti
 restri
tions guarantee that
alls betweenmutually re
ursive fun
tions
an not be polymorphi
. Note that even thoughstati
 dete
tion of re
ursion removes one sour
e of exponential growth, the num-ber of
ontexts may still be exponential in the size of the program, for example,if there is a
hain of fun
tions f0, f1, : : : fn su
h that ea
h fun
tion has two
allsto the next fun
tion in the
hain.

52.4 Stati
 limitingNote that the strongly
onne
ted
omponents form a dire
ted a
y
li
 graph(DAG), with s

s as nodes, and an edge s0 l! s1 between two nodes if theresome fun
tion f
ontains a
all at label l to a fun
tion g, and f is a member ofs0 and g of s1.If we
onsider
omputations starting with a fun
tion f , the
ontexts
reatedby an analysis
orrespond to the set of paths in the DAG starting at sf . Sin
ethe number of paths starting at any given node in the graph
an be
omputedstati
ally, we
an set a limit to the number of
ontexts generated. This bringsus to the idea of stati
 limiting.In the following, all de�nitions are with respe
t to a dire
ted a
y
li
 graphG = hN;Ei. A path q in G is a sequen
e q = s0l0s1l1 : : : sn�1ln�1sn su
h thatthat si li! si+1, for i < n. Let the weight of a node s be the number of paths inG starting with s. Say that a node s is polyvariant, if its weight is less than athreshold p, monovariant otherwise. Also, an edge s0 l! s1 is polyvariant if itsdestination s1 is polyvariant. Similarly, say that a fun
tion is polyvariant if it isa member of a polyvariant node.We de�ne the
ontexts as paths in the subgraph of polyvariant nodes;Context = fs0l0s1l1 : : : ln�1sn j where s0 l0! s1 l1! : : : ln�1! snand all sk are polyvariant, for k � ngCall(f; l;
) = 8><>:sf ; if f is monovariant
; if
 = sf : : :sf l
; otherwiseThe use of polyvariant analysis implies that the analysis problem grows larger,as some parts of the program are analyzed under di�erent
ontexts. How mu
hdoes the analysis problem grow? It turns out that the resulting analysis problemgrows with at most a
onstant fa
tor.The expanded DAG X(G) = hNX ; EX i is
onstru
ted withNX = fq 2 path(G) j ea
h edge of q is polyvariantgEX = fhq; l; q0i j l is polyvariant and q0 = qls, for node s and edge l in NgS fhs; l; s0i j l is a monovariant edge s l! s0 in GgLet the size of a graph be the total number of nodes and edges.Theorem 1. For any dire
ted a
y
li
 graph G, size(X(G)) � 2 � p � size(G).Proof. The proof is by indu
tion on the size of G.Suppose size(G) = 0. Sin
e there are no nodes in G, it follows immediatelythat X(G) has no nodes and thus no edges. Sin
e size(X(G)) = 0, the theoremfollows immediately.Suppose size(G) > 0. G must
ontain at least one node. Sin
e G is a DAGthere must be one node r whi
h is the su

essor of no other node. We have three
ases.

61. r has no su

essors.2. There is an edge r l! s su
h that s is monovariant.3. There is an edge r l! s su
h that s is polyvariant.Case 1 is straight-forward. Consider the graph G0 obtained by removing thenode r from G. Sin
e r o

urs in only one path of G, we see that there is onlya single node of X(G) that is not a node of X(G0). All edges of X(G) arealso edges of X(G0). Thus size(X(G)) = size(X(G0)) + 1 � 2p � size(G0) + 1 =2p � (size(G)� 1) + 1 � 2p � size(G).Case 2. Consider the graph G0 obtained by removing the edge l from G. Sin
el is monovariant, the nodes of X(G0) are exa
tly the nodes of X(G). The onlyedge of X(G0) that is not a node of X(G) is hr; l; si. The theorem follows by anappli
ation of the indu
tion hypothesis.Case 3. Again, let G0 be the graph obtained by removing l. Sin
e s is poly-variant, there are at most p paths starting with s. Thus, there are at mostp paths starting with rls : : : in G. Sin
e r has no prede
essors, all paths
on-taining l are of this form. It follows that there are at most p nodes of X(G)that are not nodes of X(G0). The edges of X(G) that do not o

