
A polyvariant type analysis for ErlangSven-Olof Nystr�omDepartment of Information Tehnology,Uppsala University, Swedensvenolof�sd.uu.seAbstrat. This paper presents a type analysis for the programminglanguage Erlang. The analysis omputes interproedural ontrol-ow anddata-ow information, and should be appliable to any higher-order fun-tional programming language with all-by-value semantis. The analysisuses a novel method for polyvariane, stati limiting, where an approx-imation of the all graph is analyzed to determine whether a funtionshould be treated as polyvariant or monovariant. A general frameworkfor polyvariant analysis is presented. This framework is used for experi-mental investigations to evaluate the ost and potential bene�ts of poly-variant analysis and to ompare di�erent apporoahes to polyvariantanalysis. The experimental results show that stati limiting gives thesame or better preision as the other polyvariant analyses, while havingmore preditable analysis times. However, the experiments show onlysmall improvements in preision for the various polyvariant analyses.1 IntrodutionErlang is a funtional and onurrent programming language, developed at Er-isson [2℄ and intended for teleom appliations. Erlang is dynamially typed,i.e., no type delarations are required (or allowed), and there is no requirementthat an Erlang program should be examined by a type heker before it is run.Instead, eah value arries dynami type information.One of the primary advantages with dynami typing is that the languagedesign is simpli�ed. Also, it is often argued that dynami typing helps rapid de-velopment, espeially for prototyping and testing (see for example [11℄). Anotheradvantage is that it is possible to write general routines for writing and readingdata of any type. This is partiularly useful for Erlang's intended appliations,as it allows ommuniation over untyped hannels.One disadvantage with dynami typing is that its implementation usually re-quires a large number of run-time type heks. Every primitive operation musthek that its arguments are of the intended type. Absene of stati type infor-mation also ompliates the implementation of various ompiler optimizations.This paper presents a data ow analysis whih determines an approximationof the possible types of variables and expressions in the program. In the paper wefous on one aspet of the analysis, that it is polyvariant (ontext-dependent). Ithas long been reognized [13, 14℄ that an interproedural program analysis will

2obtain better preision if it distinguishes di�erent alls to a funtion. We presenta polyvariant analysis that uses a novel tehnique, stati limiting, to ontrol theost of polyvariane.The work presented here an be seen as a generalization of monovariantanalysis tehniques suh as 0CFA [14℄ or set-based analysis [8℄. Shivers alsoproposed a simple polyvariant analysis, kCFA, whih distinguished alls basedon the k most reent all sites.Cartwright and Fagan's soft-typing system [5℄ tried to apply type inferene todynamially typed languages, in partiular Sheme. The system was intended toserve two purposes, to help the programmer by deteting possible programmingerrors and to help the ompiler by providing type information. Marlow andWadler's soft-typing system for Erlang [10℄ had a di�erent goal. Instead of typingall Erlang programs, their system refused programs it ould not type. Thus,it de�ned, in e�et, a new programming language onsisting of those Erlangprograms that it ould type.Other work on type analysis for funtional programming languages inludepolyvariant analyses by Ashley and Dybvig [3℄ and Wright and Jagannathan [16℄.2 Polyvariant analysisA ow analysis omputes, for eah variable and subexpression in the program, anapproximation of the set of possible values. An analysis whih simply assoiatesvalues to di�erent parts of the program (i.e., amonovariant or ontext-insensitiveanalysis) su�ers from the problem that if a funtion is alled with from di�erentparts of the program, the analysis will set the result of the di�erent alls tobe union of all alls to the funtion. For polymorphi funtions, this will ofourse give lower preision, but funtions that are not polymorphi may alsobe a�eted. Consider for example a funtion where the result depends on itsargument (perhaps it simply returns the argument). If there is one all site wherethe type of the argument is unknown, the result will also be unknown. Thus, amonovariant analysis may propagate a low-preision result where a polyvariantanalysis would on�ne it to one part of the program.Generally speaking, a polyvariant analysis will be more expensive sine somefuntions are analyzed many times. In theory, a monovariant analysis might takelonger to ompute sine time is spent propagating an over-approximation.The mehanism we use involves a set of ontexts, 2 Context , and a funtionCall(f; l;) = 0whih, given a funtion f , a all site l and a ontext returns a new ontext. Wealso assume an initial ontext, 0. The idea is that if a all to funtion f oursat label l in ontext , the body of f will be analyzed in ontext 0. Within thissimple framework it is possible to express analyses with a wide range of preisionand eÆieny.One hoie is to set Context = f0g, i.e, use a minimal set of ontexts, andto de�ne Call as Call(f; l; 0) = 0;

