A polyvariant type analysis for Erlang

Sven-Olof Nystrém

Department of Information Technology,
Uppsala University, Sweden
svenolof@csd.uu.se

Abstract. This paper presents a type analysis for the programming
language Erlang. The analysis computes interprocedural control-flow and
data-flow information, and should be applicable to any higher-order func-
tional programming language with call-by-value semantics. The analysis
uses a novel method for polyvariance, static limiting, where an approx-
imation of the call graph is analyzed to determine whether a function
should be treated as polyvariant or monovariant. A general framework
for polyvariant analysis is presented. This framework is used for experi-
mental investigations to evaluate the cost and potential benefits of poly-
variant analysis and to compare different apporoaches to polyvariant
analysis. The experimental results show that static limiting gives the
same or better precision as the other polyvariant analyses, while having
more predictable analysis times. However, the experiments show only
small improvements in precision for the various polyvariant analyses.

1 Introduction

Erlang is a functional and concurrent programming language, developed at Er-
icsson [2] and intended for telecom applications. Erlang is dynamically typed,
i.e., no type declarations are required (or allowed), and there is no requirement
that an Erlang program should be examined by a type checker before it is run.
Instead, each value carries dynamic type information.

One of the primary advantages with dynamic typing is that the language
design is simplified. Also, it is often argued that dynamic typing helps rapid de-
velopment, especially for prototyping and testing (see for example [11]). Another
advantage is that it is possible to write general routines for writing and reading
data of any type. This is particularly useful for Erlang’s intended applications,
as it allows communication over untyped channels.

One disadvantage with dynamic typing is that its implementation usually re-
quires a large number of run-time type checks. Every primitive operation must
check that its arguments are of the intended type. Absence of static type infor-
mation also complicates the implementation of various compiler optimizations.

This paper presents a data flow analysis which determines an approximation
of the possible types of variables and expressions in the program. In the paper we
focus on one aspect of the analysis, that it is polyvariant (context-dependent). It
has long been recognized [13,14] that an interprocedural program analysis will

obtain better precision if it distinguishes different calls to a function. We present
a polyvariant analysis that uses a novel technique, static limiting, to control the
cost of polyvariance.

The work presented here can be seen as a generalization of monovariant
analysis techniques such as 0CFA [14] or set-based analysis [8]. Shivers also
proposed a simple polyvariant analysis, KCFA, which distinguished calls based
on the k£ most recent call sites.

Cartwright and Fagan’s soft-typing system [5] tried to apply type inference to
dynamically typed languages, in particular Scheme. The system was intended to
serve two purposes, to help the programmer by detecting possible programming
errors and to help the compiler by providing type information. Marlow and
Wadler’s soft-typing system for Erlang [10] had a different goal. Instead of typing
all Erlang programs, their system refused programs it could not type. Thus,
it defined, in effect, a new programming language consisting of those Erlang
programs that it could type.

Other work on type analysis for functional programming languages include
polyvariant analyses by Ashley and Dybvig [3] and Wright and Jagannathan [16].

2 Polyvariant analysis

A flow analysis computes, for each variable and subexpression in the program, an
approximation of the set of possible values. An analysis which simply associates
values to different parts of the program (i.e., a monovariant or context-insensitive
analysis) suffers from the problem that if a function is called with from different
parts of the program, the analysis will set the result of the different calls to
be union of all calls to the function. For polymorphic functions, this will of
course give lower precision, but functions that are not polymorphic may also
be affected. Consider for example a function where the result depends on its
argument (perhaps it simply returns the argument). If there is one call site where
the type of the argument is unknown, the result will also be unknown. Thus, a
monovariant analysis may propagate a low-precision result where a polyvariant
analysis would confine it to one part of the program.

Generally speaking, a polyvariant analysis will be more expensive since some
functions are analyzed many times. In theory, a monovariant analysis might take
longer to compute since time is spent propagating an over-approximation.

The mechanism we use involves a set of contexts, c € Context, and a function

Call(f,l,c) =<

which, given a function f, a call site [and a context ¢ returns a new context. We
also assume an initial context, ¢g. The idea is that if a call to function f occurs
at label [in context ¢, the body of f will be analyzed in context ¢’. Within this
simple framework it is possible to express analyses with a wide range of precision
and efficiency.

One choice is to set Contert = {co}, i.e, use a minimal set of contexts, and
to define Call as

Ca”(f,l,CO) = Co,

for all f and [. This will give us a monovariant analysis.

One simple way to get a polyvariant analysis is to set Context = Lab U{start},
i.e., let the contexts be the set of labels plus one additional element to be used
in the beginning of the analysis. With the definition

Call(f,1,¢) =1,

this would give us a very limited form of polymorphism.

