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Abstract

Nystr�om, S. 1996: Denotational Semantics for Asynchronous Concurrent Lan-

guages. Uppsala Theses in Computing Science 24. 182 pp. Uppsala. ISSN

0283-359X, ISBN 91-506-1154-2.

Asynchronous concurrent languages are programming languages that allow a prob-

lem to be solved by a set of cooperating processes, and where the processes commu-

nicate by asynchronous message passing, that is, a message can be sent regardless

of whether the receiver is ready to accept the message or not.

The focus is on a model of programming called concurrent constraint program-

ming (ccp), which it will be argued consists of the elements essential to concurrent

programming. An important goal is to �nd semantic models that focus on the

external behaviour of programs, and where the interaction between a program and

its environment is modelled as abstract dependencies between input and output.

Throughout the thesis it is assumed that a semantics for a concurrent language

should consider not only the results of �nite, terminating computations, but also

the results of in�nite computations.

We give a fully abstract semantics for ccp, which is however not a �xpoint

semantics. We give two proofs of full abstraction; one which depends on the use

of an in�nite conjunction of processes, and one which makes some assumptions

about the constraint system but only requires �nite conjunctions.

We show that for a large class of concurrent programming languages there is

no denotational semantics which is a �xpoint semantics and fully abstract. Similar

results have been presented by other authors, but the result presented here is more

general.

We introduce an operational semantics of ccp based on the use of oracles.

An oracle describes the sequence of non-deterministic choices to be made by a

process. We show a con
uence property for ccp which concerns in�nite sets of

computations and in�nite sequences of computation steps. As far as I know, no

similar con
uence property has been described for ccp or any other concurrent

programming language.

We give a �xpoint semantics for ccp, based on the oracle semantics. In this

semantics, the oracles are explicit. By abstracting the oracles from the �xpoint

semantics we obtain a slightly more abstract version of the �xpoint semantics in

which the semantic domain is a category.

Sven-Olof Nystr�om, Computing Science Department, Uppsala University, Box

311, 751 05 Uppsala, Sweden. Phone: 018-18 10 57. Fax: 018-51 19 25.
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Chapter 1

Introduction

This thesis is about the semantics of concurrent programs. Below I state

the underlying notions which led to the results presented in the thesis.

I choose to focus on a model of programming called concurrent constraint

programming (ccp), which I will argue consists of the elements essential to

concurrent programming.

Throughout the thesis I assume that a semantics for a concurrent lan-

guage should consider not only the results of �nite, terminating computa-

tions, but also the results of in�nite computations.

The semantic models I develop in the thesis are intended to describe the

external behaviour of programs.

1.1 Semantic models

In the context of computer science, semantics is the meaning of programs.

The semantics of a programming language can often be stated in words, but

experience has shown that this often leads to ambiguities.

One rather straight-forward way to state the semantics of a program-

ming language in a formal way is to use an operational semantics . Here,

the execution of a program is modelled in a stepwise manner. Using an

operational semantics we can, starting with a program and an input, work

out what the program should compute, but this does not give us a general

understanding of what the program means . Also, an operational semantics

makes assumptions about how a program is executed, while there may be

many di�erent ways to implement a programming language.

Another way to state the semantics of programs is to use a denotational

semantics . Here, the meaning of programs and components of programs are

given as elements in a mathematical structure. A denotational semantics

is compositional , meaning that the semantics of a programming construct

can be determined from the semantics of its components. For instance, it

should be possible to determine the semantics of a while-loop (containing a

7



8 chapter 1. introduction

boolean test and a body) given the semantics of the test and of the body

of the loop. If we replace the body of the loop with another body that has

the same semantics, we expect the semantics of the loop to be the same.

Similarly, replacing one sorting routine with another routine that has the

same semantics should not change the semantics of the program.

One important aspect of denotational semantics is the use of �xpoints .

When giving the semantics of a procedure that is de�ned in terms of itself,

i.e., it is recursive, it is natural to see the procedure de�nition as an equation

to be solved. In this case, the solution we are interested is the least speci�c

solution. In the traditional denotational semantic models, the least speci�c

solution is the least �xpoint of a function which has been obtained from the

recursive de�nition.

We do not want a denotational semantics to contain any redundant

information; ideally, a denotational semantics should give exactly the in-

formation needed to determine if two programs (or program fragments) are

equivalent. When this holds, we say that semantics is fully abstract . When

we have a fully abstract semantics, and we compare the denotational se-

mantics of two programs (or program fragments), and we discover that the

two programs have di�erent denotational semantics, this might either be

because the two programs really behave di�erently, or that when we make

the programs part of a larger program there may be a detectable di�erence

in behaviour. As long as we always can �nd a reason for programs having

di�erent denotational semantics, we say that the denotational semantics is

fully abstract.

1.2 Concurrency

In many programming problems, it is very natural to model a program as a

set of cooperating processes. The processes are up to a point independent

of each other, but exchange information. A programming language is con-

current if it is possible to write programs which consist of communicating

processes. It should be stressed that concurrency is about expressiveness;

even though in theory all programming problems can be solved in a sequen-

tial programming language, some programming problems are much easier

to solve in a concurrent language.

Typical programming problems which are natural to solve using concur-

rent programming include programs that are distributed on a network of

computers, and programs which communicate with many di�erent external

units, consider for example a booking system which interacts with a large

number of users.

Now, if we want a concurrent programming language, what basic opera-

tions are necessary for concurrent programming? It is easy to see that two

things are essential. First, there must be a way to create processes. Sec-
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ond, there must be a way for processes to communicate. As a third point

we could mention synchronisation between processes. However, we consider

communication to implicitly involve an element of synchronisation, in that

a process may wait for a message from another process.

Note that the result of a concurrent computation is often not completely

determined by the input to the program. When this is the case, we say that

the computation is non-deterministic. Non-determinism occurs for example

when two processes send messages to a third process. The behaviour of the

third process depends on in which order it receives the messages. That a

computation is non-deterministic is problematic, both from a practical and

a theoretical point of view. Non-determinism complicates the testing of

programs, since we cannot be sure that the repeated execution of the same

program will result in the same behaviour. Also, it is quite possible that

di�erent implementations may favour di�erent non-deterministic choices, so

that moving a program from one computer to another results in a di�erent

behaviour. It is also well-known that non-determinism in a programming

language makes it harder to give a denotational semantics for the language.

Regardless of these problems, there is no way to design a concurrent lan-

guage without non-determinism that will not restrict the expressiveness of

the language.

1.3 Concurrent constraint programming

In my opinion, concurrent constraint programming (ccp) constitutes a very

natural model of concurrent programming. Any programming model must

provide mechanisms to allow the program to receive input, to allow an inter-

mediate result to be communicated between di�erent parts of the program,

and to allow the program to present the computed result. In a concur-

rent language there must also be a mechanism for communication between

processes.

In ccp, all forms of communication are served by a single mechanism,

the store. The store is simply a collection of facts gathered during the com-

putation. (The facts are called constraints , for historical reasons.) There

are two types of operations on the store, tell which add a constraint to the

store, and ask , which succeed when a given constraint is entailed by the

store.

An important feature of ccp is that the store grows monotonically, in

that constraints may be added to the store, but are never removed. It

follows that an ask constraint that succeeds at one point in time will also

succeed if tested later. This makes it easier to reason about ccp, formally

and informally, and is also helpful when implementing ccp on a computer

with distributed memory.
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1.4 Why ccp?

When one discusses the semantics of programming languages, it helps to

have a language which has a simple formal de�nition, since we want to

reason about the language formally. On the other hand, we do not want

the language to be so restrictive that we cannot reason about common

programming techniques.

It seems to me that ccp �ts these requirements quite well. The use of the

store as a medium for communication gives a communication mechanism

which is very simple, but is still quite general and powerful. Given the

assumption that the store should be the medium for communication, the

other aspects of concurrent constraint programming follow quite naturally.

It is di�cult to imagine that a concurrent language with non-determinism,

recursion and data hiding could be simpler than ccp.

1.5 Why in�nite computations?

In the traditional formal models of sequential computation, a program be-

gins by reading its input, then computes, and then terminates, at which

point it presents the computed result. In other words, a sequential program

that does not terminate has not made its results available to the outside,

so we can say that it has not really produced anything. The situation in

concurrent programming languages is di�erent. A process can read input

and produce output without terminating. In fact, one can argue that the

only di�erence between a process that terminates and a process that enters

an in�nite loop and does no more communication is that the terminating

process is more e�cient. After all, the output from the two processes is the

same.

There are many completely reasonable programs that are written so that

they could run inde�nitely, if we ignore the physical limitations. Consider,

for example, an operating system, or the software of a telephone exchange.

In all these cases, there is nothing inherent in the programs that would pre-

vent them from executing inde�nitely, if we had completely reliable hard-

ware and in�nite patience. Even a simple interactive program like a word

processor could run inde�nitely, if the user keeps editing, and editing, and

editing, : : :.

Of course, the fact that the behaviour of programs is well-de�ned even

in the case of in�nite executions does not necessarily mean that we need

to make in�nite observations. Since the observations we can make about a

running program are limited to �nite pre�xes of the computation, it may

be that �nite observations are su�cient to determine the behaviour of a

program performing an in�nite computation. If we consider deterministic

programs, it is indeed the case that the in�nite behaviour of a program is
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completely determined by the �nite observations we can make. For example,

if a deterministic program generates the output

a

0

; a

1

; a

2

; : : : ;

it is su�cient that we can make the observation a

0

; a

1

; : : : ; a

n

, for any n � 0,

to allow us to uniquely determine the complete result of the computation.

In contrast, for non-deterministic programs �nite observations are not

su�cient to determine the in�nite behaviour. Worse, �nite observations are

not even su�cient to distinguish between programs that always terminate

and programs that may not terminate. We will give a couple examples to

illustrate the problems with only allowing �nite observations.

For our examples we introduce a simple non-deterministic programming

language, where the syntax of statements is as follows.

S ::= print 1 j fS

1

;S

2

g j skip j loop forever j choose S

1

or S

2

The print statement `print 1' outputs a `1'. The sequencing statement, i.e,

fS

1

;S

2

g; executes S

1

and S

2

in sequence. The skip statement skip does

nothing, and the statement loop forever performs an in�nite loop. The

simple non-deterministic statement choose S

1

or S

2

; makes an arbitrary

choice between statements S

1

and S

2

. We will also allow procedure de�ni-

tions such as

procedure p;

S:

The procedure p de�ned above is called with the statement

p:

A real concurrent language should of course have a much richer set of con-

structs, but the constructs we have listed are su�cient for our examples.

The following procedure de�nitions are intended to illustrate di�erent as-

pects of the interplay between non-determinism and in�nite computations.

procedure p;

choose skip

or fprint 1; pg

procedure q;

choose skip

or fq; print 1g

procedure r;

fprint 1; rg

The body of procedure p consists of a non-deterministic choice which either

does nothing, or outputs a 1 and then repeats. The behaviour of p can very
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naturally be illustrated as a tree where the nodes are non-deterministic

choices and the edges output statements.

The body of procedure q is similar to the body of p. We have a non-

deterministic choice, but in the second branch the recursive call comes before

the print statement. This means that q cannot produce an output before

the return of the recursive call, but at this stage all q has left to do is to

execute a few more print statements. q can behave in two di�erent ways.

Either q will choose the second branch every time, in which case no output

will be produced, or q will choose the �rst branch of the non-deterministic

statement at the nth level of recursion, in which case it will produce a

sequence of n `1'.

The procedure r is deterministic. It will produce an in�nite sequence of

ones.

Before we turn to the observable properties of these procedures, note that

since our language allows a sequencing statement we must include termina-

tion in the set of observable properties to make the semantics compositional.

We will indicate termination by a `t'.

We begin by looking at the observable properties of p, q and r, under

the assumption that in�nite observations are allowed.

p 1

�

t [ 1

!

q 1

�

t [ �

r 1

!

With in�nite observations, we can easily determine the di�erences in be-

haviour between the three procedures.

Now, let us consider a semantics based on �nite observations. We �rst

consider as observables the set of results of terminated computations. The

observable behaviour of the statements p, q and r with procedure de�nitions

as above, are as follows.

p 1

�

t

q 1

�

t

r ;

This is clearly not su�cient to give a meaningful semantics. When we

only consider the behaviour of terminated computations, it is not possible

to distinguish between the procedures p and q which clearly have di�er-

ing behaviour. When we only consider observations made on terminating

computations, in�nite computations become completely invisible. This is

not reasonable, since the output generated by an in�nite computation is

certainly visible.

Instead, let us consider a semantics of �nite pre�xes of arbitrary com-
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putations.

p 1

�

t [ 1

�

q 1

�

t [ 1

�

r 1

�

This is a slight improvement. Here we can see that the program r may

generate output, but we can still not distinguish between p (which will

either terminate or keep producing output) and q (which may perform an

in�nite computation without producing any output).

The traditional way to give a semantics based on �nite observations

which can distinguish between programs like p and q is to introduce the

concept of divergence. A program is said to diverge if it can do an un-

bounded set of computation steps without producing output. Using a \d"

to indicate that a computation is diverging, the observable behaviour of p,

q and r is as follows.

p 1

�

t [ 1

�

q 1

�

t [ 1

�

[ d

r 1

�

(The only di�erence between this table and the previous is that we have

added the information that q may diverge.) By the introduction of diver-

gence as an observable entity, we can distinguish between q, which may enter

an in�nite loop, and p, which will always either terminate or generate out-

put. However, the use of divergence does not give us any information about

computations with in�nite output. Consider, for example, the procedure p

0

,

de�ned as follows.

procedure p

0

;

choose p

or loop forever

p

0

may either behave like p, or enter an in�nite loop, so the observable

behaviour of p

0

is 1

�

t [ 1

�

[ d, that is, the same as that of q. However, p

0

and q di�er in that p

0

may produce an in�nite result, whereas q may not.

When q starts to produce output, we know that q will eventually terminate.

The use of divergence as an observable gives us more information about

the behaviour of a program, but we can not use divergence to distinguish

between programs that only generate �nite results, and programs that may

generate in�nite results.

The use of divergence as an observable property allows us to recognise

the set of programs that always terminate, and give a reasonable semantics

for such programs. However, allowing divergence as an observable property

is questionable. To determine whether a program will diverge is equivalent

to solving the unsolvable halting problem. Alternatively, one could see an

observation of divergence as waiting forever to see whether the program will

output anything, but the reason for introducing divergence was to avoid
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in�nite observations, Another problem with the introduction of divergence

as an observable is that we make the semantics more complex, since we add

a new concept to the semantic model. Finally, divergence does not give

information about in�nite computations.

By allowing in�nite observations of the behaviour of a computation, we

get a number of advantages,

1. we can reason about the behaviour of in�nite computations,

2. we avoid introducing in the set of observable behaviours behaviour

that cannot be observed, and

3. the semantic model becomes simpler, since we have fewer concepts.

For the rest of this thesis, we will only consider semantics which allow

in�nite observations. We will not consider divergence.

1.6 Why external behaviour only?

The semantic models I present in the thesis are only intended to capture

the external behaviour of programs. In other words, two programs which

behave the same are seen as equivalent, even though they may di�er in

e�ciency.

The decision to only consider external behaviour of programs is partly

motivated by the interest in the meaning of programs. Suppose one modi�es

a program so it becomes slightly slower, but computes the same result. Has

its meaning changed? I would argue that it has not.

The separation of e�ciency and semantics can also be defended from a

practical point of view, since it allows us to argue that one program has

the same semantics as another, but is more e�cient. Thus, one can, for

example, motivate replacing a slow sorting routine with a faster one.

1.7 Goals

The goal of this thesis is to develop techniques to describe concurrent pro-

gramming languages through denotational semantics according to the basic

premises below.

Choice of formalism The formalism we base our investigations on should

have the expressiveness of a normal programming language. That is, recur-

sion should be allowed and it should be possible to write programs involving

complex data structures. The language should also allow process creation

and it should be possible to pass not only values but also channels between

processes. At the same time, the formalism should have a simple formal
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de�nition. Given these requirements, the best choice is, in my opinion,

concurrent constraint programming.

What types of computations to consider? An important underlying

premise of this work is the notion that to give the semantics for a concur-

rent language it is necessary to concider in�nite computations. We have

already discussed these matters; let us just remind the reader that there are

concurrent applications that are not intended to terminate.

The elements of semantic description Denotational models for con-

current programming in general have usually had domains which were based

on communication events. This has made the semantic rules rather com-

plex. Also, from a practical point of view; if we are to consider in�nite

computations even very simple programs may have to be described using

uncountable sets of sequences of communication events. As a consequence,

the semantic rules are not computable. It is certainly unattractive and

unnatural to give the semantics of a programming language in terms of

uncomputable functions.

The conclusion I draw is that we should strive toward semantic models

which are based on abstract dependencies between input and output, and

try to avoid models based on communication events.

1.8 Organisation of the thesis

Chapter 2 gives a historical overview of asynchronous concurrent program-

ming. We describe various types of asynchronous concurrent languages, and

give a brief survey of the central results concerning the semantic description

of asynchronous concurrent languages.

Chapter 3 gives an informal introduction of ccp using a series of exam-

ples. The intention is both to give the reader an intuitive understanding of

ccp, and to demonstrate the expressiveness of ccp.

In Chapter 4 we give a formal de�nition of ccp. We �rst give a general

construction of constraint systems, and then point out a set of algebraic

properties which we expect any constraint system to satisfy. Next, we for-

mally de�ne the set of ccp programs, and give a structured operational se-

mantics which speci�es one aspect of the operational behaviour. However,

it is not possible to describe the set of fair computations using a structural

operational semantics so we give a de�nition of fairness. We also review

some results concerning closure operators, and the semantics of determin-

istic ccp programs. In the �nal section we give a simple semantics, which

speci�es the observable properties of a process, and the trace semantics,

which gives more detailed information about the interactive behaviour of a

process.
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In Chapter 5 we give a fully abstract semantics for ccp. This seman-

tic model is however not a �xpoint semantics. We give two proofs of full

abstraction; one which depends on the use of an in�nite conjunction of pro-

cesses, and one which makes some assumptions about the constraint system.

We also show some algebraic properties of ccp. It turns out that the seman-

tic domain of the fully abstract semantics satis�es a number of algebraic

properties. These properties correspond to the axioms of intuitionistic lin-

ear algebra, an algebra which was developed to model the properties of

linear logic. Also, it is worth noting that the semantics of selection can be

derived from other constructs.

Chapter 6 is an attempt to relate the results concerning the fully abstract

semantics of ccp to corresponding results for data 
ow languages. We de�ne

a simple data 
ow language and give a fully abstract semantics for this

language using the techniques described in Chapter 5.

Chapter 7 shows that for a large class of concurrent programming lan-

guages there is no denotational semantics which is a �xpoint semantics and

fully abstract, and able to describe in�nite behaviour. Similar results have

been presented by other authors, but the result presented here is more gen-

eral and can be applied to many di�erent mathematical structures.

In Chapter 8 we introduce an operational semantics of ccp based on the

use of oracles . An oracle describes the sequence of non-deterministic choices

to be made by a process. One can either see an oracle as something that is

given to a process right from the start of a computation, or as something

that we extract from an existing computation. In the oracle semantics we

can show two con
uence properties. The �rst con
uence property concerns

�nite sets of computations and �nite sequences of computations steps and

is similar to the con
uence properties shown for other languages. The sec-

ond con
uence property concerns in�nite sets of computations and in�nite

sequences of computation steps. As far as I know, no similar con
uence

property has been described for ccp or any other concurrent programming

language.

Chapter 9 gives a �xpoint semantics for ccp, based on the oracle seman-

tics. It turns out that even though the oracle semantics is compositional,

the existential quanti�er is not continuous under any ordering in which the

other constructs of ccp are also continuous. Thus, we are forced to resort to

a �xpoint semantics in which values of local variables of a process are made

part of the semantics of the process.

To deal conveniently with the local variables of an agent we introduce

a set of `hidden' variables and a couple of renaming operations. We also

show that the renaming operations satisfy a number of algebraic rules. The

`algebra of hiding' is quite general and it is possible that it may �nd other

applications.

The de�nition of the �xpoint semantics is quite straight-forward. We
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show correctness, i.e., that for a given process the �xpoint semantics gives

exactly the same set of traces as the fully abstract semantics. We also give

a version of the �xpoint semantics in which the the semantic domain is a

category.

Finally, Chapter 10 concludes with some remarks on the underlying as-

sumptions of the thesis, the signi�cance of the results, possible applications

of the results, and future research.
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Chapter 2

Models of asynchronous concurrent

computing: an overview

This chapter is an attempt to put the thesis in its context. We give an

overview of the history of concurrent computing|focusing on concurrent

programming with asynchronous communication, and an overview of the

work done on formal semantics for concurrent languages.

Asynchronous communication implies that the only synchronisation be-

tween processes is when a process waits for a message. In other words, if a

process wants to send a number of messages to another process, it is allowed

to do so, regardless of whether the receiving process reads the messages or

not.

The �rst examples of asynchronous communication on a computer was

the use of bu�ering between the central processing unit and various I/O

devices (for example printers, card readers, tape stations) to improve the

utilisation of the central processing unit. The use of bu�ered I/O implies

that the program can send data to a device, even if the device is currently

busy, and that a device can accept input, even if the central processing unit

is busy.

The idea of using bu�ered communication between processes is men-

tioned by Dijkstra [26]. An early description of a programming system in

which the communication between processes is done in a bu�ered, asyn-

chronous manner was given by Moreno� and McLean in 1967 [55].

2.1 An early asynchronous programming system

In 1970, Brinch Hansen [8] presented an operating system which allowed

dynamic creation and destruction of a hierarchy of processes. Communi-

cation between processes was done by assigning to each process a message

queue for incoming messages. In the presentation below, bu�er is a �xed-

size memory area (eight 24-bit words) which is used to store a message.

19
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A message queue can thus be represented as a linked list of bu�ers. The

bu�ers are maintained in a pool by the operating system.

The communication primitives are

send message (receiver, message, bu�er)

wait message (sender, message, bu�er)

send answer (result, answer, bu�er)

wait answer (result, answer, bu�er)

Send message picks a bu�er from the bu�er pool and copies the message

into the bu�er. The bu�er is then put into the receiver's message queue.

The receiver is activated if it is waiting for a message. The sender revives

the address of the bu�er and continues its execution.

Wait message checks if there are any messages in the queue. If not, the

process is deactivated until any message arrives. When a message arrives,

the process is provided with the name of the sender and the address of the

bu�er.

When a process has received a message, and wants to reply to the original

sender, the primitive send answer is used. The original message bu�er is

re-used, the new message is put into the bu�er, the bu�er added to the

original sender's message queue, and the original sender activated if it is

waiting for the answer.

A process that expects an answer to a message it has sent uses the

command wait answer to delay until an answer arrives.

The �rst two primitives are the most interesting, the primitives `send

answer' and `wait answer' can actually be implemented using `send message'

and `wait message'. However, it appears that the situation when a process

expects an answer to a message would be quite common in actual programs,

so the inclusion of the two last primitives is probably well-motivated.

Note that in Brinch Hansen's model, non-determinism is implicit. For

example, if two processes A and B each send a sequence of messages to a

third process C, the messages received by C will be an interleaving of the

messages sent by A and B. The relative order of the messages from A and

B depends on the scheduling mechanism of the operating system and can

not be determined by examining the program. However, the messages from

A will be seen by C in the same order as they are sent from A, and the same

holds for the messages sent by B. This is an example of a non-deterministic

merge.
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2.2 Kahn's �xpoint semantics

In 1974, Kahn [37] presented a �xpoint semantics for a simple parallel lan-

guage. This work has had a profound in
uence on the design of parallel

programming languages, and on the theory of parallel programming.

Kahn considered a parallel programming language based on a process

model very similar to the one given by Brinch Hansen. The process de�-

nitions look like procedure de�nitions in an imperative programming lan-

guage. Each procedure has a number of input channels and output channels.

A program is a directed graph of processes and channels, each channel be-

ing the input channel of one process and the output channel of another.

Some channels may be connected to the outside and receive data from some

agent outside the program, or send data to the outside. Communication

is done in a style fairly similar to Brinch Hansen's. There is a command

send I on V which sends message I on channel V , and a function wait(U)

which deactivates the process until data appears on channel U , and then

returns that message. There is no provision for allowing a process to wait

for incoming messages on more than one channel. Note that the possibility

of having more than one input channel can easily be simulated in Brinch

Hansen's model, since each message is identi�ed by the name of its sender.

The central result of Kahn's work is that each process can be described

as a function. Suppose that the messages a

1

; a

2

; : : : ; a

n

have arrived over

a channel at a given point of time (that is, the sequence a

1

; a

2

; : : : ; a

n

is

the history of the channel). Naturally a

1

a

2

: : : a

n

forms a string. Initially,

this string is empty, and during the execution of the program the string

grows as messages are transmitted over the channel. A process can now be

seen as a function from the histories of input channels to to the histories of

output channels. If we order the strings representing possible histories of a

channel in the pre�x ordering (so that a string x is smaller than a string

y if x is a pre�x of y) we �nd that the functions are monotone. Further,

if we want to model in�nite computations (and Kahn and I agree that we

should) we must extend the set of histories to also include in�nite histories.

The set of �nite and in�nite strings are ordered such that an in�nite string

is greater than each �nite pre�x of the string. Under this ordering each

process can be modelled as a continuous function from input channels to

output channels. A program is thus modelled as an equation system. The

meaning of the program is then the function that takes an input history

as input and returns the corresponding minimal �xpoint of the equation

system.

It is important to note that the restrictions that only one process may

output data on a particular channel, and that a process may only wait for

incoming data on one channel mean that a computation is essentially deter-

ministic; even though the scheduling of processes can give rise to di�erent
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execution orders, the output produced by the program is still completely

determined by the input.

Note that Kahn's semantics only considers the external behaviour. Con-

cepts like termination, divergence and deadlock are not present. For exam-

ple, suppose that we have a program A and create a program A

0

by adding

a process which has no input or output channels. Clearly A and A

0

will

have exactly the same communication patterns, regardless of the internal

behaviour of the added process. We can also consider the case when we

add a group of processes which are connected to each other but are not

to connected to processes in A, or to the outside. Let us call this process

A

00

. We can imagine that the new processes of A

00

may engage in in�-

nite communication sequences, or wait for a message that never arrives, or

perform in�nite computations without any communication actions, or ter-

minate. In all these cases, the external behaviour of A

00

is exactly the same

of A, and the Kahn semantics of the two programs is also the same. (One

can of course argue that A is more e�cient than A

00

, but this di�erence in

e�ciency should not be refelected in the semantics.)

It should be noted that the idea of viewing a concurrent process as a

function over streams had already been considered by Landin [44].

2.3 A note on terminology: De�nitions of the Non-deterministic

Merge

As we have already indicated, the non-deterministic merge operator plays

an important role in the theory of concurrent programming. The basic idea

is that the merge operator has two (or more) input streams, and one output

stream. As tokens arrive at any of the input streams, they are copied to the

output stream. The easiest way to describe the behaviour of the merge is

to say that it outputs the tokens in the order at which they arrive, but we

do not want to introduce timing details into the semantic describtion, since

timing is implementation-dependent. There are many ways to formalise the

intuitive idea of how a merge operator should behave. The merge operators

decribed below are the most common ones in the literature. The terminology

is quite standard.

The fair merge guarantees that each token that arrives on any of the

input streams will appear on the output stream.

The angelic merge guarantees fairness in the case when all input streams

are �nite, i.e., when all input streams are �nite each incoming token will

appear on the output stream. The angelic merge also guarantees that all

tokens that arrive at one input stream will be output, in the case when the

other input streams are �nite.

The in�nity-fair merge guarantees fairness in the case when all input

streams are in�nite.
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Among the merge operators, the fair merge is the strongest. The reason

for considering the other merge operators is that they are in some contexts

easier to describe and implement. The angelic merge can be expressed in a

concurrent language with non-deterministic guarded choice, but we cannot

express fair merge without making asumptions about the selection mecha-

nism. An in�nity-fair merge can be expressed as a deterministic procedeure

that takes as input (beside the input streams to be merged) an oracle,

which tells the merge from which input stream the next token should be

read. Thus, the choices made by the in�nity-fair merge are not dependent

on input.

2.4 The data 
ow languages

In 1975, Dennis [25] presented a concurrent programming language (de-

scribed as a data 
ow procedure language) with mechanisms for communi-

cation very similar to those described by Brinch Hansen and Kahn. The

di�erence is that here the processes, or `nodes' as Dennis calls them, are not

complex procedures written in some imperative language, but instead very

simple computational units. The language de�nition describes a number of

types of nodes, and the idea is that the programmer should create a pro-

gram by connecting a network of nodes. Even though this language from a

pragmatic point view is very di�erent from the ones which allow complex

processes, it is still possible to apply Kahn's techniques.

After Kahn had shown how to give a �xpoint semantics for a deter-

ministic data 
ow language several people tried to generalise the results

to non-deterministic data 
ow languages. We will here review the results

presented the years after Kahn's semantics had been presented.

Kosinski [41, 42] gave a �xpoint semantics for non-deterministic data


ow. One of the central ideas in his approach was to associate with each

token in a stream the sequence of non-deterministic choices which lead to

the generation of the token. However, the semantics is rather complex and

is di�cult to understand. As Clinger [19, page 85] pointed out, one of the

crucial theorems has a 
aw in its proof.

Keller [39] discussed several approaches to the formal semantics of non-

deterministic concurrent programming. He showed in an example that non-

deterministic merge could not be modelled using simple input-output rela-

tions. A similar result was later given by Brock and Ackerman [9].

Broy [14] points out that an applicative language that has a parallel

evaluation rule and is extended with McCarthy's ambiguity operator [51] is

su�ciently powerful to implement the merge operator. He presents a rather

complex �xpoint semantics based on an intricate powerdomain construction.

The operational semantics of his language does not address fairness, so it is

unclear how his semantics deals with in�nite computations.
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Park [63] considered a non-deterministic data 
ow language in which a

program consists of deterministic nodes and merge nodes. He gave a �xpoint

semantics in which non-determinism is modelled using oracles. Each merge

node is provided with an extra argument, the oracle, which controls from

which of the input streams the merge operator would read its next input. To

cope with the case when one of the input streams is empty, Park introduced

a special token � , also called the hiaton, which would be emitted by each

node at regular intervals, so that a node is never completely silent and

there is always tokens arriving on each channel. A sequence containing �s is

considered to be a representation of the same sequence with the �s removed.

The model is not fully abstract, of course, but it is quite simple and easy to

understand and it is easy to see precisely why it is not fully abstract. Also,

the model deals with fairness and in�nite computations.

Brock [9, 10] gave a fairly straight-forward semantics for non-determin-

istic data 
ow in which the semantic domain consisted of sets of scenarios . A

scenario is a graph of input and output events, in which the graph structure

records causality.

2.5 Concurrent programming with synchronous communication

The development of the synchronous concurrent languages CSP and CCS

had two motivations.

First, it appeared di�cult to give a satisfactory semantic description of

the data 
ow languages, either by an operational de�nition or by a deno-

tational semantics. In contrast, the operational semantics of CCS could

be presented concisely, and for CSP there was at an early stage a �xpoint

semantics [11].

Second, there is an obvious technical problem with the asynchronous

communication approach. Since the number of messages sent but not re-

ceived may be arbitrarily large, we need a mechanism for dynamic allocation

of messages. If our programming language is a low-level language in which

all memory is allocated statically, one might want to avoid introducing a

dynamic memory allocation scheme just for the sake of handling the allo-

cation of messages. So, if asynchronous communication implies unbounded

bu�ers, what is the alternative?

In synchronous languages such as Hoare's CSP (communicating sequen-

tial processes) [31, 32] and Milner's CCS (calculus of communicating sys-

tems) [54] one can say that the communication channels have bu�ers of

size zero. Since there is no way to store a message which has been sent

but has not yet been read by the receiver, it follows that the sender can-

not be permitted to send the message until the process on the other end of

the communication channel is ready to receive. It follows that we need a
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synchronisation mechanism that prevents a process from sending a message

until the receiver is ready to accept the message.

CSP as described by Hoare in the 1978 article [31] has two commu-

nication primitives, the output statement and guarded wait. The output

primitive sends a message on a channel, and delays the process until the re-

ceiver accepts the message. The input primitive suspends the process until

a message arrives. The input may occur in a guard, which implies that a

process may wait for input on many channels, but also that a process may

wait for a speci�c message, or a message that satis�es some given property.

Given asynchronous communication, as described in previous sections,

it is straight-forward to implement the communication primitives of CSP

according to the following scheme. The output statement of CSP is imple-

mented as an asynchronous send followed by a statement that waits for the

receipt of an acknowledgement. The receiver is then responsible for send-

ing an acknowledgement back to the sender, after it has read the message.

In the same way asynchronous communication can be implemented in a

synchronous language using an explicit bu�er.

The scheme to implement the synchronous communication mechanism

using asynchronous send and acknowledgement could be used to implement

CSP on a computer with distributed memory, but it also shows that the

di�erence between synchronous and asynchronous communication is not a

matter of profound theoretical importance, but rather one of convenience of

programming and e�ciency of implementation. One can argue that either of

the two communication mechanisms is more primitive than the other, which

one that ends up being more primitive would depend on the computational

model one chooses for the comparison. In a comparison between CSP and

Kahn's semantic model, Hoare characterises Kahn's model as a more ab-

stract approach, while CSP is described as being more machine-oriented [31,

page 676].

The communication primitives of the version of CSP presented by Hoare

in his book [32] (sometimes referred to as theoretical CSP, or TCSP), and

also of CCS [54], allow a more complex form of communication, in which

both input and output statements may be guarded.

Brookes, Hoare and Roscoe [11] gave a �xpoint semantics for TCSP, in

which only �nite observations of communication actions were considered.

As pointed out by Abramsky [1] there are programs which di�er in their

in�nite behaviour, but still have identical �nite behaviour, so clearly a se-

mantic model based on �nite observations cannot successfully treat in�nite

computations. If we consider terminating processes, it is easy to see that

they allow the same set of �nite observations exactly when they have same

external behaviour. However, it is possible to �nd terminating and non-

terminating processes which exhibit the same �nite behaviour. Thus, we

cannot tell whether a process is terminating by making �nite observations.
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The above holds if the only observations allowed are communication

actions. Brookes and Roscoe [12] presented an improved �xpoint semantics

in which termination and divergence (that a process enters an in�nite loop

without doing any communication) were made part of the externally visible

behaviour.

2.6 The Committed choice and Concurrent logic programming

languages

People in the logic programming community have during the last 20 years

proposed a great number of logic programming languages with features that

would allow parallel implementation, concurrent programming, or both. It

is not possible to give an account of all the ideas people have been toss-

ing around (and sometimes tried to implement). Instead, we will con-

centrate on a group of concurrent languages intended to have reasonably

straight-forward and e�cient implementations, and which have communi-

cation primitives which largely resemble the send and wait operations de-

scribed above. The languages which belong to this group were initially

referred to as the committed choice logic programming languages, to re
ect

that programs written in these languages will not backtrack, unlike Prolog

programs. Later, the term `concurrent logic programming languages' (clp)

has also been used.

The committed choice languages result from attempts to develop a con-

current version of Prolog, suitable for parallel implementation. It seemed

that conjunction, which is sequential in Prolog, but not in logic, could be

seen as a parallel composition operator. A conjunction of goals could then

be read as the creation of communicating processes.

It was clear that to execute goals in parallel, one would have to �nd a way

to avoid problems with the back-tracking mechanism of Prolog, which may

involve many goals. It is worth noting that the back-tracking mechanism of

Prolog is seldom used to �nd more than one solution of a call; usually some

back-tracking may occur in the selection of a clause and few programs take

advantage of Prolog's search mechanism in more complex situations. Also,

in most logic programs it is well-de�ned which arguments of a predicate

are input and which ones are output, so the generality o�ered by Prolog is

seldom used in actual programs.

The committed choice languages solved the problem with back-tracking

by eliminating deep back-tracking altogether. The committed choice lan-

guages had the following characteristics. First, allow the goals of a conjunc-

tion to execute in parallel. Second, do away with general back-tracking.

Instead, provide a programming construct that makes it explicit which tests

should be satis�ed before a clause of a predicate can be selected, i.e., guards .
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In general, a clause in a committed choice language has the form

H : �G j B;

where H is the head of the clause, G is the guard consisting of zero or more

tests, and B is the body of the clause, containing a number of calls. The

idea is that for a given call, a clause can be selected if the uni�cation of

the head of the clause with the call succeeds, and the tests in the guard

succeeds. Before a clause is selected, the head uni�cation and the guard

tests must not give any globally visible variable bindings. After a clause

has been selected, the goal may not back-track and try other alternatives,

i.e., the goal has committed to one alternative.

The main di�erence between the various committed choice languages

lies in the means for making sure that the head uni�cation and execution

of guard tests is not visible to other goals (this is usually referred to as the

synchronisation mechanisms).

Relational language (Clark and Gregory [17]) requires mode declarations

for each predicate. A mode declaration contains information on which argu-

ments of a predicate of are input and which are output. In a conjunction of

goals, it is required that each variable occurs in an output position in at most

one goal. In Relational Language it is possible to program a form of com-

munication between processes which is very similar to the ones considered

by Brinch Hansen, Kahn and Dennis, by using lists as the communication

medium.

Shapiro's Concurrent Prolog [76] (CP) used a rather complex read-only

variable annotation to control the directionality of bindings. As pointed out

by Ueda [80] and Saraswat [70] the semantics for uni�cation with read-only

variables was not well-de�ned. Shapiro has presented a corrected version

of Concurrent Prolog which has a well-de�ned semantics [74]. However,

even the corrected version of Concurrent Prolog uses a complex uni�ca-

tion mechanism which seems problematic, both for programmers and for

implementers.

The article by Shapiro contained several inspiring program examples,

and has been in
uential, despite the de�ciencies of Concurrent Prolog. One

important di�erence between Relational Language and Concurrent Prolog

is that Concurrent Prolog allows a very appealing form of two-way commu-

nication. A message can contain an empty slot which the receiver of the

message �lls in, and the original sender reads. This is actually quite similar

to Brinch Hansen's `send answer' and `wait answer' described earlier. The

two-way communication allowed a number of interesting programming tech-

niques. It is possible to program lazy evaluation, and one can also simulate

objects with state.

In 1983, Clark and Gregory presented a new committed choice language

called Parlog [18]. The communication mechanism di�ers from that of Re-
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lational Language, in that the directionality requirement of Relational Lan-

guage is relaxed, and two-way communication as described by Shapiro is

possible.

Guarded Horn Clauses was proposed by Ueda [81, 82] as a general-

purpose programming language for the ICOT project. The language was

intended for both sequential computers, and for multi-processor computers.

The synchronisation mechanism was a simple rule, stating that the head

uni�cation and execution of goals in the guard must not a�ect the global

state. The early description of Guarded Horn Clauses (GHC) allowed calls

to user-de�ned predicates in the guard of a clause, but since there was no

obvious e�cient way to enforce that the execution of a goal in a guard did

not export any bindings to the global state (however, see [57] for a possible

way to implement this), later developments focused on a restricted form

of GHC, called 
at GHC (FGHC), in which the guard could only contain

simple tests (such as X > Y ). The ICOT project decided to use a version of

FGHC as implementation language. This language became known as KL1

(Kernel Language 1).

Strand [27, 28] is a further restriction of FGHC, in which general uni�-

cation has been replaced by a simple assignment operation, which requires

one of the arguments to be an unbound variable. There is an implementa-

tion of Strand that allows Strand programs to be interfaced with routines

written in conventional languages, such as C and Fortran. This makes it

possible to use Strand as a coordination language allowing the development

of e�cient parallel programs for multi-processor machines.

The class of concurrent logic programming languages consists of lan-

guages where the execution model is based on resolution together with

some mechanism for synchronisation between goals. These basic notions

are su�cient to make the clp languages 
exible and expressive concurrent

programming languages. It is perhaps unfortunate that so much e�ort went

into the development of complicated synchronisation mechanisms (the re-

view on these pages has merely scratched the surface), when very simple

synchronisation rules are su�cient to make the clp languages as powerful as

most concurrent programming languages. To get an idea of the wealth of

synchronisation mechanisms developed for concurrent logic languages, the

reader is directed to Shapiro's survey [75].

2.7 Concurrent Constraint Programming

The de�nition of the various committed choice languages involved both a

description of the operational behaviour of the di�erent constructs, and a

speci�cation of the data structures (terms) that the programs would operate

on. As an alternative to the committed choice languages, concurrent con-

straint programming was proposed by Maher [48] and Saraswat [71]. They
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showed that it was possible to gain clarity by separating the issues regarding

the operational properties of the language from the data structures. The

result is a formalism, which is suitable for a formal treatment and allows a

simple operational description.