ur in X(G0)are all of the form hq; l0; q0i, where q0 is a path
ontaining l. Sin
e there are atmost p su
h paths, size(X(G)) � size(X(G0))+2p. By the indu
tion hypothesis,size(X(G0)) + 2p � 2p � size(G0) + 2p = 2p � (size(G)� 1) + 2p = 2p � size(G).3 The analysisTo make the analysis more uniform, we assume that all data-types (for exampleatoms, integers,
oating-point numbers, lists and tuples) are expressed using aset of type
onstru
tors, C 2 Con , where ea
h
onstru
tor has a given arity. Weassume two nullary
onstru
tors `true' and `false'. We also assume a set of pre-de�ned fun
tions p 2 Pre and a set of program-de�ned fun
tions f 2 Fun
tionand a set of labels, Lab.Let a program be a set of de�nitions of the formf(x1; : : : ; xn)! E;where expressions are de�ned a

ording toE ::= x j C[E1; : : : ; En℄ j if E1 then E2 else E3 j f(E1; : : : ; En)j funl (x1; : : : ; xn)! E1 j E0(E1; : : : ; En)l j p(E1; : : : ; En)We assume that there is a program-de�ned fun
tion fe 2 Fun
tion. The intentionis that fe will serve as an entry point in the analysis.3.1 Basi
 stru
turesThe state of the analysis is a store, mapping analysis variables to terms.Analysis variables are used to store intermediate and �nal results. To makethe analysis polyvariant, it is ne
essary to let analysis variables range over
on-texts. Thus, for
ontexts
 2 Context , let Var be one of the following

71. Arg(f; k;
) 2 Var , where f is a program-de�ned fun
tion with arity n � k.2. Res(f;
) 2 Var , where f is as above.3. FunArg(l; k;
) 2 Var , where l 2 Lab is the label of a fun expression.4. FunRes(l;
);ApplyRes(l;
); IfRes(l;
) 2 Var , where l is the label of a
all toa higher-order fun
tion.Let t 2 Term , the set of terms, be the least set su
h that1. Var � Term.2. any 2 Term.3. C[t1 : : : tn℄ 2 Term, where C has arity n and t1; : : : ; tn 2 Term .4. FunTerm(l;
) 2 Term , where l is the label of a fun expression.Let Work , the set of analysis tasks, be the set of pairs hf;
i, where f is aprogram de�ned fun
tions and
 is a
ontext. The analysis will maintain a worklist,
ontaining a subset of Work .3.2 Implementation of set abstra
tionThe store will asso
iate with ea
h analysis variable X the following:1. X:value � Term , a set of terms whi
h are not analysis variables.2. X:link � Var , a set of variables.3. X:depend �Work , a set of analysis tasks.When the analysis is �nished, the relevant information for ea
h variable is
ol-le
ted in X:value. For example, for a fun
tion f , Arg(f; 1;
):value gives an ap-proximation of the values that may be passed in the �rst argument of f .For ea
h variable X we also store X:link, a set of variables su
h that X � Y ,for ea
h Y 2 X:link, and X:depend, a set of analysis tasks whose result maydepend on the value of X . Thus, if the value of X
hanges, it may be ne
essaryto re-analyze any member of X:depend.We de�ne the following operations on the store.1. Lookup(X). Determine the
urrent value of X .2. Add(t;X). Add the term t to the value of X .3. Add(X;Y). Add the value of X to Y , i.e., make X a subset of Y .We assume that during any point in the analysis, it is possible to determine the
urrent analysis task (an element of Work). By dividing the analysis probleminto a set of separate tasks, it is possible to devise a work-list oriented strategywhere a portion of the program only needs to be re-analyzed when a value onwhi
h it depends on has
hanged. The purpose of the link �eld is to representin
lusion relations expli
itly. The implementation of the operations is given inFigure 1.