The reason for polyvariant analysis is that we want to keep unrelated calls
separate, but there must be some limit on the number of contexts generated, to
guarantee termination, and to make sure that the number of contexts does not
become excessive for large programs. In the following section, we will discuss a
number of techniques for controlling the number of contexts.

2.1 k-limiting

This is an adaption of the technique proposed by Shivers [14]. There are some
differences due to the differences in programming languages (for example, Shivers
assumes that the program is in continuation-passing style).

In a computation, each invocation of a function can be identified by a se-
quence of call sites (labels). Thus, by letting the set of contexts consist of arbi-
trary sequences of labels we would be able to treat each invocation of a function
separately. The problem is that the set of contexts would be infinite, and thus
the analysis would not terminate! Shivers’ solution to this problem is to set a
maximum length (k) to sequences of call sites. This gives us

Context = {ly...l, | n <k}

and
Iy...1,, ifn<k

cmumhnlw:{m lo 1, ifn=k

By limiting the size of a context to k, we can guarantee that the set of contexts is
finite. However, since the number of contexts is exponential in k, we are forced to
settle for rather small values of k. Also, it is unclear that the strategy of keeping
the most recent part of the call stack and forgetting the earlier parts is the right
one. For example, if a function contains a single recursive call (at label), there
will be a context [...l corresponding to the situation after at least k recursive
calls. If the function is called from many different parts of the program, we will
always arrive at the same context after considering k recursive calls.

2.2 Dynamic detection of recursion

In a function with a recursive call, the arguments given in the recursive call tend
to have the same type as the arguments in the first call to the function. Thus,

it would make sense to evaluate the two calls in the same context. If we let the
contexts include, for each call site, information on which function is called

Context = {c € (Lab x Function)” | each f € Function
occurs at most once in ¢}

and define Call to look for the previous call to the same function

(f,1)c, if f does not occur in ¢

cwu¢@:{,

d, if f occursin cand ¢ = (f,...)... is a suffix of ¢

we guarantee that the set of contexts is finite.

2.3 Static detection of recursion

What about mutually recursive functions? There are some situations where it is
natural to express an algorithm as a set of mutually recursive functions. A state
machine can be implemented with one function for each state, and a tail-calls
between functions for each transition. Recursive-descent parsers will typically
contain systems of mutually recursive functions (depending on the grammar, of
course). Similarly, any tool that traverses syntax trees is likely to contain systems
of mutually recursive functions.

A system of mutually recursive functions might induce a large number of
contexts. Suppose, for example, that there is a system of n mutually recursive
functions, and that each function definition contains a call to each of the other
functions. Now, any of the n! possible orderings of the functions may occur in a
context, giving an analysis with exponential complexity.

The problem can be avoided by building a syntactic call graph of program-
defined functions, such that there is an edge from function f; to function fs if the
body of f; contains an call to f>. Compute the strongly connected components
(sccs). Each set of mutually recursive functions will form an scc. With SCC
equal to the set of strongly connected components,

Context = {c € (Lab x SCC)" | each s € SCC occurs at most once in c}

and letting Call check if a recursive call is to the same scc or not, we improve
the behavior in the case of mutual recursion. In the definition below, let s¢ be
the strongly connected component containing f.

c, if ¢ = (sy,1) ¢, for some ¢’

(sf,l)c, otherwise

cmgm@:{

By using static detection of recursion, we eliminate polyvariance within sets of
mutually recursive functions. A similar situation can be found in programming
languages such as ML, where syntactic restrictions guarantee that calls between
mutually recursive functions can not be polymorphic. Note that even though
static detection of recursion removes one source of exponential growth, the num-
ber of contexts may still be exponential in the size of the program, for example,
if there is a chain of functions fy, f1, ... fn such that each function has two calls
to the next function in the chain.

2.4 Static limiting

Note that the strongly connected components form a directed acyclic graph

(DAG), with sccs as nodes, and an edge so 1 s, between two nodes if there
some function f contains a call at label [to a function g, and f is a member of
so and g of s1.

If we consider computations starting with a function f, the contexts created
by an analysis correspond to the set of paths in the DAG starting at sz. Since
the number of paths starting at any given node in the graph can be computed
statically, we can set a limit to the number of contexts generated. This brings
us to the idea of static limiting.

In the following, all definitions are with respect to a directed acyclic graph
G = (N, E). A path q in G is a sequence ¢ = SoloS1l1 - .. Sn—1ln—15, such that
that s; N Sit1, for i < mn. Let the weight of a node s be the number of paths in
G starting with s. Say that a node s is polyvariant, if its weight is less than a

threshold p, monovariant otherwise. Also, an edge s LN s1 is polyvariant if its
destination s; is polyvariant. Similarly, say that a function is polyvariant if it is
a member of a polyvariant node.
We define the contexts as paths in the subgraph of polyvariant nodes;
Context = {solpsily .. .ln—15, | where sq I S1 b l"—_>1 Sn
and all s are polyvariant, for k < n}

sf, if f is monovariant
Call(f,l,¢) =< ¢, ife=sp...
s¢lc, otherwise

The use of polyvariant analysis implies that the analysis problem grows larger,
as some parts of the program are analyzed under different contexts. How much
does the analysis problem grow? It turns out that the resulting analysis problem
grows with at most a constant factor.