3for all f and l. This will give us a monovariant analysis.One simple way to get a polyvariant analysis is to set Context = Lab [fstartg,i.e., let the ontexts be the set of labels plus one additional element to be usedin the beginning of the analysis. With the de�nitionCall(f; l;) = l;this would give us a very limited form of polymorphism.The reason for polyvariant analysis is that we want to keep unrelated allsseparate, but there must be some limit on the number of ontexts generated, toguarantee termination, and to make sure that the number of ontexts does notbeome exessive for large programs. In the following setion, we will disuss anumber of tehniques for ontrolling the number of ontexts.2.1 k-limitingThis is an adaption of the tehnique proposed by Shivers [14℄. There are somedi�erenes due to the di�erenes in programming languages (for example, Shiversassumes that the program is in ontinuation-passing style).In a omputation, eah invoation of a funtion an be identi�ed by a se-quene of all sites (labels). Thus, by letting the set of ontexts onsist of arbi-trary sequenes of labels we would be able to treat eah invoation of a funtionseparately. The problem is that the set of ontexts would be in�nite, and thusthe analysis would not terminate! Shivers' solution to this problem is to set amaximum length (k) to sequenes of all sites. This gives usContext = fl1 : : : ln j n � kgand Call(f; l; l1 : : : ln) = (ll1 : : : ln; if n < kll1 : : : ln�1; if n = kBy limiting the size of a ontext to k, we an guarantee that the set of ontexts is�nite. However, sine the number of ontexts is exponential in k, we are fored tosettle for rather small values of k. Also, it is unlear that the strategy of keepingthe most reent part of the all stak and forgetting the earlier parts is the rightone. For example, if a funtion ontains a single reursive all (at label l), therewill be a ontext l : : : l orresponding to the situation after at least k reursivealls. If the funtion is alled from many di�erent parts of the program, we willalways arrive at the same ontext after onsidering k reursive alls.2.2 Dynami detetion of reursionIn a funtion with a reursive all, the arguments given in the reursive all tendto have the same type as the arguments in the �rst all to the funtion. Thus,

4it would make sense to evaluate the two alls in the same ontext. If we let theontexts inlude, for eah all site, information on whih funtion is alledContext = f 2 (Lab� Funtion)� j eah f 2 Funtionours at most one in gand de�ne Call to look for the previous all to the same funtionCall(f; l;) = (hf; li ; if f does not our in 0; if f ours in and 0 = hf; : : :i : : : is a suÆx of we guarantee that the set of ontexts is �nite.2.3 Stati detetion of reursionWhat about mutually reursive funtions? There are some situations where it isnatural to express an algorithm as a set of mutually reursive funtions. A statemahine an be implemented with one funtion for eah state, and a tail-allsbetween funtions for eah transition. Reursive-desent parsers will typiallyontain systems of mutually reursive funtions (depending on the grammar, ofourse). Similarly, any tool that traverses syntax trees is likely to ontain systemsof mutually reursive funtions.A system of mutually reursive funtions might indue a large number ofontexts. Suppose, for example, that there is a system of n mutually reursivefuntions, and that eah funtion de�nition ontains a all to eah of the otherfuntions. Now, any of the n! possible orderings of the funtions may our in aontext, giving an analysis with exponential omplexity.The problem an be avoided by building a syntati all graph of program-de�ned funtions, suh that there is an edge from funtion f1 to funtion f2 if thebody of f1 ontains an all to f2. Compute the strongly onneted omponents(ss). Eah set of mutually reursive funtions will form an s. With SCCequal to the set of strongly onneted omponents,Context = f 2 (Lab� SCC)� j eah s 2 SCC ours at most one in gand letting Call hek if a reursive all is to the same s or not, we improvethe behavior in the ase of mutual reursion. In the de�nition below, let sf bethe strongly onneted omponent ontaining f .Call(f; l;) = (; if = hsf ; li 0, for some 0hsf ; li ; otherwiseBy using stati detetion of reursion, we eliminate polyvariane within sets ofmutually reursive funtions. A similar situation an be found in programminglanguages suh as ML, where syntati restritions guarantee that alls betweenmutually reursive funtions an not be polymorphi. Note that even thoughstati detetion of reursion removes one soure of exponential growth, the num-ber of ontexts may still be exponential in the size of the program, for example,if there is a hain of funtions f0, f1, : : : fn suh that eah funtion has two allsto the next funtion in the hain.