8Lookup(X):1: Add
urrent task to X:depend2: Return X:valueAdd(t;X):1: Test if t is
ontained in X:value2: If not,3: set X:value to value(X) [ftg,4: put all tasks in X:depend on worklist,5: for ea
h variable Y 2 X:link, doAdd(t; Y).
Add(X;Y):1: if X is a member of Y:link,2: do nothing3: if X is not a member of Y:link,4: add X to Y:link,5: let t = Y:value and6: do Add(t;X)Contains(t1; t2):1: Return true if2: t1 = t2,3: t2 = any, or4: t2 is a variable X, and Contains(t1; t0)holds, for some t0 2 Lookup(X).5: Return false otherwise.Fig. 1. Implementation of set abstra
tion.3.3 Analyzing Erlang expressionsAnalysis of an expression takes1. expression to be analyzed2. an environment mapping program variables to terms and3.
urrent
ontext4. a storeand returns1. a term and2. an updated store.When analyzing expressions
onsisting of a single variable, simply look up thevalue of the variable in the
urrent environment.Analyze(x; E ;
):1: return E(
)Expressions involving a
onstru
tor simply build a
orresponding term.Analyze(C[E1; : : : ; En℄; E ;
):1: let tk = Analyze(Ek; E ;
), for k � n2:
onstru
t the term C[t1; : : : ; tn℄ and3: return it as the result of the analysis.The analysis of
omplex expressions is given in Figure 2.In the analysis of
alls to program-de�ned fun
tions, we use the fun
tion Callto
ompute a new
ontext. When a
all is analyzed for the �rst time, a new

9Analyze(if E1 then E2 else E3; E ;
):1: let t1 = Analyze(E1; E ;
)2: if Contains(true; t1) holds,3: let t2 = Analyze(E2; E ;
)4: Add(t2; IfRes(l;
))5: if Contains(false; t1) holds,6: let t3 = Analyze(E3; E ;
)7: Add(t3; IfRes(l;
))8: return IfRes(l;
).Analyze(f(E1; : : : ; En)l; E ;
):1: let tk = Analyze(Ek; E ;
) for k � n2: let
0 = Call(f; l;
),3: Add(tk;Arg(f; k;
0)), for k � n4: unless hf;
0i has been analyzedbefore, add hf;
0i to work list5: return Res(f;
0)

Analyze(funl (x1; : : : ; xn)! E0; E ;
):1:
reate a new environment E1 byextending old environment E withbindings xk 7! FunArg(l; k;
), fork � n2: let t = Analyze(E0; E1;
)3: Add(t;FunRes(l;
))4: return FunTerm(l;
)Analyze(E0(E1; : : : ; En)l; E ;
):1: let tk = Analyze(Ek; E ;
) for0 � k � n2: for ea
h l0, su
h thatContains(FunTerm(l0;
0); t0),3: Add(tk; FunArg(l0; k;
0)), for1 � k � n4: Add(FunRes(l0;
0);ApplyRes(l;
))5: Return ApplyRes(l;
)Fig. 2. Analyzing expressions.analysis task
onsisting of the
alled fun
tion and the new
ontext is added tothe work list.In the analysis presented here,
losures are not polymorphi
. A polymorphi
analysis would be more
omplex, and as most Erlang appli
ations make verylittle use of higher-order fun
tions the added
omplexity and
ost of an analysisthat
ould treat
losure appli
ations polymorphi
ally
annot be justi�ed. SeeSe
tion 3.4 for a detailed dis
ussion.Analyzing
alls to higher-order fun
tions is similar to analyzing
alls touser-de�ned fun
tions, but slightly
ompli
ated by the fa
t that we need theanalysis to determine the destination of the
all. For a fun-expression (a
lo-sure) funl (x1; : : : xn) ! E0, we use analysis variables FunArg(l; 1;
) throughFunArg(l; n;
) to represent the arguments, i.e., the set of possible values thatmay be passed as values to the fun
tion. In a similar way, the set of values thatmay be returned by the fun
tion is stored in the variable FunRes(l;
).However, we will still distinguish between di�erent instan
es of a
losure.Thus, a
losure is represented by a term of the form FunTerm(l;
), to distinguishbetween
losures
reated at the same program point but in di�erent
ontexts.The main loop maintains a work list of all fun
tion-
ontext pairs that needto be analyzed. Sin
e the arguments are passed in the store (asso
iated with the
ontext), the task only needs to
ontain fun
tion and
ontext.