The expanded DAG X (G) = (Nx, Ex) is constructed with

Nx = {q € path(G) | each edge of ¢ is polyvariant}
Ex ={{q,1,q¢") | l is polyvariant and ¢' = ¢ls, for node s and edge [in N}

U{(s,1,s') | I is a monovariant edge s L s'in G}
Let the size of a graph be the total number of nodes and edges.
Theorem 1. For any directed acyclic graph G, size(X (G)) < 2 * p * size(G).

Proof. The proof is by induction on the size of G.

Suppose size(G) = 0. Since there are no nodes in G, it follows immediately
that X (G) has no nodes and thus no edges. Since size(X (G)) = 0, the theorem
follows immediately.

Suppose size(G) > 0. G must contain at least one node. Since G is a DAG
there must be one node r which is the successor of no other node. We have three
cases.

1. r has no successors.
2. There is an edge r — s such that s is monovariant.

3. There is an edge r 1 s such that s is polyvariant.

Case 1 is straight-forward. Consider the graph G’ obtained by removing the
node r from @G. Since r occurs in only one path of G, we see that there is only
a single node of X (@) that is not a node of X(G'). All edges of X(G) are
also edges of X (G'). Thus size(X (@) = size(X(G')) + 1 < 2p *x size(G') +1 =
2p (size(G) — 1) + 1 < 2p x size(G).

Case 2. Consider the graph G’ obtained by removing the edge [from G. Since
I is monovariant, the nodes of X (G') are exactly the nodes of X(G). The only
edge of X(G') that is not a node of X (G) is (r,1, s). The theorem follows by an
application of the induction hypothesis.

Case 3. Again, let G’ be the graph obtained by removing [. Since s is poly-
variant, there are at most p paths starting with s. Thus, there are at most
p paths starting with rls... in G. Since r has no predecessors, all paths con-
taining I are of this form. It follows that there are at most p nodes of X(G)
that are not nodes of X (G'). The edges of X(G) that do not occur in X(G")
are all of the form (q,l’,q"), where ¢’ is a path containing /. Since there are at
most p such paths, size(X (G)) < size(X (G")) + 2p. By the induction hypothesis,
size(X (G")) + 2p < 2p *xsize(G') + 2p = 2p * (size(G) — 1) + 2p = 2p * size(G).

3 The analysis

To make the analysis more uniform, we assume that all data-types (for example
atoms, integers, floating-point numbers, lists and tuples) are expressed using a
set of type constructors, C' € Con, where each constructor has a given arity. We
assume two nullary constructors ‘true’ and ‘false’. We also assume a set of pre-
defined functions p € Pre and a set of program-defined functions f € Function
and a set of labels, Lab.

Let a program be a set of definitions of the form

flz1,...,2y) > E,
where expressions are defined according to

E :=uz|C|[E,...,E,]| if E; then E, else E3 | f(E1,..., Ey)
|funl (a:l,...,:nn) — Fy |E0(E1,...,En)l |p(E1,,En)

We assume that there is a program-defined function f. € Function. The intention
is that f. will serve as an entry point in the analysis.

3.1 Basic structures

The state of the analysis is a store, mapping analysis variables to terms.

Analysis variables are used to store intermediate and final results. To make
the analysis polyvariant, it is necessary to let analysis variables range over con-
texts. Thus, for contexts ¢ € Context, let Var be one of the following

Arg(f,k,c) € Var, where f is a program-defined function with arity n > k.
Res(f,c) € Var, where f is as above.

FunArg(l,k,c) € Var, where | € Lab is the label of a fun expression.
FunRes(l, ¢), ApplyRes(l, ¢), IfRes(l,¢) € Var, where [is the label of a call to
a higher-order function.

L s

Let t € Term, the set of terms, be the least set such that

1. Var C Term.

2. any € Term.

3. C[ty ...ty] € Term, where C has arity n and t1,...,t, € Term.
4. FunTerm(l,c) € Term, where [is the label of a fun expression.

Let Work, the set of analysis tasks, be the set of pairs (f,c), where f is a
program defined functions and c is a context. The analysis will maintain a work
list, containing a subset of Work.