52.4 Stati limitingNote that the strongly onneted omponents form a direted ayli graph(DAG), with ss as nodes, and an edge s0 l! s1 between two nodes if theresome funtion f ontains a all at label l to a funtion g, and f is a member ofs0 and g of s1.If we onsider omputations starting with a funtion f , the ontexts reatedby an analysis orrespond to the set of paths in the DAG starting at sf . Sinethe number of paths starting at any given node in the graph an be omputedstatially, we an set a limit to the number of ontexts generated. This bringsus to the idea of stati limiting.In the following, all de�nitions are with respet to a direted ayli graphG = hN;Ei. A path q in G is a sequene q = s0l0s1l1 : : : sn�1ln�1sn suh thatthat si li! si+1, for i < n. Let the weight of a node s be the number of paths inG starting with s. Say that a node s is polyvariant, if its weight is less than athreshold p, monovariant otherwise. Also, an edge s0 l! s1 is polyvariant if itsdestination s1 is polyvariant. Similarly, say that a funtion is polyvariant if it isa member of a polyvariant node.We de�ne the ontexts as paths in the subgraph of polyvariant nodes;Context = fs0l0s1l1 : : : ln�1sn j where s0 l0! s1 l1! : : : ln�1! snand all sk are polyvariant, for k � ngCall(f; l;) = 8><>:sf ; if f is monovariant; if = sf : : :sf l; otherwiseThe use of polyvariant analysis implies that the analysis problem grows larger,as some parts of the program are analyzed under di�erent ontexts. How muhdoes the analysis problem grow? It turns out that the resulting analysis problemgrows with at most a onstant fator.The expanded DAG X(G) = hNX ; EX i is onstruted withNX = fq 2 path(G) j eah edge of q is polyvariantgEX = fhq; l; q0i j l is polyvariant and q0 = qls, for node s and edge l in NgS fhs; l; s0i j l is a monovariant edge s l! s0 in GgLet the size of a graph be the total number of nodes and edges.Theorem 1. For any direted ayli graph G, size(X(G)) � 2 � p � size(G).Proof. The proof is by indution on the size of G.Suppose size(G) = 0. Sine there are no nodes in G, it follows immediatelythat X(G) has no nodes and thus no edges. Sine size(X(G)) = 0, the theoremfollows immediately.Suppose size(G) > 0. G must ontain at least one node. Sine G is a DAGthere must be one node r whih is the suessor of no other node. We have threeases.

61. r has no suessors.2. There is an edge r l! s suh that s is monovariant.3. There is an edge r l! s suh that s is polyvariant.Case 1 is straight-forward. Consider the graph G0 obtained by removing thenode r from G. Sine r ours in only one path of G, we see that there is onlya single node of X(G) that is not a node of X(G0). All edges of X(G) arealso edges of X(G0). Thus size(X(G)) = size(X(G0)) + 1 � 2p � size(G0) + 1 =2p � (size(G)� 1) + 1 � 2p � size(G).Case 2. Consider the graph G0 obtained by removing the edge l from G. Sinel is monovariant, the nodes of X(G0) are exatly the nodes of X(G). The onlyedge of X(G0) that is not a node of X(G) is hr; l; si. The theorem follows by anappliation of the indution hypothesis.Case 3. Again, let G0 be the graph obtained by removing l. Sine s is poly-variant, there are at most p paths starting with s. Thus, there are at mostp paths starting with rls : : : in G. Sine r has no predeessors, all paths on-taining l are of this form. It follows that there are at most p nodes of X(G)that are not nodes of X(G0). The edges of X(G) that do not our in X(G0)are all of the form hq; l0; q0i, where q0 is a path ontaining l. Sine there are atmost p suh paths, size(X(G)) � size(X(G0))+2p. By the indution hypothesis,size(X(G0)) + 2p � 2p � size(G0) + 2p = 2p � (size(G)� 1) + 2p = 2p � size(G).3 The analysisTo make the analysis more uniform, we assume that all data-types (for exampleatoms, integers, oating-point numbers, lists and tuples) are expressed using aset of type onstrutors, C 2 Con , where eah onstrutor has a given arity. Weassume two nullary onstrutors `true' and `false'. We also assume a set of pre-de�ned funtions p 2 Pre and a set of program-de�ned funtions f 2 Funtionand a set of labels, Lab.Let a program be a set of de�nitions of the formf(x1; : : : ; xn)! E;where expressions are de�ned aording toE ::= x j C[E1; : : : ; En℄ j if E1 then E2 else E3 j f(E1; : : : ; En)j funl (x1; : : : ; xn)! E1 j E0(E1; : : : ; En)l j p(E1; : : : ; En)We assume that there is a program-de�ned funtion fe 2 Funtion. The intentionis that fe will serve as an entry point in the analysis.3.1 Basi struturesThe state of the analysis is a store, mapping analysis variables to terms.Analysis variables are used to store intermediate and �nal results. To makethe analysis polyvariant, it is neessary to let analysis variables range over on-texts. Thus, for ontexts 2 Context , let Var be one of the following