Concurrent constraint programming can be seen as a generalisation of

committed choice languages such as GHC and Strand, as well as of the data


ow languages and of the applicative concurrent languages.

2.8 Semantics for concurrent logic and concurrent constraint lan-

guages

A number of semantic models for various concurrent logic languages have

been proposed. Those mentioned below all consider only �nite computa-

tions, unless stated otherwise.

To give a semantics for a concurrent logic or concurrent constraint lan-

guage is not very di�erent from giving the semantics for other concurrent

languages. The feature unique to the clp languages is that the synchroni-

sation rules involve terms and substitutions. In concurrent constraint pro-

gramming, these operations have been `abstracted away' and what remains

are operations that can be seen as basic lattice-theoretic operations. Many

results and techniques for other concurrent languages are also applicable to

the clp languages and ccp.

In ccp and also in some clp languages such as Parlog and GHC, the

guards are monotone, which means that if the tests in a guard are true

at one point in time, they will remain true in the future. This property

simpli�es the implementation on some types of multi-processors, and can

also in
uence the semantic description.

De Bakker and Kok gave an operational and a �xpoint semantics for a

guarded subset of Concurrent Prolog and proved the equivalence between

the two semantics [21]. The domain was a metric space in which the el-

ements were trees of program states, and the reason the semantics only

considered guarded programs was to make sure that the corresponding se-

mantic functions would be contracting, thus guaranteeing unique �xpoints.

Saraswat, Rinard and Panangaden [71] gave several semantic models for

concurrent constraint programming. These included a fully abstract �x-

point semantics for deterministic concurrent constraint programming. This

model is a generalisation of Kahn's semantics. They also gave a model

for nondeterministic concurrent constraint programming, in which only �-

nite computations were considered. This model was based on a semantics

presented by Josephs [36] and is related to Brookes and Roscoe's model

mentioned earlier.

De Boer and Palamidessi [23] also presented a fully abstract semantics

for concurrent constraint programming, but also in this case only for pro-
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grams that only exhibit �nite behaviours. In their paper, De Boer and

Palamidessi formulate the fully abstract semantics by means of structural

operational semantics.

De Boer, Kok, Palamidessi and Rutten [22] give a general framework for

the semantics of concurrent languages with asynchronous communication.

They note that the traditional failures model [11] is unnecessarily detailed

when applied to programming languages which only allow asynchronous

communication.

2.9 Developments in the semantics of concurrency

In the early literature on concurrency, a program was said to exhibit un-

bounded nondeterminism if it was guaranteed to terminate but could pro-

duce in�nitely many di�erent results.

Park [64] showed that for a non-deterministic imperative programming

language with a fairness property it is possible to write a program that

exhibits a form of unbounded non-determinism (see also an example in

Section 3.15). Broy [14] gave a similar program for an applicative concurrent

language.

Apt and Plotkin [4] considered an imperative programming language in

which the control structures were if-then-else and while-loops. The language

had a single non-deterministic construct, the non-deterministic assignment .

The non-deterministic assignment is written x = ?, for some variable x,

and may bind x to any integer. This type of non-determinism, in which

it is possible to write a program that will always produce a result, but

where there is an in�nite set of possible results, is called unbounded non-

determinism. Apt and Plotkin showed that for their programming language

there could be no continuous fully abstract �xpoint semantics. However,

they were able to give a fully abstract least �xpoint semantics by giving up

the requirement that the semantic functions should be continuous. To see

how this is possible, note that by the Knaster-Tarski theorem any monotone

function over a complete lattice has a least �xed point, which implies that

to de�ne a �xpoint semantics it is su�cient to have semantic functions that

are monotone.

Abramsky [2] studied a simple non-deterministic applicative language

and showed that there could be no continuous fully abstract �xpoint seman-

tics. As an alternative, he suggested the use of a categorical powerdomain.

In reference [1], Abramsky showed that to give a meaningful semantics for

a programming language with in�nite computations, it is necessary to allow

in�nite experiments.

Kok [40] and Jonsson [34] have presented fully abstract semantics for

non-deterministic data 
ow. Kok's semantics is based on functions from
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sequences of input sequences to sets of sequences of output sequences. Jon-

sson's semantics is based on traces , that is, sequences of communication

events. The semantic model can express fairness properties and in�nite

computations but is not a �xpoint semantics and can thus not give the se-

mantics for recursive programs. In a subsequent paper [35] Jonsson showed

that the trace semantics was fully abstract with respect to the history rela-

tion.

Stoughton [78] presented a general theory of fully abstract denotational

semantics. He gave a simpli�ed version of Apt and Plotkin's negative re-

sult concerning the existence of continuous fully abstract �xpoint semantics

for a language with unbounded non-determinism, and a negative result for

languages with in�nite output streams, based on Abramsky's proof.

Stark [77] gave a �xpoint semantics for a non-deterministic data 
ow

language with in�nite computations. The behaviour of a non-deterministic

data 
ow network is represented by a function, where each maximal �xpoint

corresponds to a possible behaviour.

Brookes [13] gave a fully abstract semantics for an imperative concur-

rent language where variables were shared between processes. In the model

in�nite computations and fairness were considered, but recursion and local

variables of processes were not treated.

Panangaden and Shanbhogue [62] examined the relative power of three

variants of the merge operator. They showed that fair merge can not be

expressed using angelic merge, and that angelic merge cannot be expressed

using in�nity-fair merge.

2.10 Erlang

As an example of a recent concurrent programming language we give a brief

description of Erlang.

Erlang [5] is an asynchronous concurrent programming language in-

tended for real-time applications, in particular, applications in telecom-

munications. Important goals in the design of Erlang have been robustness

and the ability to update code in a running system without stopping it.

Like in Brinch-Hansen's communication model, a program consists of

relatively complex sequential processes, each with a single input channel.

However, in Erlang the individual processes are programmed in a simple

functional language, while the processes in Brinch Hansen's model could be

programmed in any language that was available on the machine.

To allow real-time programming, Erlang has a timeout mechanism which

allows the programmer to specify how long a process should wait for a

message to arrive before doing something else. Another feature, apparently

not present in Brinch Hansen's model, is the ability to scan the bu�er of

incoming messages for a message that matches a given pattern.
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A primitive of Brinch Hansen's system, not present in Erlang, is the

send-answer, wait-answer mechanism, which allows a process to directly

reply to a message. It is possible to get the same e�ect in Erlang by a

common programming idiom. First, a process that wants an answer to its

message includes its process identi�er (which gives the address of its input

channel) in the message. The receiving (and answering) process can then

extract the process identi�er from the message, and send the reply to the

original sender. To make it possible for the original sender to recognise

the answer, the answering process includes its own process identi�er in the

message. Finally, the original sender can �nd the reply in the input channel

by scanning it for a message matching a pattern, which includes the process

identi�er of the original receiver.

Even though the technique described above makes it possible for Erlang

processes to answer messages, it appears that Erlang would bene�t from a

send-answer, wait-answer mechanism such as the one in Brinch Hansen's

model, since this would mean a slight simpli�cation to many programs, and

it could also be more e�cient than the present way of having a process

answer a message.

2.11 Mechanisms for Communication

We conclude by giving an overview of the communication models mentioned

in this chapter.

2.11.1 Asynchronous communication

The traditional asynchronous communication model is the one used by the

data 
ow languages. The communication medium is bu�ered streams. A

process may insert a message into a stream at any time, and the receiver

will, when it attempts to read a message from a stream, either succeed,

(there is a message) or suspend until a message arrives (if the bu�er did not

contain any messages).

One can see the send operation as adding information to the history of

the stream, i.e., \the nth element of the stream is x", and similarly the

read operation as asking question about the history of the stream \what

is the nth element of the stream?". The generalisation to concurrent con-

straint programming is immediate, so we include ccp in this group, and also

concurrent logic languages such as GHC.
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2.11.2 Asynchronous communication with replies

A slight improvement of the asynchronous communication model is to make

it possible for a receiver of a message to reply to it (this assumes that the

sender expects an answer, of course).

There are many applications where it is natural to let a process respond

to a message directly. For example, consider

1. a process maintains a state of some sort (anything between a simple

counter and a huge database) and other processes request information

about the state, and

2. a process is requested to do something and say when it is �nished.

As described by Shapiro [76], asynchronous communication with replies can

be directly expressed in a concurrent logic language. The techniques for do-

ing this can be carried over directly to concurrent constraint programming.

2.11.3 Synchronous communication

The simplest form of synchronous communication as described in Hoare's

CSP article [31] is as follows.

When a process sends a message the process is suspended until the re-

ceiver has read the message. When a process tries to read a message it is

suspended until a message arrives.

The main advantage of synchronous communication over asynchronous

communication is that no memory space needs to be allocated for bu�ers.

Hoare showed how asynchronous communication could be emulated by syn-

chronous communication using an explicit bu�er. On the other hand, syn-

chronous communication can easily be emulated by asynchronous commu-

nication if there is a mechanism for replies. In that case, we simply adopt

the convention that each synchronised message should be implemented as a

asynchronous send plus a reply (acknowledgement) by the receiver.

One example of a concurrent language that uses synchronous communi-

cation is Occam [50].

2.11.4 Synchronous communication by mutual knowledge

In the variant of CSP examined in di�erent theoretical settings (theoretical

CSP) it is allowed to put an output statement in guards. A guarded output

statement succeeds if the receiver accepts the message, if the message is

not accepted some other branch may be selected. This means that for a

communication to take place between two processes, it is necessary that

1. the sending process knows that the receiving process is willing to take

the message (if not, the sender may choose to do something else), and
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A A(r) S S(bmk) S(bmk+r)

data 
ow BH

RL CSP CCS

Parlog Occam TCSP CP

GHC

Erlang CCP

Table 2.1: Concurrent languages by communication mechanism. A, asyn-

chronous communication; S, synchronous communication; (r), allowing

replies to messages; (bmk), by mutual knowledge; BH, Brinch Hansen's

system; RL, Relational Language.

2. the receiving process knows that the sending process is willing to send

the message (if not, the receiver may choose to do something else).

In the above, doing something else may involve, for both the sender and the

receiver, sending or receiving a message to another process.

There are indeed some concurrent programs that are easier to write using

synchronous communication by mutual knowledge. However, synchronous

communication by mutual knowledge is di�cult to implement e�ciently, in

particular on a multiprocessor computer with distributed memory, and it is

questionable whether the added expressiveness is really worth the additional

complications in the implementation.

2.11.5 Shared memory

This is when processes share memory space or a portion of it. The shared

memory communication model is the oldest type of communication between

processes, and probably also the most common.

Even though in concurrent constraint programming processes may op-

erate on a shared data structure, we still do not consider ccp to belong to

this group since in ccp there is no destructive update of data structures.

2.11.6 Classifying message-passing languages

We have collected the concurrent languages mentioned in this chapter in

Table 2.1 organised by communication method and (roughly) by year of

introduction. Note that one programming language, Concurrent Prolog

(CP) allows both replies and synchronisation by mutual knowledge.
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Concurrent Constraint Programming:

Examples

We give some examples of concurrent constraint programs, to help the

reader get an intuitive understanding of ccp. Some of the examples are

accompanied by the same program in concurrent logic programming (clp)

notation, since the notation of clp is sometimes more readable. For bigger

and more interesting examples, the reader is referred to the textbooks writ-

ten on concurrent logic programming, see for example Foster and Taylor's

introduction to Strand [28].

In the examples, we will say that a variable is bound to a value if the

constraints in the store imply that the variable should have that particular

value. We will use capital letters for variables.

3.1 Constraint systems: the term model

Theoretically, the constraint system could be any logical structure. How-

ever, we want the constraint system to be e�ciently implementable, and at

the same time su�ciently powerful to make ccp an interesting programming

language. In the examples in this chapter we assume a constraint system

sometimes referred to as the term model . The term model, which corre-

sponds to the data structures of Prolog, makes ccp about as expressive as

concurrent logic programming languages such as Parlog, GHC or Strand.

Suppose we have a set of variables fX;Y; : : :g, a set of function symbols

ff; : : :g, and a set of constant symbols fa; : : :g. The set of terms is then

inductively de�ned, as follows.

1. X is a term, if X is a variable.

2. a is a term, if a is a constant symbol.

3. f(E

1

; : : : ; E

n

) is a term, if E

1

; : : : ; E

n

are terms.

35
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A constraint is of the form

E

1

= E

2

;

where E

1

and E

2

are terms.

The intention is that the equality constraint is to be implemented using

something called uni�cation. Let me give some examples.

If the store contains

X = 3

we have, naturally, that the constraint X = 3 is entailed by the store, i.e.,

that X is bound to 3.

If the store contains

X = f(Y ) and Y = 7;

we have that X = f(7) is entailed by the store. (The constraints X = f(Y )

and Y = 7 are also entailed by the store, as is Z = Z, for any variable Z).

If the store contains

X = f(3) and X = f(Y );

it follows that the constraint Y = 3 is entailed. Thus, the terms are at the

same time syntactic and semantic. If we know that X is bound to a term

of the form f(: : :), we can add a constraint X = f(Y ) to the store, where

Y is a fresh variable, to extract the contents of the term.

3.2 Agents

The basic programming construct in ccp is the agent. The simplest agent

is the tell constraint , which is written as the constraint itself. For example,

the agent (and tell constraint)

X = 5

adds the constraint X = 5 to the store. We can also say that the agent

binds X to 5.

3.3 Ask constraints and selections

A selection is a sequence of pairs of the form

c) A;

where c is a constraint, i.e, an ask constraint and A is an agent. For example,

the selection

(X = 3) Y = 5)

checks if the constraint X = 3 is entailed by the store, and if it is, adds the

constraint Y = 5 to the store. If the constraint X = 3 is not entailed by

the store, the selection remains passive until the constraint becomes true.
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3.4 Message Passing

As an example of communication between agents, consider the following

agents.

X = 10 and (X = 10) Y = 11):

Running the �rst agent will cause the constraint X = 10 to be added to

the store. If we run the second agent, it will check that the constraint

X = 10 is entailed by the store. If and when this is the case, the agent will

add the constraint Y = 11 to the store. If we want to run the two agents

concurrently, we can do this by putting them together in a conjunction.

X = 10 ^ (X = 10) Y = 11)

3.5 Hiding

If we want to enable two agents to communicate through a private channel,

we can do this using the existential quanti�cation. For example, if we write

9

X

(X = 10 ^ (X = 10) Y = 11));

we hide any references to the variableX made by agents inside the quanti�er

from agents on the outside (and also the other way around). When we run

the agent above, the only detectable result is that the constraint Y = 11 is

eventually added to the store.

3.6 A Procedure De�nition

As a simple example, we give a boolean inverter.

not(X;Y ) :: (X = 0) Y = 1 [] X = 1) Y = 0)

For example, a call not(1; Y ) will cause the variable Y to be bound to 0. A

call not(X;Y ) will wait until X is bound. If X is never bound, the call will

have no e�ect.

3.7 A Recursive De�nition

Let us consider the traditional example of a recursive program, the factorial

function.

fak(X;Y ) ::

(X = 0) Y = 1

[] X > 0) 9

Z

9

X

1

(X

1

= X � 1

^ fak(X

1

; Z)

^ Y = Z �X))

A call fak(X;Y ) will bind Y to X !, when X is bound to a positive integer.
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3.8 Lists

We will use the same syntax for lists as Prolog. [] is the empty list, [X j Y ]

is a list where the �rst element is X and the rest of the list is Y . A list of

n elements can be written [X

1

; X

2

; : : : ; X

n

], where X

1

is the �rst element

and so on. So, if Y = [2; 3] and X = 1 it follows that [X j Y ] = [1 j [2; 3]] =

[1; 2; 3].

As an example of a program that generates lists, we give the following

de�nition. The procedure creates a list of length N that contains ones.

how many ones(N;X) ::

(N = 0) X = [ ]

[] N > 0) 9

X

1

9

N

1

(X = [1 j X

1

]

^N

1

= N � 1

^ how many ones(N

1

; X

1

)))

A call how many ones(3; X) will generate a sequence of successive stores.

The successive stores will contain stronger and stronger constraints for the

value of X , as indicated by the sequence of constraints below.

9

Y

(X = [1 j Y ])

9

Y

(X = [1; 1 j Y ])

9

Y

(X = [1; 1; 1 j Y ])

X = [1; 1; 1]

Note that the list is generated from the head, and that thus the initial part

of the list is accessible before the list is completely generated.

3.9 A non-deterministic program

In all examples above, the selections have been written so that no more than

one condition in a selection can be selected, for a given store. A selection

which satis�es this property is deterministic.

As an example of a program that contains a selection that is not deter-

ministic, consider the following.

erratic(X) :: (true) X = 0 [] true) X = 1)

(Here we use true as a shorthand for some arbitrary constraint that always

holds, likeX = X .) The agent erratic(X) will either bind the variableX to 0

or to 1. It is important to keep in mind that the programmer cannot assume

the procedure to satisfy any probabilistic properties or fairness conditions;

for example, an implementation where the agent always binds X to 0 is

correct.
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3.10 McCarthy's ambiguity operator

We can give a more interesting example of a non-deterministic procedure

de�nition.

amb(X;Y; Z) :: (number(X)) Z = X [] number(Y )) Z = Y )

The amb procedure, which is inspired by McCarthy's ambiguity opera-

tor [51] waits until either the �rst or the second argument is instantiated to

a number, and then sets the third argument equal to the one of the two �rst

that was de�ned. If both the �rst and the second arguments are numbers,

the choice is arbitrary. (We assume that there is a predicate `number' that

holds for numbers and nothing else.) Consider the agent

X = 5 ^ amb(X;Y; Z):

When the agent is run, the �nal store might be

X = 5 ^ Z = X:

Of course, if the agent above is put into a context where Y is bound to a

number, it is possible that the �nal store has Z bound to Y .

3.11 Merge

A slight generalisation of the `amb' procedure.

merge(X;Y; Z) ::

(9

A

9

X

1

(X = [A j X

1

])

) 9

A

9

X

1

9

Z

1

(X = [A j Z

1

]

^ Z = [A j Z

1

]

^merge(X

1

; Y; Z

1

))

[] 9

A

9

Y

1

(Y = [A j Y

1

])

) 9

A

9

Y

1

9

Z

1

(Y = [A j Z

1

]

^ Z = [A j Z

1

]

^merge(X;Y

1

; Z

1

))

[] X = [ ]) Z = Y

[] Y = [ ]) Z = X)

A call merge(X;Y; Z) will, if X and Y are bound to �nite lists, bind Z to

an interleaving of the two lists.



40 chapter 3. concurrent constraint programming: examples

3.12 The `ones' program

To give an example of a program that produces an in�nite result, we consider

the simplest possible.

ones(X) :: 9

Y

(X = [1 j Y ] ^ ones(Y ))

Running an agent ones(X) should generate longer and longer approxima-

tions of an in�nite list of ones, i.e., stores where constraints of the form

9

Y

X = [1; 1; : : : ; 1

| {z }

n times

j Y ]

are entailed, for increasingly larger n. The `�nal' result is then the limit of

these stores, i.e., the store in which the constraint

X = [1; 1; 1; : : :]

is entailed.

It is worth considering what happens when we have several agents that

produce in�nite results. Consider, for example, an agent

ones(X) ^ ones(Y ):

Clearly, we want this agent to bind both X and Y to in�nite lists of ones.

In other words, an implementation that ignores one agent and executes the

other is incorrect. In Section 4.5 we will give a formal de�nition of fairness.

3.13 Two-way communication: the `lazy-ones' program

All programs we have shown so far could have been written in most asyn-

chronous concurrent programming languages. However, concurrent con-

straint languages and concurrent logic languages allow a kind of two-way

communication, which increases the expressiveness.

We �rst consider a program that generates a list of ones. However, this

program will only produce a one when requested.

We begin by giving the program in the form of a concurrent logic pro-

gram, since the selection mechanism of clp is more readable in this case,

and we expect that some readers may be more familiar with clp.

lazy ones([A j X

1

]) : �

A = 1;

lazy ones(X

1

):

lazy ones([ ]):

In clp, a clause may be selected if the structures occuring in the head of the

clause can be matched against the input. Given a call lazy ones(X), the
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�rst clause can be selected if X is bound to a list of at least one element,

and the second clause if X = [].

In the corresponding ccp program, the matching of input arguments is

performed by ask constraints which contain existentially quanti�ed vari-

ables. In general, to inquire whether X is of the form f(Y ), for some Y , we

use the ask constraint 9

Y

(X = f(Y )).

lazy ones(X) ::

(9

A

9

X

1

(X = [A j X

1

])

) 9

X

1

(X = [1 j X

1

] ^ lazy ones(X

1

))

[] X = [ ]

) true)

The �rst condition in the selection tests if X is bound to a list of at least

one element. If this is the case, and the corresponding branch is taken, a

constraint saying that the �rst element of X is a one will be added to the

store. Then `lazy ones' is called recursively with the rest of the list as an

argument. The second condition is for the case when X is bound to the

empty list. The corresponding branch is the empty constraint true, i.e.,

when X = [] the agent lazy ones(X) will terminate.

Now, consider an execution of the call lazy ones(X). Suppose that X is

unbound, i.e., that there is no information about X in the store. Neither

of the two conditions hold, so the call cannot execute. Suppose now that

X is bound to the list [A

1

; A

2

j X

1

], for variables A

1

and A

2

. Now it holds

that X is a list with at least one element and thus the �rst alternative may

be selected. Then A

1

is bound to 1, `lazy ones' is called recursively with

[A

2

j X

1

] as argument, A

2

is bound to 1 and then the agent sits down and

waits for X

1

to be bound.

The `lazy ones' program is of course not a very interesting program in

itself, but the technique of using a partially de�ned structure to allow com-

munication between processes has many possible applications. Shapiro [76]

shows how it is possible to write concurrent logic programs in an `object-

oriented' style, where an object is represented as an agent which has a local

state and reads and responds to a stream of messages.

3.14 Agents as Objects with State

Even though concurrent constraint programming does not allow destructive

assignment, it is still possible to have objects with state. Below we give an

example of a program which implements a stack as an agent which reads a

stream of messages and responds to them (Shapiro [76]). We �rst give the
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stack program in clp notation.

stack([push(X) j C

1

]; S) : �

S

1

= [X j S];

stack(C

1

; S

1

)):

stack([pop(X) j C

1

]; S) : �

S = [X j S

1

]

stack(C

1

; S

1

))

stack([ ]; )

The same program in ccp form.

stack(C; S) ::

(9

C

1

9

X

(C = [push(X) j C

1

])

) 9

C

1

9

X

9

S

1

(C = [push(X) j C

1

]

^ S

1

= [X j S]

^ stack(C

1

; S

1

))

[] 9

C

1

9

X

(C = [pop(X) j C

1

])

) 9

C

1

9

X

9

S

1

(C = [pop(X) j C

1

]

^ S = [X j S

1

]

^ stack(C

1

; S

1

))

[] C = []) true)

A call stack(C; []) will expect C to be bound to a list of commands. Suppose

that C is bound to the list [push(3); push(5) j C

1

]. The call to `stack' will

recurse twice and then suspend on the variable C

1

. The internal state of

the call, i.e., the second argument, i.e., the stack, is now the list [5; 3]. If

C

1

is now bound to the list [pop(X) j C

2

], the top element of the stack (5)

will be popped o� the stack and set to be equal to X .

So, a call stack(C; []) creates a stack object where the command stream

C serves as a reference to the object. To allow more than one reference to

the stack object we must use a merge agent and write, for example,

stack(C; []);merge(C

1

; C

2

; C)

to allow two agents to communicate with the stack.

3.15 Unbounded Nondeterminism

The last example is inspired by Park [64] and Broy [14], who showed that in

a language with non-determinism and some fairness notion it was possible

to write a program that exhibits unbounded non-determinism. We assume

that the constraint system contains the natural numbers in the domain of

values, and that constraints of the forms X = 0 and X = Y +1 are allowed.
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p(X) :: 9

A

A = 0

^ p

1

(A;X)

p

1

(A;X) :: 9

A

1

9

X

1

A

1

= A+ 1

^ p

1

(A

1

; X

1

)

^ amb(A;X

1

; X)

In the successive recursive calls to p

1

, the �rst argument will always be

bound to an integer. Thus, the call to amb is guaranteed to terminate, and

each recursive call to p

1

will bind its second argument to an integer. Clearly

one possible result of a call of the form p

1

(n;X), where n is bound to an

integer is to bind X to n. However, noting that a call p

1

(n;X) will result

in the execution of p

1

(n+ 1; X

1

) ^ amb(n;X

1

; X) we see that it is possible

for the recursive call to bind X

1

to n+ 1. Thus, the call to amb may bind

X to n + 1. It follows by an inductive argument that a call p

1

(n;X) may

bind X to any integer greater or equal to n. Thus a call p(X) will always

bind X to an integer, and may bind X to any integer greater or equal to

zero.

3.16 Remarks

As the reader probably has noted, the syntax of concurrent constraint pro-

gramming is a bit unwieldy. Temporary variables for intermediate results

have to be introduced, and what would have been a nested expression in a

functional language is here a conjunction of agents, together with an exis-

tential quanti�cation for the temporaries. That the syntax of ccp (and also

of clp) makes programs less compact than they could have been is not a seri-

ous problem for program development, but it is of course a bit inconvenient

when one wants to give program examples in a text.

Experience in concurrent logic programming shows that a more impor-

tant problem with the syntactic form of programs (these concerns should

also apply to ccp programs) is that simple programming mistakes, such as

giving arguments to a call in the wrong order, or misspelling a variable,

result in errors that are very di�cult to locate. This is of course related to

the di�culties of debugging concurrent programs, but a syntax that makes

it easier to detect simple programming errors would be helpful.

However, these issues with syntax are not really relevant for us. I have

chosen concurrent constraint programming as a vehicle for the investigations

in the semantics of concurrency because of its generality and simple formal

de�nition. As the examples in this chapter have shown, ccp is a powerful

concurrent programming formalism that can emulate data 
ow, functional

programing, and an object-oriented programming style. In the next chapter,

we will look at the formal de�nition of concurrent constraint programming.
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Chapter 4

Concurrent Constraint Programming:

A Formal De�nition

In this chapter, we give a formal de�nition of concurrent constraint pro-

gramming (ccp). First, we formalise the concept of constraints. Second, we

give the syntax of ccp programs, and third, the operational semantics of ccp

programs. The operational semantics is not in it self su�cient to describe

the behaviour of in�nite computations, so as a fourth point we de�ne a

fairness concept.

Before we turn to the formal de�nition of ccp we mention some mathe-

matical concepts which we will use in the following.

4.1 Mathematical Preliminaries

A pre-order is a binary relation � which is transitive and re
exive. Given

a pre-order � over a set L, an upper bound of a set X � L is an element

x 2 L such that y � x for all y 2 X . The least upper bound of a set X ,

written

W

X , is an upper bound x of X such that for any upper bound y of

X , we have x � y. The concepts lower bound and greatest lower bound are

de�ned dually. A function f over a pre-order is monotone if x � y implies

f(x) � f(y). For a preorder (L;�) and S � L, let S

u

= fx j y 2 S; x � yg.

A partial order is a pre-order which is also antisymmetric. A lattice

is a partial order (L;�) such that every �nite subset has a least upper

bound and a greatest lower bound. A complete lattice is a partial order

(L;�) such that every subset has a least upper bound (this implies that

every subset also has a greatest lower bound). A set R � L is directed if

every �nite subset of R has an upper bound in R. A function f over a

complete lattice L is continuous if for every directed set R � L we have

W

ff(x) j x 2 Rg = f(

W

R). For a complete lattice L, an element x 2 L is

�nite if for every directed set R such that x �

W

R, there is some y 2 R

such that x � y. For a lattice L, let K(L) be the set of �nite elements

45
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of L. A complete lattice L is algebraic if x =

W

fy 2 K(L) j y � xg for

all x 2 L, i.e., all elements of L are either �nite or the limit of a set of

�nite elements. Note that given an algebraic lattice (L;�) and a monotone

function f over K(L) we can easily extend f to a continuous function f

0

over

L with f

0

(x) = f(x), for x 2 K(L), and f

0

(x) =

W

ff(y) j y 2 K(L); y � xg,

for x 2 L n K(L).

For lattices (L

1

;v

1

) and (L

2

;v

2

) a pair of functions f : L

1

! L

2

and

g : L

2

! L

1

is a Galois connection between L

1

and L

2

i�

1. f and g are monotone, and

2. for all x 2 L

1

, x v

1

g f x, and for all y 2 L

2

, f g y v

2

y.

The function f is called the lower adjoint and g the upper adjoint of the

Galois connection.

Given a monotone function f : L

1

! L

2

which preserves least upper

bounds, we can construct a Galois connection (f; g) by g y =

F

fx j fx v yg.

4.2 Constraints

4.2.1 Constraint Systems

A constraint system consists of logical formulas, and rules for when a formula

is entailed by a set of formulas, i.e., a store. We assume that a set of

formulas in a store is represented as a conjunction of the formulas. Thus,

the logical operations we have to reason about are conjunction, existential

quanti�cation (to deal with hiding) and implication (entailment).

To de�ne a semantics for concurrent constraint programming, we need a

method to �nd a mathematical structure which contains the desired formu-

las, and also satis�es the properties which are needed to apply the standard

techniques of denotational semantics. It is necessary that the constraint

system is complete, that is, for a chain of stronger and stronger constraints

there should be a minimal constraint that is stronger than all constraints

in the chain. We also like the basic operations of the constraint system,

the existential quanti�cation, conjunction and implication, to be continu-

ous. Palmgren [60] gives a general method to construct a complete structure

from an arbitrary structure so that the formulas valid in the constructed

structure are exactly those that are valid in the original structure. However,

in this thesis we use a simpler construction which directly gives a complete

constraint system.

To get the appropriate constraint system we start with a set of formulas,

closed under conjunction and existential quanti�cation, and an interpreta-

tion that gives the truth values of formulas, given an assignment of values

to (free) variables. Given this, we use ideal completion to derive the desired
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domain. The resulting structure satis�es all axioms of cylindric algebra [30]

that do not involve negation.

In contrast, Saraswat et al. [71] choose an axiomatic approach, based

on axioms from cylindric algebra and techniques from Scott's information

systems [72] to specify the properties of a constraint system.

The use of ideal completion to construct a constraint system that is

closed under in�nite limits has previously been employed by Carlson [16]

and Kwiatkowska [43].

De�nition 4.2.1 A pre-constraint system is a tuple hF;Var; j=; Ci, where

F is a countable set of formulas , Var is an in�nite set of variables , C is an

arbitrary set (the domain of values), and j= � Val�F is a truth assignment ,

where Val is the set of assignments , i.e., functions from Var to C. The only

assumption we make about the structure of F is the following. If X and Y

are variables and � and  are members of F the following formulas should

also be members of F .

X = Y 9X:� � ^  

Given an assignment V , formulas � and  , and variables X and Y , we

expect the truth assignment j= to satisfy the following.

1. V j= X = Y i� V (X) = V (Y ).

2. V j= 9X:� i� V

0

j= � for some assignment V

0

such that V (X

0

) =

V

0

(X

0

) whenever X 6= X

0

.

3. V j= � ^  i� V j= � and V j=  

t

u

Note that the truth assignment for a formula � ^  is uniquely determined

by the truth assignments for the formulas � and  . In the same way, if we

know the truth assignment for �, for assignments V , we can also determine

the truth assignment for 9X:�. It follows that we do not need to specify

the truth assignments for conjunctions and existential quanti�cations in the

de�nition of a pre-constraint system.

We de�ne a preorder � between formulas by � �  i� for any V 2 Val

such that V j=  , we have V j= �. Intuitively one can think of � �

 as meaning that � is weaker than  , or that  implies �. This gives

immediately an equivalence relation � �  de�ned by � �  and  � �.

Let us consider a very simple example of a pre-constraint system.

Example 4.2.2 Let C be the set of natural numbers. Let the set of for-

mulas F be the the smallest set that satis�es the axioms and contains the

formula X = n, for each variable X and n 2 C.
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Say that V j= X = n i� V (X) = n.

The truth assignment for other formulas can be derived from the axioms

of pre-constraint systems. t

u

The general de�nition allows very powerful constraint systems, where the

basic operations can be computationally expensive, or even uncomputable.

If we want a concurrent language that can be implemented e�ciently, we

should of course choose a constraint system where the basic operations

(adding a constraint to the store and entailment) have simple and e�cient

implementations. The following construction, sometimes referred to as the

`term model', gives us a concurrent constraint language with power and

expressiveness comparable to concurrent logic languages such as GHC and

Parlog.

Example 4.2.3 Suppose we have a set of constant symbols fa; : : :g and

function symbols ff; : : :g. De�ne a set of expressions according to

1. a is an expression, for any constant symbol a.

2. f(E

1

; : : : ; E

n

) is an expression, if f is an n-ary function symbol and

E

1

; : : : ; E

n

are expressions.

3. X is an expression, if X is a variable.

The formulas in F are simply formulas of the form E

1

= E

2

, where E

1

; E

2

are expressions. Let C be the set of expressions that do not contain vari-

ables.

To judge whether V j= E

1

= E

2

holds for an assignment V and expres-

sions E

1

and E

2

, simply replace each variable X in E

1

and E

2

with the

corresponding value given by V (X). Then V j= E

1

= E

2

holds if and only

if the resulting expressions are syntactically equal. t

u

We would like to transform the preorder of formulas into a domain where

equivalent formulas are identi�ed and elements are added to make sure

that each increasing chain has a limit. This is fairly straight-forward to

accomplish using an ideal completion as follows.

De�nition 4.2.4 A constraint is a non-empty set c of formulas, such that

1. if � 2 c, and  � �, then  2 c, and

2. if �;  2 c, then � ^  2 c.

t

u
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For a formula � let [�] = f j  � �g. Clearly [�] is a constraint. If we

have a directed set R of constraints, then it follows from the de�nition of

constraints that

S

R is also a constraint.

The set of constraints form a complete lattice under the � ordering,

with least element ? being the set of all formulas which hold under all

assignments, that is, fX = X;Y = Y; : : :g. We will use the usual relation

symbol v for inclusion between constraints, so that c v d if and only if

c � d, and the symbol t for least upper bound. Say that a constraint c is

�nite if whenever R is a directed set such that c v

F

R, there is some d 2 R

such that c v d. Let U be the set of constraints, and K(U) the set of �nite

constraints. Note that for formulas � and  , we have [�] t [ ] = [� ^  ].

In the constraint programming language given in next section, we will

assume all ask and tell constraints to be �nite. Thus, it is worthwhile to

take a closer look at the �nite constraints.

Proposition 4.2.5 [29, Proposition 4.12 (ii)] The �nite constraints are ex-

actly those constraints that can be given in the form [�], for some formula

�.

Proof. (�) Let � be a formula. We will show that [�] is �nite. Let R be a

directed set such that

F

R w [�]. We have

S

R � [�], and thus � 2

S

R. It

follows immediately that � 2 c, for some c 2 R, and thus [�] v c.

(�) Let c be a �nite constraint. Let R = f[�] j [�] v cg. It is straight-

forward to establish that R is directed. We have

F

R w c, since for any

� 2 c we have [�] v c, thus [�] 2 R, and � 2

F

R. Since c is �nite

F

R w c

implies that c v d for some d 2 R. We know that d is of the form [�], for

some � such that [�] v c. Thus c = [�]. t

u

As noted previously [�] t [ ] = [� ^  ], for formulas � and  . We can thus

see least upper bound as an extension of conjunction. Also note that each

constraint is either �nite, or a limit of a directed set of �nite constraints,

which implies that the constraints form an algebraic lattice.

We de�ne, for all variables X , a function 9

X

: U ! U according to the

following rules.

1. 9

X

([�]) = [9X:�], for formulas �.

2. 9

X

(tR) =

F

d2R

9

X

(d), for directed sets R � K(U).

It is straight-forward to prove that the function 9

X

is well-de�ned and

continuous.

For a constraint c and a variable X , say that c depends on X , if 9

X

(c) 6=

c.

Remark The fact that the 9

X

function is continuous may seem counter-

intuitive, since in the arithmetic of natural numbers, there is no X such
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that all formulas X > 0, X > 1, X > 2, : : : hold, while 9X:X > n is true

for any natural number n and thus the formulas

9X:X > 0; 9X:X > 1; 9X:X > 2; : : :

are always satis�ed in any reasonable model for the natural numbers. This

seems to imply that the existential quanti�er is non-continuous. However,

when we perform ideal completion, we add new in�nite constraints. These

are in�nite sets which are not identi�ed with their in�nite conjunction, so

the resulting constraint system consists of �nite constraints corresponding

to the formulas mentioned above, and in�nite constraints corresponding

to limits of directed sets of formulas. If the formulas of our language are

inequalities such as the ones mentioned above, and we have one variable,

X , the resulting constraint system will contain the elements in the diagram

below, in which the elements are totally ordered by v.

>

F

n2N

[X > n]

�

�

�

[X > 2]

[X > 1]

[X > 0]

?

t

u

4.2.2 Examples of constraint systems

We give some simple examples of constraint systems. Note that in the

presentation of a constraint system, it is su�cient to give the domain of

values, the set of formulas and the truth assignment. Since the formulas

are always assumed to be closed under conjunction and contain the simple

identities (equality between variables) we do not need to mention these

formulas explicitly. Also, there is no need to specify the truth assignment

for conjunctions and simple identities, since this is already given by the

de�nition of pre-constraint systems.

Example 4.2.6 Consider the term model mentioned in a previous example.

The ideal completion gives us a new structure that is quite similar to the

one we had previously, except that we now can �nd a constraint c such that

c holds if and only if all of the formulas

9

Y

(X = f(Y )); 9

Y

(X = f(f(Y ))); 9

Y

(X = f(f(f(Y )))); : : :

hold. t

u
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Example 4.2.7 (Rational intervals) Let the domain of values be the

rational numbers, the formulas be of the form X 2 [r

1

; r

2

], where r

1

and r

2

are rational numbers. Let the truth assignment j= be such that V j= X 2

[r

1

; r

2

] i� r

1

� V (X) � r

2

. It should be clear that in this constraint system,

entailment is computable. t

u

Example 4.2.8 (Real numbers) It is of course possible to construct con-

straint systems which can not not be implemented on a computer. Consider

the following, which is based on the theory of the real numbers.

Let the domain of values be the real numbers, the formulas be of the

form X = E, where E is some expression over the real numbers. Let the

truth assignment j= be such that V j= X = E, i� E evaluates to V (X),

where V gives the values to variables occurring in E. t

u

4.2.3 From formulas to constraints

When we prove things about the constraint system, it is convenient to be

able to relate constraints and truth assignments.

Given an assignment V and a constraint c, write V j= c to indicate that

V j= � for all formulas � 2 c.

Clearly, for constraints c and d such that c v d we have V j= c whenever

V j= d. Also the following rules hold.

1. V j= [�] i� V j= �, for formulas �.

2. V j= 9

X

c i� V

0

j= c, for an assignment V

0

such that V (Y ) = V

0

(Y ),

for variables Y distinct from X .

3. V j= c [ d i� V j= c and V j= d.

In the rest of this text, we will not make a syntactic disinction between

formulas and �nite constraints. For example, the �nite constraint [X = Y ]

will be written X = Y .

4.2.4 Properties of the constraint system

In the previous text, we showed how a domain of constraints could be de-

rived from a pre-constraint system. It should not come as a surprise that

the operations de�ned over the domain of constraints (existential quanti�-

cation, equality, and least upper bound, i.e., conjunction) satisfy a number

of algebraic properties. These properties correspond largely to the axioms

of cylindric algebra [30].

Proposition 4.2.9 Given a pre-constraint system hF;Var; j=; Ci, let the

lattice hU ;vi be the corresponding domain of constraints, with ? and >
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the least and greatest elements of U . The following postulates are satis�ed

for any constraints c; d 2 U and any variables X;Y; Z 2 Var.

1. the structure (U ;v) forms an algebraic lattice.

2. 9

X

is a continuous function 9

X

: U ! U ,

3. 9

X

(>) = >,

4. 9

X

(c) v c,

5. 9

X

(c t 9

X

(d)) = 9

X

(c) t 9

X

(d),

6. 9

X

(9

Y

(c)) = 9

Y

(9

X

(c)),

7. (X = X) = ?,

8. (X = Y ) = 9

Z

(X = Z t Z = Y ), for Z distinct from X and Y ,

9. c v (X = Y ) t 9

X

(X = Y t c), for X and Y distinct.