3.2 Implementation of set abstraction

The store will associate with each analysis variable X the following:

1. X.value C Term, a set of terms which are not analysis variables.
2. X.link C Var, a set of variables.
3. X.depend C Work, a set of analysis tasks.

When the analysis is finished, the relevant information for each variable is col-
lected in X.value. For example, for a function f, Arg(f,1,c).value gives an ap-
proximation of the values that may be passed in the first argument of f.

For each variable X we also store X.link, a set of variables such that X C Y,
for each Y € X.link, and X.depend, a set of analysis tasks whose result may
depend on the value of X. Thus, if the value of X changes, it may be necessary
to re-analyze any member of X.depend.

We define the following operations on the store.

1. Lookup(X). Determine the current value of X.
2. Add(t, X). Add the term ¢ to the value of X.
3. Add(X,Y). Add the value of X to Y, i.e., make X a subset of Y.

We assume that during any point in the analysis, it is possible to determine the
current analysis task (an element of Work). By dividing the analysis problem
into a set of separate tasks, it is possible to devise a work-list oriented strategy
where a portion of the program only needs to be re-analyzed when a value on
which it depends on has changed. The purpose of the link field is to represent
inclusion relations explicitly. The implementation of the operations is given in
Figure 1.

Lookup(X): Add(X,Y):
1: Add current task to X.depend 1: if X is a member of Y.link,
2: Return X.value 2: do nothing

3: if X is not a member of Y.link,
4: add X to Ylink,

Add(¢, X): 5: let t = Y.value and
1: Test if ¢ is contained in X.value 6: do Add(¢, X)
2: If not,
3: set X.value to value(X) U {t}, Contains(t1,2):
4: put all tasks in X.depend on work 1: Return true if
list, 2: t1 = ta,
5: for each variable Y € X.link, do 3: ta = any, or
Add(t,Y). 4: to is a variable X, and Contains(¢1,t')

holds, for some ¢' € Lookup(X).
5: Return false otherwise.

Fig. 1. Implementation of set abstraction.

3.3 Analyzing Erlang expressions

Analysis of an expression takes

expression to be analyzed

an environment mapping program variables to terms and
current context

a store

Lk e e

and returns

1. a term and
2. an updated store.

When analyzing expressions consisting of a single variable, simply look up the
value of the variable in the current environment.
Analyze(z, &, ¢):

1: return &(c)

Expressions involving a constructor simply build a corresponding term.
Analyze(C[Ey,. .., Ey], &, ¢):

1: let ¢, = Analyze(Ey, &, ¢), for k <n

2: construct the term C[ty,...,t,] and

3: return it as the result of the analysis.

The analysis of complex expressions is given in Figure 2.
In the analysis of calls to program-defined functions, we use the function Call
to compute a new context. When a call is analyzed for the first time, a new

Analyze(if E; then E, else Es, &, c): Analyze(fun' (z1,...,2,) = Eo,&,¢):
1: let t1 = Analyze(E1, £, c) 1: create a new environment £; by
2: if Contains(true, 1) holds, extending old environment £ with
3: let t2 = Analyze(E», €, ¢) bindings zx +— FunArg(l, k, c), for
4 Add(ts, IfRes(l, ¢)) k<n
5: if Contains(false, ¢1) holds, 2: let t = Analyze(Eo, £1,¢)

6: let t3 = Analyze(Es, £, c) 3: Add(t, FunRes(l, c))
7: Add(ts, IfRes(l,c)) 4: return FunTerm(l,c)

8: return IfRes(l, ¢).
Analyze(Eo(E., ..., En)', €, ¢):

1
Analyze(f(En, ..., En)", €, 0): 1: let tr, = Analyze(E}, £, c) for
1: let tr, = Analyze(Ey,E,c) for k <n 0<k<n
2: let ¢ = Call(f,1,¢c), 2: for each I, such that
3: Add(tk,Arg(f,k,c)), for k <n Contains(FunTerm(I’, ¢'), to),
4: unless (f,c') has been analyzed 3: Add(tx, FunArg(l', k, ")), for
before, add (f,c’) to work list 1<k<n
5: return Res(f,c’) 4: Add(FunRes(l',c"), ApplyRes(l, c))

5: Return ApplyRes(l, c)

Fig. 2. Analyzing expressions.

analysis task consisting of the called function and the new context is added to
the work list.

In the analysis presented here, closures are not polymorphic. A polymorphic
analysis would be more complex, and as most Erlang applications make very
little use of higher-order functions the added complexity and cost of an analysis
that could treat closure applications polymorphically cannot be justified. See
Section 3.4 for a detailed discussion.

Analyzing calls to higher-order functions is similar to analyzing calls to
user-defined functions, but slightly complicated by the fact that we need the
analysis to determine the destination of the call. For a fun-expression (a clo-
sure) fun! (z,...7,) — Ep, we use analysis variables FunArg(l,1,c) through
FunArg(l,n,c) to represent the arguments, i.e., the set of possible values that
may be passed as values to the function. In a similar way, the set of values that
may be returned by the function is stored in the variable FunRes(l, ¢).