71. Arg(f; k;) 2 Var , where f is a program-de�ned funtion with arity n � k.2. Res(f;) 2 Var , where f is as above.3. FunArg(l; k;) 2 Var , where l 2 Lab is the label of a fun expression.4. FunRes(l;);ApplyRes(l;); IfRes(l;) 2 Var , where l is the label of a all toa higher-order funtion.Let t 2 Term , the set of terms, be the least set suh that1. Var � Term.2. any 2 Term.3. C[t1 : : : tn℄ 2 Term, where C has arity n and t1; : : : ; tn 2 Term .4. FunTerm(l;) 2 Term , where l is the label of a fun expression.Let Work , the set of analysis tasks, be the set of pairs hf; i, where f is aprogram de�ned funtions and is a ontext. The analysis will maintain a worklist, ontaining a subset of Work .3.2 Implementation of set abstrationThe store will assoiate with eah analysis variable X the following:1. X:value � Term , a set of terms whih are not analysis variables.2. X:link � Var , a set of variables.3. X:depend �Work , a set of analysis tasks.When the analysis is �nished, the relevant information for eah variable is ol-leted in X:value. For example, for a funtion f , Arg(f; 1;):value gives an ap-proximation of the values that may be passed in the �rst argument of f .For eah variable X we also store X:link, a set of variables suh that X � Y ,for eah Y 2 X:link, and X:depend, a set of analysis tasks whose result maydepend on the value of X . Thus, if the value of X hanges, it may be neessaryto re-analyze any member of X:depend.We de�ne the following operations on the store.1. Lookup(X). Determine the urrent value of X .2. Add(t;X). Add the term t to the value of X .3. Add(X;Y). Add the value of X to Y , i.e., make X a subset of Y .We assume that during any point in the analysis, it is possible to determine theurrent analysis task (an element of Work). By dividing the analysis probleminto a set of separate tasks, it is possible to devise a work-list oriented strategywhere a portion of the program only needs to be re-analyzed when a value onwhih it depends on has hanged. The purpose of the link �eld is to representinlusion relations expliitly. The implementation of the operations is given inFigure 1.

8Lookup(X):1: Add urrent task to X:depend2: Return X:valueAdd(t;X):1: Test if t is ontained in X:value2: If not,3: set X:value to value(X) [ftg,4: put all tasks in X:depend on worklist,5: for eah variable Y 2 X:link, doAdd(t; Y).
Add(X;Y):1: if X is a member of Y:link,2: do nothing3: if X is not a member of Y:link,4: add X to Y:link,5: let t = Y:value and6: do Add(t;X)Contains(t1; t2):1: Return true if2: t1 = t2,3: t2 = any, or4: t2 is a variable X, and Contains(t1; t0)holds, for some t0 2 Lookup(X).5: Return false otherwise.Fig. 1. Implementation of set abstration.3.3 Analyzing Erlang expressionsAnalysis of an expression takes1. expression to be analyzed2. an environment mapping program variables to terms and3. urrent ontext4. a storeand returns1. a term and2. an updated store.When analyzing expressions onsisting of a single variable, simply look up thevalue of the variable in the urrent environment.Analyze(x; E ;):1: return E()Expressions involving a onstrutor simply build a orresponding term.Analyze(C[E1; : : : ; En℄; E ;):1: let tk = Analyze(Ek; E ;), for k � n2: onstrut the term C[t1; : : : ; tn℄ and3: return it as the result of the analysis.The analysis of omplex expressions is given in Figure 2.In the analysis of alls to program-de�ned funtions, we use the funtion Callto ompute a new ontext. When a all is analyzed for the �rst time, a new

9Analyze(if E1 then E2 else E3; E ;):1: let t1 = Analyze(E1; E ;)2: if Contains(true; t1) holds,3: let t2 = Analyze(E2; E ;)4: Add(t2; IfRes(l;))5: if Contains(false; t1) holds,6: let t3 = Analyze(E3; E ;)7: Add(t3; IfRes(l;))8: return IfRes(l;).Analyze(f(E1; : : : ; En)l; E ;):1: let tk = Analyze(Ek; E ;) for k � n2: let 0 = Call(f; l;),3: Add(tk;Arg(f; k; 0)), for k � n4: unless hf; 0i has been analyzedbefore, add hf; 0i to work list5: return Res(f; 0)

Analyze(funl (x1; : : : ; xn)! E0; E ;):1: reate a new environment E1 byextending old environment E withbindings xk 7! FunArg(l; k;), fork � n2: let t = Analyze(E0; E1;)3: Add(t;FunRes(l;))4: return FunTerm(l;)Analyze(E0(E1; : : : ; En)l; E ;):1: let tk = Analyze(Ek; E ;) for0 � k � n2: for eah l0, suh thatContains(FunTerm(l0; 0); t0),3: Add(tk; FunArg(l0; k; 0)), for1 � k � n4: Add(FunRes(l0; 0);ApplyRes(l;))5: Return ApplyRes(l;)Fig. 2. Analyzing expressions.analysis task onsisting of the alled funtion and the new ontext is added tothe work list.In the analysis presented here, losures are not polymorphi. A polymorphianalysis would be more omplex, and as most Erlang appliations make verylittle use of higher-order funtions the added omplexity and ost of an analysisthat ould treat losure appliations polymorphially annot be justi�ed. SeeSetion 3.4 for a detailed disussion.Analyzing alls to higher-order funtions is similar to analyzing alls touser-de�ned funtions, but slightly ompliated by the fat that we need theanalysis to determine the destination of the all. For a fun-expression (a lo-sure) funl (x1; : : : xn) ! E0, we use analysis variables FunArg(l; 1;) throughFunArg(l; n;) to represent the arguments, i.e., the set of possible values thatmay be passed as values to the funtion. In a similar way, the set of values thatmay be returned by the funtion is stored in the variable FunRes(l;).However, we will still distinguish between di�erent instanes of a losure.Thus, a losure is represented by a term of the form FunTerm(l;), to distinguishbetween losures reated at the same program point but in di�erent ontexts.The main loop maintains a work list of all funtion-ontext pairs that needto be analyzed. Sine the arguments are passed in the store (assoiated with theontext), the task only needs to ontain funtion and ontext.