10MainLoop:1: if WorkList is empty,2: terminate analysis3: if WorkList is not empty,4: remove a pair of a program-de�nedfun
tion
ontext hf;
i fromWorkList,5: let hf;
i be the
urrent task, and6: Analyze(f;
)7:
ontinue MainLoop
AnalyzeProgram:1: Let n be the arity of fe.2: Add(any;Arg(f; k;
)), for k � n.3: Put hfe;
0i in WorkList.4: Exe
ute MainLoop.Analyze(f(x1; : : : ; xn)! E;
):1: Create environment E mapping ea
hof Xk to the term Arg(f; k;
), fork � n2: let t = Analyze(E;E ;
)3: Add(t;Res(f;
))Fig. 3. Main loop of analysis.3.4 Polyvariant analysis of higher-order fun
tionsIn the analysis presented in this paper, the analysis of
alls to
losures is mono-variant. In this se
tion we dis
uss the
hanges needed for a polyvariant analysisof
losures.Note that in Se
tion 2, when reasoning about
ontexts and
all graphs, a`fun
tion' is assumed to be a top-level fun
tion. We must extend this
on
eptto in
lude
losures (whi
h
an be identi�ed by their label). The me
hanism fordynami
 dete
tion of re
ursion (Se
tion 2.2) will dis
over if a
losure
alls itselfre
ursively.To implement stati
 dete
tion of re
ursion and stati
 limiting, we need a

essto a
all graph. However, with higher-order fun
tions, we must run the analysisto
onstru
t the
all graph! One way around this problem is to �rst use a simple
ow analysis to
onstru
t the
all graph (for example, Shivers' 0
fa).In the
all graph, the nodes will be (top-level) fun
tions and (labels of)
losures. For ea
h higher-order fun
tion
all, there is an edge to ea
h
losurethat may be
alled. Now,
onsider a top-level fun
tion
ontaining one or more
losures. A
all o

uring in one of the
losures
orresponds to one or more edgesfrom the
losure. A
all in the fun
tion body, outside the
losures,
orrespondsto an edge from the fun
tion. Computing strongly
onne
ted
omponents anddetermining whether a fun
tion or
losure should be monovariant or polyvariantis done as previously (Se
tions 2.3 and 2.4).We add FunDest(l;
) and CVar(l; k;
) to the set of analysis variables Var , forlabels l,
ontexts
, and k � 0. We also introdu
e a term FunCall(
). The variableFunDest(l;
) is asso
iated with fun appearing at label l, evaluated in
ontext
.Ea
h term FunCall(
0) in FunDest(l;
) represents a request to evaluate the bodyof the fun in the environment
0. In this evaluation, the values asso
iated withthe free variables of a
losure will be stored in variables CVar(l; k;
0) We must

11Analyze(funl (x1; : : : xn)! E0; E ;
):1: For ea
h
0 su
h thatContains(FunCall(
0);FunDest(l;
)),2: Add(E(yk);CVar(l; k;
0)), fork � m,3: unless hl;
0i has been analyzedbefore, add hl;
0i to work list.4: return FunTerm(l;
).
Analyze(l;
):1: Let funl (x1; : : : xn)! E0 be the funexpression labeled l.2: Create environment E mapping ea
hof xk to the term Arg(f; k;
), fork � n, and yk to CVar(l; k;
), fork � m3: let t = Analyze(E0; E ;
)4: Add(t;FunRes(f;
))Analyze(E0(E1; : : : ; En)l; E ;
):1: Let tk = Analyze(Ek; E ;
) for 0 � k � n.2: for ea
h l0 and
0, su
h that Contains(FunTerm(l0;
0); t0),3: let
00 = Call(l0; l;
),4: Add(FunCall(
00);FunDest(l0;
0)),5: Add(tk;FunArg(l0; k;
00)), for 1 � k � n.6: Add(FunRes(l0;
00);ApplyRes(l;
)).7: Return ApplyRes(l;
).Fig. 4. Polyvariant analysis of higher-order fun
tions.also introdu
e a new
lass of analysis tasks, asso
iated with the evaluation of a
losure. We will write those hl;
i.In the polyvariant analysis a
losure should be analyzed on
e for ea
h
ontextin whi
h it is
alled. Thus, the analysis of a fun expression looks for termsFunCall(
0), indi
ating a
all to the fun in
ontext
. The analysis rules aregiven in Figure 4. We assume that the free variables of the fun expression arey1; : : : ; ym.4 The implementationThe analysis is written in Erlang. As Erlang is (apart from the
on
urren
yprimitives) a pure fun
tional programming language and la
ks arrays and hashtables, the store is represented as a balan
ed binary sear
h tree.4.1 ModulesThe analysis is applied to a single Erlang module. All exported fun
tions are en-try points, and their arguments are assumed to be the universal type. The anal-ysis has information about the return types of built-in fun
tions and fun
tions inthe standard library math. For some ben
hmarks, the analysis is provided withthe sour
e
ode of some external modules. Calls to other modules are assumedto return the universal type.