Items 3-9 are borrowed from cylindric algebra. However, the structure is not

necessarily a cylindric algebra, since a cylindric algebra is required to satisfy

the axioms of Boolean algebra and must thus be a distributive lattice, while

it is possible to construct a constraint system which is not distributive. For

example, the constraint system derived from the pre-constraint system in

Example 4.2.2 is not a distributive lattice, since it contains the sub-lattice

ftrue; X = 1; X = 2; X = 3; falseg.

4.2.5 Remarks

We have given a general framework for the construction of constraint sys-

tems. In the development of the semantic models in the following chap-

ters, the properties that will be important for us are that the constraint

system satis�es the axioms of cylindric algebra listed above, and that the

constraints form an algebraic lattice. In contrast, Saraswat, Rinard and

Panangaden [71] require in their semantics for non-deterministic ccp that

the constraint system should be �nitary , i.e., that for each �nite constraint

there should only be a �nite set of smaller �nite constraints. As an exam-

ple of a constraint system that is not �nitary, they mention the constraint

system of rational intervals, as described in Example 4.2.7.
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4.3 Syntax of ccp

In this section, we de�ne a concurrent constraint programming language and

give its operational semantics. However, the operational semantics, which

is given as a set of computation rules is in itself not able to distinguish

between computations that are fair and those that are not. To specify the

set of fair computations we give an inductive de�nition of fairness.

This de�nition is, to the best of my knowledge, the �rst formal de�nition

of fairness for a concurrent constraint programming language.

We assume a set N of procedure symbols p; q; : : :. The syntax of an

agent A is given as follows, where c ranges over �nite constraints, and X

over variables.

A ::= c j

V

j2I

A

j

j

(c

1

) A

1

[] : : : [] c

n

) A

n

) j

9

c

X

A j

p(X)

A tell constraint, written c, is assumed to be a member of K(U). The

conjunction

^

j2I

A

j

of agents, where I is assumed to be countable, represents a parallel compo-

sition of the agents A

j

. We will use A

1

^A

2

as a shorthand for

V

j2f1;2g

A

j

.

In a conjunction, the indices are written as superscripts instead of subscripts

to avoid confusion with subscripts representing positions in a computation

(to be introduced in De�nition 4.4.1). An agent (c

1

) A

1

[] : : : [] c

n

) A

n

)

represents a selection. If one of the ask constraints c

i

becomes true, the cor-

responding agent A

i

may be executed. Agents of the form 9

c

X

A represent

agents with local data. The variable X is local, which means that the value

of X is not visible to the outside. The constraint c is used to represent the

constraint on the local value of X between computation steps.

Note that the syntax for agents describes both agents appearing in a

program, and agents appearing as intermediate states in a computation.

However, we will assume that agents of the form 9

c

X

A occuring in a program

or in the initial state of a computation will always have c = ?. When this

is the case, the local store can be omitted and the agent written 9

X

A.

A program � is a set of de�nitions of the form p(X) :: A, where each

procedure symbol p occurs in the left-hand side of exactly one de�nition in

the program.

Remark To simplify the presentation, we only consider de�nitions with

one argument. If we assume a suitable constraint system, such as the term
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model, we can use a function symbol (e.g. f) as a tuple constructor and let

the formula f(E

1

; : : : ; E

n

) represent a tuple of the n arguments. t

u

4.4 Operational semantics

A con�guration is a pair A : c consisting of an agent A acting on a �nite

constraint c. The latter will be referred to as the store of the con�guration.

The operational semantics is given through a relation �! over con�gura-

tions, assuming a program �. For any computation step A : c �! A

0

: c

0

,

the constraint c

0

will always contain more information than c, i.e., c v c

0

,

so a computation step is never destructive.

We say that a variable X is bound to a value v if the current store

c is such that for any variable assignment V such that V j= c, we have

V (X) = v. Similarly, we say that we bind a variable to a value if by adding

constraints to the store we make sure that the variable is bound to the value

in the resulting store.

We present rules that de�ne �! in the usual style of structural opera-

tional semantics [65].

1. The tell constraint simply adds new information (itself) to the envi-

ronment.

c : d �! c : c t d

2. A conjunction of agents is executed by interleaving the execution of

its components.

A

k

: c �! B

k

: d; k 2 I

V

j2I

A

j

: c �!

V

j2I

B

j

: d

;

where B

j

= A

j

, for j 2 I n fkg.

3. If one of the ask constraints in a selection is satis�ed by the current

environment, the selection can be reduced to the corresponding agent.

c

i

v c

(c

1

) A

1

[] : : : [] c

n

) A

n

) : c �! A

i

: c

4. A con�guration with an existentially quanti�ed agent 9

c

X

A : d is exe-

cuted one step by doing the following. Apply the function 9

X

to the

present environment (given by d), hiding any information related to

the variable X , Combine the result 9

X

(d) with the local data (given

by c), to obtain a local environment. A computation step is performed

in the local environment, which gives a new local environment (c

0

say).

To transmit any results to the global environment, the function 9

X

is

again applied to hide any information relating to the variable X. The
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constraint thus obtained is combined with the previous global environ-

ment d. The local environment c

0

is stored as part of the existential

quanti�cation.

A : c t 9

X

(d) �! A

0

: c

0

9

c

X

A : d �! 9

c

0

X

A

0

: d t 9

X

(c

0

)

5. A call to a procedure is reduced to the body of its de�nition.

p(X) : c �! A[X=Y ] : c;

where the de�nition p(Y ) :: A is a member of �, and the `substitution'

A[X=Y ] is a shorthand

1

for

9

�

(� = X ^ 9

Y

(� = Y ^ A));

where � is a variable that does not occur in the program.

4.4.1 Some simple computation examples

We apply the computation rules to some simple agents.

First, a conjunction of a selection and a tell constraint. Consider the

con�guration

(X = 5) Y = 7) ^X = 5 : ?:

The selection cannot execute, since the ask constraint is not entailed by the

store (that is, ?). The tell constraint is executable, so we can perform the

computation step

(X = 5) Y = 7) ^X = 5 : ?

�! (X = 5) Y = 7) ^X = 5 : X = 5:

(The tell constraint still remains in the conjunction, even though it is now

redundant.) Now as the constraint X = 5 has been added to the store, the

selection can execute, as the ask constraint of its only alternative is entailed.

(X = 5) Y = 7) ^X = 5 : X = 5 �! Y = 7 ^X = 5 : X = 5

As we have replaced the selection by its only branch, we see immediately

that another computation step is possible.

Y = 7 ^X = 5 : X = 5 �! Y = 7 ^X = 5 : X = 5 ^ Y = 7

Note that the constraint X = 5^Y = 7 is equivalent to (X = 5)t (Y = 7).

We chose the former notation since it is more readable.

1

We could use A[X=Y ] � 9

Y

(Y = X ^ A), if we knew that the variables X and Y

were always distinct.
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Next we consider a computation which involves hidden data. The reader

may �nd it helpful to take a look at the computation rules for existential

quanti�cations before proceeding. Let A be the agent

(X = 5) Y = 7) ^ (Y = 7) Z = 3)

and consider the con�guration

9

Y

A : ?:

(Here, the local data of the existential quanti�cation is ?.) To perform a

computation step by the existential quanti�cation, we must ask ourselves if

the con�guration

A : ?

can perform a computation step. Clearly, since the agent A consists of a

conjunction of two selections, and neither of the tests (ask constraints) are

entailed by the store, it follows that A can not perform any computation

step. Suppose now that input arrives from the outside, and we �nd that the

store contains the constraint X = 5. To perform a computation step with

the con�guration

9

Y

A : X = 5;

we consider the `local' con�guration

A : X = 5;

where the store was obtained by ? t 9

Y

(X = 5) = (X = 5). We see that

the test of the �rst selection of A is entailed by the store, so we can perform

the computation step

A : X = 5 �! Y = 7 ^ (Y = 7) Z = 3) : X = 5:

Thus, we have the computation step

9

Y

A : X = 5 �! 9

X=5

Y

(Y = 7 ^ (Y = 7) Z = 3)) : X = 5:

To see if the existential quanti�cation can do another step, we look again

at the local con�guration

Y = 7 ^ (Y = 7) Z = 3) : X = 5:

We can perform a local step

Y = 7 ^ (Y = 7) Z = 3) : X = 5

�! Y = 7 ^ (Y = 7) Z = 3) : X = 5 ^ Y = 7
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which corresponds to the step

9

X=5

Y

(Y = 7 ^ (Y = 7) Z = 3)) : X = 5

�! 9

X=5^Y=7

Y

(Y = 7 ^ (Y = 7) Z = 3)) : X = 5

at the higher level. Since 9

Y

(X = 5 ^ Y = 7) is equal to (X = 5), the

constraint concerning the value of Y is not visible outside the quanti�cation.

However, the local value of Y is recorded in the local store. Last two steps

are straight-forward. We do a local step

Y = 7 ^ (Y = 7) Z = 3) : X = 5

�! Y = 7 ^ Z = 3 : X = 5 ^ Y = 7;

corresponding to the global step

9

X=5^Y=7

Y

(Y = 7 ^ (Y = 7) Z = 3)) : X = 5

�! 9

X=5^Y=7

Y

(Y = 7 ^ Z = 3) : X = 5;

and �nally the local step

Y = 7 ^ Z = 3 : X = 5 ^ Y = 7

�! Y = 7 ^ Z = 3 : X = 5 ^ Y = 7 ^ Z = 3;

which corresponds to the global step

9

X=5^Y=7

Y

(Y = 7 ^ Z = 3) : X = 5

�! 9

X=5^Y=7^Z=3

Y

(Y = 7 ^ Z = 3) : X = 5 ^ Z = 3:

Thus, we reach a con�guration in which the store is X = 5 ^ Z = 3 and no

other con�gurations can be reached by computation steps.

4.4.2 Computations

Using the operational de�nition we can specify the set of computations. The

basic idea is that in a computation the store can either be modi�ed by the

agent, during a computation step, or by the outside, during an input step.

De�nition 4.4.1 Assuming a program �, a computation is an in�nite se-

quence of con�gurations (A

i

: c

i

)

i2!

such that for all i � 0, we have either

A

i

: c

i

�! A

i+1

: c

i+1

(a computation step), or A

i

= A

i+1

and c

i

v c

i+1

(an input step). t

u

Note that some steps are both computation steps and input steps. For

example, going from

X = 5 : ? to X = 5 : X = 5

can be done either in a computation step, or in an input step.
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In the following text, we will leave out references to the program � when

we can do so without causing ambiguities.

An input step from A : c to A : c

0

, such that c = c

0

is an empty input

step. A computation where all input steps are empty is a non-interactive

computation.

Remark According to the de�nition above, all computations are in�nite.

However, since one can see a �nite computation as an in�nite computation

which ends in an in�nite sequence of empty input steps, we do not lose in

generality by only considering in�nite computations. t

u

4.5 Fairness

The structured operational semantics does not in itself de�ne fairness. It

is necessary to use some device to restrict the set of computations, thus

avoiding, for example, situations where one agent in a conjunction is able

to perform a computation step but is never allowed to do so.

Intuitively, a computation is fair if every agent that occurs in it and is

able to perform some computation step will eventually perform some com-

putation step. However, this intuitive notion is di�cult to formalise directly.

What does it mean that an agent is able to perform a computation step?

Computation steps are performed on con�gurations, not on agents. Also,

this requirement should not apply to alternatives in a selection, since an

agent occurring in an alternative should not be executed until (and if) that

alternative is selected. Third, what happens if one has a computation where

an agent A occurs in many positions in every con�guration in the computa-

tion? A direct formalisation of the intuitive fairness requirement would fail

to di�erentiate between di�erent occurrences of the same agent, so a com-

putation might incorrectly be considered fair if it performed computation

steps on some occurrences of the agent A and ignored other occurrences

of A.

How should we specify the set of fair computations? First, note that a

computation can often be considered to contain other computations. For

example, to perform a computation step with a process A ^ B : c, it is

necessary to perform computation steps with either of the processes A : c

and B : c. The view of a computation as a composition of computations

leads us to the following de�nitions.

De�nition 4.5.1 Let the relation immediate inner computation of be the

weakest relation over !-sequences of con�gurations which satis�es the fol-

lowing.

1. (A

k

i

: c

i

)

i2!

is an immediate inner computation of (

V

j2I

A

j

i

: c

i

)

i2!

,

for k 2 I .
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2. (A

i

: c

i

t 9

X

(d

i

))

i2!

is an immediate inner computation of the com-

putation (9

c

i

X

A

i

: d

i

)

i2!

.

The relation `inner computation of ' is de�ned to be the transitive and re-


exive closure over the relation `immediate inner computation of'. t

u

Now, we would expect the inner computations of a computation to also be

computations.

Proposition 4.5.2 If (A

i

: c

i

)

i2!

is computation, and (B

i

: d

i

)

i2!

is an

inner computation of (A

i

: c

i

)

i2!

, then (B

i

: d

i

)

i2!

is also a computation.

Proof. We �rst consider the case when (B

i

: d

i

)

i2!

is an immediate inner

computation of (A

i

: c

i

)

i2!

. Suppose (A

i

: c

i

)

i2!

is a computation. Then

(A

i

: c

i

)

i2!

is in one of the two forms given by the de�nition of the relation

`immediate inner computation'.

If for all i � 0, A

i

=

V

j2I

A

j

i

, then we must have B

i

= A

k

i

for all i � 0,

and some k 2 I , and c

i

= d

i

for all i � 0. So for each i � 0, we have either

B

i

= B

i+1

, or B

i

: d

i

�! B

i+1

: d

i+1

.

Suppose that for all i � 0, A

i

= 9

e

i

X

B

i

where d

i

= 9

X

(c

i

)t e

i

. Consider

a �xed i. If the ith step of (A

i

: c

i

)

i2!

is a reduction step, it follows, by

the computation rules, that B

i

: 9

X

(c

i

) t e

i

�! B

i+1

: e

i+1

. It remains

to be proved that e

i+1

= 9

X

(c

i+1

) t e

i+1

. It is su�cient to show that

e

i+1

w 9

X

(c

i+1

). By the reduction rule, c

i+1

= 9

X

(e

i+1

) t c

i

. By the

properties of the constraint system, 9

X

(c

i+1

) = 9

X

(e

i+1

) t 9

X

(c

i

). Since

e

i+1

w 9

X

(c

i

), and e

i+1

w 9

X

(e

i+1

), we see that e

i+1

w 9

X

(c

i+1

), and we

have established that the ith step of (B

i

: d

i

)

i2!

is a reduction step.

If the ith step of (A

i

: c

i

)

i2!

is an input step, then the ith step of

(B

i

: d

i

)

i2!

is also an input step, by monotonicity of t and 9

X

.

The general case can be shown by induction on the nesting depth. t

u

We will de�ne the fairness requirement in a bottom-up fashion by giving

a sequence of auxiliary de�nitions which capture di�erent aspects of fair-

ness. First, the weakest and simplest fairness property, top-level fairness. A

computation is top-level fair unless the �rst agent of the computation is a

tell constraint that is never added to the store, or a selection which has an

alternative that can be selected, but no alternative is selected, or a call that

is never reduced to its de�nition. Using top-level fairness we can specify

initial fairness, which concerns agents occurring as a part of the �rst agent,

and �nally the actual de�nition of fairness.

De�nition 4.5.3 A computation (A

i

: c

i

)

i2!

is top-level fair when the

following holds.

1. If A

0

= p(X), there is an i � 0 such that A

i

6= A

0

.

2. If A

0

= c, there is an i � 0 such that c

i

w c.
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3. If A

0

= (d

1

) B

1

[] : : : [] d

n

) B

n

), and d

j

v c

0

for some j � n, then

there is an i � 0 such that A

i

6= A

0

.

A computation is initially fair if all its inner computations are top-level

fair. A computation is fair if all its proper su�xes are initially fair. t

u

4.5.1 Informal justi�cation of the de�nition of fairness

Recall that an intuitive notion of fairness was proposed, which said that a

computation is fair if every agent that occurs in the computation and is able

to perform a computation step will eventually perform some computation

step.

We will attempt to justify the formal de�nition of fairness, by giving an

argument to why it conforms with the intuitive notion. We argue that if a

computation is fair in the formal sense if and only if it is fair in the intuitive

sense.

Suppose that we have a computation x, which is fair in the formal sense.

Consider an agent A which occurs somewhere in the computation. Con-

sider the su�x x

0

of the computation, which is selected so that the agent

A occurs in the �rst con�guration of x

0

. By the de�nition of fairness, the

computation x

0

is initially fair. This means that every inner computation of

x

0

must be top-level fair, in particular, that any inner computation which

begins with the con�guration in which A is an agent is top-level fair. If A

is a tell constraint c, top-level fairness means that the corresponding store

must eventually entail c. This does not necessarily mean that A will per-

form a computation step, but the end result will be the same, since fairness

requires that the store should eventually entail c. If A is a call or a selec-

tion in which one of the conditions are entailed, top-level fairness means

that A will eventually perform a computation step. If A is a conjunction

or an existentially quanti�ed agent, we know from the computation rules

that A contains some agent A

0

which is either a call, a tell constraint, or

a selection with an enabled condition. Again, top-level fairness means that

A

0

must eventually perform some computation step. Since the computation

rules imply that a conjunction or an existentially quanti�ed agent performs

computation steps exactly when some internal agent performs a computa-

tion step, it follows that A is forced by the formal de�nition of fairness to

perform a computation step.

In a similar fashion, assuming that a computation x is fair in the intuitive

sense, we argue that it should also be fair in the formal sense. Recall that a

computation is fair in the formal sense only if all its su�xes are initially fair.

Now, considering the computation x, clearly any su�x x

0

of x is also fair

in the intuitive sense. We now want to show that each inner computation

of the su�x x

0

is top-level fair. Suppose A occurs in the �rst con�guration
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of x

0

(we assume that there is only one occurrence of A). If A is a tell

constraint c it follows from the intuitive notion of fairness that A should

eventually perform some computation step and thus there should be some

future store which contains the constraint c. If A is a call, the intuitive

notion of fairness gives that A should perform a computation step, i.e., be

replaced by the body of the corresponding de�nition. If A is a selection in

which one of the conditions is entailed, it follows that A is able to perform

a computation step and thus will eventually do so. If A is a selection in

which none of the conditions is entailed, it follows immediately that the

computation is top-level fair.

It follows that the inner computation beginning with A is top-level fair.

It follows that every inner computation of x

0

is top-level fair, thus x

0

is

initially fair. We draw the conclusion that every su�x of x is initially fair,

and it follows that the computation x is fair.

4.5.2 Properties of Fairness

We give a few properties of fairness, relating fairness of a computation with

fairness of its su�xes and inner computations, The properties should be

intuitively clear.

Proposition 4.5.4 If one su�x of a computation is top-level fair then the

computation is top-level fair.

Proof. Consider a computation (A

i

: c

i

)

i2!

such that (A

i

: c

i

)

i�k

is top-level

fair. If A

0

= p(Y ), we have two possible cases. If A

k

= p(Y ), there must

be a j > k such that A

j

6= A

k

since the su�x is top-level fair. Otherwise,

A

k

6= A

0

so the computation is top-level fair also in this case.

If A

0

= c, then by the reduction rules, A

k

= c, and there is a j � k such

that c

j

w c.

The case when A

0

= (d

1

) B

1

[] : : : [] d

n

) B

n

) is similar. t

u

Proposition 4.5.5 If one su�x of a computation is initially fair, then the

computation is initially fair.

Proof. Suppose we have a computation x where the kth su�x is initially

fair. Consider an inner computation y of x. The kth su�x of y is an

inner computation of the kth su�x of x and thus top-level fair. So by

proposition 4.5.4 every inner computation of x is top-level fair and therefore

x is initially fair. t

u

Lemma 4.5.6 If one su�x of a computation is fair, then the computation

is fair.
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Proof. Let x be a computation with one su�x y which is fair. Let z be a

su�x of x. If z is also a su�x of y, the computation z is initially fair since

y is fair. If, on the other hand, y is a su�x of z, z must be initially fair

since it has a su�x which is initially fair. Each su�x of x is initially fair,

so x must be fair. t

u

Lemma 4.5.7 All inner computations of a fair computation are fair.

Proof. Suppose that x is a fair computation, and that y is an inner

computation of x. Let k be �xed. The kth su�x of y is an inner computation

of the kth su�x of x, which is initially fair. So the kth su�x of y and all

its all its inner computations are top-level fair, which implies that the kth

su�x of y is initially fair. So each su�x of y is initially fair, and thus is y

fair. t

u

Lemma 4.5.8 A computation whose immediate inner computations are

fair, and all su�xes are top-level fair, is fair.

(The second condition cannot be omitted; some computations do not have

any immediate inner computations.)

Proof. First we show that a computation that satis�es the above is initially

fair. Consider an arbitrary inner computation x. This inner computation x

is either the computation itself, which is top-level fair, or an inner compu-

tation of one of the immediate inner computations, from which follows that

x is top-level fair, since it is the inner computation of a computation which

is fair and thus also initially fair.

Now, consider the kth su�x of the computation. This su�x satis�es the

conditions stated in the lemma; all its immediate inner computations are

fair and all its su�xes are top-level fair. Thus the kth su�x is initially fair

(by the reasoning in the previous paragraph), and thus the computation is

fair. t

u

4.6 Closure operators and Deterministic Programs

In this section we will review some results from lattice theory concerning clo-

sure operators, and how closure operators can be used to give the semantics

of certain concurrent constraint programs.

A deterministic ccp program is a ccp program in which all selections have

only one alternative. Since non-determinism in ccp stems from selections

in which on some occasions more than one alternative can be selected, the

restriction to selections with only one alternative e�ectively makes the pro-

grams deterministic. This is perhaps not completely obvious, since agents

still execute concurrently, and results may be computed in di�erent orders.

However, as shown by Saraswat, Rinard, and Panangaden [71], it turns out
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that the agents may be represented as functions with some special proper-

ties, and that the meaning of programs may be obtained as simple �xpoints,

as in Kahn's semantics [37].

The functions which represent deterministic ccp programs are called

closure operators. The de�nition of closure operators and some of their

properties will be given in the following part of this section. In the �nal

part of this section we will brie
y review the semantics of determinate ccp.

4.6.1 Closure operators

Jagadeesan, Panangaden and Pingali [33] showed how a concurrent process

operating over a domain that allows `logic variables', i.e., place holders for

values that are to be de�ned later, could be viewed as a closure operator.

This idea was explored in a concurrent constraint programming setting by

Saraswat, Rinard, and Panangaden [71]. This section gives the de�nition of

closure operators and some of their properties. See reference [29] for further

results on closure operators.

Let us look at an agent as a function f that takes a store as input, and

returns a new store. What properties are satis�ed by the agent? First, the

agent may never remove anything from the store, so the resulting store is

always stronger than the original store. Thus, we have f(x) � x, for all x.

Second, we assume that the process has �nished all it wanted to do when

it returned, thus applying it again will not change anything. Thus we have

f(f(x)) = f(x), for all x. Putting these two points together gives us the

de�nition of closure operators.

De�nition 4.6.1 For an algebraic lattice (D;v), a closure operator over

D is a monotone function f over D with the property that f(x) w x and

f(f(x)) = f(x), for any x in D. A continuous closure operator is a closure

operator which is also continuous. t

u

The set of �xpoints of a closure operator f over an algebraic lattice D is

the set f(D) = ff(x) j x 2 Dg. Suppose that S is the set of �xpoints

of a closure operator f , that is, S = f(D), where D is the domain of f .

For any subset T of S, uT 2 S. This is easy to see if we observe that

f(uT ) v uff(x) j x 2 Tg, since f is monotone, uT v f(uT ), since f is a

closure operator, and uff(x) j x 2 Tg = uT , since all members of T are

�xpoints of f . It follows that the set of �xpoints of a closure operator is

closed under greatest lower bounds of directed sets.

On the other hand, if S � D is such that S is closed under arbitrary

greatest lower bounds, we can de�ne a function f

S

according to the rule

f

S

(x) = u(fxg

u

\ S), i.e., let f

S

(x) be the least element of S greater than

x. It is easy to see that the function f

S

is well-de�ned and a closure operator.

Thus there is a one-to-one correspondence between closure operators and

sets closed under u. In the subsequent text we will take advantage of this
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property, and sometimes see closure operators as functions, and sometimes

as sets. To say that x is a �xpoint of the closure operator f we can write

x = f(x) or x 2 f .

Next we will show that the closure operators over an algebraic lattice

form a complete lattice. Consider the functions over an algebraic lattice to

be ordered point-wise, i.e., f v g i� f(x) v g(x) for all x. Now we have

f v g if and only if f � g. If ff

i

g

i2I

is a family of closure operators, it

is easy to see that

T

i2I

f

i

is also a closure operator: this is obviously the

least upper bound of the family of closure operators. The top element of the

lattice of closure operators over an algebraic lattice D is the function that

maps every element of the algebraic lattice to >, and the bottom element

is the identity function.

For an element x 2 D and a closure operator f overD, we de�ne (x! f)

as the closure operator given by

(x! f)(y) =

�

f(y); if y w x

y; otherwise.

Since a closure operator is characterised by its set of �xpoints, the following

de�nition will also su�ce.

(x! f) = f [ fy j x 6v yg

Similarly, for elements x 2 D and y 2 D the closure operator (x ! y) is

de�ned as follows

(x! y) = (x! y ");

where y " is the closure operator whose set of �xpoints is fyg

u

= fz 2

D j y v zg. Note that when x is �nite the closure operators (x ! f) and

(x! y) are continuous, for f continuous and arbitrary y.

Unless stated otherwise, we will assume the closure operators occurring

in this paper to be continuous.

4.6.2 Semantics of deterministic ccp

In this section we brie
y review the results of Saraswat, Rinard, and Panan-

gaden [71] concerning the semantics of deterministic ccp.

The idea is that we should try to model each agent as a closure operator

that takes a store as input and returns a new store.

First, consider a tell constraint c. Applying c to a store d gives us the

store c t d. Thus the tell constraint c can be modelled with the closure

operator (? ! c).

To model a selection (c ) A), let us assume that the agent A can be

modelled with the closure operator f . When examining the behaviour of

the selection, we see that it remains passive until the ask constraint c is
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entailed by the store, and then the selection behaves exactly like the agent

A. Thus we can model the selection with the closure operator (c ! f),

which simply returns its input when c is not less that or equal to the input,

and applies f to the input when the input is stronger than c.

To model a conjunction A ^ B (we only consider the �nite conjunction

here, generalisation is straight-forward), we assume that the semantics of

A is the closure operator f , and that the semantics of the agent B is the

closure operator g. Given a store c, the result of running the agent A is the

new store f(c). If we now run the agent B we obtain a new store g(f(c)).

But now A can execute further and produce the store f(g(f(c))). This can

go on forever.

Suppose now that A and B are allowed to interleave forever, thus pro-

ducing the limit of the sequence of stores indicated above, what will the

limit look like? It is easy to show by a mathematical argument (assuming

that f and g are continuous) that the limit must be a �xpoint of both f

and g. Also, it can be shown that the limit must be the smallest mutual

�xpoint of f and g greater than c. Thus, if we want a function that models

the behaviour of A ^ B, we should use the least closure operator stronger

than f and g, which is f \ g.

Next, consider an existential quanti�cation 9

X

A, where the semantics

of A is given by the closure operator f . If we run the agent 9

X

A with a

store c, the store accessible to A is given by 9

X

(c). If the agent A produces

a new store d, we see that the part of the modi�cation visible on the outside

is 9

X

(d). For example, if c entails the constraint X = 10, this aspect of c is

not visible to A. If A chooses to add the tell constraint X = 5 to the store,

this change is not visible to an outside observer.

Thus, we have a form of two-way hiding, and the semantics of 9

X

A can

be given by the closure operator g, given as follows.

g(c) = c t 9

X

(f(9

X

(c)))

To deal with the general case, we de�ne a function E

X

, which takes a

function and returns the corresponding function where X is hidden. E

X

can be de�ned as follows.

E

X

(f) = id t (9

X

� f � 9

X

):

Now, if the semantics of A is f , the semantics of 9

X

A is E

X

(f).

We have seen that the basic constructs of determinate ccp can be mod-

elled as continuous closure operators. It is time to write down the properties

of the constructs in the form of a �xpoint semantics. We will give a �x-

point semantics of deterministic ccp in which each agent is mapped to a

continuous closure operator, and a program is mapped to a function from

names to closure operators, i.e., an environment . Thus, the semantics for
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De�nition of E [[A]] : (U ! U)

N

! (U ! U)

E [[c]]� = (? ! c)

E [[

V

j2I

A

j

]]� =

\

j2I

E [[A

j

]]�

E [[(c) A)]]� = (c! E [[A]]�)

E [[9

X

A]]� = E

X

(E [[A]]�)

E [[p(X)]]� = E

�

((� = X) \ (�p))

De�nition of P [[�]] : (U ! U)

N

! (U ! U)

N

P [[�]]�p = E

Y

((Y = �) \ (E [[A]]�));

where for each p 2 N the de�nition in � is assumed to be of

the form p(Y ) ::A, for some variable Y and some agent A

Figure 4.1: The �xpoint semantics for determinate ccp

an agent A is given as a function E [[A]] : (U ! U)

N

! (U ! U), which

maps environments to closure operators.

Now, to give the semantics of a call p(X), we model the substitution

using hiding together with equality, so that the dummy variable � is used for

argument-passing, just like in the operational semantics. Thus the semantic

rule for procedure calls becomes

E [[p(X)]]� = E

�

((� = X) \ (�p)):

In the same way, to give the semantics of the procedure de�nitions in a

program �, we de�ne a function P [[�]] which takes a program and an en-

vironment and produces a `better' environment, as below. Assume that for

each name p, the corresponding de�nition in � is p(Y ) ::A.

P [[�]]�p = E

Y

((Y = �) \ (E [[A]]�))

The semantics of a program � is the least �xpoint of P [[�]]. We can now

put the �xpoint semantics together, as shown in Figure 4.1.

4.7 Result and Trace Semantics

Turning back to the general problem of giving semantics for potentially

non-deterministic concurrent constraint programs, we present two sematics

based directly on the operational model of concurrent constraint program-

ming presented in the earlier chapters.
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We �rst de�ne the result semantics , which considers only the relation

between the initial and �nal constraint stores in a computation. Obvi-

ously, the result semantics provides a minimal amount of information that

should also be provided by any reasonable semantics. The result semantics

is of course not compositional, since it does not capture interaction between

agents.

The second semantics is the trace semantics , where a process is repre-

sented by a set of traces. Each trace is an in�nite sequence of environments

together with information on which steps in the computation are compu-

tation steps and which are input steps. Since the trace semantics records

interaction between processes one would expect the trace semantics to be

compositional, and this is indeed the case.

4.7.1 Result Semantics

Consider the situation where we run an agent with no interaction with other

agents. If the agent terminates, we say that the result of the computation

is the �nal contents of the store. If the agent does not terminate, we record

the limit of the successive stores of the computation and say that the limit

is the result of the computation. So, the result semantics for a given agent

is a function from initial stores to the results of all possible computations.

The result semantics is given by a function R

�

: AGENT! K(U)! }(U)

which gives the set of all possible results that can be computed given a

program �, an agent A, and an initial environment c.

R

�

[[A]]c = f

F

i2!

c

i

j (A

i

: c

i

)

i2!

is a fair

non-interactive computation with A

0

: c

0

= A : c:g

It can be seen that for an in�nite computation, we de�ne the �nal constraint

store as the limit of the intermediate constraint stores that occur during a

computation. We �nd this very reasonable for a constraint programming

language, since an arbitrary �nite approximation of the `�nal' constraint

store can be obtained by waiting long enough for the computation to pro-

ceed. This property does not hold for shared-variable programs in general

where the information in the store does not have to be monotonously in-

creasing.

4.7.2 Traces

Remember that a computation is de�ned to be a sequence of con�gurations

(A

i

: c

i

)

i2!

, where the environments, that is, the c

i

's, are the only part

of the computation visible to the outside. Now, a computation can go

from A

i

: c

i

to A

i+1

: c

i+1

either by performing a computation step, or by

receiving input, and this distinction is of course relevant when comparing

behaviours of di�erent agents.
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In the trace semantics, an agent is represented by a set of traces, where

each trace is an in�nite sequence of environments together with information

on which steps in the computation are computation steps and which are

input steps.

De�nition 4.7.1 A trace t is a pair t = (v(t); r(t)), where v(t) is an !-chain

in K(U) and r(t) � !. The set of traces is denoted TRACE. t

u

The trace of a computation (A

i

: c

i

)

i2!

is a trace t = ((c

i

)

i2!

; r), where the

step from A

i

: c

i

to A

i+1

: c

i+1

is a computation step when i 2 r, and an

input step when i 62 r. We will sometimes use the notation v(t)

i

to refer to

the ith element of the store sequence of t.

The trace semantics of an agent A, assuming a program �, is de�ned as

follows.

De�nition 4.7.2 The function O

�

: AGENT! }(TRACE) is de�ned so that

t 2 O

�

[[A]], i� t is the trace of a fair computation (A

i

: c

i

)

i2!

, where A

0

= A.

When the above holds, we say that the computation (A

i

: c

i

)

i2!

connects

the trace t to the agent. t

u

Operational semantics of simple agents

The operational semantics of tell constraints and calls can be given directly.

Proposition 4.7.3 For a tell constraint c, we have t 2 O

�

[[c]] i�

1. v(t)

i

w c, for some i 2 ! and

2. v(t)

i+1

= v(t)

i

t c, for all i 2 r(t).

It is easy to see that in each computation step c : d

i

�! c : d

i+1

, we have

d

i+1

= d

i

tc. Fairness guarantees that the limit of the trace will be stronger

than c.

Proposition 4.7.4 For a call p(X), we have O

�

[[p(X)]] = O

�

[[A[X=Y ]]]

where the de�nition of p in the program � is p(Y ) :: A.
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4.7.3 Compositionality

The trace semantics allows a compositional de�nition, as expressed in the

following propositions.

Proposition 4.7.5 Assume an agent

V

j2I

A

j

. For a trace t we have t 2

O

�

[[

V

j2I

A

j

]] i� there are t

j

2 O

�

[[A

j

]] for j 2 I , such that v(t

j

) = v(t) for

j 2 I , r(t) =

S

j2I

r(t

j

), and r(t

i

) \ r(t

j

) = ;, for i; j 2 I such that i 6= j.

Proof. ()) We know that there is a fair computation (

V

j2I

A

j

i

: c

i

)

i2!

that connects t to A. By the de�nition of the reduction rules, we have a

family of computations

n

(A

j

i

: c

i

)

i2!

o

j2I

, such that for each i 2 r(t) there

is a k

i

2 I such that A

k

i

i

: c

i

! A

k

i

i+1

: c

i+1

is a reduction step, and for

j 2 I nfk

i

g, there is an input step from A

j

i

: c

i

to A

j

i+1

: c

i+1

. For i 2 !nr(t)

it is easy to see that the step from A

j

i

: c

i

to A

j

i+1

: c

i+1

must be an input

step for all j 2 I .

That for all j 2 I , each computation (A

j

i

: c

i

)

i2!

is fair follows from

Lemma 4.5.7 which says that all inner computations of a fair computation

are fair. For each j 2 I , let the trace t

j

be such that v(t

j

) = v(t), and

r(t

j

) = fi 2 r(t) j k

i

= jg. It is easy to check that the family of traces

ft

j

g

j2I

satis�es the right-hand side of the proposition.

(() We know that for each j 2 I there is a fair computation (A

j

i

: c

i

)

i2!

that connects t

j

to A

j

. For each i 2 r(t) there is a k

i

2 I such that i 2 r(t

k

i

)

but i 62 r(t

j

), for j 2 I n fk

i

g. By the computation rules it follows that

^

j2I

A

j

i

: c

i

�!

^

j2I

A

j

i+1

: c

i+1

;

for all i 2 r(t). In the case that i 2 ! n r(t), it follows that i 2 ! n r(t

j

),

for all j 2 I , and thus all computations (A

j

i

: c

i

)

i2!

perform input steps at

position i, which implies that

V

j2I

A

j

=

V

j2I

A

j

i+1

, from which follows that

we can construct a computation (

V

j2I

A

j

i

: c

i

)

i2!

. Fairness follows from the

fact that all immediate inner computations of the constructed computation

are fair. t

u

Proposition 4.7.6 Suppose we have an agent 9

X

A. For any trace t, we

have t 2 O

�

[[9

X

A]] i� there is a trace u 2 O

�

[[A]] such that with v(t) =

(d

i

)

i2!

and v(u) = (e

i

)

i2!

, we have

1. r(t) = r(u)

2. e

0

= 9

X

(d

0

),

3. for i 2 r(t), d

i+1

= d

i

t 9

X

(e

i+1

), and
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4. for i 2 ! n r(t), e

i+1

= e

i

t 9

X

(d

i+1

).

Proof. ()) Suppose t 2 O

�

[[9

X

A]]. There is a computation (9

c

i

X

A

i

: d

i

)

i2!

that connects the trace t to the agent A. The computation has an inner

computation (A

i

: c

i

t 9

X

(d

i

))

i2!

that we know, by Propositions 4.5.2

and 4.5.7, to be a fair computation. It remains to prove that with e

i

=

c

i

t 9

X

(d

i

) Conditions 1-4 are satis�ed.

Conditions 1 and 2 follow immediately (remember that 9

X

A is short

for 9

?

X

A). When i 2 r(t), it follows that 9

c

i

X

A

i

: d

i

�! 9

c

i+1

X

A

i+1

: d

i+1

and by the computation rules that A

i

: c

i

t 9

X

(d

i

) �! c

i+1

, and d

i+1

=

d

i

t 9

X

(c

i+1

). By the properties of the constraint system we have d

i+1

=

d

i+1

t 9

X

(d

i+1

) = d

i

t 9

X

(c

i+1

) t 9

X

(d

i+1

) = d

i

t 9

X

(c

i+1

t 9

X

(d

i+1

)) =

d

i

t 9

X

(e

i+1

). Condition 3 follows immediately.

If i 2 ! n r(t) the corresponding step in the computation (9

c

i

X

A

i

: d

i

)

i2!

is an input step. This implies that c

i

= c

i+1

. So e

i+1

= c

i+1

t 9

X

(d

i+1

) =

c

i

t 9

X

(d

i+1

) = c

i

t 9

X

(d

i

) t 9

X

(d

i+1

) = e

i

t 9

X

(d

i+1

).

(() Assume that the right-hand side of the proposition holds. There is

a computation (A

i

: e

i

)

i2!

that connects the trace u to the agent A. For

all i 2 !, let c

i

=

F

fe

j+1

j j < i; j 2 r(t)g (this should agree with the idea

that c

i

, which is the local data of the agent, only changes when the agent

performs computation steps).

We want to show that (9

c

i

X

A

i

: d

i

)

i2!

is a fair computation that connects

the trace t to the agent 9

X

A. Note that for all i 2 !, it follows from our

assumptions that 9

X

(d

i

) = 9

X

(e

i

) and c

i

t 9

X

(d

i

) = e

i

. If i 2 r(t) = r(u),

we know that c

i+1

= e

i+1

and A

i

: e

i

�! A

i+1

: e

i+1

. By the computation

rules and the equalities above,

9

c

i

X

A

i

: d

i

�! 9

c

i+1

X

A

i+1

: d

i+1

:

If i 2 ! n r(t) we have A

i+1

= A

i

and c

i+1

= c

i

so the ith step of (9

c

i

X

A

i

:

d

i

)

i2!

is an input step.

To establish fairness of the computation (9

c

i

X

A

i

: d

i

)

i2!

it su�ces to

observe that its only immediate inner computation is fair. t

u

Proposition 4.7.7 t 2 O

�

[[(c

1

) A

1

[]; : : : [] c

n

) A

n

)]] i� one of the fol-

lowing holds.

1. c

j

v v(t)

k

for some j � n and k � 0, and there is a u 2 O

�

[[A

j

]]

such that for all i � 0, v(u)

i

= v(t)

i+k+1

, v(t)

k

= v(t)

k+1

, and r(t) =

fi+ k + 1 j i 2 r(u)g [ fkg.

2. There is no j � n and k � 0 such that c

j

v v(t)

k

, and r(t) = ;.

Proof. ()) Suppose t 2 O

�

[[(c

1

) A

1

[]; : : : [] c

n

) A

n

)]]. Let (B

i

: d

i

)

i2!

be the corresponding computation.
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If d

i

w c

l

, for some i 2 ! and l � n, it follows by the fairness requirement

that B

k+1

= A

j

for some k � 0 and j � n. Since (B

i

: d

i

)

i�k+1

is a fair

computation it follows that we have a corresponding trace u 2 O

�

[[A

j

]].