10MainLoop:1: if WorkList is empty,2: terminate analysis3: if WorkList is not empty,4: remove a pair of a program-de�nedfuntion ontext hf; i fromWorkList,5: let hf; i be the urrent task, and6: Analyze(f;)7: ontinue MainLoop
AnalyzeProgram:1: Let n be the arity of fe.2: Add(any;Arg(f; k;)), for k � n.3: Put hfe; 0i in WorkList.4: Exeute MainLoop.Analyze(f(x1; : : : ; xn)! E;):1: Create environment E mapping eahof Xk to the term Arg(f; k;), fork � n2: let t = Analyze(E;E ;)3: Add(t;Res(f;))Fig. 3. Main loop of analysis.3.4 Polyvariant analysis of higher-order funtionsIn the analysis presented in this paper, the analysis of alls to losures is mono-variant. In this setion we disuss the hanges needed for a polyvariant analysisof losures.Note that in Setion 2, when reasoning about ontexts and all graphs, a`funtion' is assumed to be a top-level funtion. We must extend this oneptto inlude losures (whih an be identi�ed by their label). The mehanism fordynami detetion of reursion (Setion 2.2) will disover if a losure alls itselfreursively.To implement stati detetion of reursion and stati limiting, we need aessto a all graph. However, with higher-order funtions, we must run the analysisto onstrut the all graph! One way around this problem is to �rst use a simpleow analysis to onstrut the all graph (for example, Shivers' 0fa).In the all graph, the nodes will be (top-level) funtions and (labels of)losures. For eah higher-order funtion all, there is an edge to eah losurethat may be alled. Now, onsider a top-level funtion ontaining one or morelosures. A all ouring in one of the losures orresponds to one or more edgesfrom the losure. A all in the funtion body, outside the losures, orrespondsto an edge from the funtion. Computing strongly onneted omponents anddetermining whether a funtion or losure should be monovariant or polyvariantis done as previously (Setions 2.3 and 2.4).We add FunDest(l;) and CVar(l; k;) to the set of analysis variables Var , forlabels l, ontexts , and k � 0. We also introdue a term FunCall(). The variableFunDest(l;) is assoiated with fun appearing at label l, evaluated in ontext .Eah term FunCall(0) in FunDest(l;) represents a request to evaluate the bodyof the fun in the environment 0. In this evaluation, the values assoiated withthe free variables of a losure will be stored in variables CVar(l; k; 0) We must

11Analyze(funl (x1; : : : xn)! E0; E ;):1: For eah 0 suh thatContains(FunCall(0);FunDest(l;)),2: Add(E(yk);CVar(l; k; 0)), fork � m,3: unless hl; 0i has been analyzedbefore, add hl; 0i to work list.4: return FunTerm(l;).
Analyze(l;):1: Let funl (x1; : : : xn)! E0 be the funexpression labeled l.2: Create environment E mapping eahof xk to the term Arg(f; k;), fork � n, and yk to CVar(l; k;), fork � m3: let t = Analyze(E0; E ;)4: Add(t;FunRes(f;))Analyze(E0(E1; : : : ; En)l; E ;):1: Let tk = Analyze(Ek; E ;) for 0 � k � n.2: for eah l0 and 0, suh that Contains(FunTerm(l0; 0); t0),3: let 00 = Call(l0; l;),4: Add(FunCall(00);FunDest(l0; 0)),5: Add(tk;FunArg(l0; k; 00)), for 1 � k � n.6: Add(FunRes(l0; 00);ApplyRes(l;)).7: Return ApplyRes(l;).Fig. 4. Polyvariant analysis of higher-order funtions.also introdue a new lass of analysis tasks, assoiated with the evaluation of alosure. We will write those hl; i.In the polyvariant analysis a losure should be analyzed one for eah ontextin whih it is alled. Thus, the analysis of a fun expression looks for termsFunCall(0), indiating a all to the fun in ontext . The analysis rules aregiven in Figure 4. We assume that the free variables of the fun expression arey1; : : : ; ym.4 The implementationThe analysis is written in Erlang. As Erlang is (apart from the onurrenyprimitives) a pure funtional programming language and laks arrays and hashtables, the store is represented as a balaned binary searh tree.4.1 ModulesThe analysis is applied to a single Erlang module. All exported funtions are en-try points, and their arguments are assumed to be the universal type. The anal-ysis has information about the return types of built-in funtions and funtions inthe standard library math. For some benhmarks, the analysis is provided withthe soure ode of some external modules. Calls to other modules are assumedto return the universal type.