124.2 Core ErlangEven though Erlang may on the surfa
e appear to be a simple language, it isnot
ompletely straight-forward to write a front end whi
h handles all aspe
tsof the Erlang language. To avoid dealing with these details, the analysis insteadoperates on the Core Erlang intermediate
ode [4℄. The translation is performedusing the front end of the OTP distribution.In the translation to Core Erlang, all primitive operations (for example, arith-meti
) will appear as fun
tion
alls. Also, the translation adds a
lause with a
all to `exit' (whi
h generates an ex
eption) to ea
h
ase statement, thus mak-ing make the ex
eptions thrown when a
ase expression fails to �nd a mat
hing
lause expli
it. This means that even fairly simple Erlang fun
tions may
ontainseveral
alls to built-in fun
tions. The
omputation of weights in stati
 limitingtreats these
alls as any other
alls, the result is that ea
h fun
tion will be as-signed a greater weight. This is not unreasonable, as the weight is intended tore
e
t the
ost of analyzing a fun
tion polymorphi
ally, and fun
tions
ontainingmany built-in
alls will be more expensive to analyze. Note that, as the weightof ea
h fun
tion is greater, the
hoi
e of the parameter p is a�e
ted.4.3 Meta-
allErlang's meta-
all takes three arguments; an atom whi
h gives the module being
alled, an atom giving the name of the fun
tion and a list whi
h is sent as anargument list to the fun
tion. In other words, the destination of a meta-
all is
omputed on the
y. This makes it impossible to
ompute the
all graph beforethe analysis begins, as is required by stati
 limiting. The solution is simply tobuild the graph with the
all destinations available. To avoid problems within�nite re
ursion, the analysis also implements dynami
 dete
tion of re
ursion.5 Experimental ResultsTable 1 lists the ben
hmarks used in the measurements. For ea
h ben
hmarkthe number of lines is shown (not in
luding
omments and blank lines). Barnessolves the n-body problem. It is pa
kaged as a
ompiler ben
hmark, so all datais given in the program (the program was modi�ed to only export one fun
-tion). B2i is a module in the Hipe
ompiler whi
h translates BEAM
ode to aninternal representation. Eddie is a high availability
lustering tool. The eddie+ben
hmark was originally intended as a
ompiler ben
hmark and
onsists of anhttp parser and a set of support modules. Eweb is a tool for Erlang literate pro-gramming. The hipe+ ben
hmark
onsists of modules from the Spar
 ba
kend ofthe Hipe
ompiler [12℄. Igor is a tool for merging and renaming Erlang modules,downloaded from the Erlang user
ontributions list. Othello is a Othello-playingprogram, downloaded from the Erlang user
ontributions list. S
an is a lexi
alanalyzer for XML, downloaded from the Erlang user
ontributions list.In the evaluation, we
onsidered the following settings for polyvarian
e.