It is easy to see that the relationship between t and u are as stated in

Condition 1.

If there is no j � n and i 2 ! such that c

j

v d

i

, Condition 2 follows

immediately.

(() Suppose Condition 1 holds. We will construct a fair computation

(B

i

: d

i

)

i2!

corresponding to the trace t. Let (B

i

: d

i

)

i�k+1

be the compu-

tation corresponding to the trace u. Let

B

0

= B

1

= : : : = B

k

= (c

1

) A

1

[]; : : : [] c

n

) A

n

) ;

and

d

0

= v(t)

0

; d

1

= v(t)

1

; : : : ; d

k

= v(t)

k

:

It is straight-forward to check that (B

i

: d

i

)

i2!

is a computation, and that

t is the corresponding trace. Fairness follows from the fact that a su�x is

known to be fair.

In the case when Condition 2 holds, it is easy to check that we can con-

struct a completely passive computation of the selection which has trace t.

t

u
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Chapter 5

A Fully Abstract Semantics for ccp

In this chapter, we address the problem of developing a compositional and

fully abstract semantics for concurrent constraint programming. A seman-

tics is called fully abstract if it identi�es exactly those programs that behave

in the same way in any context. Thus full abstraction provides an optimal

abstraction from internal details of the behaviour of a program, while pre-

serving compositionality. We give a semantics which is fully abstract with

respect to the result semantics.

Intuitively, a trace of a program can be obtained from a computation of

the program by extracting the sequence of communication actions performed

during the computation. In the case of data-
ow networks, a communication

action is the reception or transmission of a data item on a channel; for

shared-variable programs, a communication action is an atomic change to

the global shared state. In concurrent constraint programming, it seems

natural to regard a communication action as the addition of information to

the store.

In a concurrent constraint programming language, the set of all traces of

a program gives a complete description of the behaviour of the program in all

possible contexts, but it contains too much detail, i.e., it is not fully abstract.

We solve this problem by adding an operation that forms the downward

closure of the set of traces with respect to a partial order. Intuitively, this

partial order captures the notion that one trace contains less information

than another. We then show that the semantics obtained by applying this

closure operation to the trace semantics is compositional and fully abstract

with respect to the result semantics.

5.1 Related Work

A similar closure operation on traces has also been presented by Saraswat,

Rinard, and Panangaden [71] but that work only considers �nite behaviour.

In contrast our semantics handles in�nite computations and the associated

73



74 chapter 5. a fully abstract semantics for ccp

notion of fairness, and can be seen as a natural extension of [71] to the

in�nite case.

See Section 2.8 for other results concerning fully abstract semantics of

concurrent constraint programming.

5.2 De�ning the fully abstract semantics

The fully abstract semantics is based on the idea that we look at two aspects

of a trace; its functionality and its limit. The limit of a trace t is simply the

limit of the sequence of environments of the trace, that is,

lim(t) =

G

i2!

v(t)

i

:

The functionality of a trace can loosely be described as the function com-

puted by an agent in one particular computation.

De�nition 5.2.1 The functionality of a trace t, denoted fn(t), is the closure

operator given by the following equation.

fn(t) =

\

i2r(t)

(v(t)

i

! v(t)

i+1

)

t

u

Note that this closure operator is the least closure operator f such that

v(t)

i+1

v f(v(t)

i

);

for all i 2 r(t).

The following proposition o�ers a simple characterisation of fn(t) in

terms of its �xpoints.

Proposition 5.2.2 Let t be a trace. A constraint d is a �xpoint of fn(t)

exactly when for all i 2 r(t), d w (v(t)

i

) implies d w (v(t)

i+1

).

De�nition 5.2.3 We say that a trace t is a subtrace of a trace t

0

, if the

limit of t is equal to the limit of t

0

and the functionality of t is weaker than

or equal to the functionality of t

0

, i.e., fn(t) � fn(t

0

). A set S � TRACE is

subtrace-closed , if t 2 S whenever t is a subtrace of t

0

and t

0

2 S.

Given a trace t, the inverse of t is the trace

�

t = (v(t); ! n r(t)). t

u
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5.2.1 De�nition of the abstract semantics.

We can now de�ne the abstract semantics, which we will prove to be fully

abstract and compositional.

De�nition 5.2.4 For an agent A, and a program �, let

A

�

[[A]] = ft j t is a subtrace of t

0

, for some t

0

2 O

�

[[A]]g:

t

u

Not surprisingly, the abstract semantics contains su�cient information to

allow the result semantics to be obtained from the abstract semantics. This

is expressed in the following proposition.

Proposition 5.2.5 For an agent A, and constraint d, we have

R

�

[[A]]d = flim(t) j t 2 A

�

[[A]] and fn(t) = (d! lim(t))g:

Example 5.2.6 As an example of the abstract semantics, consider the fol-

lowing two agents. Let the agent A

1

be

X = [1; 2; 3; 4];

and the agent A

2

be

9

Y

(X = [1; 2 j Y ] ^ Y = [3; 4]):

The two agents produce the same result, and there is no way a concurrently

executing agent could see that the agent A

2

produces the list in two steps,

so we would expect these two agents to have the same abstract semantics.

A typical trace of A

1

might be the trace t

1

, where

v(t

1

) = (?; X = [1; 2; 3; 4]; : : :)

r(t

1

) = f0 g;

and a typical trace of A

2

might be the trace t

2

, where

v(t

2

) = (?; 9

Y

(X = [1; 2 j Y ]); X = [1; 2; 3; 4]; : : :)

r(t

2

) = f0; 1 g:

We also see that fn(t

1

) = fn(t

2

) = (? ! X = [1; 2; 3; 4]), and lim(t

1

) =

lim(t

2

) = (X = [1; 2; 3; 4]). The two traces have the same functionality and

limit and are thus subtraces of each other. It is easy to see that any trace

of A

1

is a subtrace of some trace of A

2

, and vice verca, so it follows that

the two agents have the same abstract semantics. t

u
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5.2.2 Relationship with determinate semantics

Recall that for deterministic ccp programs there is a simple fully abstract

�xpoint semantics where the semantics of an agent is given as a closure

operator (Section 4.6). Given a deterministic agent A and program �,

where the semantics of A is given by the closure operator f , what does the

corresponding abstract semantics for A look like?

For �nite constraints c and d, if f(c) w d it follows that A will, given a

store where c holds, add constraints to the store so that d is entailed. If,

on the other hand, f(c) 6w d, we can conclude that if A starts executing

with the store c, we will never arrive at a con�guration where d is entailed

(unless information is added from the outside). Thus the traces of A all

have a functionality which is weaker or equal to that of f . The limit of

any trace of A must be a constraint which is a �xpoint of f , otherwise the

execution of A would have added more information to the store. Thus, the

abstract semantics of A can be given as follows.

A

�

[[A]] = ft j fn(t) v f; lim(t) 2 fg

This relationship is stated without proof since the further developments do

not rely on it, but it is straight-forward to derive a proof from the correctness

proof of the �xpoint semantics given in Chapter 9.

5.3 Compositionality of the abstract semantics

In the following sections, we will show that the abstract semantics is com-

positional. The constructs that need to be considered are conjunction, the

existential quanti�er, and the selection operator.

5.3.1 Conjunction

Consider the result semantics of a conjunction of agents. The following

lemma relates the result semantics of a conjunction of agents to the abstract

semantics of the agents. In the proof we take advantage of the fact that

whenever t 2 O

�

[[A]], for some agent A, there is a trace t

0

satisfying v(t

0

)

0

=

? with the same limit and functionality as t, de�ned by, e.g., v(t

0

)

0

= ?,

v(t

0

)

i+1

= v(t)

i

, and i+ 1 2 r(t

0

) i� i 2 r(t) for i 2 !.

Lemma 5.3.1 Suppose fA

j

g

j2I

is a countable family of agents. For a

constraint c, we have c 2 R

�

[[

V

j2I

A

j

]]? if and only if there is a family

of traces (t

j

)

j2I

such that t

j

2 A

�

[[A

j

]] and lim(t

j

) = c for j 2 I , and

T

j2I

fn(t

j

) = c ".

Proof. ()) Suppose c 2 R

�

[[

V

j2I

A

j

]]?. By Proposition 5.2.5 there is

an input-free trace t 2 O[[

V

j2I

A

j

]] such that v(t)

0

= ?, lim(t) = c, and
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fn(t) = c ". By Lemma 4.7.5 there is for each j 2 I a trace t

j

2 O

�

[[A

j

]] such

that v(t

j

) = v(t) and

S

j2I

r(t

j

) = r(t). Using Proposition 5.2.2 it follows

that a �xpoint of fn(t) is also a �xpoint of all fn(t

j

), so

T

j2I

fn(t

j

) = c ".

(() Each trace t

j

connects A

j

to a computation (A

j

i

: c

j

i

)

i2!

. We can

assume that c

j

0

= ?, for j 2 I . We also assume that c is not �nite. Let p

be a function p : ! ! I such that for each j 2 I there are in�nitely many

k 2 ! such that p(k) = j. We will form a computation (B

i

: d

i

)

i2!

of the

agent

V

j2I

A

j

, where each B

i

is of the form

V

j2I

B

j

i

.

Let B

0

=

V

j2I

A

j

0

. Let d

0

=

F

j2I

c

j

0

(= ?).

Suppose B

k

: d

k

is de�ned for k � n. We de�ne B

n+1

: d

n+1

as follows.

Let k = p(n). Let m be the maximal integer such that A

k

m

= B

k

n

and

c

k

m

v d

n

.

1. If there is a computation step A

k

m

: c

k

m

�! A

k

m+1

: c

k

m+1

, we make

the constructed computation perform a corresponding computation

step, by letting B

j

n+1

= B

j

n

, for j 6= k, B

k

n+1

= A

k

m+1

, and d

n+1

=

d

n

t c

k

m+1

.

2. If there is no computation step A

k

m

: c

k

m

�! A

k

m+1

: c

k

m+1

, let B

n+1

=

B

n

and d

n+1

= d

n

. Note that in this case d

n

must be a �xpoint of

fn(t

k

) (since c

k

m

is a �xpoint of fn(t

k

), and by the way m was selected

we know that c

k

m+1

6v d

n

).

Consider the limit d =

F

n2!

d

n

. Note that d

n

v c for all n, so d v c.

Suppose d @ c. We can see that in the construction of (B

n

: d

n

)

n2!

, case 1

was only applied a �nite number of times for each j 2 I . This implies that

for each j 2 I , there is an in�nite chain

d

j

0

; d

j

1

; d

j

2

; : : :

of �xpoints of fn(t

j

). Since the limit of each of these chains is d, and by

continuity, d must also be a �xpoint of each fn(t

j

). But then d is a �xpoint

of

T

j2I

fn(t

j

) and we arrive at a contradiction. t

u

Using Lemma 5.3.1 it is fairly straight-forward to show that the abstract

semantics of a conjunction can be obtained from the agents. In the proof of

the theorem below, we will use the fact that for an arbitrary trace, there is

an agent whose operational semantics contains the trace. The construction

of the agent is as follows.

De�nition 5.3.2 For a trace t, let [t] be the agent

^

i2r(t)

(v(t)

i

) v(t)

i+1

) :

t

u
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Clearly, t 2 A

�

[[[t]]]. Moreover, we have the following:

Lemma 5.3.3 Let t be a trace. If u 2 O

�

[[[t]]] is a trace of [t], then fn(u) v

fn(t).

The lemma follows from the computation rules.

Lemma 5.3.4 Let t be a trace such that v(t)

0

= ?, let

�

t be the inverse of

t, and let c = lim(t). Then fn(t) \ fn(

�

t) = c " and fn(t) [ fn(

�

t) = U .

The lemma follows immediately from proposition 5.2.2.

Theorem 5.3.5 Let fA

j

j j 2 Ig be a family of agents. For any trace t,

t 2 A

�

[[

^

j2I

A

j

]]

i� for each j 2 I there is a t

j

2 A

�

[[A

j

]], such that lim(t) = lim(t

j

) and

fn(t) �

T

j2I

fn(t

j

).

Proof. ()) Let t 2 A

�

[[

V

j2I

A

j

]]. By de�nition there is a t

0

2 O

�

[[

V

j2I

A

j

]]

such that t is a subtrace of t

0

. Let c = lim(t), and let B be the agent

B = (

^

j2I

A

j

) ^ [

�

t];

where

�

t is the inverse of the trace t. Since fn(t) \ fn(

�

t) = c ", and fn(t

0

) �

fn(t), and c = lim(t

0

), we have by Lemma 5.3.1 that c 2 R

�

[[B]]?. Again, by

using the decomposition of B into [

�

t] and the individual A

j

in Lemma 5.3.1

it follows that there is a trace u of [

�

t] and that for each j 2 I there is

a t

j

2 O

�

[[A

j

]], such that lim(t) = lim(t

j

) and

T

j2I

fn(t

j

) \ fn(u) = c ".

By fn(

�

t) � fn(u) and fn(t) [ fn(

�

t) = U and fn(t) \ fn(

�

t) = c " we get

fn(t) �

T

j2I

fn(t

j

).

(() Suppose that for each i 2 I there is a t

j

2 A

�

[[A

j

]] such that

lim(t) = lim(t

j

) and fn(t) �

T

j2I

fn(t

j

). By de�nition there is for each

j 2 I a t

0

j

2 O

�

[[A

j

]] so that t

j

is a subtrace of t

0

j

. Let B be the agent

B = (

^

j2I

A

j

) ^ [

�

t]:

By fn(t) �

T

j2I

fn(t

j

) and fn(t

0

j

) � fn(t

j

) and the fact that all involved

traces have limit c, we infer that fn(t)\

T

j2I

fn(t

0

j

) = c ". By Lemma 5.3.1

it follows that c 2 R

�

[[B]]?. Again, by using the decomposition of B into

[

�

t] and the conjunction

V

j2I

A

j

in Lemma 5.3.1 it follows that there is a

trace t

0

of

V

j2I

A

j

and a trace u of [

�

t] such that fn(t

0

) \ fn(u) = c ". Since

fn(

�

t) � fn(u) and fn(t) [ fn(

�

t) = U , we infer that fn(t

0

) � fn(t), i.e., that t

is a subtrace of t

0

which implies that t 2 A

�

[[

V

j2I

A

j

]]. t

u
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5.3.2 The existential quanti�er

The treatment of the existential quanti�er is certainly the most di�cult

part of this article. An early version of the thesis gave an incorrect char-

acterisation of the compositionality of the abstract semantics with respect

to the existential quanti�er. A similar error was made by Saraswat, Rinard

and Panangaden [71]. When we look at the semantics of an existentially

quanti�ed agent 9

X

A, it should be clear that for any trace t of the agent

9

X

A there is a corresponding trace u of the agent A. How are these two

traces related? Obviously, since the variable X is hidden, the traces u and t

need not agree on the behaviour with respect to X , but for other variables

there should be a correspondence between the two traces. It follows that the

limit and functionality of t and u should agree when we do not look at how

the variable X is treated. Are these requirements su�cient? Well, almost.

It turns out that it is necessary to add a third requirement to the trace u.

(This requirement is the one that was missing from a previous version of

the thesis, and from [71].) For example, consider the agent

A = (X = 10) Y = 7 [] true) Z = 5):

The agent is non-deterministic, since if X = 10 it might either produce

Y = 7, or Z = 5. However, the agent

9

X

A

is deterministic and will always produce the result Z = 5. In other words,

when we consider the traces of A, we should not consider the traces that

contain input steps where X becomes bound. We conclude that the seman-

tics for an agent 9

X

A should only consider the traces of A which do not

receive any input on X .

Given that an agent A has a trace u, and that there is a corresponding

trace t of 9

X

A, how are the functionalities of the traces related? Intuitively,

the di�erence lies in that the functionality of t cannot depend on X , i.e.,

it cannot detect if X is bound or bind X to a value. These considerations

lead to the following de�nition.

De�nition 5.3.6 For a closure operator f , let E

X

(f) be the closure oper-

ator de�ned as follows.

E

X

(f) = (9

X

� f � 9

X

) t id

t

u

Proposition 5.3.7 For a closure operator f , the closure operator E

X

(f)

has the set of �xpoints given by the following equation.

E

X

(f) = fc j There is a constraint d 2 f such that 9

X

(c) = 9

X

(d)g
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Proof. Note that for any constraint c, we have E

X

(f)c v f(c). From

this follows that any �xpoint of f must also be a �xpoint of E

X

(f). Let

g = E

X

(f).

(�) Suppose we have a constraint d 2 f . It follows that d = g(d).

Let c be a constraint such that 9

X

(c) = 9

X

(d). Applying g gives g(c) =

9

X

(f(9

X

(c))) t c = 9

X

(f(9

X

(d))) t c v 9

X

(f(d)) t c = 9

X

(d) t c =

9

X

(c) t c = c.

(�) Now, suppose that c is a �xpoint of g. Let d = f(9

X

(c)). The

constraint d is of course a �xpoint of f and since c = g(c), we must have

c w 9

X

(f(9

X

(c))) = 9

X

(d). So 9

X

(c) w 9

X

(d), and since f(9

X

(c)) w

9

X

(c), which implies 9

X

(c) v 9

X

(d), we have 9

X

(c) = 9

X

(d). t

u

In the proof of the compositionality theorem, the following proposition will

be useful. Note that for a trace t, the traces of A

�

[[9

X

[t]]] are the traces

which have a functionality weaker than the one of t and a limit which is a

�xpoint of the functionality of t.

Proposition 5.3.8 Given an agent A, let u be a trace in A

�

[[A]] such that

(fn u)(9

X

(lim u)) = limu. Let t be a trace such that fn t v E

X

(fn u) and

9

X

(lim t) = 9

X

(lim u). It follows that limu 2 R

�

[[A ^ 9

X

[

�

t]]].

Proof. Note that u 2 A

�

[[A]] and there is a trace t

0

2 A

�

[[9

X

[

�

t]]] such that

fn t

0

= E

X

(fn

�

t) and limu = lim t

0

. By Lemma 5.3.1 it is su�cient to show

that (fn u)\ (E

X

(fn

�

t)) = (? ! limu). We compute the least �xed point of

(fn u) \ (E

X

(fn

�

t)) by forming the chains d

0

; d

1

; d

2

; : : : and e

0

; e

1

; e

2

; : : : as

follows.

1. d

0

= e

0

= ?.

2. For i even, let

(a) d

i+1

= E

X

(fnu)d

i

, and

(b) e

i+1

= (fnu)e

i

.

3. For i odd, let

(a) d

i+1

= (fn

�

t)d

i

and

(b) e

i+1

= E

X

(fn

�

t)e

i

.

It is straight-forward to show that 9

X

d

i

= 9

X

e

i

, for all i 2 !. Let d =

t

i2!

d

i

and e = t

i2!

e

i

. We want to show that d = lim t. Suppose d @ lim t.

By continuity, d 2 fn

�

t and d 2 E

X

(fnu). Thus d 62 fn t which implies that

d 62 E

X

(fnu). We have arrived at a contradiction.

It follows that d = lim t. By assumption we have 9

X

lim t = 9

X

limu and

(fn u)(9

X

limu) = limu. It follows immediately that (fnu)(9

X

d) = limu.

We can conclude that e = (fn u)(9

X

d) = limu. t

u
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Theorem 5.3.9 For an agent A and a variable X there is a trace t 2

A

�

[[9

X

A]] i� there is a u 2 A

�

[[A]] such that lim(u) = (fn(u) � 9

X

) lim(u),

9

X

(lim(t)) = 9

X

(lim(u)) and fn(t) v E

X

(fn(u)).

Proof. ()) Suppose t 2 O

�

[[9

X

A]]. By Proposition 4.7.6, there must be a

trace u 2 O

�

[[A]], such that with v(t) = (d

i

)

i2!

and v(u) = (e

i

)

i2!

it holds

that r(t) = r(u); e

0

= 9

X

(d

0

); d

i+1

= d

i

t9

X

(e

i+1

), for i 2 r(t); and e

i+1

=

e

i

t 9

X

(d

i+1

), for i 2 ! n r(t). It is straight-forward to prove by induction

that for all i 2 !, 9

X

(d

i

) = 9

X

(e

i

), and thus, 9

X

(lim(t)) = 9

X

(lim(u)).

Next we show that fn(t) v E

X

(fn(u)). Let i be �xed such that i 2 r(t).

It is su�cient to show that (d

i

! d

i+1

) v E

X

(fn(u)). Note that for all

i 2 !, e

i

v fn(u)(9

X

(d

i

)) (this is easily proved by induction). If c is a

constraint such that c w d

i

, we have e

i

v fn(u)(9

X

(d

i

)) v fn(u)(9

X

(c)),

and thus fn(u)(9

X

(c)) w e

i+1

, from which follows that E

X

(fn(u))c w d

i+1

,

since by the reduction rules d

i+1

= d

i

t 9

X

(e

i+1

).

To show that lim(u) = (fn(u) � 9

X

) lim(u), we �rst note that fn(u)e

i

v

lim(u), for all i 2 !, from which follows that (fn(u) � 9

X

)e

i

v lim(u), for all

i, and thus (fn(u) � 9

X

) lim(u) v lim(u). By the argument in the previous

paragraph we have e

i

v fn(u)(9

X

(d

i

)), for i 2 !, and since 9

X

(d

i

) = 9

X

(e

i

)

we also have e

i

v fn(u)(9

X

(e

i

)), for all i. By continuity we have lim(u) v

fn(u)(9

X

(lim(u))).

(() Suppose that u 2 O

�

[[A]] such that lim(u) = (fn(u) � 9

X

) lim(u).

Suppose also that the trace t is such that lim t = limu and fn t v E

X

(fn u).

We want to show that t 2 A

�

[[9

X

A]].

By the Proposition 5.3.8 there is a fair, input-free computation (A

i

^

9

c

i

X

B

i

: e

i

)

i2!

where the con�gurationA

0

^9

c

0

X

B

0

: e

0

is equal to A^9

X

[

�

t] : ?

and t

i2!

e

i

= limu. Let u

0

be the trace corresponding to the computation

(A

i

: e

i

)

i2!

. We have, by the computation rules,

1. A

i

: e

i

�! A

i+1

: e

i+1

and B

i

: c

i

= B

i+1

: c

i+1

, if i 2 r(u

0

), and

2. B

i

: c

i

t (9

X

e

i

) �! B

i+1

: c

i+1

, A

i+1

= A

i

and e

i+1

= e

i

t (9

X

c

i+1

)

if i 62 r(u

0

).

Let the chain d

0

; d

1

; : : : be as follows.

1. d

0

= ?.

2. d

i+1

= c

i+1

t 9

X

e

i+1

, if i 2 r(u).

3. d

i+1

= c

i+1

, if i 62 r(u).

It is straight-forward to establish that for i 2 r(u), d

i+1

= d

i

t9

X

(e

i+1

), and

for i 62 r(u), e

i+1

= e

i

t 9

X

(d

i+1

). We can now form a trace t

0

with r(t

0

) =

r(u) and v(t

0

) = (d

i

)

i2!

such that, by Proposition 4.7.6, t

0

2 O

�

[[9

X

A]].
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We also would like to show that t is a subtrace of t

0

. Consider the

computation (B

i

: c

i

t 9

X

e

i

)

i2!

of [

�

t]. Clearly this is the same as (B

i

:

d

i

t 9

X

e

i

)

i2!

. Note that the trace of this computation is

�

t

0

. It follows that

fn t

0

w fn t and that lim t

0

= lim t.

t

u

5.3.3 The selection operator.

Theorem 5.3.10 For n � 0, agents A

1

; : : : ; A

n

and constraints c

1

; : : : ; c

n

,

we have a trace t 2 A

�

[[(c

1

) A

1

[] : : : [] c

n

) A

n

)]] if and only if either

1. there is a k � n and u 2 A

�

[[A

k

]] such that lim(t) = lim(u) w c

k

and

fn(t) v (c

k

! fn(u)), or

2. fn(t) = id and c

k

6v lim(t), for k � n.

Proof. ()) Suppose t 2 A

�

[[(c

1

) A

1

[] : : : [] c

n

) A

n

)]]. There is a trace

t

0

2 O

�

[[(c

1

) A

1

[] : : : [] c

n

) A

n

)]] such that t is a subtrace of t

0

.

Suppose that lim(t) w c

l

, for some l � n. By Proposition 4.7.7 there

is, for some k � n, a trace u 2 O

�

[[A

k

]] such that lim(u

0

) = lim(t

0

) and

fn(t

0

) = (c

k

! fn(u)). The trace u is of course also a trace of A

�

[[(c

1

)

A

1

[] : : : [] c

n

) A

n

)]]. Since fn(t) v fn(t), we have fn(t) v (c

k

! fn(u)).

Suppose that there are no l � n such that lim(t) w c

l

. By Proposi-

tion 4.7.7 we have r(t) = ;, and thus fn(t) = id.

(() Suppose u 2 A

�

[[A

k

]], and that t is a trace such that lim(t) =

lim(u) w c

k

, and fn(t) v (c

k

! fn(u)). We have immediately that u is

a subtrace of a trace u

0

2 O

�

A

k

. By Proposition 4.7.7 there is a trace

t

0

2 O[[(c

1

) A

1

[] : : : [] c

n

) A

n

)]] such that lim(t

0

) = lim(u

0

) and

fn(t

0

) = (c

k

! fn(u

0

)). Thus, fn(t

0

) w (c

k

! fn(u)) w fn(t), and we

conclude t is a subtrace of t

0

.

Let t be a trace such that there are no l � n such that lim(t) w c

l

. By

Proposition 4.7.7 it follows that t 2 O

�

(c

1

) A

1

[] : : : [] c

n

) A

n

), and thus

t also belongs to the abstract semantics of the selction. t

u

5.4 The abstract semantics is fully abstract

A semantics is fully abstract if the semantics does not give more information

than what is necessary to distinguish between agents that behave di�erently

when put into a context.

Theorem 5.4.1 Suppose we have agents A and A

0

. If A

�

[[A]] 6= A

�

[[A

0

]]

then there is an agent B such that R

�

[[A ^ B]] 6= R

�

[[A

0

^B]].
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A

�

[[c]] = ft j fn(t) � (? ! c) and lim(t) w cg

A

�

[[

V

j2I

A

j

]] = ft jt

j

2 A

�

[[A

j

]] and lim(t

j

) = lim(t); for j 2 I;

fn(t) �

T

j2I

fn(t

j

)g

A

�

[[9

X

A]] = ft jt

0

2 A

�

[[A]];

9

X

(lim(t)) = 9

X

(lim(t

0

));

lim(t

0

) = (fn(t

0

) � 9

X

) lim(t

0

); and

fn(t) � E

X

(fn(t

0

))g

A

�

[[[]

k�n

c

k

) A

k

]] = ft j fn(t) = id and lim(t) 6w c

k

; for k � ng

S

ft jk � n; t

0

2 A

�

[[A

k

]];

lim(t) = lim(t

0

) w c

k

; and

fn(t) = (c

k

! fn(t

0

))g

A

�

[[p(X)]] = A

�

[[A[X=Y ]]];

where the de�nition of p is p(Y ) :: A

Figure 5.1: The abstract semantics in equational form.

Proof. Suppose t 2 A

�

[[A]] n A

�

[[A

0

]]. Consider the agent A ^ [

�

t]. By

Lemma 5.3.1 we have lim(t) 2 R

�

[[A^[

�

t]]]?. Suppose lim(t) 2 R

�

[[A

0

^[

�

t]]]?.

By Lemma 5.3.1 there are traces t

1

2 O

�

[[A

0

]] and t

2

2 O

�

[[[

�

t]]] such that

lim(t

1

) = lim(t

2

) = lim(t) and fn(t

1

) \ fn(t

2

) = c ". Since clearly fn(t

2

) �

fn(

�

t), this implies that fn(t

1

) � fn(t), so t must be a subtrace of t

1

. This

contradicts the assumption that t 62 O

�

[[A

0

]]. t

u

5.5 The Abstract Semantics in Equational Form

As we have established that that the abstract semantics is compositional,

we can give the abstract semantics as a set of equations (Figure 5.1).

5.6 A proof of full abstraction using �nite programs

Our proof of full abstraction in Theorem 5.4.1 relied on the use of in�nite

conjunctions to express an agent that could produce an `in�nite' trace. Is

it possible to give a proof of full abstraction that does not use in�nite con-

junctions? It turns out that if we make some very reasonable assumptions

about the constraint system, and extend the result semantics to cope with

in�nite input, it is possible to give a proof of full abstraction that does not

use in�nite conjunctions.



84 chapter 5. a fully abstract semantics for ccp

The proof in this section resembles a proof of full abstraction given

by Russell [68]. The idea is that we assume that a representation of a

trace is provided as input. It is then possible to write a procedure that

`interprets' the trace and thus exhibits a behaviour similar to the agent [

�

t]

in the previous proof. We must make some assumptions about the constraint

system. First, we assume that it is su�ciently powerful to emulate itself.

That is, we assume that there is in the domain of values a representation of

each �nite constraint. We also assume that it is possible to write procedures

that can take a representation of a �nite constraint and can interpret its

behaviour. Third, we assume that the term model is a part of the constraint

system and that there are some appropriate function symbols.

5.6.1 The generalised result semantics

We previously de�ned the result semantics of an agent, R

�

[[A]]c only for

�nite inputs c. This restriction was introduced to make it possible to give

the input in the �rst con�guration of a computation, as any intermediate

state of a computation must be �nite. However, if we allow the input to

be given during the course of a computation, we can consider a generalised

version of the result semantics that also allows in�nite inputs.

For an agent A, a program �, and a constraint c the generalised result

semantics

R

�

[[A]]c = flim(t) j t 2 O

�

[[A]];

v(t)

0

v c;

c

i+1

v c

i

t c; for i 2 ! n r(t); and

lim(t) w cg

It is easy to see that for �nite constraints the generalised result semantics

conforms with the �rst result semantics, and that for in�nite constraints the

generalised result semantics gives the result produced by an agent when it

receives in�nite input.

Proposition 5.6.1 For an agent A, and constraints c and d, we have c 2

R

�

[[A]]d i� there is a trace t 2 A

�

[[A]] such that lim(t) = c, and fn(t)\(? !

d) = (?! c).

5.6.2 Can a ccp language interpret its constraint system?

The answer, for any reasonable constraint system, is yes. But �rst we must

de�ne what it means for a constraint system to be self-interpretable.

First, there must be a way to represent the �nite constraint as values

in the constraint system. For example, it the term model we can of course

represent the �nite constraints as terms.
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Second, for each �nite constraint we need a way to bind a variable to

that �nite constraint, i.e., a �nite constraint that does precisely that. In

the term model this is easily accomplished, since we have constraints that

can bind a variable to any term.

Of course, we also need to be able to `interpret' the representations of

constraints as real constraints, i.e., as tell and ask constraints. So we also

require that it should be possible to write procedures that interprets repre-

sentations of constraints and emulates the behaviour of the corresponding

ask and tell constraints (these are requirements three and four). In the term

model, implementing these procedures is a straight-forward programming

task.

De�nition 5.6.2 A constraint system is self-interpretable if the following

holds.

1. There is an injective map l from �nite constraints to the domain of

values.

2. For each �nite constraint c and variable X there is a constraint X =

l(c) which binds X to l(c).

3. For any �xed set of variables X

1

; : : : ; X

n

it is possible to de�ne a

procedure entail, such that a call entail(R;F;X

1

; : : : ; X

n

) will, when

R is bound to l(c) and c is a constraint that depends only on the

variables X

1

; : : : ; X

n

, and c is entailed, bind F to 1.

4. For X

1

; : : : ; X

n

as above it is possible to de�ne a procedure toStore

such that a call toStore(R;X

1

; : : : ; X

n

) will, when R = l(c) and c is

a constraint that depends only on the variables X

1

; : : : ; X

n

, add the

constraint c to the store.

t

u

One would normally expect a constraint system to be implementable on

a computer, and to be su�ciently powerful to implement the set of com-

putable functions. Given this it is not a big step to assume a constraint

system to be self-interpretable. As representations of the �nite constraints,

it is of course very natural to consider the elements of the term model.
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5.6.3 Giving the representation of a trace

We need a way to construct a constraint that gives a representation of a

trace. Suppose that t is a trace which only depends on variablesX

1

; : : : ; X

n

.

We must construct a constraint c, we will later refer to it as [t], which binds

a variable L to a list representation of the trace t. Let (d

i

)

i2!

= v(t). Let

E

0

be in(Z

0

). For i � 1 2 r(t), let E

i

be the expression out(Z

i

), and for

i� 1 2 ! n r(t), let E

i

be in(Z

i

). For i 2 !, let

c

i

be 9

L

0

9

Z

0

: : :9

Z

i

(L = [E

0

; : : : ; E

i

j L

0

]

^ Z

0

= l(d

0

) ^ : : : ^ Z

i

= l(d

i

)):

Clearly, all c

i

s are �nite constraints, and with c(t) = t

i2!

c

i

, c(t) is the

constraint which binds L to a representation of the trace t.

5.6.4 Interpreting traces

Next we construct a procedure interpret(L;X

1

; : : : ; X

n

), that given a list

representation of a trace t that only depends on the variables X

1

; : : : ; X

n

,

behaves like the agent [t] in the previous proof of full abstraction. We want

the call interpret(L;X

1

; : : : ; X

n

) to be such that for traces

u 2 A

�

[[interpret(L;X

1

; : : : ; X

n

)]]

we have fn(u) v fn(t) whenever 9

L

(lim(u)) = lim(t) and L is bound to the

list representation in the constraint lim(u).

We �rst give interpret in the form of a clp program, since this version

may be easier to read than the ccp version.

interpret([out(R) j L]; X

1

; : : : ; X

n

) : �

toStore(R;X

1

; : : : ; X

n

);

interpret(L;X

1

; : : : ; X

n

):

interpret([in(R) j L]; X

1

; : : : ; X

n

) : �

entail(R;F;X

1

; : : : ; X

n

);

interpret aux(F;L;X

1

; : : : ; X

n

):

interpret aux(1; L;X

1

; : : : ; X

n

) : � interpret(L;X

1

; : : : ; X

n

):

The same program in ccp.

interpret(L;X

1

; : : : ; X

n

) ::

((9

R

9

L

0

L = [out(R) j L

0

])

) 9

R

9

L

0

(L = [out(R) j L

0

]

^ toStore(R;X

1

; : : : ; X

n

)

^ interpret(L

0

; X

1

; : : : ; X

n

))

[] 9

R

9

L

0

(L = [in(R) j L

0

])

) 9

R

9

L

0

9

F

(L = [in(R) j L

0

]

^ entail(R;F;X

1

; : : : ; X

n

)

^ (F = 1) interpret(L

0

; X

1

; : : : ; X

n

))))
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Does interpret behave as intended? Suppose that L does eventually get

bound to the list representation of the trace t. The functionality of any

trace of the call interpret(L;X

1

; : : : ; X

n

) is at most f

0

, where f

i

, i 2 !, is

given as follows (recall that (d

i

)

i2!

= v(t)).

f

i

=

�

f

i+1

; if i 62 r(t)

(d

i

! d

i+1

) \ f

i+1

; if i 2 r(t)

It is easy to establish that f

0

= fn(t).

5.6.5 The proof

Now we are ready to give the alternative proof of full abstraction. We will

assume that the constraint system is self-interpretable, and contains the

term model, where the set of function symbols includes the list constructor

[� j �], in(�) and out(�). Recall that A and A

0

are assumed to be agents such

that t 2 A

�

[[A]] but t 62 A

�

[[A

0

]]. We want to show that there is an agent B

and some constraint c such thatR

0

�

[[A^B]]c 6= R

0

�

[[A

0

^B]]c. We will assume

that the agents A and A

0

do not contain any in�nite conjunctions, and that

thus the set of variables that A and A

0

depend on are among X

1

; : : : ; X

n

,

and that L is not among these variables.

Let c be the constraint [

�

t]. Let B be the agent interpret(L;X

1

; : : : ; X

n

)

and �

0

the program � extended with de�nitions of entail, toStore and

interpret.

Clearly, we have d 2 R

�

0

[[A ^ B]]c, where d = lim t t c.

Suppose d 2 R

�

0

[[A

0

^B]]c. There are corresponding traces t

1

2 O

�

0

[[A

0

]]

and t

2

2 O

�

0

[[B]] such that lim t

1

= lim t

2

= d and fn(t

1

) \ fn(t

2

) \ (? !

c) = (? ! d). Let (e

i

)

i2!

= v(t

1

) = v(t

2

). If we consider traces t

0

1

and

t

0

2

where v(t

0

1

) = v(t

0

2

) = (9

L

e

i

)

i2!

and r(t

0

1

) = r(t

1

) and r(t

0

2

) = r(t

2

) it

follows that t

0

1

2 O

�

0

[[A

0

]] (this is easy to establish from the computation

rules) and that fn(t

0

2

) � fn(

�

t). Thus, fn(t

0

1

) � fn(t), so t must be a subtrace

of t

0

1

. This implies that t 2 A

�

0

[[A

0

]], which contradicts the assumption that

t 62 A

�

[[A

0

]].

5.7 Algebraic properties of concurrent constraint programming

As we have developed a fully abstract semantics of concurrent constraint

programming we have a good opportunity to study the algebraic properties

of ccp. It turns out that the algebra of concurrent constraint programming

agents satis�es the axioms of intuitionistic linear algebra (see Troelstra [79,

chapter 8] and Ono [59]), which suggests a relationship between concurrent

constraint programming and intuitionistic linear logic.

The work presented in this section is in
uenced by the results of Mendler,

Panangaden, Scott and Seely [52], who show that a semantic model of con-
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current constraint programming forms a hyperdoctrine [45, 73], a category-

theoretic structure which represents the proof-theoretic structure of logics.

Thus, proving that ccp is a hyperdoctrine implies that ccp in fact forms a

logic. The authors of reference [52] stress the point; ccp is logic.

Other attempts to relate algebraic rules and concurrency include the

work by Bergstra and Klop [7], in which algebraic rules were used to de-

�ne a concurrent language, and Winskel and Nielsen [83], who relate di�er-

ent models of concurrency by examining their category-theoretic properties.

Abramsky and Vickers [3] propose the use of quantales as a framework for

the study of various aspects of concurrency. (The algebra of quantales is

closely related to intuitionistic linear algebra.)

We begin by giving the axiomatic de�nition of intuitionistic linear alge-

bra, following Troelstra [79]. Intuitionistic linear algebra is to linear logic

as Boolean algebra is to propositional logic, i.e., an algebraic formulation of

the derivation rules of the logic.

De�nition 5.7.1 An IL-algebra (intuitionistic linear algebra) is a structure

(X;t;u;?;��; �;1) such that the following holds.

1. (X;t;u;?) is a lattice.

2. (X; �;1) is a commutative monoid.

3. If x � x

0

and y � y

0

it follows that x�y � x

0

�y

0

and x

0

�� y � x �� y

0

.

4. x � y � z i� x � y �� z.

t

u

In the de�nition, � is to be seen as the multiplicative conjunction and u as

the additive conjunction.

Next we will see how the semantic domain of the fully abstract semantics

can be seen as an IL-algebra. Let A consist of the subtrace-closed sets of

traces. The lattice-structure of A is simply the inclusion-ordering of the sets

of traces.

Proposition 5.7.2 A forms a complete distributive lattice.

Proof. It is easy to see that for any family of subtrace-closed sets, the union

and intersection of these sets is also subtrace-closed. From this follows also

that A is a distributive lattice. t

u

Let � : A� A! A be parallel composition, i.e.,

x � y = ft j t

1

2 x; t

2

2 y; lim(t

1

) = lim(t

2

); fn(t) � fn(t

1

) \ fn(t

2

)g:

Let 1 be the set of passive traces, i.e., 1 = ft j r(t) = ;g. It is easy to see

that 1 corresponds to the agent true, i.e, the tell constraint which always

holds.
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Proposition 5.7.3 (A; �;1) is a commutative monoid. For x and fy

i

g

i2I

2

A the distributive law x � (

S

i2I

y

i

) =

S

i2I

x � y

i

holds,

De�ne ��: A � A ! A according to x �� y =

S

fz j x � z � yg. It follows

that x �� � is an upper adjoint of � � x, i.e., that x � y �� z if and only if

x � y � z holds for x; y; z 2 A.

We also de�ne an upper adjoint to \, even though this is not necessary

to satisfy the axioms of IL-algebras. Let �>: A � A ! A according to

x �> y =

S

fz j x \ z � yg gives us x � y �> z if and only if x \ y � z, for

x; y; z 2 A.