124.2 Core ErlangEven though Erlang may on the surfae appear to be a simple language, it isnot ompletely straight-forward to write a front end whih handles all aspetsof the Erlang language. To avoid dealing with these details, the analysis insteadoperates on the Core Erlang intermediate ode [4℄. The translation is performedusing the front end of the OTP distribution.In the translation to Core Erlang, all primitive operations (for example, arith-meti) will appear as funtion alls. Also, the translation adds a lause with aall to `exit' (whih generates an exeption) to eah ase statement, thus mak-ing make the exeptions thrown when a ase expression fails to �nd a mathinglause expliit. This means that even fairly simple Erlang funtions may ontainseveral alls to built-in funtions. The omputation of weights in stati limitingtreats these alls as any other alls, the result is that eah funtion will be as-signed a greater weight. This is not unreasonable, as the weight is intended toreet the ost of analyzing a funtion polymorphially, and funtions ontainingmany built-in alls will be more expensive to analyze. Note that, as the weightof eah funtion is greater, the hoie of the parameter p is a�eted.4.3 Meta-allErlang's meta-all takes three arguments; an atom whih gives the module beingalled, an atom giving the name of the funtion and a list whih is sent as anargument list to the funtion. In other words, the destination of a meta-all isomputed on the y. This makes it impossible to ompute the all graph beforethe analysis begins, as is required by stati limiting. The solution is simply tobuild the graph with the all destinations available. To avoid problems within�nite reursion, the analysis also implements dynami detetion of reursion.5 Experimental ResultsTable 1 lists the benhmarks used in the measurements. For eah benhmarkthe number of lines is shown (not inluding omments and blank lines). Barnessolves the n-body problem. It is pakaged as a ompiler benhmark, so all datais given in the program (the program was modi�ed to only export one fun-tion). B2i is a module in the Hipe ompiler whih translates BEAM ode to aninternal representation. Eddie is a high availability lustering tool. The eddie+benhmark was originally intended as a ompiler benhmark and onsists of anhttp parser and a set of support modules. Eweb is a tool for Erlang literate pro-gramming. The hipe+ benhmark onsists of modules from the Spar bakend ofthe Hipe ompiler [12℄. Igor is a tool for merging and renaming Erlang modules,downloaded from the Erlang user ontributions list. Othello is a Othello-playingprogram, downloaded from the Erlang user ontributions list. San is a lexialanalyzer for XML, downloaded from the Erlang user ontributions list.In the evaluation, we onsidered the following settings for polyvariane.

13Name Inluded modules Linesbarnes barnes 180b2i hipe beam to iode 1115eddie http parse 335eddie+ http parse, http �elds, listssrv parse, srv table 1610igor igor 1556igor+ igor, lists 2062hipe+ hipe rtl2spar, gb trees, hipe onsttab, hipe gensymhipe rtl.erl, hipe spar, hipe spar registers, lists 4312othello othello 173othello+ othello, othello board, othello adt 932san xmerl san 2118Table 1. Benhmark programs used in the evaluation.{ Stati limiting with the parameter p (as in Setion 2.4) set to 10, 100, and1000 (sl-10, sl-100, and sl-1000).{ Monovariant analysis (0fa) and Shiver's polyvariant analysis with k set to1 (1fa).{ Dynami detetion of reursion (ddr).{ Dynami detetion of reursion with the size of ontexts limited to size 1(ddr-1).{ Both dynami and stati detetion of reursion (dsdr).{ Dynami and stati detetion of reursion with ontexts limited to 1.The measurements were done on a dual proessor Intel Xeon 2.4 GHz mahinewith 1 GB of RAM and 512 KB of ahe per proessor, running Linux. Thebenhmarks were run under the BEAM byte ode interpreter.Name sl-10 sl-100 sl-1000 0fa 1fa ddr ddr-1 dsdr dsdr-1barnes 0.6 0.6 0.5 0.3 1.1 0.6 0.6 0.6 0.6b2i 43.0 50.7 50.9 995.7 * 168.2 108.5 105.4 9.1eddie 1.5 1.6 1.6 0.7 2.9 5.1 1.4 1.4 1.1eddiepl 6.0 6.5 6.5 0.9 385.4 23.7 150.5 6.5 151.9hipepl 20.9 71.3 72.2 2.0 13.6 72.3 12.1 71.7 12.3igor 6.5 13.9 29.3 1.3 3.7 169.7 3.4 154.6 3.3igorl 11.5 34.4 122.5 1.6 8.6 753.7 5.0 604.9 4.8eweb 0.9 1.2 2.3 0.4 2.6 2.3 0.6 2.3 0.6othello 0.2 0.2 0.4 0.2 0.3 0.5 0.3 0.4 0.2othello+ 8.1 15.3 21.3 5.1 7.8 741.3 7.1 515.5 6.8san 32.8 52.3 75.7 2.1 22.6 + 39.8 4118.8 28.9Table 2. Analysis time for all ombinations of benhmarks and polyvariane. All timesare in seonds. * - terminated after running for more than one hour, + - ran out ofmemory.