13Name In
luded modules Linesbarnes barnes 180b2i hipe beam to i
ode 1115eddie http parse 335eddie+ http parse, http �elds, listssrv parse, srv table 1610igor igor 1556igor+ igor, lists 2062hipe+ hipe rtl2spar
, gb trees, hipe
onsttab, hipe gensymhipe rtl.erl, hipe spar
, hipe spar
 registers, lists 4312othello othello 173othello+ othello, othello board, othello adt 932s
an xmerl s
an 2118Table 1. Ben
hmark programs used in the evaluation.{ Stati
 limiting with the parameter p (as in Se
tion 2.4) set to 10, 100, and1000 (sl-10, sl-100, and sl-1000).{ Monovariant analysis (0
fa) and Shiver's polyvariant analysis with k set to1 (1
fa).{ Dynami
 dete
tion of re
ursion (ddr).{ Dynami
 dete
tion of re
ursion with the size of
ontexts limited to size 1(ddr-1).{ Both dynami
 and stati
 dete
tion of re
ursion (dsdr).{ Dynami
 and stati
 dete
tion of re
ursion with
ontexts limited to 1.The measurements were done on a dual pro
essor Intel Xeon 2.4 GHz ma
hinewith 1 GB of RAM and 512 KB of
a
he per pro
essor, running Linux. Theben
hmarks were run under the BEAM byte
ode interpreter.Name sl-10 sl-100 sl-1000 0
fa 1
fa ddr ddr-1 dsdr dsdr-1barnes 0.6 0.6 0.5 0.3 1.1 0.6 0.6 0.6 0.6b2i 43.0 50.7 50.9 995.7 * 168.2 108.5 105.4 9.1eddie 1.5 1.6 1.6 0.7 2.9 5.1 1.4 1.4 1.1eddiepl 6.0 6.5 6.5 0.9 385.4 23.7 150.5 6.5 151.9hipepl 20.9 71.3 72.2 2.0 13.6 72.3 12.1 71.7 12.3igor 6.5 13.9 29.3 1.3 3.7 169.7 3.4 154.6 3.3igorl 11.5 34.4 122.5 1.6 8.6 753.7 5.0 604.9 4.8eweb 0.9 1.2 2.3 0.4 2.6 2.3 0.6 2.3 0.6othello 0.2 0.2 0.4 0.2 0.3 0.5 0.3 0.4 0.2othello+ 8.1 15.3 21.3 5.1 7.8 741.3 7.1 515.5 6.8s
an 32.8 52.3 75.7 2.1 22.6 + 39.8 4118.8 28.9Table 2. Analysis time for all
ombinations of ben
hmarks and polyvarian
e. All timesare in se
onds. * - terminated after running for more than one hour, + - ran out ofmemory.

14 The timings for all ben
hmarks is given in Table 2. 0
fa is always the fastest,ex
ept in the b2
 ben
hmark. In b2
, 1
fa was run for more than one hour with-out terminating, and 0
fa was the slowest of the rest. A partial explanation to thisrather pe
uliar behavior is that the module
ontains a fun
tion mk label whi
his
alled from more than 20 lo
ations in the module. This fun
tion takes an envi-ronment as an argument and returns a new environment, and as many fun
tionspass around environments, one might hypothesize that
omputing transitive
lo-sure is easier when using stati
 limiting as the graph be
omes more tree-like. Totest this hypothesis, 0
fa was modi�ed to allow polyvariant analysis of mk label.This version of the analysis terminated in 37 se
onds.The timings for the polyvariant
fa-based analyses vary greatly, note forexample in the
ase of eddie+ how the limited analyses (ddr-1, and dsdr-1)are between 6 and 20 times slower than their unlimited
ounterparts. The mainmodule of the eddie ben
hmark
ontains a re
ursive-des
ent parser, using expli
itstate (in essen
e, a
ontinuation) to avoid deep re
ursion. A partial explanationto the slower performan
e is that the limited analyses will see more possibleintermediate states, and ea
h possible intermediate state will trigger more workfor the analysis.For all other ben
hmarks the limited versions of ddr and dsdr are faster thantheir unlimited variants. In the
ase of the igor, othello and s
an ben
hmarks,the unlimited ddr and dsdr fare parti
ularly badly, and either fail to terminateor require more than 50 times as mu
h time as 0
fa.In
ontrast, the analyses based on stati
 limiting have quite predi
table exe-
ution times. sl-10 is at most 16 times slower than 0
fa, sl-100 is never more than25 time slower, and sl-1000 is at most 76 times slower than 0
fa. It is interestingto relate this result with Theorem 1, whi
h guarantees that the analysis problemsolved by an sl-p analysis will at most be p�2 times larger than the
orrespondingproblem solved by 0
fa. The theorem does not make any guarantees regardinganalysis time, but the experimental results suggest that a similar property holdsfor analysis time.Next we turn to the estimates of pre
ision shown in Table 3. The pre
ision ofea
h analysis was estimated by looking at ea
h fun
tion parameter and returnvalue of the exported fun
tion of the main modules of ea
h ben
hmark. Thesewere divided into two
ategories, known and unknown. A type was
onsidered tobe unknown if it was the union of two or more top-level
onstru
tors, or if it wasany, or if it was a tuple of unknown length. The �gures indi
ate the per
entageof parameters and return values with known type.The di�eren
e in pre
ision between monovariant and polyvariant analysis isnever very large. For example, in the igor ben
hmark, monovariant analysis isable to determine the types of 36% of all fun
tion parameters and results, whileall polyvariant analyses determine the types of 42%. Why is the improvementso small? The fa
t that the underlying analysis is quite pre
ise means that theadvantage of separating
alls is smaller. (Also, sin
e the monovariant analysissets a rather high baseline the room for improvement is smaller.) Most of thevalues that remain unknown may have been passed from some unknown module,