It follows immediately that the structure we have obtained satis�es the

axioms of IL-algebras.

Theorem 5.7.4 (A;[;\; ;;��; �;1) as de�ned above is an IL-algebra.

Next, we will take a look at how selection in ccp can be expressed using the

operations of IL-algebra.

First, note that the functions �� and �> can be expressed directly in

terms of sets of traces. For traces t

1

; t

2

, let t

1

_ t

2

be de�ned when v(t

1

) =

v(t

2

), and u = t

1

_ t

2

be such that v(u) = v(t

1

), and r(u) = r(t

1

) [ r(t

2

).

We �nd that

x �� y = ft j if u 2 x and t _ u is de�ned, we have t _ u 2 yg:

If there were no restriction that the elements of A must be subtrace-closed,

x �> y would consist of the traces which do not belong to x, together with the

traces of y, similar to the usual de�nition of implication in classical logic.

But since the complement of an element of A in general is not subtrace-

closed, the traces of x �> y are instead given by

x �> y = ft j if u 2 x is a subtrace of t; then u 2 yg:

For x 2 A, let the negation �x be given as �x = x �� ;. The negation of x

can also be given directly as a set of traces according to

�x = ft j there is no u 2 x such that lim(t) = lim(u)g:

For an agent which is a tell constraint c, the set of traces is

c = ft j lim(t) w c; fn(t) v (? ! c)g;

writing c for the set of traces of the tell constraint c. Also, note that

c �> 1 = ft j fn(t) [ (? ! c) = Ug:

For a tell constraint c, ��c is the set of traces with limit at least c.
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For a 2 A, the expression

a \ (c �> 1) \ ��c

gives the set of traces t of a which satisfy lim t w c and fn t = (c ! fn(t)),

i.e., the set of traces corresponding to the alternative c) A in a selection.

Given constraints c

1

and c

2

, the expression

�c

1

\ �c

2

\ 1

corresponds to the set of traces in which neither c

1

nor c

2

ever become

entailed by the store.

The set of traces of a selection (c

1

) A

1

[] c

2

) A

2

) can thus be given

by the expression

(a

1

\ (c

1

�> 1) \ ��c

1

) [ (a

2

\ (c

2

�> 1) \ ��c

2

)

[ (�c

1

\ �c

2

\ 1);

where a

k

is the set of traces given by the abstract semantics of A

k

, for

k 2 f1; 2g. (This translation can easily be generalised to selections with an

arbitrary number of alternatives.) So non-deterministic selection can be de-

�ned using operations derived from parallel composition and the inclusion-

ordering of sets of traces.



Chapter 6

A Fully Abstract Semantics for

Non-deterministic Data Flow

In the previous chapter we considered a fully abstract semantics for concur-

rent constraint programming. Since the data 
ow computation model can

be seen as a special case of concurrent constraint programming it follows

immediately that it is possible to use the described techniques to give a

semantics for data 
ow languages. In this chapter we will present a fully

abstract semantics for data 
ow based on the fully abstract semantics for

ccp. The semantic model will be presented without proofs of composition-

ality or of full abstraction; it is hoped that the similarity with the semantics

for ccp will be su�cient to convince the reader that the model is correct.

A data 
ow program is a directed graph where the nodes are computa-

tional elements (processes) and the edges are communication channels. In

the computational models described by Brinch Hansen [8] and Kahn [37]

the nodes are imperative programs with explicit computational actions, but

as Kahn points out, the nodes (which in his model are always determinis-

tic) can be seen as continuous functions from input to output. Dennis [25]

presented a style of data 
ow programming with a small, prede�ned set

of nodes. The language de�nes a small set of nodes, from which the pro-

grammer is supposed to construct programs; it is not possible to invent new

nodes. Also in this case, the nodes can be seen as continuous functions from

input to output. As Kahn showed, the semantics of a deterministic data


ow program can be given as a continuous function from input sequences

to output sequences.

To see how a deterministic node in a data 
ow network can be seen as

a continuous function, �rst note that the output history of a deterministic

node is uniquely given by the input history. The data transmitted along

an edge can be represented as a (�nite or in�nite) string, and sending more

data means adding tokens to the end of the string.

If we order the strings in the pre�x ordering, we see that the nodes

91
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correspond to monotone functions since a node may produce more output

(thus extending the output string) when receiving additional input, but not

change any output already produced. If we include the in�nite strings, so

that the partial order of �nite and in�nite strings forms a cpo, we see that

the nodes actually correspond to continuous functions, since the output from

a node, when given an in�nite input, can be given as a limit of the outputs

resulting from the node receiving �nite pre�xes of the input. For example,

if the input is a

0

; a

1

; : : : and the output is b

0

; b

1

; : : :, we can �nd, for each

pre�x b

0

; b

1

; : : : ; b

m

of the output, some n � 0 such that the input sequence

a

0

; a

1

; : : : ; a

n

gives an output sequence that begins with b

0

; b

1

; : : : ; b

m

. Thus,

we can determine what a (deterministic) node will produce for an in�nite

input, if we know what it produces for �nite input.

6.1 Examples

We use the notation a:s for the string constructed by appending the token

a to the left of the string s. Thus, we write 1:2:3:� for the string of 1, 2 and

3. When there is no risk of confusion we will sometimes write a string such

as the one above in the briefer form 123.

As an example of a deterministic node, consider a node that reads a

stream of integers and outputs a stream of integers containing the sum of

the two most recently read integers. In the notation used by Kahn, the

program might look like this.

Process f(integer in X; integer out Y);

Begin integer N;M;

N := wait(X);

Repeat

Begin

M := wait(X);

send (N +M) on Y;

N := M;

End;

End;

(The node starts by reading an integer, then it enters an in�nite loop where

it reads an integer and writes the sum of the two previous integers at each

iteration.)

The corresponding function can be given by the following recursive de�-

nitions, where the function f corresponds to the node. This function takes a

single argument corresponding to the input stream. The recursively de�ned

function f

0

takes two arguments, the previous integer, i.e., the local state,
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and the input stream.

f(�) = �

f(n:x) = f

0

(n; x)

f

0

(n; �) = �

f

0

(n;m:x) = (n+m):f

0

(m;x)

So, for example, f(�) = �. If we write 1:2:3:� for the string consisting of 1,2

and 3 we have

f(1:2:3:�) = f

0

(1; 2:3:�) = 3:f

0

(2; 3) = 3:5:f

0

(3; �) = 3:5:�

Now, suppose the input is extended to the string 1:2:3:4:�. It is easy to see

that f(1:2:3:4:�) = 3:5:7:�.

For comparison, we give the same program in the form of concurrent

logic and concurrent constraint programs. First the clp program.

F ([N j X

1

]; Y ) : �

F

0

(N;X

1

; Y ):

F

0

(N; [M j X

1

]; Y ) : �

K is N +M;

Y = [K j Y

1

];

F

0

(M;X

1

; Y

1

):

Next, the ccp program.

F (X;Y ) ::

((9

N

9

X

1

X = [N jX

1

]))

9

N

9

X

1

(X = [N jX

1

]^

F

0

(N;X

1

; Y )))

F

0

(N;X; Y ) ::

((9

M

9

X

1

X = [M jX

1

]))

9

M

9

X

1

9

Y

1

(X = [M jX

1

]^

Y = [N +M j Y

1

]^

F

0

(M;X

1

; Y

1

)))

In the model of data 
ow described by Dennis [25], the program example we

have been looking at can be assembled from the following primitive nodes.

First, we need a node duplicate that reads input from a channel and sends it

to its two output channels (Figure 6.1 (a)). Second, a node but�rst with one

input and one output channel that transmits all input to the output channel,

except the �rst token, which is discarded (Figure 6.1 (b)). Last, a node add

with two input and one output channel which adds incoming tokens on the

two input channels and outputs their sum (Figure 6.1 (c)). So if the input

on the two channels is 1:2:3:4:� and 11:11:�, the output is 12:13:�. At this
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a) c)

butfirst add

b)

Figure 6.1: Three primitive nodes; a) duplicate, b) but�rst, and c) add.

stage, the adder is waiting for input from the second channel. When a token

arrives, it will be added to 3 and the result sent to the output channel.

We can now use the primitives we have de�ned to compose the example

program (Figure 6.2). The construction is fairly straight-forward. Use the

duplication node to get two copies of the input channel, use the node but�rst

to remove the �rst token from one of the channels, thus getting a sequence

which is displaced one step. Finally the contents of the two channels are

added.

6.2 Data 
ow networks

In this section we give an inductive de�nition of the set of data 
ow net-

works. The basic idea is that each data 
ow network has a �nite set of

input channels and output channels, and is composed using a small number

of composition rules.

We will use �; �; 
; : : : for channels, I for sets of input channels, O for

sets of output channels and K for arbitrary sets of channels. Let � be the

set of tokens that may be sent over a channel, and (D;v) the cpo of �nite

and in�nite strings over �, where v denotes the pre�x ordering of strings.

6.2.1 Deterministic nodes

We assume that there is a set of deterministic nodes, and that for each

deterministic node d with input channels I and output channels O there is

a continuous function

f

d

: D

I

! D

O

which gives the behaviour of the deterministic node. (We use the notation

D

K

for the lattice consisting of the set of functions K ! D, together with
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add

butfirst

Figure 6.2: The example program as a data
ow network.

a top element.)

6.2.2 Non-deterministic nodes

To write non-deterministic data 
ow programs the only non-deterministic

conctruct needed is the merge node. We will assume that the merge node

has two input and one output channels and that it gives an angelic merge.

For example, given input streams

aaa : : : and bb;

possible outputs from the merge node might be

bbaaa : : : or abaabaaa : : : or aaa : : : :

6.2.3 Forming networks

A data 
ow network is a graph of nodes and communication channels. We

will use two operations, par and edge in the construction of data 
ow

networks.

Given networks F

1

and F

2

,

F

1

parF

2
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a) b)

β

F2

. . . 

. . . . . . 

F1

. . . 

. . . . . . 

. . . 

F

α

Figure 6.3: Ways to compose a network: a) parallel composition, b) adding

edges.

creates a new network by putting the networks F

1

and F

2

together, without

making any new connections (Figure 6.3 (a)). Suppose that F

1

is a network

with input channels I

1

and output channels O

1

, and F

2

a network with

inputs I

2

and outputs O

2

. Also assume that the sets I

1

, I

2

, O

1

and O

2

are

all mutually disjoint. Now, F parF

2

creates a networks with input channels

I

1

[ I

2

and output channels O

1

[ O

2

, simply by putting the two networks

next to each other. (Note that the par construct is only de�ned for networks

with disjoint sets of input and output channels.)

The second construct adds an edge (a communication channel) to a given

network. If F is a network with inputs I and outputs O, and � 2 I and

� 2 O, the construction

edge

�;�

F

gives a network where output channel � has been connected to input channel

� (Figure 6.3 (b)). Thus, edge

�;�

F is a network with input channels I nf�g

and output channels O n f�g.

It is easy to see that we can construct any network using par and edge.

First, use par to create a network containing all desired nodes, and then

use edge to add the edges.

6.2.4 The set of data 
ow programs

We give the set of data 
ow programs inductively, where Net

I;O

is the set

of nets with input channel I and output channels O.
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De�nition 6.2.1 For disjoint sets of channels I , O, let Net

I;O

be the set

of nets given by the following rules.

1. d 2 Net

I;O

if d is a deterministic node with inputs channels I and

output channels O.

2. merge 2 Net

f�;�g;f
g

, for distinct channels �, � and 
.

3. F

1

parF

2

2 Net

I

1

[I

2

;O

1

[O

2

, if F

1

2 Net

I

1

;O

1

, and F

2

2 Net

I

2

;O

2

.

4. edge

�;�

F 2 Net

Inf�g;Onf�g

, if � 2 I , � 2 O, and F 2 Net

I;O

.

t

u

The de�nition of nets allow nets with an empty set of output channels. Any

two nets with the same number of input channels and no output channels

should have the the same abstract semantics since the two nets produce

the same output, and there is no context in which the two nets can be

distinguished.

6.3 Relating histories and constraints

To give a translation from data 
ow to ccp we must �rst specify a relation-

ship between the the data structures of data 
ow nets (that is, histories)

and the corresponding structures of ccp (constraints).

6.3.1 A constraint system of histories

Recall that � is the set of tokens that can appear on a channel in a data


ow network. To represent histories of streams in a data 
ow network as

constraints, we assume that � is the set of integers, and use the constraint

system of integers and lists of integers described in Chapter 3.

Note that the constraints include limits of sequences of formulas, so there

will, for example, be a constraint which is the limit of the sequence

9

Y

X = [a

0

j Y ] 9

Y

X = [a

0

; a

1

j Y ] 9

Y

X = [a

0

; a

1

; a

2

j Y ] : : :

for a

0

; a

1

; a

2

; : : : 2 �. Thus, the �nite constraints we will consider in the

translation will be constraints that map variables to �nite strings. In the

example above, the constraint which is the limit of the sequence would map

X to the in�nite string a

0

a

1

a

2

: : :.



98 chapter 6. non-deterministic data flow

6.3.2 Correspondence between channels and variables

We assume that there is a one-to-one mapping from channels to variables.

If � is an input channel and � an output channel, we will write X

�

and

Y

�

for the corresponding variables. For a channel 
 that may be either an

input channel or an output channel we will write Z




for the corresponding

variable.

6.3.3 Correspondence between histories and constraints

We de�ne a mapping from histories � 2 D

K

to constraints. For � 2 D

K

,

where K is a set of variables, let

H� =

G

f9

Y

(Z




= [a

0

; a

1

; : : : ; a

n

j Y ]) j 
 2 K;� 
 = a

0

a

1

: : : a

n

g

The corresponding mapping from constraints c to histories D

K

is written

c dK, and is de�ned by

c dK =

G

f� j H � v cg:

In other words, c dK = �, where � 2 D

K

is the strongest such that whenever

�(
) w a

0

a

1

: : : a

n

, for 
 2 K, we have

c w (9

Y

Z




= [a

0

; a

1

; : : : ; a

n

j Y ]):

It is easy to see that the pair of H : D

K

! U and � dK : U ! D

K

is a

Galois connection.

6.3.4 Correspondence between functions over histories and clo-

sure operators over constraints

Given disjoint sets I and O of channels, and a closure operator f over

constraints, the corresponding function from histories over I to histories

over O is written f d(I ! O) and is de�ned to be equal to g, where

g � = tf� 2 D

O

j f(H �) w H �g:

If f 2 D

I

! D

O

, let ((f)) be the corresponding closure operator over

constraints, de�ned according to the equation

((f))c = c t (H(f (c d I))):

It is easy to see that the pair of

((�)) : (D

I

! D

O

)! C and � d(I ! O) : C ! (D

I

! D

O

)

is a Galois connection, where C is the lattice of closure operators over con-

straints.
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6.4 Relationship to ccp

As we have already suggested, the language of data 
ow networks can be

seen as a special case of concurrent constraint programming. In this section

we give a translation from data 
ow networks to ccp agents.

A net F with input channels I = f�; : : :g and output channels O =

f�; : : :g is translated into an agent A(X

�

; : : : ;Y

�

; : : :). We separate the

arguments corresponding to input and output channels with a semicolon, for

greater clarity. The variables X

�

; : : : will be referred to as input variables ,

and the variables Y

�

as output variables .

For the rest of this chapter, we will assume a program � that contains

all necessary de�nitions of procedures corresponding to various primitive

nodes of the language of data 
ow networks.

Deterministic nodes For a deterministic node d 2 Net

I;O

, we assumed

that there is a continuous function f

d

: D

I

! D

O

which gives the behaviour

of the node. Thus, we require that the functionality of each trace in the

semantics of d must be weaker or equal to the function f

d

. We must also

require that the output of the trace to be equal to the result of applying

f

d

to the input of the trace. In other words, a deterministic node must

eventually produce the result given by the function f

d

.

For each node d we assume that there is a deterministic concurrent

constraint procedure node

d

(X

�

; : : : ; Y

�

; : : :), such that the corresponding

closure operator is ((f

d

)).

Example 6.4.1 Consider a deterministic node, with one input channel �

and one output channel �, which copies its input to the output channel. The

behaviour of this node is given by the identity function. The corresponding

closure operator is the weakest closure operator which maps a constraint in

which X

�

is bound to a string w to a constraint in which Y

�

is bound to

the same string w. t

u

Merge nodes We use the a simpli�ed version of the merge procedure,

which was de�ned in Section 3.11.

merge(X;Y; Z) ::

(9

A

9

X

1

(X = [A j X

1

])

) 9

A

9

X

1

9

Z

1

(X = [A j X

1

]

^ Z = [A j Z

1

]

^merge(X

1

; Y; Z

1

))

[] 9

A

9

Y

1

(Y = [A j Y

1

])

) 9

A

9

Y

1

9

Z

1

(Y = [A j Y

1

]

^ Z = [A j Z

1

]

^merge(X;Y

1

; Z

1

)))
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The di�erence between this merge procedure, and the one de�ned in Sec-

tion 3.11 is that the cases that treat terminated lists have been removed.

A net merge 2 Net

f�;�g;f
g

is mapped to the agent merge(X

�

; X

�

;Y




).

Parallel composition Parallel composition of nets is mapped to a con-

junction of agents. If F

1

2 Net

I

1

;O

1

and F

2

2 Net

I

2

;O

2

, and F

1

is mapped

to A

1

and F

2

to A

2

, we can map F

1

parF

2

to A

1

^ A

2

, assuming that I

1

,

I

2

, O

1

and O

2

are all mutually disjoint.

Adding edges When we add an edge between an input channel and an

output channel two things happen; �rst, the two channels are connected

so that any data output on the output channel will appear on the input

channel, second, the two channels are hidden and can not be accessed by

any outside observer.

We could express the copying from the output channel � to the input

channel � as a uni�cation X

�

= Y

�

, but we choose to make the copying

explicit, by a procedure copy(Y

�

;X

�

) which is de�ned as follows.

copy(Y ;X) ::

(9

A

9

Y

1

(Y = [A j Y

1

])

) 9

A

9

Y

1

9

X

1

(Y = [A j Y

1

]

^X = [A j X

1

]

^ copy(Y

1

;X

1

)))

The second part of the edge construct, the hiding of the two channels, is of

course accomplished with an existential quanti�er.

If the net F is mapped to the agent

A;

the net edge

�;�

F is mapped to the agent

9

X

�

9

Y

�

(A ^ copy(Y

�

; X

�

)):

6.5 Examining the results of the translation

The translation from data 
ow to ccp is compositional in the sense that

the translation of a net constructor only depends on the translation of its

components. For example, the translation of a net edge

�;�

F is given in

terms of the translation of the net F . It follows that we have a compositional

semantics for data 
ow which gives the meaning of a data 
ow net as a set

of ccp traces.

An agent that is the result of a translation of a data 
ow network to ccp

will be referred to as a df-agent . In this section we examine the properties
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of df-agents. In the next section, we will derive a compositional semantics

for data 
ow nets.

Say that a df-trace is a trace such that

1. v(t)

0

= H�, for some � 2 D

I

.

2. When i 2 ! n r(t), we have v(t)

i+1

= v(t)

i

tH�, for some � 2 D

I

.

3. When i 2 r(t), we have v(t)

i+1

= v(t)

i

tH�, for some � 2 D

O

.

Thus, the df-traces are the traces whose input steps involve input variables

only, and output steps involve output variables only.

The semantics of a df-agent may contain traces which are not df-traces,

but each such trace can be derived from a df-trace in the following manner.

Let t be a df-trace, and (c

i

)

i2!

be a chain of constraints which do not

involve any input variables, and is such that c

i

= c

i+1

for i 2 r(t). The

sequence (c

i

)

i2!

is intended to represent input to the agent which a�ects

variables other than the input variables. The trace t

0

, given by r(t

0

) = r(t)

and v(t

0

)

i

= v(t)

i

t c

i

is also a trace of A. It is easy to see that each trace

of a df-agent can be obtained in this manner. It follows that we can give

the semantics of a df-agent in terms of its df-traces.

It turns out that when we give a semantics for df-agents, there are three

properties of df-traces that are relevant.

1. The input received by the trace, which is simply the component of the

limit of the trace which concerns the values of input variables.

2. The total output produced by the trace, this is the component of the

limit of the trace which concerns the values of output variables.

3. The directed functionality of the trace, that is, the functionality of the

trace when seen as a function from the values of input variables to the

values of output variables.

De�nition 6.5.1 Suppose that F 2 Net

I;O

, that A is the correspoding

df-agent, and t is a df-trace of A. We de�ne the following operations on t.

1. Let in t = (lim t) d I .

2. Let out t = (lim t) dO.

3. Let dfn t = (fn t) d(I ! O).

t

u

Note that the operations de�ned above are given with respect to sets of

channels I and O. When we apply these operations on a df-trace t, the sets

I and O will always be given in the context; either given directly, or, in the

case t is associated to a particular net F , assumed to be the sets of input

and output channels of F .
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6.6 Compositional semantics for data 
ow nets

We can now give the semantics of a data 
ow net by a translation to df-

agents, and the the semantics of df-agents can then be given as a set of

df-traces. Thus we obtain a semantics for data
ow nets. It follows imme-

diately from the compositionalty of the abstract semantics for ccp that the

corresponding semantics for data 
ow nets is compositional. In this section,

we will give the semantic rules for composition of nets. For a net F , let

S[[F ]] be the set of df-traces of the net.

6.6.1 Deterministic nodes

The df-traces of an agent node

d

(X

�

; : : : ;Y

�

; : : :) are the df-traces t with

functionality weaker than or equal to the closure operator g

d

, and limit

which is a �xpoint of g

d

, where g

d

= ((f

d

)).

Thus, we �nd that for any df-trace t of d we have dfn t v f

d

, and that

f

d

(in t) = out t.

Example 6.6.1 Consider a deterministic node with one input channel and

one output channel. The corresponding procedure is as de�ned by the pro-

cedure copy de�ned in Section 6.4. One possible trace of a call copy(X ;Y )

is one where X is �rst bound to a list of three elements, which are then

copied to Y , i.e., the trace t where

v(t)

0

= (9

X

1

X = [1; 2; 3 j X

1

])

v(t)

1

= (9

X

1

X = [1; 2; 3 j X

1

] ^ 9

Y

1

Y = [1 j Y

1

])

v(t)

2

= (9

X

1

X = [1; 2; 3 j X

1

] ^ 9

Y

1

Y = [1; 2 j Y

1

])

v(t)

3

= (9

X

1

X = [1; 2; 3 j X

1

] ^ 9

Y

1

Y = [1; 2; 3 j Y

1

])

v(t)

i

= (9

X

1

X = [1; 2; 3 j X

1

] ^ 9

Y

1

Y = [1; 2; 3 j Y

1

]); for i � 4,

and r(t) = f0; 1; 2g.

We �nd that in t = out t = 123, and dfn t is the least continuous function

f : D ! D such that f(123) w 123. t

u

6.6.2 Merge

The set of traces for the merge node follow directly from the de�nition of

the fully abstract semantics of the merge procedure, but we want to give

the semantics of data 
ow networks without reference to ccp programs.

Let an oracle be a �nite or in�nite sequence s 2 f0; 1g

1

. For n;m 2

f0; 1; 2; : : :g [ f!g and an oracle s de�ne

dmerge(n;m; s) : D �D ! D
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according to the following rules. We will assume that 1 + ! = !.

dmerge(1 + n;m; 0:s)(a:x; y) = a:dmerge(n;m; s)

dmerge(n; 1 +m; 1:s)(x; b:y) = b:dmerge(n;m; s)

dmerge(0;m; 0:s)(x; y) = y

dmerge(n; 0; 1:s)(x; y) = x

dmerge(n;m; s)(x; y) = �; if none of the rules above apply

The idea is that given input histories x and y and some oracle s, evaluation

of dmerge(jxj; jyj; s)(x; y) should give one possible result of the merge node.

Example 6.6.2 Suppose x = 4:5:�, y = 2:3:�, and s = 0:0:0: : : :, we have

dmerge(jxj; jyj; s)(x; y) = dmerge(2; 2; 00 : : :)(45; 23)

= 4:dmerge(1; 2; 00 : : :)(5; 23)

= 4:5:dmerge(0; 2; 00 : : :)(�; 23)

= 4:5:2:3

If we now consider pre�xes of x and y, for example x

0

= 4:� and y

0

= 2:�,

we �nd that

dmerge(jxj; jyj; s)(x

0

; y

0

) = 4:�;

which is a pre�x of the string given by dmerge(jxj; jyj; s)(x; y). It is easy to

see that dmerge(n;m; s) is continuous, for �xed n, m and s. t

u

Given input channels �

1

and �

2

and output channel �, and writing (x; y)

for � 2 D

f

�

1

; �

2

g such that � �

1

= x and � �

2

= y, the traces of a merge

node can be given as the set

ft j s 2 f0; 1g

1

;

in t = (x; y);

out t = dmerge(jxj; jyj; s)(x; y); and

dfn t v dmerge(jxj; jyj; s)g

6.6.3 Parallel composition

Let F 2 Net

I;O

such that F = F

1

parF

2

, and F

1

2 Net

I

1

;O

1

and F

2

2

Net

I

2

;O

2

. Clearly, the df-agents corresponding to F

1

and F

2

cannot interact

since their sets of free variables are disjoint. Thus, if we run the network F

and only consider communications through the channels in I

1

and O

1

, we

will make the same observations as if we were running the network F

1

.

Thus, the traces of F are the traces t such that there are traces t

1

2

S[[F

1

]] and t

2

2 S[[F

2

]] such that

1. (in t) � I

1

= in t

1

, (out t) � O

1

= out t

1

, and (dfn t) � I

1

! O

1

= dfn t

1

,

and
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2. (in t) � I

2

= in t

2

, (out t) � O

2

= out t

2

, and (dfn t) � D

I

2

= dfn t

2

,

where � is taken to be the usual restriction of a function to a subset of its

domain.

6.6.4 Joining edges

The edge construct does two things; tokens output on channel � are copied

onto channel �, and the two channels are hidden and cannot be accessed

from the outside. We consider the traces of the net F 2 Net

I;O

, where

F is edge

�;�

F

0

, for some net F

0

. We will �rst give an informal presenta-

tion of the rules for the data
ow semantics, and then relate these to the

corresponding rules for ccp.

Let t

0

be a trace of the net F

0

. When is there a corresponding trace of

F ? Clearly, we must require that the total input on channel � is the same

as the output on channel �, that is, (in t

0

)� = (out t

0

)�. We assume that t

0

satis�es this condition.

Now we can give the functionality and input and output of the cor-

responding trace t of F . We obtain the input and output by hiding the

components of in t

0

and out t

0

that give the history of channels � and �.

The functionality is a little bit more complicated. We assume that t

0

is

a trace of F

0

which satis�es (in t

0

)� = (out t

0

)�.

Note that �nding the functionality of a trace of F actually involves a

�xpoint computation, and this is most conveniently done if we work with

closure operators instead of functions. So we convert the functionality of t

0

,

which is dfn t

0

into a closure operator and then compose it with a closure

operator that describes the copying of information from channel � to channel

�.

Let path(�; �) : D

I

0

�D

O

0

! D

I

0

�D

O

0

be de�ned according to

path(�; �)(�; �) = (�

0

; �);

where �

0

� = (� �) t (� �), and �

0


 = � 
, for 
 6= �. (In other words,

path(�; �) gives the behaviour of the procedure copy.)

All that is left to do now is hiding the channels � and �. Thus, the

resulting functionality of some traces of F is

(((dfn t

0

)) \ path(�; �)) d(I ! O):

Thus t is a trace of F 2 Net

I;O

, where F = edge

�;�

F

0

i� there is a trace

t

0

of F

0

such that

1. (in t

0

)� = (out t

0

)�,

2. (in t)
 = (in t

0

)
, for 
 2 I ,
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S[[d]] = ft j dfn t v f

d

; out t = f

d

(in t)g

S[[merge]] = ft j s 2 f0; 1g

1

; in t = (x; y);

out t = dmerge(jxj; jyj; s)(x; y); and

dfn t v dmerge(jxj; jyj; s)g

S[[F

1

parF

2

]] = ft j t

1

2 S[[F

1

]]; t

2

2 S[[F

2

]];

(in t) � I

1

= in t

1

; (in t) � I

2

= in t

2

;

(out t) � O

1

= out t

1

; (out t) � O

2

= out t

2

;

(dfn t) � D

I

1

= dfn t

1

; (dfn t) � D

I

2

= dfn t

2

g

S[[edge

�;�

F ]] = ft j t

0

2 S[[F

0

]]; (in t

0

)� = (out t

0

)�;

(in t)
 = (in t

0

)
; for 
 2 I;

(out t)
 = (out t

0

)
; for 
 2 I; and

dfn t = (((dfn t

0

)) \ path(�; �)) d(I ! O)g

Figure 6.4: The compositional semantics for data 
ow nets

3. (out t)
 = (out t

0

)
, for 
 2 O, and

4. dfn t = (((dfn t

0

)) \ path(�; �)) d(I ! O).

6.6.5 Summary of the compositional semantics

We summarize the compositional semantics for data 
ow networks in Fig-

ure 6.4.

6.7 Full abstraction

Recall that a compositional semantics is considered to be fully abstract if

it contains no redundant information, i.e., if the semantics of two program

fragments di�er, there should be some context for which the di�erence of

behaviour of the two program fragments result in a di�erence in the be-

haviour of the whole program. In this section we will brie
y recall the

proof(s) of full abstraction for ccp given in Sections 5.4 and 5.6 and sketch

the corresponding proofs for data 
ow nets.

When we gave a fully abstract semantics for ccp, the result semantics

gave the behaviour of a program when run non-interactively, that is, the

program received input data at the beginning of execution, and then no

further input was given. The result semantics of a df-agent gives in the

same way the behaviour of the corresponding data 
ow network when run

non-interactively.

Both proofs of full abstraction for ccp went as follows. Assume that the

two agents under consideration (A

1

and A

2

) have di�erent semantics. This

implies that there is a trace t which belongs to the semantics of one agent
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d

Figure 6.5: The context C[�].

(say A

1

) but not the other (A

2

). Construct an agent B which somehow

generates an `inverse' trace of t, that is, a trace

�

t which follows the same

sequence of stores as t, but performs input steps when t performs compu-

tation steps, and vice versa. The context is now a conjunction B ^ �, and it

follows from the semantics of ccp that result semantics of the agents B^A

1

and B ^ A

2

should di�er in that the �rst agent can produce output lim t

when run without input, while the other cannot.

What should the corresponding proof for data 
ow networks look like?

Given data 
ow networks F

1

; F

1

2 Net

I;O

we can construct a context as

follows. View

�

t as a trace of a net in which the input channels are O and

the output channels are I . Assume that there is a node d 2 Net

O;I

such

that f

d

= dfn

�

t, and construct a context C[�] as indicated in Figure 6.5.

It should be clear that when the network C[F

1

] is run (without input), it

is possible to get as a result the pair (in t; out t). Is the same result possible

in the network C[F

2

]? Suppose it is. If follows that F

2

has a trace t

0

with

in t

0

= in t and out t

0

= out t. However, it is easy to see that t

0

must have a

functionality which is at least as strong as the one of t, which leads us to a

contradiction.

The proof sketched above is not completely satisfactory, since we as-

sumed that for each continuous function there was some deterministic node

that computed the function, and this is obviously a very optimistic assump-

tion! As an alternative we can employ a technique which we have already

used in Section 5.6. This technique was �rst described by Russell [68], and

the idea is that we construct a net that reads a representation of a trace

and emulates a deterministic node whose functionality is the functionalty

given by the trace (Figure 6.6). It is a straight-forward matter to �nd an
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E

inverse of t

Figure 6.6: In this context, the node E reads a representation t of a function

and emulates it.

appropriate representation of t which allows a representation of the trace to

be sent over a �nite set of channels.

6.8 Conclusions

This chapter described how the techniques that had been developed to give

a fully abstract semantics for concurrent constraint programming languages

also could be applied to a data 
ow language.

Since all fully abstract semantics for a programming language are, in

a sense, isomorphic, it follows that the semantics presented here must be

equivalent to the ones presented by Kok [40] and Jonsson [35]. However,

the formulation here involves only two aspects of a trace, the limit of its

input and output, and its functionality. In contrast, Kok's and Jonsson's

models explicitly treats traces as sequences of communication events. Thus,

one can argue that the semantic rules for composition in the model given

here are more abstract, in that they involve fewer aspects of a trace.

The semantics presented here is also more general in the sense that it

can also be applied on non-deterministic applicative languages with complex

data types.
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Chapter 7

There is no Fully Abstract Fixpoint

Semantics for Non-deterministic

Languages with In�nite Computations

It is well-known that for many non-deterministic programming languages it

is not possible to give a fully abstract �xpoint semantics. This is usually

attributed to \problems with continuity", that is, the assumption that the

semantic functions should be continuous supposedly plays a role in the dif-

�culties of giving a fully abstract �xpoint semantics. In this chapter, we

show that for a large class of non-deterministic programming languages it is

not possible to give a fully abstract least �xpoint semantics even if one con-

siders arbitrary functions (not necessarily continuous) over arbitrary partial

orders (not necessarily complete). It should also be noted that the negative

result can easily be generalised to handle other types of �xpoint semantics,

for example, �xpoints semantics based on category theory.

7.1 Assumptions

We consider a minimal programming language which satis�es the following

properties.

1. There is some form of non-deterministic choice.

2. The program can generate output ,

3. The language allows arbitrary recursion, i.e., non-guarded recursion

is allowed.

4. The results of in�nite computations are considered.

It turns out that the class of context-free grammars provide a simple model

which satis�es almost all listed requirements. A context-free grammar has

109
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a set of terminal symbols, which correspond to output actions, the non-

terminal symbols correspond to procedure calls, for each non-terminal we

can have any number of productions, giving a non-deterministic choice,

and each right-hand side of a production is a sequence of terminal and

non-terminal symbols, giving a sequential composition. The standard def-

inition of the set of words generated by a grammar does not allow in�nite

derivations, but it is possible to extend the derivations to allow also words

generated by in�nite derivations. We thus obtain a simple programming

language with the notation of context-free grammars, and an operational

semantics which is close to the standard rules of context-free grammars.

7.2 Related Work

It is well known that many non-deterministic languages do not have a con-

tinuous fully abstract �xpoint semantics. Abramsky [2] considered a simple

non-deterministic language similar to the one examined in this and showed

that there could be no continuous fully abstract �xpoint semantics.

Apt and Plotkin [4] considered an imperative programming language

with unbounded non-determinism and while-loops and showed that there

could be no continuous fully abstract �xpoint semantics. However, they

were able to give a fully abstract least �xpoint semantics by giving up the

requirement that the semantic functions should be continuous. To see how

this is possible, note that by the Knaster-Tarski theorem any monotone

function over a complete lattice has a least �xed point. In other words, to

de�ne a �xpoint semantics it is su�cient to have semantic functions that

are monotone. This approach has been applied in some recent papers, see

for example Barrett [6]. A related approach was presented by Roscoe [67].

The main di�erences between the language we consider, and the one Apt

and Plotkin examined are that our language allows arbitrary recursion and

in�nite computations, but not unbounded non-determinism. The language

in this paper is also simpler since it is not a regular programming language

and has no state or value-passing etc.

There are many examples of denotational semantics for languages which

satisfy three of the four properties listed above.

For example, Kahn's semantics [37] treats in�nite computation and ar-

bitrary recursion but does not allow non-determinism.

Brookes [13] gives a fully abstract �xpoint semantics of an imperative

non-deterministic language with shared variables. The semantic model also

allows in�nite traces and is thus able to adequately model the behaviour of

in�nitely running processes. However, recursion is not dealt with.

Saraswat, Rinard and Panangaden [71] give fully abstract �xpoint se-

mantics for various types of concurrent constraint programming languages.
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One of the languages is a non-deterministic language which allows arbitrary

recursion. However, only �nite computations are considered.

A similar result is by Russel [69], who considers a class of non-determin-

istic data 
ow networks. He gives a fully abstract �xpoint semantics but

does not consider in�nite computations.

The language we consider is based on context-free grammars. The dif-

ference is mainly that we consider strings generated by in�nite left-most

derivations. This very simple model of non-deterministic computation has

previously been studied by Nivat [56] and Poign�e [66].

7.3 Relevance and signi�cance

Why look at the semantics of non-deterministic and non-terminating pro-

grams? These programs have a simple operational behaviour, and one would

expect the same to hold for their �xpoint semantics. Moreover, there are

many programs that can respond to input from more than one source, and

which do not terminate unless the user asks the program to terminate.

These programs are non-deterministic, if we do not include timing in the

semantic model, and are potentially non-terminating.

Why is full abstraction important? One of the strong points of denota-

tional semantics is that a denotational semantics of a programming language

provides a mathematical structure that is in direct correspondence with the

`meaning' of expressions in the program. The structure contains precisely

that information which is relevant to understand the behaviour of expres-

sions within various contexts. If one gives a denotational semantics which

is not fully abstract, this correspondence is lost, and thus one of the reasons

for giving a denotational semantics.

7.4 A simple language

As mentioned in the introductory section, we will base our formalism on the

context-free grammars. To obtain a suitable operational semantics we will

extend the set of derivations of a grammar to also allow in�nite derivations.

The following presentation is based on Cohen and Gold [20].

7.4.1 Generation of in�nite words

Let N be an in�nite set of non-terminals and T be an in�nite set of ter-

minals . A grammar is then a �nite set of productions of the form X ! �,

whereX is a non-terminal, and � is a �nite string over T [N . A �nite string

over T [ N will sometimes be referred to as an agent . A generalised agent

is a an agent or a �nite set of agents. For a grammar G and a non-terminal
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X , let G(X) be the set of agents � such that there is a production X ! �

in G (thus G(X) is a generalised agent).

For a grammar G we de�ne the relation

G

=) to be the smallest relation

over (T [ N )

�

that satis�es

uX�

G

=) u��;

for a string u 2 T

�

, a non-terminal X and strings �; � 2 (T [ N )

�

such

that there is a production X ! � in G. Let

G

=)

�

be the transitive and

re
exive closure of

G

=). (Whenever the grammar is given in the context,

we will omit the index G.)

We will not require the grammar to have a particular start symbol,

since we want to be able to reason about languages generated from di�erent

words.

First, we consider the case where a �nite word is generated by a deriva-

tion that terminates after a �nite number of steps. The language generated

by a grammar G and an agent � is

L(G;�) = fw 2 T

�

j � =)

�

wg:

When an in�nite derivation �

0

=) �

1

=) : : : is considered one can imag-

ine many di�erent de�nitions of which word is generated. We want to see

a grammar as a sequential program where a terminal symbol would corre-

spond to an atomic action. This operational view suggests the following

de�nition, which is by Cohen and Gold.

For a string � 2 (T

S

N )

�

, say that w is the largest terminal pre�x of �

if w 2 T

�

, and w is a pre�x of �, and every word w

0

2 T

�

which is a pre�x

of � is also a pre�x of w.

Given an in�nite derivation �

0

�! �

1

: : : �

n

: : : we can construct a chain

w

0

� w

1

� : : : w

n

� : : : such that w

i

is the largest terminal pre�x of �

i

,

for all i 2 !. We say that w =

F

i2!

w

i

is the generated word and use the

notation �

0

=)

!

w. Note that w can be �nite or in�nite.

The !-language generated by the agent � and the grammar G is

L

!

(G;�) = fw 2 T

!

j � =)

!

wg:

For the set of words generated by �nite and in�nite derivations we write

L

1

(G;�) = L(G;�) [ L

!

(G;�):

We generalise the de�nition to generalised agents � by

L

1

(G;�) =

[

�2�

L

1

(G; �):
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7.4.2 External behaviour

We have arrived at a fairly simple de�nition of the set of generated words

(or, if you like, an operational semantics giving the set of sequences of

actions performed by an agent). For a particular execution, the external

behaviour consists of all output that will eventually be produced by the

program, and nothing else. Note that it is possible to determine whether

an agent � terminates by considering the set of strings generated from the

agent �d, where d in a non-terminal not occurring in the grammar or in �.

We argue that the set of strings generated by an agent corresponds exactly

to the external behaviour of an agent.

7.5 There is no fully abstract �xpoint semantics

In this section we de�ne which properties a fully abstract �xpoint semantics

for our language should have, and prove that there cannot be a �xpoint

semantics with these properties.

Typically, the domain of a denotational semantics is a complete lattice or

a cpo, and the semantic functions are continuous. To make the de�nition of

�xpoint semantics as general as possible, we will only make two assumptions

about the properties of the domain and the semantic functions; that the

semantic function for a grammar has a least �xpoint, and that the domain

is a partial order (otherwise it is meaningless to speak about least �xpoints).