14 The timings for all benhmarks is given in Table 2. 0fa is always the fastest,exept in the b2 benhmark. In b2, 1fa was run for more than one hour with-out terminating, and 0fa was the slowest of the rest. A partial explanation to thisrather peuliar behavior is that the module ontains a funtion mk label whihis alled from more than 20 loations in the module. This funtion takes an envi-ronment as an argument and returns a new environment, and as many funtionspass around environments, one might hypothesize that omputing transitive lo-sure is easier when using stati limiting as the graph beomes more tree-like. Totest this hypothesis, 0fa was modi�ed to allow polyvariant analysis of mk label.This version of the analysis terminated in 37 seonds.The timings for the polyvariant fa-based analyses vary greatly, note forexample in the ase of eddie+ how the limited analyses (ddr-1, and dsdr-1)are between 6 and 20 times slower than their unlimited ounterparts. The mainmodule of the eddie benhmark ontains a reursive-desent parser, using expliitstate (in essene, a ontinuation) to avoid deep reursion. A partial explanationto the slower performane is that the limited analyses will see more possibleintermediate states, and eah possible intermediate state will trigger more workfor the analysis.For all other benhmarks the limited versions of ddr and dsdr are faster thantheir unlimited variants. In the ase of the igor, othello and san benhmarks,the unlimited ddr and dsdr fare partiularly badly, and either fail to terminateor require more than 50 times as muh time as 0fa.In ontrast, the analyses based on stati limiting have quite preditable exe-ution times. sl-10 is at most 16 times slower than 0fa, sl-100 is never more than25 time slower, and sl-1000 is at most 76 times slower than 0fa. It is interestingto relate this result with Theorem 1, whih guarantees that the analysis problemsolved by an sl-p analysis will at most be p�2 times larger than the orrespondingproblem solved by 0fa. The theorem does not make any guarantees regardinganalysis time, but the experimental results suggest that a similar property holdsfor analysis time.Next we turn to the estimates of preision shown in Table 3. The preision ofeah analysis was estimated by looking at eah funtion parameter and returnvalue of the exported funtion of the main modules of eah benhmark. Thesewere divided into two ategories, known and unknown. A type was onsidered tobe unknown if it was the union of two or more top-level onstrutors, or if it wasany, or if it was a tuple of unknown length. The �gures indiate the perentageof parameters and return values with known type.The di�erene in preision between monovariant and polyvariant analysis isnever very large. For example, in the igor benhmark, monovariant analysis isable to determine the types of 36% of all funtion parameters and results, whileall polyvariant analyses determine the types of 42%. Why is the improvementso small? The fat that the underlying analysis is quite preise means that theadvantage of separating alls is smaller. (Also, sine the monovariant analysissets a rather high baseline the room for improvement is smaller.) Most of thevalues that remain unknown may have been passed from some unknown module,

15Benhmark sl-10 sl-100 sl-1000 0fa 1fa ddr ddr-1 dsdr dsdr-1 Positions.barnes 88.1 88.1 88.1 54.2 88.1 88.1 88.1 88.1 88.1 59b2i 40.1 40.1 40.1 34.9 * 40.1 40.1 40.1 40.1 212eddie 32.9 32.9 32.9 32.9 32.9 32.9 34.2 32.9 32.9 161eddie+ 34.2 49.1 49.1 32.9 33.5 49.1 35.4 49.1 34.2 161hipepl 68.5 68.5 68.5 59.1 68.5 68.5 68.5 68.5 68.5 127eweb 30.5 30.5 30.5 24.5 26.0 30.5 30.5 30.5 30.5 200igor 42.0 42.0 42.0 36.5 36.7 42.0 42.0 42.0 42.0 529igor+ 51.0 51.0 51.0 41.4 43.1 51.0 51.0 51.0 51.0 529othello 22.0 22.0 22.0 16.5 22.0 22.0 22.0 22.0 22.0 109othello+ 42.2 42.2 42.2 31.2 42.2 43.1 42.2 43.1 42.2 109san 30.9 33.4 30.9 28.2 30.9 - 30.9 30.9 30.9 482Table 3. Estimates of preision. Numbers indiate perentage of funtion parametersand return values in main module whose type ould be determined by the analysis.The �nal olumn indiates the total number of funtion parameters and return valuesexamined.or are due to limitations of the underlying analysis. Also note that we treat aunion of two types, for example two di�erent tuples, as an unknown. The fatthat the programs analyzed make very little use of polymorphism might alsoontribute.It is also worth noting that the di�erene in preision between di�erent poly-variant analyses is either small or non-existent, so if one wants a polyvariantanalysis, one might as well hoose the fastest one, sl-10.6 Related workAshley and Dybvig [3℄ desribe an polyvariant analysis where the new ontextis dependent on the types of the arguments in the all. Thus, two alls to afuntion will be separated if at least one of their arguments di�er in type.Wright and Jagannathan [16℄ desribe an approah similar to Shivers's kCFAand evaluates its eÆieny in two optimizations; elimination of run-time heksand inlining. Their analysis treats a funtion as polyvariant if it is de�ned ina surrounding let-expression. Thus, a reursive all is never polyvariant. Thissyntati restrition resembles the tehnique desribed in Setion 2.3 whih iden-ti�es strongly onneted omponents in the all graph. Emami et al.[6℄ desribea polyvariant pointer alias analysis whih limits the size of ontexts through amehanism whih resembles dynami detetion of reursion.Experimental investigations omparing monovariant and polyvariant pointeranalysis for C have shown mixed results. Liang and Harrold [9℄ ompare theirpolyvariant analysis with a monovariant analysis [1℄ and �nd that the polyvariantanalysis is omparable in preision but faster. Foster at al. [7℄ ompare polyvari-ant and monovariant versions of Andersen's and Steensgaard's [15℄ analyses and�nd that polyvariane gives a large improvement for Steensgaard's analysis buthardly any improvement at all for Andersen's analysis.