15Ben
hmark sl-10 sl-100 sl-1000 0
fa 1
fa ddr ddr-1 dsdr dsdr-1 Positions.barnes 88.1 88.1 88.1 54.2 88.1 88.1 88.1 88.1 88.1 59b2i 40.1 40.1 40.1 34.9 * 40.1 40.1 40.1 40.1 212eddie 32.9 32.9 32.9 32.9 32.9 32.9 34.2 32.9 32.9 161eddie+ 34.2 49.1 49.1 32.9 33.5 49.1 35.4 49.1 34.2 161hipepl 68.5 68.5 68.5 59.1 68.5 68.5 68.5 68.5 68.5 127eweb 30.5 30.5 30.5 24.5 26.0 30.5 30.5 30.5 30.5 200igor 42.0 42.0 42.0 36.5 36.7 42.0 42.0 42.0 42.0 529igor+ 51.0 51.0 51.0 41.4 43.1 51.0 51.0 51.0 51.0 529othello 22.0 22.0 22.0 16.5 22.0 22.0 22.0 22.0 22.0 109othello+ 42.2 42.2 42.2 31.2 42.2 43.1 42.2 43.1 42.2 109s
an 30.9 33.4 30.9 28.2 30.9 - 30.9 30.9 30.9 482Table 3. Estimates of pre
ision. Numbers indi
ate per
entage of fun
tion parametersand return values in main module whose type
ould be determined by the analysis.The �nal
olumn indi
ates the total number of fun
tion parameters and return valuesexamined.or are due to limitations of the underlying analysis. Also note that we treat aunion of two types, for example two di�erent tuples, as an unknown. The fa
tthat the programs analyzed make very little use of polymorphism might also
ontribute.It is also worth noting that the di�eren
e in pre
ision between di�erent poly-variant analyses is either small or non-existent, so if one wants a polyvariantanalysis, one might as well
hoose the fastest one, sl-10.6 Related workAshley and Dybvig [3℄ des
ribe an polyvariant analysis where the new
ontextis dependent on the types of the arguments in the
all. Thus, two
alls to afun
tion will be separated if at least one of their arguments di�er in type.Wright and Jagannathan [16℄ des
ribe an approa
h similar to Shivers's kCFAand evaluates its eÆ
ien
y in two optimizations; elimination of run-time
he
ksand inlining. Their analysis treats a fun
tion as polyvariant if it is de�ned ina surrounding let-expression. Thus, a re
ursive
all is never polyvariant. Thissynta
ti
 restri
tion resembles the te
hnique des
ribed in Se
tion 2.3 whi
h iden-ti�es strongly
onne
ted
omponents in the
all graph. Emami et al.[6℄ des
ribea polyvariant pointer alias analysis whi
h limits the size of
ontexts through ame
hanism whi
h resembles dynami
 dete
tion of re
ursion.Experimental investigations
omparing monovariant and polyvariant pointeranalysis for C have shown mixed results. Liang and Harrold [9℄
ompare theirpolyvariant analysis with a monovariant analysis [1℄ and �nd that the polyvariantanalysis is
omparable in pre
ision but faster. Foster at al. [7℄
ompare polyvari-ant and monovariant versions of Andersen's and Steensgaard's [15℄ analyses and�nd that polyvarian
e gives a large improvement for Steensgaard's analysis buthardly any improvement at all for Andersen's analysis.