De�nition 7.5.1 A �xpoint semantics consists of a partially ordered set D

together with the following functions, for generalised agents �, and gram-

mars G,

E [[�]] : (N ! D)! D

P [[G]] : (N ! D)! (N ! D)

such that the following folds.

1. (Fixpoints) For each grammar G, the function P [[G]] has a least �x-

point.

2. (Correctness) Suppose that � is the least �xpoint of P [[G]] and �

0

is

the least �xpoint of P [[G

0

]]. Whenever E [[�]]� = E [[�

0

]]�

0

it follows that

L

1

(G;�) = L

1

(G

0

; �

0

).

3. (Compositionality) For a grammar G, an environment �, and a non-

terminal X we have P [[G]]�X = E [[�]]�, where � = G(X).

t

u
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Motivation The idea is that the meaning of an agent �, with respect to a

grammar G, should be given by E [[�]]�, where � is the environment given by

the least �xpoint of P [[G]] (by the �xpoint condition we knows that a least

�xpoint exists). The correctness condition says that the semantics should

be able to predict the set of strings generated by an agent. This is of course

a very natural requirement for any semantic model.

If a semantics is compositional we expect that the denotation of an

expression should depend only of the denotations of its components. It

follows from the compositionality condition that given functions E [[�]], the

function P [[G]] is uniquely de�ned. Note that the compositionality require-

ment implies that for grammars G, G

0

and non-terminals X , X

0

such that

G(X) = G

0

(X

0

) we have P [[G]]�X = E [[G(X)]]� = E [[G

0

(X

0

)]]� = P [[G

0

]]�X

0

,

for any environment �.

The standard de�nition of full abstraction is that for any program con-

structs A and A

0

which are mapped to di�erent elements in the semantic

domain there should be a context C[�] such that C[A] and C[A

0

] have dif-

ferent behaviour, the idea is that A and A

0

may have the same behaviour

in themselves but when we put them in a context there may be a di�erence

in behaviour.

In our language, there are no explicit operations for communication or

change of state, so one might suspect that the compositionality require-

ment is unnecessary. However, consider as an example the agents �

1

and

�

2

, where the agent �

1

generates the empty string and terminates and �

2

generates the empty string without terminating. The di�erence between

these two agents is detectable if we put them in the context

C[�] = � d:

The agent �

1

d will generate the string d while the agent �

2

d will only

generate the empty string.

In general, if we have two agents �

1

and �

2

, and a terminal symbol d

that does not occur in any string generated by either �

1

or �

2

, it is easy to

see that if we know that the sets of strings generated by �

1

d and �

2

d are the

same then it follows that in any context C[�] the sets of strings generated

by C[�

1

] and C[�

2

] are identical. It follows that in the de�nition of full

abstraction we only need to consider very simple contexts.

De�nition 7.5.2 A �xpoint semantics is fully abstract if, for any given

grammars G and G

0

, a terminal symbol d that does not occur in either

grammar, and agents � and �

0

such that L

1

(G;�d) = L

1

(G

0

; �

0

d), we

have E [[�]]� = E [[�

0

]]�

0

, where � = �x(P [[G]]) and �

0

= �x(P [[G

0

]]). t

u

We are now ready for the result of this chapter.

Theorem 7.5.3 There is no fully abstract least �xpoint semantics.
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Before we turn to the proof, the reader is asked to study the following two

grammars.

Grammar G

1

:

A! aA j � j D

B ! Aa j � j AD

D ! D

Grammar G

2

:

A! Aa j � j AD

B ! aA j � j D

D ! D

We can assume that d is a terminal symbol (which of course does not occur

in either G

1

or G

2

). The grammars are variations of the ones given in the

discussion in the preceding section, the di�erence is basically that among

the set of strings generated from either A or B in either grammar will be

�nite strings a : : : generated by non-terminating computations.

It is easy to verify that the languages generated by grammars G

1

and G

2

from the agents Ad and Bd are the ones given by the following equations.

L

1

(G

1

; Ad) = a

�

d [ a

�

[ a

!

L

1

(G

1

; Bd) = a

�

d [ a

�

[ a

!

L

1

(G

2

; Ad) = a

�

d [ a

�

L

1

(G

2

; Bd) = a

�

d [ a

�

Note that L

1

(G

1

; Ad) and L

1

(G

2

; Ad) only di�er in that the in�nite string

a

!

can be generated from grammar G

1

. We are now ready to prove the

theorem.

Proof. The proof is by contradiction. Suppose that there is a fully abstract

�xpoint semantics. Let f = P [[G

1

]] and g = P [[G

2

]]. Let �

1

be the least

�xpoint of the function f and �

2

the least �xpoint of g. Since L

1

(G

1

; Ad) =

L

1

(G

1

; Bd) we can conclude that f�

1

A = f�

1

B, by the assumption that

the semantics is fully abstract. It a similar way we can conclude from

L

1

(G

2

; Ad) = L

1

(G

2

; Bd) that g�

2

A = g�

2

B.

But from the compositionality requirement and the syntactic form of

the grammars follows that for any � 2 (N ! D) we have f�A = g�B and

f�B = g�A.

Now we can prove that the least �xpoint of f also is a �xpoint of g,

and vice versa. Let �

0

1

= g�

1

. We will prove that �

0

1

X = �

1

X , for any

non-terminal. For the non-terminal A, we have

�

0

1

A = g�

1

A (De�nition of �

0

1

)

= f�

1

B (Compositionality argument above)

= f�

1

A (By full abstraction)

= �

1

A (Since �

1

is a �xpoint of f)
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For the non-terminal B, we have

�

0

1

B = g�

1

B

= f�

1

A (By compositionality)

= f�

1

B (By full abstraction)

= �

1

B

For the non-terminal D we have �

0

1

D = g�

1

D = f�

1

D = �

1

D. From this

follows that �

0

1

= �

1

.

We have shown that the least �xpoint of f also is a �xpoint of g. By

a symmetric argument we can show that the least �xpoint of g also is a

�xpoint of f . From this follows that f and g have the same least �xpoints,

i.e., �

1

= �

2

. But then P [[G

1

]]�

1

A = P [[G

2

]]�

2

A, which contradicts the

observation that L

1

(G

1

; Ad) 6= L

1

(G

2

; Ad). t

u

7.6 Discussion

If we are willing to give up full abstraction it is straight-forward to give a

continuous �xpoint semantics. The easiest (and least interesting) way to

give a �xpoint semantics is to base the semantic domain on the syntactic

structure of the programming language. In our case the elements of the

domain will be in�nite (ordered) trees, where the internal nodes are labelled

with either or (choice) or seq (sequence), and the leaves are labelled with a

string of non-terminals or ?. Given trees T

1

and T

2

, say that T

1

v T

2

if

1. T

1

consists of a leaf labelled ?, or

2. if T

1

and T

2

are leaves so that the label of T

1

is a pre�x of the label

of T

2

, or

3. if the root nodes of T

1

and T

2

have the same label, the same number

of subtrees, and when U

1

; : : : ; U

n

are the subtrees of the root of T

1

and V

1

; : : : ; V

n

the subtrees of T

2

we have U

k

v V

k

, for k � n.

Given this domain construction, it is straight-forward to de�ne the appropri-

ate semantic functions. Now, what information have we added to make the

construction of a �xpoint semantics possible? First, the non-deterministic

choices are now explicitly represented in the domain. Second, the choices

are ordered, so when we compare two trees we can locate the respective

descendants of the two trees which come from the same sequence of non-

deterministic choices. As an example, consider the trees in Figure 7.1.

If we try to make the domain more abstract by making the trees un-

ordered, and ignoring duplicated subtrees, i.e., view the subtrees of a node

as a set, we see that it is no longer possible to de�ne a reasonable partial

order.
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ε aaε

or

ε aa ε aaa aa

or or

Figure 7.1: Representing non-deterministic behaviour as a tree of alterna-

tives.

For example, given strings �, a, and aa we have on one hand

f�; �; aag @ f�; a; aag @ f�; aa; aag

but

f�; �; aag = f�; aa; aag = f�; aag

It follows that the construction is not a partial order.

It appears that for any �xpoint semantics for a non-deterministic lan-

guage with recursion and in�nite computation the tree of non-deterministic

choices must in some way be present, and when comparing di�erent ele-

ments of the domain it must be possible to determine for each element the

outcome of a particular sequence of choices.

7.7 Application to category-theoretic domains

As an alternative to the use of semantic domains based on various partial

orders, such as complete lattices and cpo's, Lehmann [46, 47] proposed a

class of categories called !-categories. An !-category is a category which

has an initial object and where !-colimits exist. An !-functor is a functor

which is continuous with respect to !-colimits. It follows that each !-

functor has an initial �xpoint. Note that each cpo also is an !-category,

and each continuous function over a cpo can be seen as an !-functor over

the corresponding category.

Lehmann gave a powerdomain construction for !-categories in which

each set can be represented. However, the construction is based on multi-

sets, which means that there may be many non-isomorphic representations

of the same set. The powerdomain construction has previously been used

by Abramsky [2], Panangaden and Russell [61], and Nystr�om and Jonsson

[58] to model various forms of indeterminacy.

It is straight-forward to adapt the proof of Theorem 7.5.3 to show that

there can be no fully abstract �xpoint semantics based on !-categories for

our language. First we must ask what it means for a semantics to be fully
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abstract when the semantic domain is a category. The natural choice is to

require that agents with the same operational meaning should be mapped

to isomorphic objects in the category. If we construct functors F and G

analogous to the functions f and g in the proof of Theorem 7.5.3 we �nd

that the initial �xpoint of F is a �xpoint of G, and vice versa. But this

implies that the initial �xpoints of F and G are the same, which contradicts

the correctness requirement.

We can thus see that a �xpoint semantics for a non-deterministic pro-

gramming language with recursion and in�nite computations which uses

Lehmann's powerdomain construction can not be fully abstract in the sense

that programs that have similar behaviour in all contexts have isomorphic

semantics. For example, Abramsky notes ([2], page 4) that his category-

theoretic semantics can not be fully abstract.

7.8 Conclusions

We have generalised the negative results of Abramsky [2] concerning fully

abstract �xpoint semantics for non-deterministic languages to hold for a

wide range of semantic models, in particular to non-continuous �xpoint se-

mantics over partial orders and semantics based on continuous functions

over categories. In contrast, the results of Apt and Plotkin [4] regarding

a type of imperative programming languages with unbounded nondeter-

minism (that is, a nondeterministic assignment statement that can assign a

variable any positive integer) ruled out any continuous semantics but for this

type of language it was still possible to give a fully abstract non-continuous

�xpoint semantics.

We can conclude that it does not help if one is willing to consider seman-

tic domains that are not cpo's of semantic functions that are not continuous.

It appears that any �xpoint semantics must maintain an explicit tree of all

choices made.

The negative results of this paper can be immediately applied to a wide

range of concurrent programming languages. The grammars used in the

proof can be translated to concurrent constraint logic programs using the a

transformation similar to the one used in DCG's. (This translation would

map an agent which produces a string to a ccp agent which produces the cor-

responding list of terminal symbols. ) Translation to a data 
ow language

with recursion and non-determinism is also straight-forward.
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Oracle Semantics

In this chapter, we present an operational semantic of concurrent constraint

programming based on oracles . An oracle is a sequence of integers, repre-

senting the non-deterministic choices made by an agent. Now, it is easy

to see that many non-deterministic choices can only be made under certain

conditions, for example, the non-deterministic choices in a selection depend

on that the corresponding ask constraints are entailed by the store. The

fact that each branch in a computation depends on conditions on the store

implies that these conditions must be recorded in some way. The approach

taken here is to record the conditions in the form of a window , which is

a set containing the set of possible �nal outcomes of a computation. So

one component of the semantics of an agent, for a given oracle, is a set of

conditions, i.e., a window.

Since the use of oracles allows the non-deterministic behaviour of an

agent to be isolated, it follows that we can show some con
uence proper-

ties. The standard, �nite, con
uence property holds, and also a generalised

con
uence property concerning in�nite sets of in�nite computations.

The intention is that the oracle semantics should serve as a basis for a

�xpoint semantics. In the the following chapter we will give two �xpoint

semantics, one based on partial orders, and one based on category-theoretic

domains. Since an agent with a given oracle is essentially deterministic it

follows that we can use the techniques described by Saraswat, Rinard and

Panangaden [71] and give computational behaviour as a closure operator (a

function over constraints which satis�es some additional properties). The

�xpoint semantics becomes quite simple, even though both fairness and

in�nite computations are taken into account.

119
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8.1 Related Work

Many authors have used oracles to give the semantics of non-deterministic

concurrent languages. For example, Cadiou and Levy [15] gave the opera-

tional semantics of a parallel imperative language in which the scheduling

of processes was determined by an oracle. Milner [53] gave an operational

model of a non-deterministic language in which oracles were used to deter-

mine non-deterministic choices. Keller [39], Kearney and Staples [38] and

Russel [69] have presented �xpoint semantics of various non-deterministic

languages in which choices are determined by an oracle. However, in all

these models the choice was assumed to be independent of input, i.e., the

languages in question do not allow the de�nition of a merge operator which

is fair when the incoming data is �nite.

Marriott and Odersky [49] gave a con
uence result of a concurrent con-

straint programming language in which the syntax had been extended to

allow a representation of the branching structure of non-deterministic pro-

grams. Their result corresponds to Lemma 8.7.4.

8.2 An example

If we consider an agent together with a given oracle, the oracle determines

the non-deterministic choices made by the agent. Thus the resulting com-

putation is essentially deterministic and can be seen as a closure operator

over the domain of constraints, in the manner described by Saraswat et

al. [71].

However, this is not su�cient. Consider an agent

(X = 1) Z = 3 [] Y = 2)W = 5):

The agent cannot select the �rst branch unless we know that the constraint

X = 1 will hold eventually (and similarly that Y = 2 will hold eventually

in the second branch). It is also possible for the agent to be suspended

without ever selecting a branch. Fairness only allows the selection to be

suspended inde�nitely if none of the two constraints ever become entailed

by the store. It follows that it is necessary to include information in the

semantic model describing when it is legal to select a certain branch. This

information is given in the form of a window . The window gives one set of

condition which must hold eventually , and one set of conditions which may

never hold. Conditions of the �rst type are of the form \this constraint

must be entailed by the store", and conditions of the second type are of the

form \this constraint must not be entailed by the store".

For example, for the agent

(X = 1) Z = 3 [] Y = 2)W = 5)
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we have three branches where functionality and window are as follows.

1. For the �rst branch, functionality is a function that adds the constraint

Z = 3 to the store, provided that the store entailsX = 1. The window

is the condition that X = 1 and Z = 3 must hold eventually.

2. The second branch is analogous.

3. For the third branch, the functionality is the identity function and the

window is the condition that neither X = 1, nor Y = 2 may ever be

entailed by the store.

In general, the behaviour of an agent can be seen as a (continuous) function

from oracles to functionality-window pairs.

8.3 Oracles

An oracle is a �nite or in�nite string over !. Let ORACLE be the set of

oracles. For oracles s and s

0

let s � s

0

denote that s is a pre�x of s

0

. We

will use the notation k:s for an oracle where the �rst element is k and the

following elements are those given by s.

When giving the semantics of a conjunction, we need a way to distribute

the oracle to the agents in the conjunction. Since in�nite conjunctions

are allowed, we must be able to distribute an oracle into an in�nite set of

oracles. We begin by de�ning the functions even;odd : ORACLE! ORACLE

according to

even(s) = k

0

k

2

k

4

: : :

odd(s) =k

1

k

3

k

5

: : : ;

for s = k

0

k

1

k

2

k

3

: : :.

De�ne functions �

n

: ORACLE! ORACLE over oracles, for n 2 !, accord-

ing to the rules

�

0

s = even(s)

�

n+1

s = �

n

(odd(s))

It is easy to see that if we have a family of oracles fs

n

g

n2!

there is an oracle

s such that �

n

s = s

n

, for n 2 !.

For fs

n

g

n2!

, let �

n2!

s

i

= s such that �

n

= s

n

, for n 2 !.

8.4 Operational semantics

The oracle semantics is based on the idea that the non-deterministic deci-

sions of an agent are controlled by an oracle. It is necessary to modify the

operational semantics accordingly. We begin by extending the con�gura-

tions to include oracles.
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1. c(s) : d �! c(s) : c t d

2.

A

k

(�

k

s) : c �! B

k

(�

k

s

0

) : d; k 2 I

V

j2I

A

j

(s) : c �!

V

j2I

B

j

(s

0

) : d

;

where B

j

= A

j

and (�

j

s

0

) = (�

j

s), for j 2 I n fkg.

3.

c

k

v c; 1 � k � n

(c

1

) A

1

[] : : : [] c

n

) A

n

)(k:s) : c �! A

k

(s) : c

4.

A(s) : c t 9

X

(d) �! A

0

(s

0

) : c

0

9

c

X

A(s) : d �! 9

c

0

X

A

0

(s

0

) : d t 9

X

(c

0

)

5. P (X)(s) : c �! A[X=Y ](s) : c;

where � contains P (Y ) :: A

and A[X=Y ] = 9

�

(� = X ^ 9

Y

(� = Y ^ A)).

Figure 8.1: Computation rules

8.4.1 Con�gurations and computation rules

A con�guration is a triple A(s) : c consisting of an agent A, an oracle s, and

a �nite constraint c (the store). The oracle will sometimes be omitted when

it is either given by the context or not relevant. Given an agent A and an

oracle s, we will sometimes refer to A(s) as an agent-oracle pair. We de�ne

a binary relation �! over con�gurations according to Figure 8.1.

The behaviour of a selection is completely determined by the oracle. If

the oracle begins with the number k, the selection can only take the kth

branch. What happens if the test in the kth alternative never becomes true?

This situation is addressed in the section on fairness.

The behaviour of a conjunction, for a given oracle, depends of course

on the behaviour of the components. We use the functions �

k

to split the

oracle into oracles for each component.

8.4.2 Computations

The set of computations for a given program are de�ned as follows.

De�nition 8.4.1 Assuming a program �, a computation is an in�nite

sequence of con�gurations (A

i

(s

i

) : c

i

)

i2!

such that for all i � 0, we

have either A

i

(s

i

) : c

i

�! A

i+1

(s

i+1

) : c

i+1

(a computation step), or

A

i

(s

i

) = A

i+1

(s

i+1

), and c

i

v c

i+1

(an input step).
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An input step from A(s) : c to A(s) : c

0

, such that c = c

0

is an empty

input step.

For an agent A and an oracle s, an A(s)-computation is a computation

(A

i

(s

i

) : c

i

)

i2!

such that A

0

(s

0

) = A(s). t

u

8.4.3 Fairness

The de�nition of fairness for oracle-computations resembles the �rst de�ni-

tion of fairness, given in Section 4.5. The de�nition of inner computations

is similar to De�nition 4.5.1; the only di�erence is that we need to say what

the oracle of an inner computation is.

De�nition 8.4.2 Let the relation immediate inner computation of be the

weakest relation over !-sequences of con�gurations which satis�es the fol-

lowing.

1. (A

k

i

(�

k

s

i

) : c

i

)

i2!

is an immediate inner computation of (

V

j2I

A

j

i

(s

i

) :

c

i

)

i2!

, for k 2 I .

2. (A

i

(s

i

) : c

i

t 9

X

(d

i

))

i2!

is an immediate inner computation of the

computation (9

c

i

X

A

i

(s

i

) : d

i

)

i2!

.

The relation `inner computation of ' is de�ned to be the transitive closure

over the relation `immediate inner computation of'. t

u

Proposition 8.4.3 If (A

i

(s

i

) : c

i

)

i2!

is computation, and (B

i

(s

0

i

) : d

i

)

i2!

is an inner computation of (A

i

(s

i

) : c

i

)

i2!

, then (B

i

(s

0

i

) : d

i

)

i2!

is also a

computation.

The de�nition of top-level fairness is also similar to the one given in sec-

tion 4.5. The di�erence here is in the treatment of selections. An oracle-

computation where the �rst agent is a selection is top-level fair if one of

two things hold. Either the oracle begins with the number k, and the com-

putation eventually selects the kth branch of the selection (this implicitly

assumes that 1 � k � n, where n is the number of alternatives of the

selection), or the computation begins with a zero and none of the ask con-

straints ever become entailed by the store. The de�nition of initial fairness,

and top-level fairness are the same as in the previous de�nition of fairness.

De�nition 8.4.4 A computation (A

i

(s

i

) : c

i

)

i2!

is top-level fair when the

following holds.

1. If A

0

= p(X), there is an i � 0 such that A

i

6= A

0

.

2. If A

0

= c, there is an i � 0 such that c

i

w c.
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3. If A

0

= (d

1

) B

1

[] : : : [] d

n

) B

n

), and s = k:s

0

where k � 1, then

there is an i � 0 such that A

i

= B

k

.

4. If A

0

= (d

1

) B

1

[] : : : [] d

n

) B

n

), and s = 0:s

0

, then d

j

6v c

i

for all

j � n and i � 0.

A computation is initially fair if all its inner computations are top-level

fair. A computation is fair if all its proper su�xes are initially fair. t

u

Lemmas 4.5.4 through 4.5.8 also apply for the oracle-based operational se-

mantics.

8.5 Result and Trace Semantics

We extend the de�nitions of result and trace semantics to deal with oracles.

8.5.1 Results

The result semantics is given by a functionR

�

: AGENT�ORACLE! K(U)!

}(U) which gives the set of all possible results that can be computed given

a program �, an agent A, and an initial environment c.

R

�

[[A(s)]]c = f

F

i2!

c

i

j (A

i

(s

i

) : c

i

)

i2!

is a fair

non-interactive A(s)-computation with c

0

= cg

Note that for some combinations of A and s the result semantics may be an

empty set, for example, if the oracle requires a choice that is not possible

to make.

8.5.2 Traces

The trace of a computation (A

i

(s

i

) : c

i

)

i2!

is a trace t = ((c

i

)

i2!

; r), where

the step from A

i

(s

i

) : c

i

to A

i+1

(s

i+1

) : c

i+1

is a computation step when

i 2 r, and an input step when i 62 r. For t 2 TRACE, v(t) will sometimes

be referred to as the store sequence of the trace. We will sometimes use the

notation v(t)

i

to refer to the ith element of the store sequence of t.

The trace semantics of an agent A together with an oracle s, assuming

a program �, is de�ned as follows.

De�nition 8.5.1

O

�

[[A(s)]] = ft 2 TRACE j t is the trace of a fair A(s)-computation.g

t

u

The trace semantics for computations with oracles satis�es the same com-

positional properties as the earlier computational model (see Section 4.7.3).
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8.5.3 The abstract semantics

It is straight-forward to give an abstract semantics, completely analogous

to the fully abstract semantics de�ned in a previous chapter.

De�nition 8.5.2 For an agent A, an oracle s, and a program �, let

A

�

[[A(s)]] = ft j t is a subtrace of t

0

, for some t

0

2 O

�

[[A(s)]]g:

t

u

8.6 An example

Consider the semantics of the agent

A = (X = 1) Z = 3 [] Y = 2)W = 5):

The result semantics is

R

�

[[A(s)]]c = fcg; for oracles s = 0 : : :

and constraints c 6w (X = 1); (Y = 2)

R

�

[[A(s)]]c = ;; for oracles s = 0 : : :

and constraints c w (X = 1) t (Y = 2)

R

�

[[A(s)]]c = fc t (Z = 3)g; for oracles s = 1 : : :

and constraints c w (X = 1)

R

�

[[A(s)]]c = fc t (W = 5)g; for oracles s = 2 : : :

and constraints c w (Y = 2)

R

�

[[A(s)]]c = ;; in all other cases

The idea behind the oracle semantics was to �nd a way to factor out non-

determinism from ccp agents. We can see that for agent-oracle pairs A(s)

above, the result semantics is either an empty set or a singleton set, which

supports the notion that agent-oracle pairs are deterministic.

The trace semantics, O

�

[[A(s)]] is even for this very simple agent di�cult

to describe in a concise manner. We will just give an example of a typical

trace. Let s = 111 : : :. We have t 2 O

�

[[A(s)]], where

v(t) = (?; ?; X = 1; X = 1; X = 1; (X = 1) t (Z = 3); : : :)

r(t) = f 3; 4 g

The trace only has two computation steps. In the �rst step (step 0), nothing

happens (an empty input step). In the following step (step 1) the constraint

X = 1 is input, i.e, added to the store `from the outside'. In the next step,

nothing happens. In step number 3, the agent performs a computation step,

without altering the store. (This step is of course when the agent selects the



126 chapter 8. oracle semantics

�rst alternative.) In step number 4, the agent adds the constraint Z = 3 to

the store. After this nothing more happens.

Other traces for A(s) might involve input of constraints that are not rele-

vant to the computation. In general, the set of traces for an agent is uncount-

able. Even the trivial tell constraintX = X has as operational semantics the

uncountable set of traces ft 2 TRACE j v(t)

i

= v(t)

i+1

whenever i 2 r(t)g.

The abstract semantics of the agent A = (X = 1 ) Z = 3 [] Y = 2 )

W = 5) is summarised in the following four rules.

A

�

[[A(s)]] = ft j fn t = id; lim t 62 fX = 1g

u

[ fY = 2g

u

g;

for oracles s = 0 : : :

A

�

[[A(s)]] = ft j fn t v (X = 1! Z = 3);

lim t 2 fX = 1g

u

\ fZ = 3g

u

g;

for oracles s = 1 : : :

A

�

[[A(s)]] = ft j fn t v (Y = 2!W = 5);

lim t 2 fY = 2g

u

\ fW = 5g

u

g;

for oracles s = 2 : : :

A

�

[[A(s)]] = ;;

for oracles s = k : : :, with k � 3

Note how the traces can be easily classi�ed in three groups with respect to

functionality and limit.

8.7 Con
uence

When an agent-oracle pair is run, the oracle determines the non-determin-

istic choices in selections. The scheduling of agents in a conjunction is still

a potential source of non-determinism. We would like to show that when

we run an agent-oracle pair, the way we schedule the agents in conjunctions

will not a�ect the �nal result. In other words, we want to show con
uence.

In this section we consider a basic con
uence property regarding �nite

computation sequences and a more general con
uence property, which deals

with (countably) in�nite sets of arbitrary computations.

We begin by stating the generalised con
uence theorem, which says that

arbitrary countable sets of A(s)-computations may be combined. The rest

of this chapter is devoted to the proof of the theorem.

Theorem 8.7.1 (Generalised con
uence) Given an agent A, an oracle s

and a constraint c such that, for n 2 !, f

n

is the functionality of some

A(s)-computation with limit c. Let t be a trace such that lim t = c and

fn t v

T

n2!

f

n

. Then there is a A(s)-computation with trace t

0

, such that

t is a subtrace of t

0

.
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If there is also an initially fair A(s)-computation with limit c, there is

an initially fair A(s)-computation with trace t

0

, such that t is a subtrace of

t

0

.

If there is a fair A(s)-computation with limit c, it follows that there is a

fair A(s)-computation with trace t

0

, such that t is a subtrace of t

0

.

The results of this chapter should be intuitively clear, and the reader may

skip the rest of this chapter at �rst reading and turn directly to the chapter

on �xpoint semantics.

8.7.1 Basic Concepts and Notation

When we want to show con
uence, the formulation of the operational se-

mantics causes some problems.

To give a correct treatment of the hiding operator, it is necessary to

allow an agent to maintain a local state. To simplify the formulation of

the operational semantics, the local state does not only contain information

relevant to the local variable, but also a (redundant) copy of the global

state. This complicates the proof of con
uence. For example, consider the

following con�guration.

X = 5 ^ 9

?

Y

Z = 7 : ?

If we perform two computation steps, one with the �rst part of the conjunc-

tion, and one with the second part, we obtain the following con�guration.

X = 5 ^ 9

?

Y

Z = 7 : ? �! X = 5 ^ 9

?

Y

Z = 7 : X = 5

�! X = 5 ^ 9

(X=5^Z=7)

Y

Z = 7 : X = 5 ^ Z = 7

If, on the other hand, we perform the reductions in the opposite order, we

reach the following situation.

X = 5 ^ 9

?

Y

Z = 7 : ? �! X = 5 ^ 9

Z=7

Y

Z = 7 : Z = 7

�! X = 5 ^ 9

Z=7

Y

Z = 7 : X = 5 ^ Z = 7

We see that the only di�erence between the two �nal con�gurations is that

X = 5 occurs as local data in the �rst but not in the second. This has of

course no in
uence on the external behaviour, since the same information

(X = 5) is available globally.

It follows that two agents may di�er in their local data, but still exhibit

the same external behaviour. To deal with this problem, we de�ne a map-

ping d�e

c

over agents which maps an agent to a canonical agent which stores

as local data all information which is available globally and visible locally.

In the evaluation of dAe

c

, the constraint c represents the information which

is available globally. The mapping will be used to de�ne an equivalence

relation over agents.
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De�nition 8.7.2 For an agent A and a constraint c, let dAe

c

be the agent

given by the following rules.

1.

�

9

d

X

A

�

c

= 9

e

X

dAe

e

, where e = d t 9

X

c.

2.

l

V

j2I

A

j

m

c

=

V

j2I

�

A

j

�

c

.

3. dAe

c

= A, if A is not an existential quanti�cation or a conjunction.

For con�gurations A : c and B : d, say that A : c � B : d, if c = d and

dAe

c

= dBe

d

. t

u

As a motivation for case three in the de�nition, note that tell constraints,

calls, and selections can never store any local data.

It is easy to establish that if A : c �! B : d and A : c � A

0

: c

0

then there

is some con�guration B

0

: d

0

such that A

0

: c

0

�! B

0

: d

0

and B : d � B

0

: d

0

.

An abstract con�guration K is an equivalence class of con�gurations.

We will sometimes let the con�guration with the canonical agent, dAe

c

:

c, represent the abstract con�guration (equivalence class) containing A :

c. For an abstract con�guration K = [A(s) : c], let store(K) = c, and

input(K; d) = [A(s) : c t d]. For abstract con�gurations K and L say

that K ) L if there are (A(s) : c) 2 K and A

0

(s

0

) : c

0

2 L such that

A(s) : c �!

�

A

0

(s

0

) : c

0

. Say that K  L if input(K; c) ) L, for some

constraint c.

8.7.2 Finite con
uence

The following proposition gives a form of con
uence between input and

computation steps.

Proposition 8.7.3 Suppose c is a constraint and K and L are abstract

con�gurations. If K ) L we have input(K; c) ) input(L; c). If K ) L in

one step we have input(K; c)) input(L; c) in one step.

Note that the proposition does not hold if we instead of considering equiv-

alence classes of con�gurations consider con�gurations. It follows that the

 -relation is transitive, as expected.

Lemma 8.7.4 (Finite con
uence) If K ) L and K ) M there is an

abstract con�guration N such that L) N and M ) N .

Proof. We only consider the case when K ) L and K ) M in one

computation step; it is easy to show the general case using induction on

the length of the computation sequences. The proof is by induction on the

agent of K. The details are given in Section 8.9. t

u

The con
uence theorem can be seen as asserting the existence of a partial

binary function � over abstract con�gurations. The function is de�ned for
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abstract con�gurations L and M such that K ) L;M , for some K, and

satis�es

L) L �M and M ) L �M:

Clearly, store(L �M) w store(L); store(M).

8.7.3 Chains

It is easy to see that if we have a sequence K

0

) K

1

) : : : of abstract

con�gurations it is possible to form an input-free computation (A

i

(s

i

) :

c

i

)

i2!

such that for each abstract con�guration K in the sequence there is

an i 2 ! such that (A

i

(s

i

) : c

i

) 2 K. A sequence of this type will be referred

to as an input-free chain.

In the same way, given a sequence K

0

 K

1

 : : : it is possible to

form a computation which contains a con�guration for each K

i

. A sequence

K

0

 K

1

 : : : will be referred to as a chain. For a chain K

0

 K

1

 : : :

let lim(K

i

)

i2!

=

F

i2!

store(K

i

).

Also, note that if one computation formed from a chain is fair, it follows

that all computations formed from the chain are fair. We say that a chain is

fair if one can form a fair computation from the chain. In the same way, we

say that a chain is initially fair , if one can form an initially fair computation

from the chain.

8.7.4 Properties of chains

First we consider a simple property of chains.

Proposition 8.7.5 Let (K

i

)

i2!

be a chain and c a constraint such that

c v store(K

n

), for some n. Let L = input(K

0

; c). It follows that L K

n

.

Proof. Clearly,

L = input(K

0

; c) input(K

1

; c) : : : input(K

n

; c) = K

n

:

t

u

Intuitively, it should be clear that a fair computation is maximal in the

sense that it does as much as possible. We will formalise the notion of a

maximal chain and show that all fair chains are indeed maximal.

De�nition 8.7.6 A  -chain (K

i

)

i2!

is maximal if for any abstract con-

�guration L such that K

i

) L, for some i, there is an n 2 ! such that

L K

n

. t

u

Lemma 8.7.7 Any fair chain is maximal.
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Proof. Consider a fair chain (K

i

)

i2!

. Since any su�x of a fair chain is

fair, we only need to show that when K

0

) L, there is some n 2 ! such

that L  K

n

. The proof is by induction on the agent of K

0

, and is given

in Section 8.9. t

u

The converse of Lemma 8.7.7 does not hold; there are maximal chains which

are not fair. For example, let K be the con�guration

(true) A)(0:s) : c;

where A, s and c are arbitrary. The single condition of the selection is always

true, but may not be selected since the oracle begins with 0. Because of the

fairness requirement any chain starting with K is not fair, but the chain

K  K  : : : is maximal.

Corollary 8.7.8 Let (K

i

)

i2!

be a fair chain. Let L be such that K

0

 L

and store(L) v lim(K

i

)

i2!

. There is an n 2 ! such that L K

n

.

Proof. Let c = store(L). For i 2 !, let K

0

i

= input(K

i

; c). Clearly,

(K

0

i

)

i2!

is a fair chain. We have K

0

0

) L. Since (K

0

i

)

i2!

is maximal we

have L K

0

n

, for some n. Choose m such that m � n and store(K

m

) w c.

By transitivity we have L K

0

m

. Since K

0

m

= K

m

we have L K

m

. t

u

Recall that a computation is initially fair if every agent that occurs in the

�rst con�guration and can perform a computation step will eventually do

so. Now we consider the situation where two chains have the same initial

con�guration and one is initially fair. If there is some sequence of input

and computation steps from each con�guration in the initially fair chain to

some con�guration in the other chain, it would appear that the second chain

should also be initially fair, since apparently all computation steps done in

the �rst chain are also done in the second. In the following proposition we

verify that this is indeed the case.

Proposition 8.7.9 Suppose that we have chains (K

i

)

i2!

and (L

i

)

i2!

such

that K

0

= L

0

and for all i 2 ! there is a j 2 ! such that K

i

 L

j

. If the

chain (K

i

)

i2!

is initially fair it follows that the chain (L

i

)

i2!

is also initially

fair.

Proof. The proof, which is by induction on the agent of K

0

, is given in

Section 8.9. t

u

Lemma 8.7.10 Suppose that we have chains (K

i

)

i2!

and (L

i

)

i2!

such

that K

0

= L

0

, lim(K

i

)

i2!

= lim(L

i

)

i2!

and for all i 2 ! there is a j 2 !

such that K

i

 L

j

. If the chain (K

i

)

i2!

is fair it follows that the chain

(L

i

)

i2!

is also fair.
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Proof. Consider a su�x (L

i

)

i�k

. We want to show that the su�x is

initially fair. We have K

0

 L

i

. Thus, L

i

 K

n

, for some n. The chain

L

i

 K

n

 K

n+1

 : : :

is fair, since it has a fair su�x. Proposition 8.7.9 is applicable, since obvi-

ously L

i

 L

j

, for some j, and by assumption, K

n

 L

j

, for some j and

so on. It follows that the chain

L

i

 L

i+1

 L

i+2

 : : :

is initially fair. Thus, every su�x of (L

i

)

i2!

is initially fair, and we conclude

that (L

i

)

i2!

is fair. t

u

8.7.5 Construction of an input-free computation

Before giving the general con
uence property we consider the case when a

group of computations can be combined into an input-free computation.

Lemma 8.7.11 Given an agent A, an oracle s and a constraint c such that,

for n 2 !, f

n

is the functionality of some A(s)-computation with limit c.

Suppose (? ! c) v

T

n2!

f

n

. It follows that there is an A(s)-computation

with functionality (? ! c) and limit c.

If f

0

is the functionality of an initially fair A(s)-computation then there

is an initially fair A(s)-computation with functionality (? ! c) and limit c.

If the computation corresponding to f

0

is fair it follows that there is a

fair A(s)-computation with functionality (? ! c) and limit c.

Proof. Given A(s) and c as in the lemma above. For all n, we can

construct a chain fK

n

i

g

i2!

which corresponds the computation which has

f

n

as functionality. We assume that K

n

0

= A(s) : ?, for all n (since for

any given computation we can form a similar computation where the initial

environment is equal to ?), and that for all n and i, either K

n

i

) K

n

i+1

or

input(K

n

i

; d) = K

n

i+1

, for some constraint d. We will only consider the case

when c is in�nite.

We shall form a chain L

0

) L

1

) : : : which will have functionality as

given by (? ! c) and limit c. For each n and i we will have K

n

i

) L

j

, for

some j. We will use the notation K

d

 L if input(K; d)) input(L; d).

Let p be a function p : ! ! ! such that p(i) = n in�nitely often, for each

n. Let the chain (L

i

)

i2!

be as follows. For each i 2 !, let c

i

= store(L

i

).

L

0

= K

0

0

(= K

1

0

= K

2

0

= : : :)

L

i+1

=

�

L

i

�K

p(i)

m+1

; if K

p(i)

m

c

i

 K

p(i)

m+1

L

i

; otherwise
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where m is the largest such that K

p(i)

m

 L

i

.

There is alway at least one m which satis�es the above, since we always

have K

p(i)

0

 L

i

, furthermore there always a maximal m since for some m

we have store(K

p(i)

m

) w c

i

.

Let d = t

i2!

store(L

i

). We would like d to be equal to c. Suppose

it is not. It follows that d 62 f

n

, for some n. Let j be the greatest such

that K

n

j

) L

i

, for some i. If K

n

j

) K

n

j+1

, we know from the way the

L

i

s were selected that K

n

j+1

) L

j

0

, for some j

0

, which contradicts the

assumption about j. So the step from K

n

j

to K

n

j+1

is an input step. If

store(K

n

j+1

) v d, we would expect K

n

j

c

i

 K

n

j

, for some i, which again leads

to a contradiction. So we conclude that store(K

n

j+1

) 6v d, but then d must

be a �xpoint of f

n

, and we have arrived at a contradiction. We can conclude

that t

i2!

store(L

i

) = c.

To establish fairness properties, note that for each i there is a j such

that K

0

i

 L

j

. If (K

0

i

)

i2!

is initially fair, it follows by Proposition 8.7.9

that (L

i

)

i2!

is initially fair. Similarly, if (K

0

i

)

i2!

is fair, it follows by

Lemma 8.7.10 that (L

i

)

i2!

is fair. t

u

8.7.6 Proof of the general con
uence theorem

In the proof below, we will use the following notation. Given a trace t write

[

�

t] for the agent

^

i 62r(t)

(v(t)

i

) v(t)

i+1

):

It is easy to see that with the oracle s = 111 : : : and A = [

�

t] there is a

A(s)-computation with limit equal to the limit of t and functionality g such

that g \ fn t = (? ! c).

Proof. [of Theorem 8.7.1] In the case that there is an (initially) fair compu-

tation with limit c we assume that corresponding functionality is f

0

.

Now, consider the agent A

0

= A ^ [

�

t]. Let s

0

be an oracle such that

�

0

s

0

= s and �

1

s

0

= 111 : : :.

We will construct a family ff

0

n

g

n2!

of closure operators such that for

each n, there is an A

0

(s

0

)-computation with limit c and functionality f

0

n

,

(and for n = 0, this computation is (initially) fair when f

0

corresponds to

an (initially) fair computation). Further, we want

T

n2!

f

0

n

w (? ! c).

First, let f

0

n+1

= f

n

, for n 2 !.

Second, note that the agent [

�

t] has a computation with functionality

g which is essentially the inverse of fn t. It is easy to see that we can

construct a similar computation of A

0

(s

0

) which ignores the agent A. This

computation is not fair, but this does not matter. Let f

0

1

= g.

Last, we can take any (initially) fair A(s)-computation with limit c and

interleave it with the execution of the agent [

�

t] in a suitable manner and
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obtain an (initially) fair A

0

(s

0

)-computation. We need not make any as-

sumptions about the functionality of this computation, only that there is

such an (initially) fair computation with limit c. Let f

0

0

be the functionality

of this computation.