However, we will still distinguish between different instances of a closure.
Thus, a closure is represented by a term of the form FunTerm(l, ¢), to distinguish
between closures created at the same program point but in different contexts.

The main loop maintains a work list of all function-context pairs that need
to be analyzed. Since the arguments are passed in the store (associated with the
context), the task only needs to contain function and context.

10

MainLoop: AnalyzeProgram:
1: if WorkList is empty, 1: Let n be the arity of f..
2: terminate analysis 2: Add(any, Arg(f, k,c)), for k < n.
3: if WorkList is not empty, 3: Put (fe,co) in WorkList.
4: remove a pair of a program-defined 4: Execute MainLoop.
function context (f,c) from
WorkList,
5. let (f,c) be the current task, and Analyze(f(z1,...,zn) = E,c):
6: Analyze(f,c) 1: Create environment £ mapping each
7: continue MainLoop of X}, to the term Arg(f,k,c), for

kE<n
2: let t = Analyze(E, £, c)
3: Add(t,Res(f,c))

Fig. 3. Main loop of analysis.

3.4 Polyvariant analysis of higher-order functions

In the analysis presented in this paper, the analysis of calls to closures is mono-
variant. In this section we discuss the changes needed for a polyvariant analysis
of closures.

Note that in Section 2, when reasoning about contexts and call graphs, a
‘function’ is assumed to be a top-level function. We must extend this concept
to include closures (which can be identified by their label). The mechanism for
dynamic detection of recursion (Section 2.2) will discover if a closure calls itself
recursively.

To implement static detection of recursion and static limiting, we need access
to a call graph. However, with higher-order functions, we must run the analysis
to construct the call graph! One way around this problem is to first use a simple
flow analysis to construct the call graph (for example, Shivers’ Ocfa).

In the call graph, the nodes will be (top-level) functions and (labels of)
closures. For each higher-order function call, there is an edge to each closure
that may be called. Now, consider a top-level function containing one or more
closures. A call occuring in one of the closures corresponds to one or more edges
from the closure. A call in the function body, outside the closures, corresponds
to an edge from the function. Computing strongly connected components and
determining whether a function or closure should be monovariant or polyvariant
is done as previously (Sections 2.3 and 2.4).

We add FunDest(l, ¢) and CVar(l, k, ¢) to the set of analysis variables Var, for
labels I, contexts ¢, and k& > 0. We also introduce a term FunCall(c). The variable
FunDest(l, ¢) is associated with fun appearing at label [, evaluated in context c.
Each term FunCall(¢) in FunDest(l, ¢) represents a request to evaluate the body
of the fun in the environment ¢'. In this evaluation, the values associated with
the free variables of a closure will be stored in variables CVar(l, k, ¢) We must

11

Analyze(funl (z1,...2n) = Eo, &, c): Analyze(l, ¢):
1: For each ¢’ such that 1: Let fun' (21,...2,) = Eo be the fun
Contains(FunCall(c'), FunDest(l, c)), expression labeled .
2: Add(&(yw),CVar(l, k,c")), for 2: Create environment £ mapping each
kE<m, of zy to the term Arg(f,k,c), for
3: unless (/,c') has been analyzed k < n, and yx to CVar(l, k, c), for
before, add (I,c’) to work list. k<m

W

let t = Analyze(Ey, €, c)
4: Add(t, FunRes(f,c))

4: return FunTerm(l,¢).

Analyze(Eo(E.,...,En)', €, ¢):
1: Let tr = Analyze(Ey,E,c) for 0 < k < n.
2: for each I’ and ¢’, such that Contains(FunTerm(I’,c'), o),
3: let ¢’ =Call(l',l,c),

4: Add(FunCall(¢"), FunDest(I’, '),
5: Add(tx, FunArg(l',k,c'")), for 1 < k < n.
6: Add(FunRes(I',c"), ApplyRes(l, c)).
7: Return ApplyRes(l, c).

Fig. 4. Polyvariant analysis of higher-order functions.

also introduce a new class of analysis tasks, associated with the evaluation of a
closure. We will write those (I, c).

In the polyvariant analysis a closure should be analyzed once for each context
in which it is called. Thus, the analysis of a fun expression looks for terms
FunCall(¢'), indicating a call to the fun in context c¢. The analysis rules are
given in Figure 4. We assume that the free variables of the fun expression are

Y, -1 Ym-

4 The implementation

The analysis is written in Erlang. As Erlang is (apart from the concurrency
primitives) a pure functional programming language and lacks arrays and hash
tables, the store is represented as a balanced binary search tree.