167 Con
lusionsWe have presented a te
hnique for eÆ
ient polyvariant type analysis, stati
 lim-iting. It is simple in that its implementation only requires small modi�
ations toa monovariant analysis, and robust as it never in
reases analysis time with morethan a
onstant fa
tor. Two rather surprising results from the experiments arethat di�erent polyvariant analyses show approximately the same gain in pre
i-sion, and that this gain is usually quite small. Still, the use of a polyvarian
e
an be motivated, as it
an be implemented with (relatively) little programminge�ort and often gives a signi�
ant improvement in pre
ision. It is diÆ
ult to seehow a monovariant analysis
ould ever give the same pre
ision.Referen
es1. L. O. Andersen. Program Analysis and Spe
ialization for the C Programming Lan-guage. PhD thesis, DIKU, University of Copenhagen, May 1994.2. Joe Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams. Con
urrentProgramming in Erlang, Se
ond Edition. Prenti
e-Hall, 1996.3. J. Mi
hael Ashley and R. Kent Dybvig. A pra
ti
al and
exible
ow analysis forhigher-order languages. ACM TOPLAS, 20(4):845{868, July 1998.4. R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S. Nystr�om, M. Pettersson,and R. Virding. Core Erlang 1.0 language spe
i�
ation. Te
hni
al Report 030,Information Te
hnology Department, Uppsala University, November 2000.5. Robert Cartwright and Mike Fagan. Soft typing. In PLDI, pages 278{292, 1991.6. M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interpro
edural Points-toanalysis in the presen
e of fun
tion pointers. SIGPLAN Noti
es, 29(6):242{256,1994. PLDI.7. J. Foster, M. Fahndri
h, and A. Aiken. Polymorphi
 versus monomorphi

ow-insensitive points-to analysis for C. In Stati
 Analysis Symposium, number 1824in LNCS, pages 175{198, 2000.8. N. Heintze. Set-based analysis of ML programs. In ACM Conferen
e on Lisp andFun
tional Programming, pages 306{317, 1994.9. D. Liang and M. J. Harrold. EÆ
ient points-to analysis for whole-program analysis.In Os
ar Nierstrasz and Mi
hel Lemoine, editors, ESEC/FSE '99, volume 1687 ofLe
ture Notes in Computer S
ien
e, pages 199{215. Springer-Verlag / ACM Press,1999.10. Simon Marlow and Philip Wadler. A pra
ti
al subtyping system for Erlang. ACMSIGPLAN Noti
es, 32(8):136{149, August 1997.11. Peter Norvig. Paradigms of arti�
ial intelligen
e programming:
ase studies inCommon LISP. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1992.12. M. Pettersson, K. Sagonas, and E. Johansson. The HiPE/x86 Erlang
ompiler:System des
ription and performan
e evaluation. In Zhenjiang Hu and MarioRodr��guez-Artalejo, editors, Pro
eedings of the Sixth International Symposiumon Fun
tional and Logi
 Programming, number 2441 in LNCS, pages 228{244.Springer, September 2002.13. M. Sharir and A. Pnueli. Two approa
hes to interpro
edural data
ow analysis.In S. S. Mu
hni
k and N. D. Jones, editors, Program Flow Analysis: Theory andAppli
ations,
hapter 7, pages 189{233. Prenti
e-Hall, 1981.

1714. O. Shivers. Control
ow analysis in s
heme. In Pro
eedings of the SIGPLAN '88Conferen
e on Programming Language Design and Implementation, pages 164{174,1988.15. B. Steensgaard. Points-to analysis in almost linear time. In POPL'96, pages 32{41,Jan 1996.16. Andrew K. Wright and Suresh Jagannathan. Polymorphi
 splitting: an e�e
tivepolyvariant
ow analysis. ACM Transa
tions on Programming Languages andSystems, 20(1):166{207, January 1998.