Now we have

T

n2!

f

0

n

w

T

n>0

f

0

n

= g\ (

T

n2!

f

n

) w (?! c). It follows

by Lemma 8.7.11 that there is a A

0

(s

0

)-computation with functionality (? !

c) and limit c.

In other words, there is a trace u 2 O

�

[[A ^ [

�

t]]] such that limu = c

and fnu = (? ! c). It follows that u = u

1

_ u

2

, where u

1

2 O

�

[[A]] and

u

2

2 O

�

[[[

�

t]]]. Suppose d v c such that d 2 fnu

1

. It follows that d 62 fnu

2

,

by the computation rules. Since fnu

2

v fn

�

t, we have d 62 fn

�

t. By the

de�nition of

�

t it follows that d 2 t. So fn u

1

� fn t, i.e., fnu

1

w fn t. It

follows that t is a subtrace of u

1

and we are done. t

u

8.8 Concluding Remarks

The idea behind the oracle semantics is the notion that the non-determinism

in concurrent constraint programming stems from the non-deterministic

selection. By introducing oracles to control the behaviour of the non-

deterministic choice, we can e�ectively isolate the non-deterministic com-

ponent and thus view the behaviour of an agent as a set of deterministic

behaviours, indexed by the oracles.

The fact that the behaviour of an agent is deterministic, for a given

oracle, implies that there should be some kind of con
uence property for

agent-oracle pairs. We have seen in this chapter both a simple, �nite con-


uence property, and a generalised form of con
uence.

The �nite con
uence property is analogous to the Church-Rosser prop-

erty of lambda-calculus. But it is not su�cient to only consider �nite com-

putations. The generalised con
uence property (Theorem 8.7.1) shows how

sets of computations can be combined into stronger computations. An im-

portant aspect of the generalised con
uence theorem is that the combination

of computations preserves fairness. Also, the generalised con
uence theo-

rem is not restricted to �nite sets of computations, but can also be applied

to (countably) in�nite sets of computations.

The con
uence properties will be essential in the correctness proof of

the �xpoint semantics presented in the next chapter.
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8.9 Proofs from Chapter 8

Proof of Lemma 8.7.4 (�nite con
uence)

We will only consider the case whenK ) L andK )M in one computation

step, and show that in this case there is a con�guration that can be reached

from L and M in one step. The general case can be treated by a standard

induction argument.

Suppose K = A(s) : c. The proof is by induction on the agent A. The

cases where A is a call, a selection, or a tell constraint are trivial, since there

is only one possible reduction step.

Suppose A =

V

j2I

A

j

. The computation rules for conjunction imply

that each computation step performed by a conjunction is done by per-

forming a computation step with one of the components. It follows that

there are k; l 2 I such that

A

k

(�

k

s) : c �! B

k

(�

k

s

0

) : c

0

and

A

l

(�

l

s) : c �! B

l

(�

l

s

00

) : c

00

:

(We assume k 6= l; the case when k = l can be treated directly using the

induction hypothesis.)

To simplify the presentation we re-order the conjunction into a con-

junction consisting of three parts: A

k

, A

l

, and one agent consisting of all

other components in the conjunction. We also re-order the oracle in the

same manner. It follows directly from the operational semantics that this

re-ordering does not a�ect the operational behaviour of the agent. Let

A

�

=

V

j2I

0

A

j

, where I

0

= I n fk; lg. We assume that A can be written on

the form A

k

^ A

l

^ A

�

. We have

A

k

^ A

l

^ A

�

(s) : c �! B

k

^ A

l

^ A

�

(s

0

) : c

0

and

A

k

^ A

l

^ A

�

(s) : c �! A

k

^B

l

^A

�

(s

00

) : c

00

:

By Proposition 8.7.3 it follows that

A

k

(�

k

s) : c t c

00

�! B

k

(�

k

s

0

) : c

0

t c

00

and

A

l

(�

l

s) : c t c

0

�! B

l

(�

l

s

00

) : c

00

t c

0

:

Let s

000

be such that �

�

s

000

= �

�

s, �

k

s

000

= �

k

s

0

, and �

l

s

000

= �

l

s

00

. Also, let

c

000

= c

0

t c

00

. We have

B

k

^A

l

^ A

�

(s

0

) : c

0

�! B

k

^ B

l

^ A

�

(s

000

) : c

000
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and

A

k

^ B

l

^A

�

(s

00

) : c

00

�! A

k

^ A

l

^ A

�

(s

000

) : c

000

:

Suppose K is of the form 9

c

0

0

X

A

0

0

: c

0

. It follows that L = 9

c

0

X

A

0

: c and

M = 9

d

0

X

B

0

: d. We can assume that c

0

w 9

X

(c) and d

0

w 9

X

(d).

By the induction hypothesis it follows that there is an agent C, an oracle

s

00

and a constraint e such that A

0

(s) : c

0

�! C(s

00

) : e and B

0

(s

0

) : d

0

�!

C(s

00

) : e. By the computation rules it follows that

9

c

0

X

A

0

(s) : c �! 9

e

X

C(s

00

) : c t 9

X

(e)

and

9

d

0

X

B

0

(s

00

) : d �! 9

e

X

C(s

00

) : d t 9

X

(e):

To show that ct9

X

(e) = dt9

X

(e), recall that we assumed that K ) L and

K )M in one computation step. Let c

0

= store(K). By the computation

rules we have c = c

0

t 9

X

(c

0

) and d = c

0

t 9

X

(d

0

). Since c

0

v e it follows

that 9

X

(c

0

) v 9

X

(e) and thus ct9

X

(e) = c

0

t9

X

(c

0

)t9

X

(e) = c

0

t9

X

(e).

In a similar way we can establish that d t 9

X

(e) = c

0

t 9

X

(e).

Proof of Lemma 8.7.7

In the proofs below the following notation is used. We write factor

k

(K) =

L when K = [

V

j2I

A

j

(s) : c], k 2 I , and L = [A

k

(�

k

s) : c]. In the same way

we write local(K) = L when K = [9

c

X

A(s) : d] and L = [A(s) : ct9

X

(d)].

It is straight-forward to establish that factor and local are well-de�ned.

Let (K

i

)

i2!

be a fair chain. We will only consider the case whenK

0

) L,

since if (K

i

)

i2!

is a fair chain it follows that any su�x of the chain is fair.

We will also assume that K

0

) L in one step, the general situation can

easily be handled by an inductive argument.

The proof is by induction on the agent of K

0

.

Suppose the agent of K

0

is a tell constraint, i.e, K

0

= [c(s) : d]. By the

computation rules L = [c(s) : d t c]. Because of fairness, there must be an

n such that the store of K

n

is stronger than c. Thus, if K

n

= [c(s) : d

0

] we

have d

0

w d and d

0

w d. It follows that we can go from L to K

n

in one input

step.

Suppose the agent of K

0

is a conjunction. Consider an inner computa-

tion of (K

i

)

i2!

, given by factor

k

(K

i

)

i2!

= (K

0

i

)

i2!

. This computation is

fair, since it is an inner computation of a fair computation. By the compu-

tation rules, L must be of the form

V

j2I

A

j

(s) : c. Let L

0

= [A

k

(�

k

s) : c].

Because of the computation rules, we have either K

0

0

) L

0

, or that the

step from K

0

0

to L

0

is an input step. If K

0

0

) L

0

, we can apply the induc-

tion hypothesis and conclude that L

0

 K

0

n

, for some n. Similarly, if the

step from K

0

0

to L

0

is an input step we apply the induction hypothesis and

Proposition 8.7.5 and �nd that L

0

 K

0

n

.
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So if L = [

V

j2I

A

j

(s) : c] we have K

n

= [

V

j2I

B

j

(s

0

) : d] and A

j

(�

j

s) :

d �!

�

B

j

(�

j

s

0

) : d for all j. For a suitable interleaving of the components

of the conjunction we have

V

j2I

A

j

(s) : d �!

�

V

j2I

B

j

(s

0

) : d, and thus

L K

n

.

If K

0

is a selection (c

1

) A

1

[] : : : [] c

n

) A

n

) alternatives, and the �rst

element of the oracle of K

0

is k, we must have 1 � k � n. It follows that

the agent of L is A

k

. By the fairness requirements there is an n such that

K

n

= A

k

. It follows that L K

n

.

Suppose the agent of K

0

is an existential quanti�cation. Let the chain

(K

0

i

)

i2!

= local(K

i

)

i2!

, and if L = [9

c

X

A(s) : d] let L

0

= [A(s) : ct9

X

(d)].

By the computation rules we haveK

0

0

) L

0

in one step and by the induction

hypothesis L

0

) K

0

n

, for some n. By the computation rules we have L )

K

n

.

Suppose the agent of K

0

is a call. It follows that the agent of L is the

body of the corresponding procedure. By the fairness assumption there must

be an n such that the agent of K

n

is the body of the procedure referenced

in the call. It follows that L K

n

through an input step.

Proof of Proposition 8.7.9

The proof is by induction of the agent of L

0

, which of course is also the

agent of K

0

.

Suppose the agent of L

0

is a tell constraint c. Because of fairness there

must be an i such that store(K

i

) w c. Since K

i

 L

j

, for some j, we have

store(K

i

) v store(L

j

), thus c v store(L

j

) and (L

i

)

i2!

is initially fair.

Suppose the agent of L

0

is a conjunction. Consider an inner computa-

tion of (L

i

)

i2!

, given by factor

k

(L

i

)

i2!

= (L

0

i

)

i2!

. If we let (K

0

i

)

i2!

=

factor

k

(K

i

)

i2!

, we know that (K

0

i

)

i2!

is initially fair, since it is an inner

computation of an initially fair computation. Let i 2 !. By assumption, we

have K

i

 L

j

, for some j. By the computation rules, we have K

0

i

 L

0

j

.

Since K

0

0

= L

0

0

we can apply the induction hypothesis and conclude that

(L

0

i

)

i2!

is initially fair. It follows that (L

i

)

i2!

is initially fair.

Suppose the agent of L

0

is a selection with n alternatives. Suppose also

that the oracle of L

0

begins with k, where 1 � k � n. Since K

0

= L

0

, and

because of fairness there must be an i such that the agent of K

i

is the agent

of the kth alternative of the selection. Since K

i

 L

j

, for some j, it follows

that the agent of L

j

cannot be the agent of L

0

. Thus, we know that (L

i

)

i2!

will perform at least one computation step, and since the only computation

step that a selection can perform is to chose the alternative indicated by

the oracle, we know that (L

i

)

i2!

is initially fair.

If the agent of L

0

is a selection with n alternatives, and the oracle of

L

0

begins with k, where k = 0 or k > n, it follows directly that (L

i

)

i2!

is

initially fair.
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Next we consider the case when the agent of L

0

is an existential quan-

ti�cation. Let (L

0

i

)

i2!

= local(L

i

)

i2!

, and, in the same way, (K

0

i

)

i2!

=

local(K

i

)

i2!

. We know that (K

0

i

)

i2!

is initially fair since it is an in-

ner computation of an initially fair computation. Let i 2 !. By as-

sumption, we have K

i

 L

j

, for some j. Thus, K

i

= [9

c

X

A(s) : d] and

L

j

= [9

c

0

X

A

0

(s

0

) : d

0

], for a variable X , and appropriately selected agents,

constraints and oracles, and we know that

9

c

X

A(s) : d t e �!

�

9

c

0

X

A

0

(s

0

) : d

0

;

for some e. We consider only the case when the reduction is in exactly one

step. In this case, we have, by the computation rules that

A(s) : c t 9

X

(d t e) �! A

0

(s

0

) : c

0

;

and d

0

= d t e t 9

X

(c

0

). We have c

0

w 9

X

(d t e), and thus c

0

w 9

X

(d t

e) t 9

X

(c

0

) = 9

X

(d t e t 9

X

(c

0

)) = 9

X

(d

0

). It follows that c

0

= c

0

t 9

X

(d

0

).

Since K

0

i

= A(s) : ct9

X

(d) and L

0

j

= A

0

(s

0

) : c

0

t9

X

(d

0

) we have K

0

i

 L

0

j

.

Since K

0

0

= L

0

0

we can apply the induction hypothesis and conclude that

(L

0

i

)

i2!

is initially fair. Since the inner computation of (L

i

)

i2!

it follows

that (L

i

)

i2!

is initially fair.

Suppose the agent of L

0

is a call. There is some i such that K

i

is the

body of the corresponding procedure, wrapped in existential quanti�cations

to model parameter passing. There is a j 2 ! such that K

i

 L

j

. The

agent of L

j

cannot be a call, because of the computation rules. It follows

that (L

i

)

i2!

contains at least one computation step, and since the only

computation step a call can perform is the reduction to the body of the

corresponding procedure, it follows that (L

i

)

i2!

is initially fair.
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Chapter 9

Fixpoint Semantics

In this chapter, we consider the problem of giving a �xpoint semantics

for concurrent constraint programming. As shown in Chapter 7 it is not

possible to give a fully abstract �xpoint semantics for a non-deterministic

language if one wants to take into account in�nite computations so the best

one can hope for is a �xpoint semantics together with a simple abstraction

operator.

The �xpoint semantics is based on the oracle semantics presented in the

previous chapter.

9.1 Introduction

For an agent-oracle pair A(s) there is a set w of limits of all possible fair

A(s)-computations. We will call this set the window of A(s). This set is

convex, and is one component of the domain of the �xpoint semantics we

will give in this section.

The con
uence theorems tell us that for an agent-oracle pair A(s), the

set of A(s)-computations satisfy a number of properties. For example, given

a countable set of A(s)-computations with the same limit, we can �nd an

A(s)-computation which has a functionality which is an upper bound of the

functionalities of the computations in the set (provided that the function-

ality obtained as an upper bound also can be expressed as the functionality

of a trace). We shall see that for each agent-oracle pair A(s) it is possible

to determine a closure operator f such that each A(s)-computation has a

functionality weaker than f . Further, we will also see that for each trace

t with functionality weaker than f and a limit which lies in the window

of A(s) there is a fair A(s)-computation which a functionality stronger or

equal to the functionality of the trace t and limit equal to the limit of t. We

will call the closure operator f which satis�es the above the functionality

of A(s).

Thus the abstract behaviour of an agent A for a given oracle s can be

139
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described by giving the window and functionality of A(s). We will also �nd

that this information is su�cient to give a compositional semantics.

It would seem that a domain where the elements are pairs consisting of

a window and a functionality would be a promising candidate for a �xpoint

semantics. However, as we shall see in the following section it turns out

that it is not possible to �nd an ordering in which the existential quanti�er

is monotone (or continuous).

9.2 There is no fully abstract �xpoint semantics for agent-oracle

pairs

In this section we will examine the problems of giving a fully abstract �x-

point semantics for agent-oracle pairs A(s). Keep in mind that a fully ab-

stract �xpoint of agent-oracle pairs must satisfy the following requirements.

1. Like in any other �xpoint semantics, the semantics of a procedure P

with the de�nition P :: P must be the least element of the semantic

domain.

2. Since the behaviour of the agent true is the same as the behaviour of

P , as de�ned above, it follows that the semantics of true is also the

least element of the domain.

3. As in any other �xpoint semantics, we expect all operations to be

monotone.

4. The semantic domain should capture both the functionality , which

describes the output of the agent, and the window , which describes

the set of requirements the agent imposes on the input.

As stated above, the semantics of true(s) (regardless of the choice of the

oracle s) must be the least element of the domain.

Now, let the agent A be

true ^ (X = 3) true [] : : :)

and the agent B

X = 3 ^ (X = 3) true [] : : :):

(Only the �rst part of the selection is shown, since the rest is irrelevant to

the example. We assume that the two selections in A and B are the same.)

Let s be an oracle such that �

2

s = 1:s

0

, for some oracle s

0

. Thus, A(s)

and B(s) are agents which are forced to chose the �rst alternative in the

selection.

By continuity of conjunction we �nd that A(s) must be weaker than

B(s), since true is weaker than X = 3, but when we look at 9

X

B(s) we
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see that the semantics of 9

X

B(s) is equal to true, since the agent 9

X

B(s)

is completely passive and imposes no conditions on the input.

On the other hand, even though the agent 9

X

A(s) is passive, it does

impose conditions on the input. Indeed, to be able to select the �rst alter-

native in the selection it is necessary that the global store (lets call it c) is

such that it, when quanti�ed with X , still implies that X = 3. In other

words, we must have 9

X

c w (X = 3). It is easy to see that the only c

for which this holds is c = >. In other words, he agent 9

X

A(s) does not

generate any output, but requires that the store must eventually be equal

to >.

So the agent 9

X

B(s) is naturally mapped to the least element of the

domain, while 9

X

A(s) must be given a distinct and thus stronger semantics.

We have arrived at a contradiction, and conclude that within the conditions

stated above there is no fully abstract �xpoint semantics which gives the

semantics of an agent with a given oracle.

Proposition 9.2.1 There is no fully abstract �xpoint semantics for agent-

oracle pairs.

The negative result is of some interest in itself since the language under

consideration is no longer non-deterministic. Thus this negative result is

of a di�erent nature than other published negative results on the exis-

tence of fully abstract �xpoint semantics [2, 4] since they considered non-

deterministic programming languages.

9.3 Hiding

Because of the discovery that it is not possible to give a fully abstract

semantics for agent-oracle pairs, we turn to a less abstract domain in which

the local state of a computation is included in the semantics. To distinguish

between the local and global state we introduce a class of variables which

we will call the hidden variables. The idea is that hidden variables are not

to be considered part of the external behaviour of an agent.

To deal with the introduction of new hidden variables and with the

renaming of hidden variables to prevent clashes between hidden variables of

agents in a conjunction we introduce di�erent kinds of renamings.

The following section presents the appropriate types of renamings and

gives some of their properties. The proofs are given in Section 9.11.
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9.3.1 Renamings

Recall that the set of formulas of a pre-constraint system is assumed to con-

tain equality and be closed under conjunction and existential quanti�cation,

and served as a basis for the de�nition of constraints. In this section we

will return to the formulas and add some more assumptions. In particular,

we want to be able to talk about renamings , i.e., substitutions that replace

variables with variables.

De�nition 9.3.1 A renaming � is a mapping � : Var! Var over variables.

An injective renaming is a renaming which is an injective function over

variables. t

u

We extend the set of formulas, so that if � is a renaming and � is a formula,

then �� is also a formula.

We assume that a truth assignment j= satis�es the following, for an

assignment V , a renaming � and a formula �.

V j= �� i� V � � j= �

As before, the set of formulas can be embedded into a Scott domain of

constraints using ideal completion. We can extend renaming to constraints

according to the following rules.

1. �[�] = [��], for formulas �.

2. �(

F

R) =

F

d2R

�d, for directed sets R � K(U).

A renaming can thus be seen as a function over variables, or over formulas,

or over constraints. It is easy to see that a renaming is continuous when

seen as a function over constraints.

Recall that for a constraint c and an assignment V we write V j= c to

indicate that V j= � holds for all formulas � 2 c. For a renaming � we have

V j= �c i� V � � j= c.

We will use the notation fX ! Y g for the renaming that maps the

variable X to Y , and all other variables to themselves. So we have, for

example, fX ! Y g(X � 42) = (Y � 42).

Proposition 9.3.2 An injective renaming � is also injective when seen as

a function over constraints.

For a renaming � let �

�1

be the upper adjoint of �, that is, let �

�1

be the

monotone function over constraints such that c v �

�1

(�c) and �(�

�1

c) v c.

Since each renaming distributes over

F

it follows that �

�1

is well-de�ned

and can be given explicitly by

�

�1

c =

G

fd j �d v cg:

We also have c v �

�1

d i� �c v d, for constraints c; d.

For an injective renaming � we have �

�1

� � = id.
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9.3.2 Hidden variabes

In the following text, we assume that the variables are split into two sets,

the visible variables and the set H of hidden variables. We assume that

hidden variables do not occur in agents, programs, traces or computations.

The hidden variables will be used in the �xpoint semantics to represent the

internal state of a computation.

(It is perhaps worthwhile to point out that hidden variables and con-

straints involving hidden variables are not in any way di�erent from other

variables and constraints. The only di�erence is the assumption that hidden

variables are not to be used in agents, programs, traces and computations.)

We need three types of operations on hidden variables. The �rst opera-

tion is 9

H

. Let 9

H

c be the existential quanti�cation of all hidden variables

occurring in the constraint c.

The second operation is the renaming new

X

, for a visible variable X .

We will use new

X

to model the existential quanti�cation of variables.

Let new

X

be an injective renaming which

1. maps X to a hidden variable, and

2. maps every visible variable distinct from X to itself, and

3. maps every hidden variable to a hidden variable.

Since new

X

is assumed to be injective there is an inverse new

�1

X

which

satis�es new

�1

X

� new

X

= id and new

X

� new

�1

X

v id.

The third renaming is used when giving the semantics of a conjunction

V

j2I

A

j

. We need a way to keep the hidden variables of the agents in the

conjunction from interfering with each other. To accomplish this, we assume

that for each parallel conjunction

V

j2I

A

j

there is a family of injective

renamings (called projections) f�

j

g

j2I

such that (writing �

j

H for f�

j

X j

X 2 Hg)

1. (�

j

H)

T

(�

j

0

H) = ;, for j 6= j

0

, and

2. �

j

X = X , for visible variables X .

Proposition 9.3.3 Let X be a visible variable, c a constraint independent

of hidden variables, and j; k be members of some set I such that j 6= k. It

follows that

1. 9

H

� new

X

= 9

H

� 9

X

,

2. new

X

(9

X

c) v c,

3. new

�1

X

c = 9

X

c,

4. �

j

c = �

�1

j

c = c, and
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5. �

�1

j

� �

k

= 9

H

.

(The proofs are given in Section 9.11.)

9.3.3 Applying renamings on sets and closure operators

Injective renamings can be generalized to sets and closure operators.

For an injective renaming �, and a set of constraints S, let �S = fc j

�

�1

c 2 Sg.

Proposition 9.3.4 For a closure operator f , and an injective renaming �,

we have c 2 �f i� c is a �xpoint of � � f � �

�1

t id.

Proposition 9.3.5 Let S be a set of constraints and X a variable. It

follows that E

H

(E

X

S) = E

H

(new

X

S).

The following proposition formalises the idea that applying projections

f�

j

g

j2I

to a family of closure operators ff

j

g

j2I

will guarantee that they

are independent with respect to their hidden variables.

Proposition 9.3.6 Let ff

j

g

j2I

be a family of closure operators. Let f =

T

j2I

�

j

f

j

, and c be such that 9

H

(fc) = c. Let d =

F

j2I

(�

j

f

j

)c. It follows

that d = fc.

9.4 Trace bundles

Here, we de�ne the domain of the �xpoint semantics.

Let cl with typical element f be the lattice of closure operators over U ,

and let w with typical element w be the lattice of windows over U , i.e., with

elements }(U) ordered by reverse inclusion. Let bundle, the trace bundles ,

be the set of pairs hf; wi in cl�w.

For a trace bundle hf; wi, let F hf; wi = f , and W hf; wi = w. Let

v � bundle� bundle be de�ned so that hf; wi v hf

0

; w

0

; i i� f v f

0

, and

w � w

0

.

Under this ordering, bundle forms a complete lattice, with ? = hid;Ui,

> = h? ! >; ;i, and

hf

1

; w

1

i t hf

2

; w

2

i = hf

1

\ f

2

; w

1

\ w

2

i :

The semantics of an agent can now be given as a continuous function from

oracles to trace bundles. Let A = (ORACLE! bundle).

9.5 The Least-�xpoint Semantics

We are now ready for the �rst �xpoint semantics. We begin by de�ning a

set of basic operations, corresponding to the program constructs of ccp.



9.5. the least-fixpoint semantics 145

9.5.1 Basic Operations

Tell constraints First, to give the semantics of a tell constraint c we

de�ne (hci) to be the trace bundle with a functionality which adds c to the

store and a window that makes sure that c is in the store. Let

(hci) = h? ! c; fcg

u

i :

Parallel Composition Given a family of trace bundles fhf

j

; w

j

ig

j2I

, we

can obtain the parallel composition of the trace bundles by simply taking

their least upper bound, but since we want to keep the local variables of

each agent apart, we must �rst apply the projections to rename the lo-

cal variables. Thus the parallel composition is found using the following

expression.

*

\

j2I

�

j

f

j

;

\

j2I

�

j

w

j

+

Selections First note that a selection has two types of behaviour; the

�rst is when one of the conditions becomes satis�ed by the store, and the

corresponding alternative is selected. The other type of behaviour is when

no condition ever becomes true. In this case the selection remains passive

throughout the computation. It is convenient to treat these two behaviours

separately.

First consider an alternative consisting of an ask constraint c and an

agent A.

First, we de�ne select : U ! bundle ! bundle which, for a given

constraint c, takes a trace bundle and returns a trace bundle which does

not generate any output until c is satis�ed, and which requires that c is

eventually satis�ed.

select c hf; wi = hc! f; fcg

u

\ wi

Now it is easy to give the de�nition of select as a function

select : U ! A! A:

We lift the de�nition of select from bundle to A by

select c a s = select c (a s);

for a 2 A s 2 ORACLE.

For the case when in a selection no alternative is ever chosen, we de�ne

a function unless : U

n

! bundle, for n � 0, as follows. Given constraints

c

1

; : : : ; c

n

let

unless(c

1

; : : : ; c

n

) =

*

id;

\

1�k�n

U n fc

k

g

u

+

:
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De�nition of E[[A]] : A

N

! A

E[[c]]�s = (hci)

E[[

V

j2I

A

j

]]�s =

*

\

j2I

�

j

f

j

;

\

j2I

�

j

w

j

+

;

where E[[A

j

]]�(�

j

s) = hf

j

; w

j

i, for j 2 I

E[[[]

k�n

c

k

)A

k

]]�s =

8

<

:

unless(c

1

; : : : ; c

n

); if s = 0s

0

select c

k

(E[[A

k

]]�)s

0

; if s = ks

0

, for 1 � k � n

hid; ;i ; otherwise

E[[9

X

A]]�s = E

X

(E[[A]]�s)

E[[p(X)]]�s = f�! Xg(�ps)

De�nition of P[[�]] : A

N

! A

N

P[[�]]�Ps = fY ! �g(E[[A]]�s);

where for each P 2 N the de�nition in � is assumed to be of

the form P (Y ) ::A, for some variable Y and some agent A

Figure 9.1: The oracle �xpoint semantics

Existential quanti�cation the function E

X

: bundle! bundle which

gives the trace bundle for 9

X

A(s), given the trace bundle for A(s).

Let

E

X

hf; wi = hnew

X

f; new

X

w; i :

The following proposition expresses a simple relationship between the func-

tionality and window of an agent, for a given oracle.

Proposition 9.5.1 Given � such that � is the least �xpoint of P[[�]], for

some program �, it holds that w � f , where hf; wi = E[[A]]�s.

It is straight-forward to verify the proposition by examination of the seman-

tic functions.

9.5.2 Fixpoint Semantics

The oracle �xpoint semantics is given in Figure 9.1.
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9.6 Examples

We give the �xpoint semantics of some programs.

Example 9.6.1 (erratic) Suppose the program � contains the de�nition

of the erratic procedure (Section 3.9), and that � is the least �xpoint of

P[[�]]. We now have the following cases.

1. E[[erratic(X)]]�s = h(? ! X = 0); fX = 0g

u

i, if s = 1:s

0

, for some s

0

.

2. E[[erratic(X)]]�s = h(? ! X = 1); fX = 1g

u

i, if s = 2:s

0

, for some s

0

.

3. E[[erratic(X)]]�s = hid; ;i, otherwise.

Note that only in the cases when s begins with a 1 or a 2 is the window non-

empty. This indicates that the erratic procedure will always select either of

the two �rst alternatives. In these alternatives, applying the functionality

to any constraint gives a result which lies in the window. This indicates

that no conditions are imposed on the input. t

u

Example 9.6.2 (merge) Assume that the program � contains the de�ni-

tion of procedure merge (Section 3.11) and that � is equal to P[[�]]�

0

, for

some �

0

.

Now, for variables X , Y , and Z, and oracle s, the semantics of the call

merge(X;Y; Z) is as follows.

1. If s = 1:s

0

, we have E[[merge(X;Y; Z)]]�s = hf

1

; w

1

i, where

f

1

= (9

A

9

X

1

(X = [A j X

1

])

! new

A

new

X

1

new

Z

1

((? ! X = [A j X

1

])

\ (? ! Z = [A j Z

1

])

\ f

r

));

and

w

1

= new

A

new

X

1

new

Z

1

(fX = [A j X

1

]g

u

\ fZ = [A j Z

1

]g

u

\ w

r

);

and hf

r

; w

r

i = fX;Y; Z ! X

1

; Y; Z

1

g(�

0

merge s

0

).

2. If s = 3:s

0

, we have E[[merge(X;Y; Z)]]�s = hf

3

; w

3

i, where

f

3

= (X = [ ]! Z = Y )

and

w

3

= fX = [ ]g

u

\ fZ = Y g

u

:
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3. If s = 0:s

0

, we have E[[merge(X;Y; Z)]]�s = hf

0

; w

0

i, where

f

0

= id

and

w

0

= U n f9

A

9

X

1

(X = [A j X

1

])g

u

n f9

A

9

Y

1

(Y = [A j Y

1

])g

u

n fX = [ ]g

u

n fY = [ ]g

u

i :

The case when s = 2:s

0

is omitted, since it and the case s = 1:s

0

are

symmetric. Similarily, the cases s = 4:s

0

and s = 3:s

0

are symmetric.

Item 3 re
ects the case when the call remains passive. As expressed in

the window, this may happen when neither X nor Y become bound to lists.

Item 2 describes the case when X becomes bound to an empty list. The

functionality says that the agent may bind Z to Y , when X has become

bound to an empty list, and the window says that X must become bound

to a list, and Z must become bound to Y .

The recursive case, as described in Item 1, is the most interesting one.

First, note the use of new as a hiding operator. This means that the func-

tionality and window may refer to the same hidden variables, and that thus

the window may impose conditions on what values the hidden variables

should become bound to. We assume that the renaming new

A

�new

X

1

�new

Z

1

maps A to the hidden variable H

1

, X

1

to H

2

and Z

1

to H

3

. The window

imposes that X must become bound to [H

1

j H

2

] and that Z must become

bound to [H

1

j H

3

]. The window also contains requirements imposed by

the recursive call merge(H

2

; Y;H

3

). Exactly what these requirements are

depends on the tail s

0

of the oracle. The functionality says that when X is a

list with at least one element, the agent may bind X to [H

1

j H

2

] and Z to

[H

1

j H

3

]. The functionality also includes the functionality of the recursive

call. t

u
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9.7 Correctness

We would like to prove a direct correspondence between the �xpoint seman-

tics and the operational semantics.

First we de�ne abstraction operators � : bundle ! }(TRACE) and

� : (ORACLE! bundle)! }(TRACE).

De�nition 9.7.1 For hf; wi 2 bundle and a 2 A, let

� hf; wi = ft j fn t v E

H

(f); f(lim t) 2 w; lim t 2 9

H

(w)g; and

�a = f� hf; wi j s an in�nite oracle and a s = hf; wig:

t

u

The correctness of the �xpoint semantics is stated as follows.

Theorem 9.7.2 (Correctness) Let A be an agent, � a program and �

the least �xed point of P[[�]]. We have A

�

[[A]] = �(E[[A]]�).

The rest of this section (Section 9.7) is devoted to the proof of the correctness

theorem.

9.7.1 Soundness

First we show that any trace of the operational semantics falls into the set

of traces given by the oracle semantics, i.e., that the operational semantics

is sound with respect to the �xpoint semantics.

Theorem 9.7.3 (Soundness) Let A be an agent, � a program and � the

least �xed point of P[[�]]. If t 2 A

�

[[A]] it follows that t 2 �(E[[A]]�).

The theorem follows from the three lemmas below, whose proofs are given

in Section 9.11

Lemma 9.7.4 Let t be a trace such that t 2 A

�

[[A(s)]]. We have fn(t) v

E

H

f , where f = F(E[[A]]�s), and � is the least �xpoint of P[[�]].

Lemma 9.7.5 Let t be a trace such that t 2 A

�

[[A(s)]]. We have lim(t) 2

E

H

w, where � is the least �xpoint of P[[�]], and w =W(E[[A]]�s).

Lemma 9.7.6 Let t be a trace such that t 2 A

�

[[A(s)]]. We have f(lim t) 2

w, where hf; wi = E[[A]]�s.
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9.7.2 Completeness

If a trace is given by the oracle semantics, we would like to show that the

trace, or a stronger trace, can be obtained from the operational semantics.

We state this in the following theorem.

Theorem 9.7.7 (Completeness) Let t 2 �(E[[A]]�s), for an agent A, and

an in�nite oracle s. It follows that t 2 A

�

[[A(s)]].

This section (Section 9.7.2) is devoted to the proof of the theorem. To avoid

repetitions we will assume a program �, an agent A and an in�nite oracle s.

We also assume that �

0

= ?, �

n+1

= P[[�]]�

n

, for n 2 !, and � = t

n2!

�

n

.

In some constraint systems there are constraints that cannot be ex-

pressed as limits of an !-chain of �nite constraints. If a constraint c cannot

be expressed as the limit of an !-chain of �nite constraints it is obvious that

there cannot be a trace with limit c. In other words, if we have a constraint

c in some window w and want to construct a trace with limit c, we should

�rst make sure that c is the limit of some !-chain of �nite constraints.

Since we will reason about constraints of this type, it is appropriate to

give the concept a name and state some of its properties.

Given an algebraic lattice L, say that x 2 L is !-approximable if there

is an !-chain x

0

; x

1

; : : : in K(L) such that t

i2!

x

i

= x.

Any �nite element of L is !-approximable, of course. Also note that

if x

0

; x

1

is a chain of !-approximable elements it follows that t

i2!

x

i

is

!-approximable. Also, given algebraic lattices L

1

and L

2

, and a function

f : L

1

! L

2

which is !-approximable in the space of continuous functions

from L

1

to L

2

, it holds that f(x) is !-approximable for any !-approximable

x 2 L

1

.

Proposition 9.7.8 Let A be an agent, � an !-approximable environment

and s an oracle. Then F(E[[A]]�s) is !-approximable.

For a program �, the function P[[�]] is !-approximable. The least �x-

point of P[[�]] is !-approximable.

Proposition 9.7.9 Let c and d be !-approximable constraints. Let f be

a closure operator over constraints such that f w (c! d). Then there is a

trace t such that lim t = d and (c! d) v fn t v f .

Proof. We have c = t

i2!

c

i

and d = t

i2!

d

i

, for c

0

; : : : and d

0

; : : : �nite

constraints.

Construct the sequence e

0

; e

1

; : : : as follows.

Let e

0

= ?. Let e

2i

= c

i

t e

2i�1

, for i > 0. Let e

2i+1

= e

2i

t d

j

, where

j is the greatest such that j � i and d

j

v f(e

2i

). Let t be the trace with

v(t) = (e

i

)

i2!

and r(t) = fi j i is eveng.
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We want to show that fn t w (c ! d). It is su�cient to show that

(fn t)

T

(? ! c) w (? ! d). Clearly, (fn t)

T

(? ! c) w (? ! lim t). If we

can show that lim t w d we are done.

Suppose that lim t 6w d. There is a least j such that lim t 6w d

j

. We

have f(c) w d w d

j

and thus a least k such that f(c

k

) w d

j

. Let i be the

maximum of j and k. We have f(c

i

) w d

j

, and thus f(e

2i

) w d

j

, and by

the construction above e

2i+1

w d

j

. We have arrived at a contradiction and

conclude that fn t w (c! d). t

u

As a step toward the proof of completeness, we show the following propo-

sition which essentially implies that if the trace is given by the �xpoint

semantics, we can construct traces t

0

; t

1

; : : : which are all given by the op-

erational semantics and are such that lim t

i

= lim t, for all i 2 !, and

fn t =

T

i2!

t

i

.

Proposition 9.7.10 Let n 2 ! and hf; wi = E[[A]]�

n

s. Let d v e v c

be constraints independent of hidden variables such that (d ! e) v f ,

c = 9

H

(f c) and f c 2 w. It follows that there is an A(s)-computation with

a corresponding trace t such that fn t w (d! e) and lim t = c.

Proof. The proof is given in Section 9.11. t

u

Lemma 9.7.11 Let t be a trace such that fn t v F(E[[A]]�s). There is an

A(s)-computation with a corresponding trace t

0

such that t is a subtrace of

t

0

.

Proof. For i 2 r(t) we have (v(t)

i

! v(t)

i+1

) v fn t. For i 2 r(t), let t

i

be

a trace with lim t

i

= lim t and fn t

i

= (v(t)

i

! v(t)

i+1

). For a �xed i, there

is an n 2 ! such that fn t

i

v F(E[[A]]�

n

s). By Proposition 9.7.10 it follows

that there is a computation t

0

i

with functionality stronger than t

i

and limit

equal to that of t

i

. By Theorem 8.7.1 there is a computation t

0

such that

fn t

0

w fn t

0

i

, for each i, and thus fn t v fn t

0

. t

u

Intuitively, one would expect a correspondence between windows and the

limits of fair computations. First we will consider the set of initially fair

computations.

Proposition 9.7.12 Suppose that A

0

(s

0

) : d

0

�!

�

A(s) : d and there is

an !-approximable constraint e 2 W(E[[A

0

]]�s

0

). There is an initially fair

A(s)-computation with limit e.

Proof. The proof is given in Section 9.11. t

u

As we have shown the existence of initially fair computations, for a given

member of a window, we have actually done most work necessary to prove

the existence of fair computations. For a given member c of a window, we

need to construct a corresponding fair computation which has c as limit.
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Lemma 9.7.13 Let c be an !-approximable constraint. If c 2W(E[[A]]�s),

it follows that there is a fair A(s)-computation with limit c.

Proof. We will construct a family of initially fair chains (L

k

i

)

i2!

such that

L

0

0

= [A(s) : d], for some d, and each chain has limit c. Further, we make

sure that L

k

0

 L

k+1

0

and for each k and i there is a k

0

such that L

k

i

 L

k

0

0

.

We will show that given this, the sequence (L

k

0

)

k2!

is a fair chain with limit

c.

Let (L

0

i

)

i2!

be an initially fair A(s)-computation with limit c. For k � 0,

let L

k+1

0

= L

k

0

�L

k�1

1

� : : :�L

1

k�1

�L

0

k

. and let fL

k

i

g

i>0

be such that (L

k

i

)

i2!

is initially fair.

It is easy to verify that the family f(L

k

i

)

i2!

g

k2!

satis�es the properties

mentioned above. It follows immediately that (L

k

0

)

k2!

is a chain. To verify

that (L

k

0

)

k2!

is fair, consider a su�x (L

k

0

)

k�m

. Since (L

m

i

)

i2!

is initially

fair, and because of Lemma 8.7.9, we �nd that the su�x must be initially

fair. It follows that (L

k

0

)

k2!

is a fair chain. t

u

We are now ready to give the proof of Theorem 9.7.7. Recall that t is a

trace such that lim t 2 W(E[[A]]�s) and fn t v F(E[[A]]�s) and we want to

show the existence of a trace t

0

2 O

�

[[A]] such that t is a subtrace of t

0

.

Proof. (Theorem 9.7.7) By Lemma 9.7.13 there is a fair A(s)-computation

with limit lim t. By Lemma 9.7.11 there is an A(s)-computation with func-

tionality greater than or equal to fn t and limit equal to lim t. By Theo-

rem 8.7.1 the two computations can be combined into a fair computation

with functionality at least as strong as fn t and limit equal to lim t. t

u

9.8 Category-theoretic semantics

In this section, we will use a powerdomain construction by Lehmann [46,

47] to devise a �xpoint semantics which is more abstract than the oracle-

based �xpoint semantics. This powerdomain construction has previously

been used by Abramsky [2], Panangaden and Russel [61], Nystr�om and

Jonsson [58], and de Boer, Di Piero and Palamidessi [24] to give the �xpoint

semantics of various forms of nondeterministic programming languages.

Lehmann's construction relies on a special type of categories called !-

categories.

De�nition 9.8.1 An !-category is a category which has an initial object

and in which all !-chains have colimits.

An !-functors is a functor which preserves colimits of !-chains. t

u

It is easy to see that a cpo or a complete lattice can also be seen as a !-

category, and that a continuous function over a cpo or complete lattice is

an !-functor over the corresponding category.
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The following construction, which is by Lehmann, gives a powerdomain

for a given cpo (D;v).