4.1 Modules

The analysis is applied to a single Erlang module. All exported functions are en-
try points, and their arguments are assumed to be the universal type. The anal-
ysis has information about the return types of built-in functions and functions in
the standard library math. For some benchmarks, the analysis is provided with
the source code of some external modules. Calls to other modules are assumed
to return the universal type.

12

4.2 Core Erlang

Even though Erlang may on the surface appear to be a simple language, it is
not completely straight-forward to write a front end which handles all aspects
of the Erlang language. To avoid dealing with these details, the analysis instead
operates on the Core Erlang intermediate code [4]. The translation is performed
using the front end of the OTP distribution.

In the translation to Core Erlang, all primitive operations (for example, arith-
metic) will appear as function calls. Also, the translation adds a clause with a
call to ‘exit’ (which generates an exception) to each case statement, thus mak-
ing make the exceptions thrown when a case expression fails to find a matching
clause explicit. This means that even fairly simple Erlang functions may contain
several calls to built-in functions. The computation of weights in static limiting
treats these calls as any other calls, the result is that each function will be as-
signed a greater weight. This is not unreasonable, as the weight is intended to
reflect the cost of analyzing a function polymorphically, and functions containing
many built-in calls will be more expensive to analyze. Note that, as the weight
of each function is greater, the choice of the parameter p is affected.

4.3 Meta-call

Erlang’s meta-call takes three arguments; an atom which gives the module being
called, an atom giving the name of the function and a list which is sent as an
argument list to the function. In other words, the destination of a meta-call is
computed on the fly. This makes it impossible to compute the call graph before
the analysis begins, as is required by static limiting. The solution is simply to
build the graph with the call destinations available. To avoid problems with
infinite recursion, the analysis also implements dynamic detection of recursion.

5 Experimental Results

Table 1 lists the benchmarks used in the measurements. For each benchmark
the number of lines is shown (not including comments and blank lines). Barnes
solves the n-body problem. It is packaged as a compiler benchmark, so all data
is given in the program (the program was modified to only export one func-
tion). B2i is a module in the Hipe compiler which translates BEAM code to an
internal representation. Eddie is a high availability clustering tool. The eddie+
benchmark was originally intended as a compiler benchmark and consists of an
http parser and a set of support modules. Eweb is a tool for Erlang literate pro-
gramming. The hipe+ benchmark consists of modules from the Sparc backend of
the Hipe compiler [12]. Igor is a tool for merging and renaming Erlang modules,
downloaded from the Erlang user contributions list. Othello is a Othello-playing
program, downloaded from the Erlang user contributions list. Scan is a lexical
analyzer for XML, downloaded from the Erlang user contributions list.
In the evaluation, we considered the following settings for polyvariance.

13

Name Included modules Lines
barnes | barnes 180
b2i hipe_beam_to_icode 1115
eddie http_parse 335
eddie+ | http_parse, http_fields, lists

srv_parse, srv_table 1610
igor igor 1556
igor+ igor, lists 2062
hipe+ hipe_rtl2sparc, gb_trees, hipe_consttab, hipe_gensym

hipe_rtl.erl, hipe_sparc, hipe_sparc_registers, lists 4312
othello |othello 173
othello+ | othello, othello_board, othello_adt 932
scan xmerl_scan 2118

Table 1. Benchmark programs used in the evaluation.

— Static limiting with the parameter p (as in Section 2.4) set to 10, 100, and

1000 (sl-10,

1 (1cfa).

sl-100, and s1-1000).

Dynamic detection of recursion (ddr).

Monovariant analysis (Ocfa) and Shiver’s polyvariant analysis with k set to

— Dynamic detection of recursion with the size of contexts limited to size 1

(ddr-1).

— Both dynamic and static detection of recursion (dsdr).
— Dynamic and static detection of recursion with contexts limited to 1.

The measurements were done on a dual processor Intel Xeon 2.4 GHz machine
with 1 GB of RAM and 512 KB of cache per processor, running Linux. The
benchmarks were run under the BEAM byte code interpreter.

Name sl-10 sl-100 sl-1000 | Ocfa 1cfa ddr ddr-1 dsdr dsdr-1
barnes 0.6 0.6 0.5 0.3 1.1 0.6 0.6 0.6 0.6
b2i 43.0 50.7 50.9|995.7 * 168.2 108.5 105.4 9.1
eddie 1.5 1.6 1.6 0.7 2.9 5.1 1.4 1.4 1.1
eddiepl 6.0 6.5 6.5 0.9 3854 23.7 150.5 6.5 151.9
hipepl 209 71.3 722 2.0 13.6 723 121 71.7 123
igor 6.5 13.9 29.3 1.3 3.7 169.7 3.4 154.6 3.3
igorl 11.5 344 1225 1.6 8.6 T753.7 5.0 604.9 4.8
eweb 0.9 1.2 2.3 0.4 2.6 2.3 0.6 2.3 0.6
othello 0.2 0.2 0.4 0.2 0.3 0.5 0.3 0.4 0.2
othello+| 81 153 21.3 5.1 7.8 T41.3 7.1 515.5 6.8
scan 32.8 523 757 2.1 22.6 + 39.84118.8 28.9

Table 2. Analysis time for all combinations of benchmarks and polyvariance. All times
are in seconds. * - terminated after running for more than one hour, + - ran out of

memory.