167 ConlusionsWe have presented a tehnique for eÆient polyvariant type analysis, stati lim-iting. It is simple in that its implementation only requires small modi�ations toa monovariant analysis, and robust as it never inreases analysis time with morethan a onstant fator. Two rather surprising results from the experiments arethat di�erent polyvariant analyses show approximately the same gain in prei-sion, and that this gain is usually quite small. Still, the use of a polyvarianean be motivated, as it an be implemented with (relatively) little programminge�ort and often gives a signi�ant improvement in preision. It is diÆult to seehow a monovariant analysis ould ever give the same preision.Referenes1. L. O. Andersen. Program Analysis and Speialization for the C Programming Lan-guage. PhD thesis, DIKU, University of Copenhagen, May 1994.2. Joe Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams. ConurrentProgramming in Erlang, Seond Edition. Prentie-Hall, 1996.3. J. Mihael Ashley and R. Kent Dybvig. A pratial and exible ow analysis forhigher-order languages. ACM TOPLAS, 20(4):845{868, July 1998.4. R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S. Nystr�om, M. Pettersson,and R. Virding. Core Erlang 1.0 language spei�ation. Tehnial Report 030,Information Tehnology Department, Uppsala University, November 2000.5. Robert Cartwright and Mike Fagan. Soft typing. In PLDI, pages 278{292, 1991.6. M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interproedural Points-toanalysis in the presene of funtion pointers. SIGPLAN Noties, 29(6):242{256,1994. PLDI.7. J. Foster, M. Fahndrih, and A. Aiken. Polymorphi versus monomorphi ow-insensitive points-to analysis for C. In Stati Analysis Symposium, number 1824in LNCS, pages 175{198, 2000.8. N. Heintze. Set-based analysis of ML programs. In ACM Conferene on Lisp andFuntional Programming, pages 306{317, 1994.9. D. Liang and M. J. Harrold. EÆient points-to analysis for whole-program analysis.In Osar Nierstrasz and Mihel Lemoine, editors, ESEC/FSE '99, volume 1687 ofLeture Notes in Computer Siene, pages 199{215. Springer-Verlag / ACM Press,1999.10. Simon Marlow and Philip Wadler. A pratial subtyping system for Erlang. ACMSIGPLAN Noties, 32(8):136{149, August 1997.11. Peter Norvig. Paradigms of arti�ial intelligene programming: ase studies inCommon LISP. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1992.12. M. Pettersson, K. Sagonas, and E. Johansson. The HiPE/x86 Erlang ompiler:System desription and performane evaluation. In Zhenjiang Hu and MarioRodr��guez-Artalejo, editors, Proeedings of the Sixth International Symposiumon Funtional and Logi Programming, number 2441 in LNCS, pages 228{244.Springer, September 2002.13. M. Sharir and A. Pnueli. Two approahes to interproedural data ow analysis.In S. S. Muhnik and N. D. Jones, editors, Program Flow Analysis: Theory andAppliations, hapter 7, pages 189{233. Prentie-Hall, 1981.

1714. O. Shivers. Control ow analysis in sheme. In Proeedings of the SIGPLAN '88Conferene on Programming Language Design and Implementation, pages 164{174,1988.15. B. Steensgaard. Points-to analysis in almost linear time. In POPL'96, pages 32{41,Jan 1996.16. Andrew K. Wright and Suresh Jagannathan. Polymorphi splitting: an e�etivepolyvariant ow analysis. ACM Transations on Programming Languages andSystems, 20(1):166{207, January 1998.