14

The timings for all benchmarks is given in Table 2. Ocfa is always the fastest,
except in the b2¢ benchmark. In b2c¢, 1cfa was run for more than one hour with-
out terminating, and Ocfa was the slowest of the rest. A partial explanation to this
rather peculiar behavior is that the module contains a function mk_label which
is called from more than 20 locations in the module. This function takes an envi-
ronment as an argument and returns a new environment, and as many functions
pass around environments, one might hypothesize that computing transitive clo-
sure is easier when using static limiting as the graph becomes more tree-like. To
test this hypothesis, Ocfa was modified to allow polyvariant analysis of mk_label.
This version of the analysis terminated in 37 seconds.

The timings for the polyvariant cfa-based analyses vary greatly, note for
example in the case of eddie+ how the limited analyses (ddr-1, and dsdr-1)
are between 6 and 20 times slower than their unlimited counterparts. The main
module of the eddie benchmark contains a recursive-descent parser, using explicit
state (in essence, a continuation) to avoid deep recursion. A partial explanation
to the slower performance is that the limited analyses will see more possible
intermediate states, and each possible intermediate state will trigger more work
for the analysis.

For all other benchmarks the limited versions of ddr and dsdr are faster than
their unlimited variants. In the case of the igor, othello and scan benchmarks,
the unlimited ddr and dsdr fare particularly badly, and either fail to terminate
or require more than 50 times as much time as Ocfa.

In contrast, the analyses based on static limiting have quite predictable exe-
cution times. sl-10 is at most 16 times slower than Ocfa, slI-100 is never more than
25 time slower, and sl-1000 is at most 76 times slower than Ocfa. It is interesting
to relate this result with Theorem 1, which guarantees that the analysis problem
solved by an sl-p analysis will at most be p*2 times larger than the corresponding
problem solved by Ocfa. The theorem does not make any guarantees regarding
analysis time, but the experimental results suggest that a similar property holds
for analysis time.

Next, we turn to the estimates of precision shown in Table 3. The precision of
each analysis was estimated by looking at each function parameter and return
value of the exported function of the main modules of each benchmark. These
were divided into two categories, known and unknown. A type was considered to
be unknown if it was the union of two or more top-level constructors, or if it was
any, or if it was a tuple of unknown length. The figures indicate the percentage
of parameters and return values with known type.

The difference in precision between monovariant and polyvariant analysis is
never very large. For example, in the igor benchmark, monovariant analysis is
able to determine the types of 36% of all function parameters and results, while
all polyvariant analyses determine the types of 42%. Why is the improvement
so small? The fact that the underlying analysis is quite precise means that the
advantage of separating calls is smaller. (Also, since the monovariant analysis
sets a rather high baseline the room for improvement is smaller.) Most of the
values that remain unknown may have been passed from some unknown module,

15

Benchmark | sl-10 sl-100 sl-1000 | Ocfa | lcfa ddr ddr-1 dsdr dsdr-1 | Positions.
barnes 88.1 88.1 88.1| 54.2| 88.1 88.1 88.1 88.1 88.1 59
b2i 40.1 40.1 40.1| 34.9 * 40.1 40.1 40.1 40.1 212
eddie 32.9 32.9 32.9| 32.9| 32.9 329 34.2 329 329 161
eddie+ 34.2 49.1 49.1| 32.9| 33.5 49.1 35.4 49.1 34.2 161
hipepl 68.5 68.5 68.5| 59.1| 68.5 68.5 685 685 68.5 127
eweb 30.5 30.5 30.5| 24.5| 26.0 30.5 30.5 30.5 30.5 200
igor 42.0 42.0 42.0| 36.5| 36.7 42.0 42.0 42.0 42.0 529
igor+ 51.0 51.0 51.0| 41.4| 43.1 51.0 51.0 51.0 51.0 529
othello 22.0 22.0 22.0] 16.5| 22.0 22.0 22.0 22.0 22.0 109
othello+ 42.2 42.2 42.2 | 31.2| 42.2 43.1 42.2 43.1 422 109
scan 30.9 33.4 30.9| 28.2| 30.9 - 30.9 30.9 30.9 482

Table 3. Estimates of precision. Numbers indicate percentage of function parameters
and return values in main module whose type could be determined by the analysis.
The final column indicates the total number of function parameters and return values
examined.

or are due to limitations of the underlying analysis. Also note that we treat a
union of two types, for example two different tuples, as an unknown. The fact
that the programs analyzed make very little use of polymorphism might also
contribute.

It is also worth noting that the difference in precision between different poly-
variant analyses is either small or non-existent, so if one wants a polyvariant
analysis, one might as well choose the fastest one, sl-10.

6 Related work

Ashley and Dybvig [3] describe an polyvariant analysis where the new context
is dependent on the types of the arguments in the call. Thus, two calls to a
function will be separated if at least one of their arguments differ in type.

Wright and Jagannathan [16] describe an approach similar to Shivers’s kCFA
and evaluates its efficiency in two optimizations; elimination of run-time checks
and inlining. Their analysis treats a function as polyvariant if it is defined in
a surrounding let-expression. Thus, a recursive call is never polyvariant. This
syntactic restriction resembles the technique described in Section 2.3 which iden-
tifies strongly connected components in the call graph. Emami et al.[6] describe
a polyvariant pointer alias analysis which limits the size of contexts through a
mechanism which resembles dynamic detection of recursion.

Experimental investigations comparing monovariant and polyvariant pointer
analysis for C have shown mixed results. Liang and Harrold [9] compare their
polyvariant analysis with a monovariant analysis [1] and find that the polyvariant
analysis is comparable in precision but faster. Foster at al. [7] compare polyvari-
ant and monovariant versions of Andersen’s and Steensgaard’s [15] analyses and
find that polyvariance gives a large improvement for Steensgaard’s analysis but
hardly any improvement at all for Andersen’s analysis.

16

7

Conclusions

We have presented a technique for efficient polyvariant type analysis, static lim-
iting. It is simple in that its implementation only requires small modifications to
a monovariant analysis, and robust as it never increases analysis time with more
than a constant factor. Two rather surprising results from the experiments are
that different polyvariant analyses show approximately the same gain in preci-
sion, and that this gain is usually quite small. Still, the use of a polyvariance
can be motivated, as it can be implemented with (relatively) little programming
effort and often gives a significant improvement in precision. It is difficult to see
how a monovariant analysis could ever give the same precision.

References

1.

2.

10.

11.

12.

13.

L. O. Andersen. Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen, May 1994.

Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. Concurrent
Programming in Erlang, Second Edition. Prentice-Hall, 1996.

J. Michael Ashley and R. Kent Dybvig. A practical and flexible flow analysis for
higher-order languages. ACM TOPLAS, 20(4):845-868, July 1998.

R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S. Nystrém, M. Pettersson,
and R. Virding. Core Erlang 1.0 language specification. Technical Report 030,
Information Technology Department, Uppsala University, November 2000.

Robert Cartwright and Mike Fagan. Soft typing. In PLDI, pages 278-292, 1991.
M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural Points-to
analysis in the presence of function pointers. SIGPLAN Notices, 29(6):242-256,
1994. PLDI.

J. Foster, M. Fahndrich, and A. Aiken. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In Static Analysis Symposium, number 1824
in LNCS, pages 175-198, 2000.

N. Heintze. Set-based analysis of ML programs. In ACM Conference on Lisp and
Functional Programming, pages 306-317, 1994.

D. Liang and M. J. Harrold. Efficient points-to analysis for whole-program analysis.
In Oscar Nierstrasz and Michel Lemoine, editors, ESEC/FSE ’99, volume 1687 of
Lecture Notes in Computer Science, pages 199-215. Springer-Verlag / ACM Press,
1999.

Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. ACM
SIGPLAN Notices, 32(8):136-149, August 1997.

Peter Norvig. Paradigms of artificial intelligence programming: case studies in
Common LISP. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, 1992.
M. Pettersson, K. Sagonas, and E. Johansson. The HiPE/x86 Erlang compiler:
System description and performance evaluation. In Zhenjiang Hu and Mario
Rodriguez-Artalejo, editors, Proceedings of the Sizth International Symposium
on Functional and Logic Programming, number 2441 in LNCS, pages 228-244.
Springer, September 2002.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 7, pages 189-233. Prentice-Hall, 1981.

14.

15.

16.

17

O. Shivers. Control flow analysis in scheme. In Proceedings of the SIGPLAN 88
Conference on Programming Language Design and Implementation, pages 164-174,
1988.

B. Steensgaard. Points-to analysis in almost linear time. In POPL’96, pages 3241,
Jan 1996.

Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an effective
polyvariant flow analysis. ACM Transactions on Programming Languages and
Systems, 20(1):166-207, January 1998.