De�nition 9.8.2 Assuming a cpo (D;v), the objects and arrows in the

corresponding powerdomain CP(D) are as follows.

The objects are multisets over D. To represent the multisets, we assume

some set of tags , about which we make no assumptions, except that they

exist in su�cient number to represent the multisets we are interested in.

We now represent each multiset over D by a set of pairs x




, where x 2 D

and 
 is some tag.

An arrow r : A ! B of CP(D) is a relation r � A � B such that for

each y 2 B there is a unique x 2 A such that hx; yi 2 r, and whenever

hx; yi 2 r we have x � y. We can view the arrow r as representing a

function r

�1

: B ! A, satisfying r

�1

y v y, for any y 2 B. t

u

For a diagram A

0

r

0

�! A

1

r

1

�! : : : the colimit has the following form. Let

S = f(x

i

)

i2!

j x

i+1

= r

�1

i

x

i

; for i 2 !g:

The colimiting object is now B = ft

i2!

x

i

j (x

i

)

i2!

2 Sg, together with the

arrows f

i

: A

i

! B such that f

�1

i

(t

i2!

(x

i

)) = x

i

, for t

i2!

(x

i

) 2 S.

9.8.1 Constructions

In the category CP(D), the product A � B is simply the disjoint union.

Given objects A and B, let C = fx

h
;1i

j x




2 Ag [ fy

h
;2i

j y




2 Bg: Let

r

�1

1

(x




) = x

h
;1i

, for x




2 A, and, similarly, r

�1

2

(y




) = y

h
;2i

, for y




2 B. It

is easy to check that this is in fact the product. It is a theorem of category-

theory that � is an !-functor on both arguments, when de�ned on all pairs

of objects.

The product will be used to model the non-deterministic choice between

two alternatives. We will write ] for the product.

The dual notion of product, coproduct , will also be used in the category-

theoretic �xpoint semantics. If D is a lattice, and A and B are objects of

CP(D), the coproduct C = A+B can be formed by

C = fz

h


1

;


2

i

j z = x t y; x




1

2 A; y




2

2 Bg:

The arrow r

1

: A ! C is given by r

�1

1

z

h


1

;


2

i

= x




1

, for x




1

2 A, y




2

2 Bg

and z = x t y. The arrow r

2

: B ! C is similar.

The de�nition of coproduct can easily be generalised to arbitrary sets of

objects. In this case, we will use the symbol

P

for the coproduct.

Given categories A and B, the product A�B is the category where the

objects consist of pairs of one object from A and one object from B; and

the arrows are pairs of arrows from A and B, such that hf; gi : hA

1

; B

1

i !
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hA

2

; B

2

i is an arrow of the product category if f : A

1

! A

2

is an arrow of

A and g : B

1

! B

2

is an arrow of B. For an ordered �nite set S with n

elements we write A

S

for the category A

1

� : : : �A

n

. If a 2 S is the kth

element of S let index

a

be a functor index

a

: A

S

! A such that for objects

index

a

hA

1

; : : : ; A

n

i = A

k

and for arrows index

a

hf

1

; : : : ; f

n

i = f

k

We will use the category product when modelling environments, i.e.,

mappings from the domain of names to some semantic domain.

We will also need the following result regarding the construction of !-

functors, which is by Lehmann [47]. Given a continuous function f : D

1

!

D

2

, de�ne the operation

^

f as follows. For an object A 2 D

1

, let

^

f(A) = fy




j y = f(x); x




2 Ag;

and for an arrow r : A

1

! A

2

in CP(D

1

) we take

^

f(r) :

^

f(A

1

) !

^

f(A

2

) to

be given by

^

f(r) = f




y




; y

0




0

�

j




x




; x

0




0

�

2 r; y = f(x); y

0

= f(x

0

)g:

Proposition 9.8.3 Let f : D

1

! D

2

be a continuous function. Then

^

f : CP(D

1

)! CP(D

2

) is an !-functor.

9.8.2 The Powerdomain of Trace Bundles

In this section we will consider a �xpoint semantics based on the powerdo-

main of trace bundles. Let Proc = CP(bundle).

Basic operations

Tell constraints First, to give the semantics of a tell constraint c we use

the following constant functor which returns a singleton set consisting of a

trace bundle with a functionality which adds c to the store and a window

that makes sure that c is in the store. Let

(hci) = fh? ! c; fcg

u

ig:

Disjoint union One operation that comes with the categorical powerdo-

main is the disjoint union

U

. The disjoint union is a functor of arbitrary

arity over the processes. This operation will be used we give the semantics

of non-deterministic choice.

Given !-functors F

1

; F

2

: Env ! Proc we can construct an !-functor

U

(F

1

; F

2

) : Env ! Proc that returns the disjoint union of the results of

applying F

1

and F

2

to the argument. We will take advantage of this to

simplify the presentation of the categorical semantics, and not distinguish

explicitly between ] as a functor over processes and a functor over functors

from environments to processes.
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Parallel Composition A rather appealing property of the categorical

semantics is the similarity between coproduct and parallel composition. For

processes P

0

; P

1

; : : : the coproduct can be formed by

X

i

P

i

= fh\

i

f

i

;\

i

w

i

i j hf

i

; w

i

i 2 P

i

; for all ig

The coproduct corresponds to a parallel composition where the processes

do not have a private state, since di�erent processes may refer to the same

hidden variable. To obtain the normal parallel composition of processes, we

must �rst apply the projection operators in the same way as in the oracle

semantics. In other words, the parallel composition of a family fP

j

g

j2I

of

processes is given by the following expression

X

j2I

�

j

P

j

;

where renamings have been extended to processes by the de�nition

�P = fh�f; �wi j hf; wi 2 Pg:

To simplify the presentation, we will also use

P

as a higher-order func-

tor that takes a family of functors fF

j

: Env ! Procg

j2I

and returns

a new functor

P

j2I

: Env ! Proc de�ned according to the equation

(

P

j2I

F

j

)A =

P

j2I

F

j

A.

Ask Constraints Ask constraints are modelled using a functor select(c) :

Proc! Proc which, for a given constraint c, takes a process and returns a

process consisting of trace bundles which do not generate any output until

c is satis�ed, and which require that c is eventually satis�ed.

select(c)P = fhc! f; fcg

u

\ wi j hf; wi 2 Pg

Unless Given constraints c

1

; : : : ; c

n

the constant functor unless(c

1

; : : : ; c

n

)

is de�ned. It returns a singleton set containing the trace bundle which is

always passive and requires that no c

k

is ever satis�ed.

unless(c

1

; : : : ; c

n

) = fhid;U n (fc

1

g

u

[ : : : [ fc

n

g

u

)ig

We will use this functor to model the case when in a selection no alternative

is ever chosen.

Existential quanti�cation Existential quanti�cation is treated as in the

oracle semantics; the new

X

renaming is applied to change the name of the

(visible) variable X into a hidden one.

Extend new

X

to be a functor over the CP(bundle), i.e., let

new

X

P = fhnew

X

f; new

X

wi j hf; wi 2 Pg:
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For each agent A de�ne a functor E [[A]] : Proc

N

! Proc according to

the following equations

E [[c]] = (hci)

E [[

V

j2I

A

j

]] =

P

j2I

(�

j

� E [[A

j

]])

E [[[]

1�k�n

c

k

) A

k

]] = (

U

1�k�n

select(c

k

) � E [[A

k

]])

]unless(c

1

; : : : ; c

n

)

E [[9

X

A]] = new

X

� E [[A]]

E [[P (X)]] = f�! Xg � index

P

For a program � de�ne a functor P [[�]] : Proc

N

! Proc

N

according

to the equation

P [[�]] = hfY ! �g � E [[A

p

]]i

p2N

;

where for each p 2 N the de�nition in � is assumed to be of the

form p(Y ) ::A, for some variable Y and some agent A.

Figure 9.2: The categorical �xpoint semantics

The categorical �xpoint semantics

The categorical �xpoint semantics is given in Figure 9.2.

9.9 Comparison between the oracle semantics and the categori-

cal semantics

We want to show that the categorical �xpoint semantics gives the same

set of traces as the oracle-based semantics. One obvious way of doing this

would be to de�ne a mapping from the semantic domain in the oracle based

�xpoint to the powerdomain of trace bundles, but it turns out that we

need a slightly more complex construction. The strategy we adopt is to

devise a �xpoint semantics which is half-way between the oracle �xpoint

semantics and the categorical �xpoint semantics, with the intention that

the relationship to both �xpoint semantics should be clear.

9.9.1 Augmenting the oracle semantics

Recall that the semantic domain for agents in the oracle based �xpoint

semantics, A, is the set of functions from oracles to trace bundles, that

is, pairs consisting of a closure operator f and a window w. We will give

an abstraction operator that maps each element of A to an object in the

category of processes.
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It is easy to see that each in�nite oracle gives a (possibly empty) set of

traces, so we might de�ne an abstraction operator that maps each element

a : ORACLE! bundle to a multiset

fa(s) j s is an in�nite oracleg

However, this construction is problematic since the minimal member of

A, which is �s: hid;Ui, would be mapped to a process object where each

trace bundle had an in�nite multiplicity, instead of being mapped to the

initial object of the category of processes. Also, the introduction of such

multiplicities of elements appears to be rather unnatural.

For a given agent, we must �nd a set of oracles that is su�cient to

generate trace bundles corresponding to all possible computation paths, but

which still bears some relationship to the choices performed by the agent.

One possible way to determine the set of oracles is to examine the result of

the oracle-semantics. However, there does not appear to be any continuous

operation that will accomplish this. Instead we de�ne a semantic function

D which will provide us, for each agent, with a set of oracles which are

su�cient to determine the set of traces generated.

Recall that in Section 8.3 an operation � was de�ned which for a family

of oracles fs

n

g

n2!

produced an oracle s such that �

n

s = s

n

, for n 2 !. We

will use the operation here, with the assumption that I = !.

For a partial order P , say that a set S � P is anticonsistent if no two

elements in S have an upper bound in P , i.e., for all x; y 2 S such that

x; y � z, for some z 2 P we have x = y

Let AC be the set of anticonsistent subsets of ORACLE. For a; b 2 AC,

say that a v b if a

u

� b in ORACLE. It turns out that AC forms a cpo under

this ordering with f�g as least element. Now we can de�ne D[[A]] : AC

N

!

AC inductively, for each agent A.

D[[c]]� = f�g

D[[

V

j2I

A

j

]]� = f�

j2I

s

j

j

s

j

2 D[[A

j

]]�; for j 2 Ig

D[[(c

1

) A

1

[] : : : [] c

n

) A

n

)]]� = fk:s j 1 � k � n; s 2 D[[A

k

]]�g

[f0g

D[[9

X

A]]� = D[[A]]�

D[[p(X)]]� = �p

For a program � we can now de�ne a functor Q[[�]] : AC

N

! AC

N

ac-

cording to the equation

Q[[�]]�p = D[[A]]�;

where the de�nition of p in � has the form p(X) ::A. It should be clear

that for a program � and agent A, and � the least �xpoint of Q[[�]], the
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set S = D[[A]]� is su�cient to determine the set of traces generated by the

oracle semantics. For example, for the agent

A = (X = 1) Z = 3 [] Y = 2)W = 5)

the set of oracles needed to produce all traces is D[[A]]� = f0; 1; 2g.

9.9.2 An intermediary category

To facilitate the comparison between the oracle semantics and the categor-

ical �xpoint semantics, we will give a semantics which lies between the two

�xpoint semantics de�ned earlier.

Recall that the objects of CP(bundle) are multisets of trace bundles,

where the elements of multisets are tagged with some arbitrary value to

distinguish between multiple occurrences of an element. An arrow P

1

r

�! P

2

of CP(bundle) is a reverse mapping r

�1

: P

2

! P

1

mapping each tagged

element of P

2

to an element of P

1

which is smaller or equal.

De�nition 9.9.1 Let inter be the subcategory of CP(bundle) where the

objects and arrows satisfy these additional requirements.

1. The objects are multi-sets of trace bundles, where the tags are drawn

from the set of oracles, and each member of an object has a unique

tag, and the tags of members of an object form an anticonsistent set.

2. The arrows r : P

1

! P

2

satisfy the following, for all hf

1

; w

1

i

s

1

2 P

1

and hf

2

; w

2

i

s

2

2 P

2

. It holds that r

�1

(hf

2

; w

2

i

s

2

) = hf

1

; w

1

i

s

1

exactly

when s

1

v s

2

.

t

u

For an oracle s and an object P of inter, we will write s 2 P to indicate

that there is a trace bundle in P with tag s, and P (s) for that particular

trace bundle.

Obviously, inter is a subcategory of CP(bundle). It should also be

clear that that inter has an initial element given by hid;Ui

�

which is also

an initial element of CP(bundle). For an !-chain

P

0

r

0

�! P

1

r

1

�! P

2

r

2

�! : : :

the colimit can be given by

P = f(t

i2!

P

i

(s

i

))

s

j s

i

2 P

i

; for i 2 ! and s = t

i2!

s

i

g:

Clearly, an !-colimit in the category inter coincides with the corresponding

colimit in CP(bundle).

So inter is a sub-!-category of CP(bundle).
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9.9.3 Re�ning the basic operations

The basic operations of the categorical powerdomain was given without

regard to the choice of tags of the members of the multisets. This is of course

the natural way to de�ne operations over multisets, but we shall see that

by strengthening the de�nitions of the basic operations of the categorical

�xpoint semantics it is actually possible to give the categorical �xpoint

semantics in the intermediate category.

The idea is that we re�ne the basic operations given for the categorical

semantics to make sure that all operations are well-de�ned in the interme-

diate category.

Tell constraints The semantics of the tell constraint is given with a con-

stant functor which returns a singleton multiset. We just need to give the

single member of the multiset a tag which is an oracle. Let

(hci) = fh? ! c; fcg

u

i

�

g:

Disjoint union In the categorical powerdomain, disjoint union corre-

spond to category-theoretic product. The product in the intermediate cat-

egory is not a disjoint union, due to the restrictions on arrows, but it is still

possible to de�ne a functor which returns a disjoint union of multi-sets.

For a family fP

k

g

0�k�n

of multi-sets, let

]

0�k�n

P

k

= fhf; wi

k:s

j hf; wi

s

2 P

k

; 0 � k � ng:

The semantic equation for selection in Figure 9.2 should thus be read

E [[ []

k�n

c

k

) A

k

]] =

]

0�k�n

P

k

;

where P

0

= unless(c

1

; : : : ; c

n

), and P

k

= select(c

k

) � E [[A

k

]], for 1 � k � n.

It is easy to see that the operation is indeed a functor in the intermediate

category, and that it is a re�nement of the disjoint union of the category-

theoretic powerdomain.

Parallel Composition Coproduct in the intermediate category corre-

sponds to coproduct in the CP(bundle).

X

j2I

P

j

= fh\

j2I

f

j

;\

j2I

w

j

i

s

j hf

j

; w

j

i

s

j

2 P

j

; for j 2 I; and s = �

j2I

s

j

g:
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Selections It is straight-forward to re�ne the functor select(c) : Proc !

Proc to a functor over the intermediate category. Let

select(c)P = fhc! f; fcg

u

\ wi

s

j hf; wi

s

2 Pg:

The constant functor unless(c

1

; : : : ; c

n

) is treated in the same way as the

constant functor (hci) which gives the semantics for tell constraints. Let the

single element in the multiset returned by unless(c

1

; : : : ; c

n

) be tagged by

the oracle �.

Existential quanti�cation In the category-theoretic semantics, existen-

tial quanti�cation is obtained by applying the function new

X

to each trace

bundle. Re�ning this operation to the intermediate category is done by

retaining the tags of the argument to the functor, i.e., let

new

X

P = fhnew

X

f; new

X

wi

s

j hf; wi

s

2 Pg:

Intermediate �xpoint semantics

The semantic equations for the intermediate �xpoint semantics are the same

as for the categorical powerdomain semantics.

Relation with the oracle semantics

For a given program and agent, the oracle semantics gives a function a which

maps oracles to trace bundles. In some cases, the resulting trace bundle

corresponds to an empty set of traces, and in other cases the trace bundle

was provided by applying the function a (the `semantics' of the agent) to a

weaker oracle. Augmenting the oracle semantics with the semantic function

D and Q provides us, for each agent, with a set of oracles which is su�cient

to generate all traces of that agent. So if the oracle semantics of an agent is a,

and the corresponding set of oracles is S, we can give the set of trace bundles

as the set fas j s 2 Sg. The corresponding mapping to the intermediate

category is

�

i

(a; S) = f(as)

s

j s 2 Sg:
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9.10 Concluding remarks

In this chapter we presented two �xpoint semantics for concurrent constraint

programming. Both semantics take into account in�nite computations and

fairness between processes.

The �rst semantics has a conventional lattice-theoretic domain and is

rather straight-forward, and it easy to see exactly which aspects of the

semantics that makes it less than fully abstract (that is, the use of oracles

and that the values of local variables are part of the semantics).

Other methods for giving the semantics of non-deterministic concurrent

languages, i.e., giving the semantics as a set of traces or modeling con-

currency as interleaving in an operational semantics, give a set of possible

branches which is exponential in the length of the computation. In contrast,

the oracle �xpoint semantics gives a set of possible branches which is expo-

nential in the number of actual non-deterministic choices. While this is still

of high complexity, it is nevertheless a signi�cant improvement and might

make the oracle semantics useful in the analysis of concurrent programs.

The second �xpoint semantics, the categorical semantics, is what re-

mains when we remove the oracles from the oracle semantics. The oracles

give us a tree of alternative branches, and the use of Lehmann's categori-

cal powerdomain allows us to put the branching information in the arrows

of the category that is the Lehmann powerdomain. The resulting �xpoint

semantics is a bit simpler than the oracle semantics, and one might argue,

also a bit more abstract.

9.11 Proofs of Chapter 9

Proof of Proposition 9.3.2

We want to show that a renaming � which is injective when seen as a function

over variables is also injective when seen as a function over constraints. We

assume that � is injective, that is, �c = �d, for constraints c and d. We want

to show that c = d.

Suppose that � 2 c. It follows that �� 2 �c. We have � 2 �d, thus there

is a �

0

2 d such that �� � ��

0

. Let V be an assignment such that V j= �

0

.

Since � is injective there is a renaming �

0

such that �

0

� � = id. It follows

that with V

0

= V � �

0

we have V

0

� � j= �

0

(since V

0

� � = V � �

0

� � = V )

and thus V

0

j= ��

0

. Since �� � ��

0

we have V

0

j= �� and V j= �. We

have � � �

0

, and since constraints are assumed to be down-closed sets of

formulas we have � 2 d.

It follows that c � d, by a symmetric argument we can establish that

d � c, and thus c = d.
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Proof of Proposition 9.3.3

Proof of Item 1 To prove that 9

H

� new

X

= 9

H

� 9

X

, we will show that

an arbitrary constraint c and variable assignment V , we have V j= 9

H

(9

X

c)

i� V j= 9

H

(new

X

c).

First note that V j= 9

H

(9

X

c) i� there is an assignment V

0

such that

V

0

j= c and V

0

(Y ) = V (Y ) for visible variables Y distinct from X .

Second, V j= 9

H

(new

X

c) i� there is an assignment V

00

such that V

00

j=

new

X

c and V (Y ) = V

00

(Y ), for visible variables Y . By the de�nition of j=

we have V

00

j= new

X

c i� V

00

� new

X

j= c.

It is now easy to see that V

00

�new

X

satis�es the condition for V

0

above.

Thus, if V j= 9

H

(new

X

c) we also have V j= 9

H

(9

X

c).

In the other direction, note that if V j= 9

H

(9

X

c) holds (and we have

V

0

j= c) we can construct an assignment V

00

such that V

00

(Y ) = V (Y )

for visible variables Y , V

00

(new

X

Y ) = V

0

(Y ), for hidden variables Y , and

V

00

(new

X

X) = V

0

(X). An assignment V

00

that satis�es these conditions

also satis�es V

00

� new

X

= V

00

, thus V

00

j= new

X

c, and it follows that

V j= 9

H

(new

X

c).

It follows immediately that 9

H

(new

X

c) = 9

H

(9

X

c) for arbitrary con-

straints c.

Proof of Item 2 To show that new

X

(9

X

c) v c, suppose that V j= c.

Since (V �new

X

)Y = V (Y ), for visible variables Y distinct from X we have

V � new

X

j= 9

X

c. It follows immediately that V j= new

X

(9

X

c).

Proof of Item 3 (We show that new

�1

X

c = 9

X

c.) (w) By Item 2 we have

new

X

(9

X

c) v c. By applying new

�1

X

on both sides we �nd that 9

X

c v

new

�1

X

c.

(v) Note that new

�1

X

c =

F

fd j new

X

d v xg. To show that new

�1

X

c v

9

X

c, it is su�cient to show that for all d such that new

X

d v c, we have

d v 9

X

c.

Let d be such that new

X

d v c. Let V be a variable assignment such

that V j= 9

X

c. There is a variable assignment V

0

such that V

0

j= c and

V

0

(Y ) = V (Y ), for all variables Y 6= X . Let V

00

be an assignment such that

V

00

(new

X

Y ) = V (Y ), for all variables Y , and V

00

(X) = V

0

(X). Clearly

V

00

(Y ) = V

0

(Y ) for all visible variables Y . Since c by assumption does not

depend on visible variables it follows that V

00

j= c. Thus V

00

j= new

X

d, and

V

00

� new

X

j= d. Since V

00

� new

X

= V , we have V j= d, sor d v 9

X

d.

Proof of Item 4 To show that �

j

c = c, �rst suppose that V j= c, for an

assignment V . Since �

j

(X) = X , for visible variables X , we have V ��

j

j= c

and thus V j= �

j

c. The proof that V j= �

j

c implies V j= c is similar.
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To show �

�1

j

c = c, we use the result we just obtained, �

j

c = c, and apply

the inverse projection �

�1

j

to both sides.

Proof of Item 5 In the proof of �

�1

j

� �

k

= 9

H

, �rst note that since

�

�1

j

w 9

H

and �

k

w 9

H

we have immediately �

�1

j

� �

k

w 9

H

. To show that

�

�1

j

� �

k

v 9

H

, �rst note that �

�1

j

(�

k

c) =

F

fd j �

j

d v �

k

cg, for arbitrary

constraints c. Let c be �xed.

Suppose that d is such that �

j

d v �

k

c. We will show that d v 9

H

c.

Let V be such that V j= 9

H

c. It follows that V

0

j= c, for some V

0

such

that V (X) = V

0

(X), for visible variables X . It is possible to construct

a variable assignment V

00

such that V

00

(X) = V

0

(X) = V (X), for visible

variables X , and V

00

� �

j

= V and V

00

� �

k

= V

0

. To see how this is possible,

remember that the sets �

j

H and �

k

are disjoint, so the values assigned by

V and V

0

to hidden variables cannot interfere. Now, since V

00

� �

k

= V

0

,

we have V

00

� �

k

j= c and thus V

00

j= �

k

c. By assumption, this implies that

V

00

j= �

j

d. Thus V

00

� �

j

j= d. Since V

00

� �

j

= V , we have V j= d and we

are done.

Proof of Proposition 9.3.4

(() Suppose that c is a �xpoint of � � f � �

�1

t id. It follows that (� � f �

�

�1

)c v c. Thus �

�1

((� � f � �

�1

)c) v �

�1

c, and f(�

�1

c) v �

�1

c. Since f

is a closure operator it follows that �

�1

c is a �xpoint of f and thus c 2 �f .

()) Suppose that c 2 �f . It follows that �

�1

c = f(�

�1

c), and thus

�(f(�

�1

c)) = �(�

�1

c) v c. We have �(f(�

�1

c)) t c = c, and thus c is a

�xpoint of � � f � �

�1

t id.

Proof of Proposition 9.3.5

(w) Let c 2 E

H

(new

X

S). There is a constraint d such that 9

H

d = 9

H

c

and new

�1

X

d 2 S. Let e = new

�1

X

d. To prove that c 2 E

H

(E

X

S), it is

su�cient to �nd a constraint d

0

such that 9

H

c = 9

H

d

0

and 9

X

d

0

= 9

X

e. Let

d

0

= 9

H

ct9

X

e. First, note that 9

H

d

0

= 9

H

(9

H

ct9

X

e) = 9

H

ct9

H

(9

X

e).

Since 9

H

(9

X

e) = 9

H

(new

X

e) v 9

H

d = 9

H

c we have 9

H

c = 9

H

d

0

. Second,

we have 9

X

d

0

= 9

H

(9

X

c) t (9

X

e). Since

9

H

(9

X

c) = 9

X

(9

H

d)

= 9

X

(9

X

(9

H

d))

= 9

X

(new

�1

X

(9

H

d))

v 9

X

(new

�1

X

d)

= 9

X

e;

it follows that 9

X

d

0

= 9

X

e.
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(v) Let c 2 E

H

(E

X

S). There is a constraint e 2 S such that 9

H

(9

X

c) =

9

H

(9

X

e). We would like to �nd a constraint d such that 9

H

d = 9

H

c and

new

�1

X

d 2 S. Let d = 9

H

c t new

X

e. First we see that 9

H

d = 9

H

c t

9

H

(new

X

e). But 9

H

(new

X

e) = 9

H

(9

x

e) = 9

H

(9

X

c) v 9

H

c, so we can

conclude that 9

H

d = 9

H

c. Second, applying the new

�1

X

function gives us

new

�1

X

d = new

�1

X

(9

H

d) t new

�1

X

(new

X

e) = new

�1

X

(9

H

d) t e. We see that

new

�1

X

(9

H

d) = 9

X

(9

H

d) = 9

H

(9

X

e) v e, thus new

�1

X

d = e.

Proof of Proposition 9.3.6

We begin by showing that d 2 f , i.e., that d is a �xpoint of f . To show that

d 2 f , we must show that d 2 (�

j

f

j

), for all j 2 I . Let j 2 I be �xed.

(�

j

f

j

)d = (�

j

f

j

)

�

F

k2I

(�

k

f

k

)c

�

= (�

j

� f

j

� �

�1

j

)

�

F

k2I

(�

k

� f

k

� �

�1

k

)c

�

= (�

j

� f

j

)

�

F

k2I

(�

�1

j

� �

k

� f

k

)c

�

Now, note that for j = k we have (�

�1

j

��

k

�f

k

)c = f

j

c, and for j 6= k we have

(�

�1

j

� �

k

� f

k

)c = 9

H

(f

k

c) v 9

H

(fc). Since f

j

c w c = 9

H

(fc) w 9

H

(f

k

c),

for k 2 I , it follows that

�

F

k2I

(�

�1

j

� �

k

� f

k

)c

�

= f

j

c. Thus

(�

j

� f

j

)

�

F

k2I

(�

�1

j

� �

k

� f

k

)c

�

= (�

j

� f

j

)(f

j

c)

= (�

j

� f

j

)c

= (�

j

f

j

)c:

It follows that d 2 (�

j

f

j

), for all j 2 I , and thus d 2 f .

Clearly fc w d, since fc w (�

j

f

j

)c, for all j 2 I . We have d w c, since

(�

j

f

j

)c w c, for j 2 I . It follows that fd w fc, but since d is a �xpoint of f

we have d w fc.

Proof of Lemma 9.7.4

We will prove the following, by induction on pairs (k;A), under the lexical

ordering. Let f = F(E[[A]]�s). For any A(s)-computation (A

i

: c

i

)

i2!

, when

A

k

: c

k

! A

k+1

: c

k+1

, we have c

k+1

v (E

H

f)c

k

.

If A is a tell constraint, i.e., A = d for some constraint d, it follows

immediately that a computation can have a functionality which is at most

(? ! d).

Suppose A =

V

j2I

A

j

. Let hf

j

; w

j

i = E[[A

j

]]�(�

j

s), for j 2 I . By

the computation rules A

i

=

V

j2I

A

j

i

, for all i 2 !, and there is a j 2 I

such that A

j

k

: c

k

! A

j

k+1

: c

k+1

. By the induction hypothesis we have

c

k+1

v (E

H

f

j

)c

k

. Since f w �

j

f

j

, and E

H

(�

j

f

j

) = E

H

f

j

, we have c

k+1

v

(E

H

f

j

)c

k

= (E

H

(�

j

f

j

))c

k

v (E

H

f)c

k

.
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If A is a selection, it follows that there must be some position i at which

A is reduced to one of its branches. Consider the computation beginning at

position i. We can immediately apply the induction hypothesis.

Suppose A = 9

X

A

0

. Let f

0

= F(E[[A

0

]]�s). For each i 2 !, we know

that A

i

9

d

i

X

A

0

i

, for some d

i

and A

0

i

. By the computation rules we have A

0

k

:

d

k

t 9

X

(c

k

) �! A

0

k+1

: d

k+1

, where c

k+1

= c

k

t 9

X

(d

k+1

). For i � k,

we have by the induction hypothesis that d

i+1

v f

0

(d

i

t 9

X

(c

i

)). We can

prove by an inductive argument that d

i+1

v (f

0

�9

X

)c

k

, for all i � k. First,

d

0

= ?, by the assumption that the local data in an initial con�guration is

?. Suppose d

i

v (f

0

� 9

X

)c

k

. Now we have, when i � k, that

d

i+1

v f

0

(d

i

t 9

X

(c

i

))

v f

0

((f

0

� 9

X

)c

k

t 9

X

(c

i

))

= (f

0

� f

0

� 9

X

)c

k

= (f

0

� 9

X

)c

k

:

In particular we have d

k+1

v (f

0

� 9

X

)c

k

. It follows that c

k+1

v c

k

t (9

X

�

f

0

� 9

X

)c

k

= fc

k

. By monotonicity we have 9

H

(c

k+1

) v 9

H

(fc

k

), and

since c

k

and c

k+1

are independent of variables in H , c

k+1

v 9

H

(fc

k

) =

9

H

(f(9

H

c

k

)) v (E

H

f)c

k

.

If A = p(X), for some procedure name p and variable X , and the def-

inition of p is of the form p(Y ) ::A

0

, it follows from the computation rules

that the �rst computation step leads a con�guration A

i

= f�! Xg(fY !

�gA

0

). (Clearly i > 0.) The �xpoint semantics gives us that

E[[p(X)]]�s = f�! Xg(�ps)

= f�! Xg(fY ! �g(E[[A

0

]]�s))

= E[[A

i

]]�s:

In particular, f = E

H

(F(E[[A]]�s)) = E

H

(F(E[[A

i

]]�s)). It follows that if we

consider the computation that starts with the agent A

i

we see immediately

that f(c

k

) w c

k+1

.

Proof of Lemma 9.7.5

Let �

0

= �s:�P: hid;Ui, �

n+1

= P[[�]]�

n

, for n � 0. Let w

n

=W(E[[A]]�

n

s),

for n � 0. Note that w =

T

n2!

w

n

, so if lim t 62 w, it follows that lim t 62 w

n

,

for some n.

We will prove the following, by induction on pairs (n;A), under the

lexical ordering. If t 2 O

�

[[A(s)]], it follows that lim t 2 W(E[[A]]�

n

s). The

lemma follows immediately.

If A is a tell constraint c it follows immediately from the fairness require-

ments that any trace t 2 O

�

[[A]] must have lim t w c, i.e., lim t 2 fcg

u

= w,

and since lim t is independent of hidden variables, lim t 2 E

H

w.
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Suppose A =

V

j2I

A

j

. It follows by Lemma 4.7.5 that there are traces

t

j

2 O

�

[[A

j

]] such that t =

W

j2I

t

j

. By the induction hypothesis we have

lim t

j

2 E

H

(w

j

), where w

j

= W(E[[A

j

]]�

n

s). Since lim t = lim t

j

, for all

j 2 I , lim t 2

T

j2I

E

H

(w

j

) = E

H

(

T

j2I

w

j

) = E

H

w.

Suppose A is a selection (d

1

) A

0

[] : : : [] d

m

) A

m

), and s = k:s

0

.

Suppose 1 � k � m. Let (A

i

; c

i

)

i2!

be the computation corresponding to

the trace t. By the fairness requirement, there is some l > 0 such that

A

l

= A

k

, i.e, the kth alternative must eventually be selected. By the

computation rules we �nd that this cannot happen unless c

l

0

w d

k

, for

some l

0

� l. Now, consider the A

k

(s

0

)-computation (A

i

: c

i

)

i�l

. By the

induction hypothesis, we know that the limit of this computation,

F

i�l

c

i

,

lies in E

H

(W(E[[A

k

]]�

n

s

0

)). It follows that lim t 2 E

H

w.

Suppose A is a selection (d

1

) A

0

[] : : : [] d

m

) A

m

) and s = 0:s

0

.

By the fairness requirement, it holds for each store c

i

that c

i

6w d

k

, for

k � m. Thus we have lim t = t

i2!

c

i

6w d

k

, for k � m, and it follows that

lim t 2 W(E[[A]]�

n

s).

Suppose A = 9

X

A

0

. We know that t is of the form (9

d

i

X

A

0

i

: c

i

)

i2!

and

that t

0

2 O

�

[[A

0

]], where t

0

= (A

0

i

: d

i

t (9

X

c

i

))

i2!

.

It follows by the assumption on A that d t (9

X

c) 2 E

H

w

0

n

, where w

0

n

=

W(E[[A

0

]]�

n

s), and c = t

i2!

c

i

, and d = t

i2!

d

i

. By the computation rules

we know that c w 9

X

d. It follows that 9

X

c = 9

X

(ct9

X

d) = 9

X

(dt9

X

c) 2

E

X

(E

H

w

0

n

). Thus, c 2 E

X

(E

H

w

0

n

) = E

H

(E

X

w

0

n

) = E

H

(new

X

w

0

n

) =

E

H

(w

n

).

Suppose A = p(X). There is, by the fairness requirement, a con�gura-

tion A

i

: c

i

, where A

i

= f� ! Xg(fY ! �gA

0

), assuming that the de�ni-

tion of p is of the form p(Y ) ::A

0

. It is easy to see that E[[A]]�s = E[[A

i

]]�s.

By the induction hypothesis, we know that c 2 f� ! Xg(fY ! �gw

0

),

where w

0

= W(E[[A

0

]]�s). Since w = f� ! Xg(fY ! �gw

0

we have imme-

diately that c 2 w and since c does not depend on any hidden variables,

that c 2 E

H

w.

Proof of Lemma 9.7.6

Let �

0

= �s:�p: hid;Ui, and �

n+1

= P[[�]]�

n

, for n 2 !. Let � =

F

n2!

�

n

.

We will show by induction on pairs (n;A) that whenever t 2 A

�

[[A(s)]], we

have f c 2 W(E[[A]]�

n

s), where c = lim t.

If A is a tell constraint d, it follows by fairness that lim t w d. Thus

lim t 2 fdg

u

= w.

If A is a conjunction

V

j2I

A

j

we have t

j

2 A

�

[[A

j

]] such that lim t

j

=

lim t, for all j 2 I . With hf

j

; w

j

i = E[[A

j

]]�

n

(�

j

s) we have, by the induction

hypothesis, f

j

c 2 w

j

. Since w =

T

j2I

�

j

w

j

we want to show that f c 2

�

k

w

k

, i.e., that �

�1

k

(f c) 2 w

k

, for all k 2 I . By Proposition 9.3.6 f c =

F

j2I

(�

j

f

j

)c =

F

j2I

�

j

(f

j

c). Let k be �xed in I . We have �

�1

k

(f c) =
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�

�1

k

(

F

j2I

�

j

(f

j

c)) =

F

j2I

�

�1

k

(�

j

(f

j

c)), and since �

�1

k

� �

j

= 9

H

, for j 6= k,

it follows that

F

j2I

�

�1

k

(�

j

(f

j

c)) = f

k

c 2 w

k

.

Suppose A is a selection (d

1

) B

1

[] : : : [] d

m

) B

m

). If s begins with

a 0 it follows from fairness that lim t 6w d

k

, for 1 � k � m, thus f = id

and f(lim t) = lim t 2 w. If s = k:s

0

, where 1 � k � m, it follows that

f = d

k

! f

0

and w = fd

k

g

u

\ w

0

where hf

0

; w

0

i = E[[B

k

]]�

n

s

0

. By the

induction hypothesis f

0

c 2 w

0

. By fairness the kth branch of the selection

must be chosen, and in order for this to happen the ask constraint d

k

must

be entailed by the store. Thus, c w d

k

so f c = f

0

c 2 w

0

. Since c 2 fd

k

g

u

we are done.

Suppose A = 9

X

A

0

. We have t

0

2 A

�

[[A

0

]], and with c

0

= lim t

0

, we

also have 9

X

c

0

= 9

X

c, E

X

(fn t

0

) = E

X

(fn t) and (fn t

0

)(9

X

c) = c

0

. With

hf

0

; w

0

i = E[[A

j

]]�

n

we have f

0

c

0

2 w

0

. We want to show f c 2 w which is

true i� new

�1

X

(f c) 2 w

0

. Now,

new

�1

X

(f c) = new

�1

X

((new

X

f

0

)c)

= new

�1

X

(c t new

X

(f

0

(new

�1

X

c)))

= (9

X

c) t f

0

(9

X

c)

= f

0

(9

X

c)

2 w

0

:

If A is a call p(X) and the de�nition of p is of the form p(Y ) :: A

0

it fol-

lows that t is also a trace of A

�

[[[X=Y ]A

0

(s)]]. According to the �xpoint

semantics E[[A]]�

n

= f� ! Xg(�

n

ps) = f� ! Xg(fY ! �gE[[A

0

]]�

n�1

s).

Clearly, f� ! Xg(fY ! �gE[[A

0

]]�

n�1

s) = E[[[X=Y ]A

0

]]�

n�1

s. By induc-

tion hypothesis (f� ! Xg(fY ! �gf))c 2 f� ! Xg(fY ! �gw), from

which follows that f c 2 w.

Proof of Proposition 9.7.10

The proof is by induction on pairs (n;A) under the lexical ordering. We

only consider the cases where A is a conjunction or an existential quanti�er.

Consider the agent

V

j2I

A

j

. Let hf

j

; w

j

i = E[[A

j

]]�

n

(�

j

s).

Let q : ! ! I be a mapping such that for each j 2 I , q(i) = j in�nitely

often. Let d

0

= d and d

i+1

= 9

H

(f

q(i)

d

i

), for i 2 !. Let e

0

=

F

i2!

d

i

. If

c w d

i

, it follows that c = 9

H

(fc) w 9

H

(f

k

d

i

), for any k, thus c w e

0

. On

the other hand, since 9

H

(fd) w e, we have e v 9

H

(fd) v 9

H

(

T

j2I

(�

j

f

j

)d).

For k 2 I , let e

0

k

= (�

k

f

k

)e

0

. Note that 9

H

e

0

k

= e

0

. Since for j 6= k we have

((�

j

f

j

) � (�

k

f

k

))e

0

= (�

j

f

j

)e

0

k

= e

0

k

t (�

j

� f

j

� �

�1

j

)e

0

k

= e

0

k

t (�

j

� f

j

)e

0

= e

0

k

t e

0

j

;

it is clear that 9

H

(

T

j2I

(�

j

f

j

)d) = e

0

. Thus e v e

0

.
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To be able to apply the induction hypothesis we must show that f

k

c 2

w

k

, for all k 2 I . By Proposition 9.3.6 we have fc =

F

j2I

(�

j

f

j

)c. Let

k 2 I be �xed. We have fc 2 (�

k

w

k

). Thus, fc = �

k

c

k

, for some c

k

2 w

k

.

So �

�1

k

(fc) = c

k

, and since �

�1

k

(fc) = �

�1

k

(

F

j2I

(�

j

f

j

)c) = f

k

c we have

f

k

c 2 w

k

.

It is thus possible to apply the induction hypothesis and it gives us that

we can for each i 2 ! construct a A

j

(�

j

s)-computation (where j = q(i))

with trace t

i

, such that fn t

i

w d

i

! d

i+1

and lim t

i

= c. By Theorem 8.7.1

there is an A(s)-computation with trace t that satis�es the theorem.

Suppose A = 9

X

A

0

. Let hf

0

; w

0

i = E[[9

X

A

0

]]�

n

s. Let d

0

= 9

X

d and

e

0

= (f

0

� 9

X

)d. Clearly (d

0

! e

0

) v f

0

. Let c

0

= 9

X

c. To be able to

apply the induction hypothesis we must show that f

0

c

0

2 w

0

. First note

that new

�1

X

(fc) 2 w

0

. We have

new

�1

X

(fc) = new

�1

X

((new

X

f

0

)c)

= new

�1

X

((new

X

� f

0

� new

�1

X

t id)c)

= (new

�1

X

� new

X

� f

0

� new

�1

X

� 9

H

)c t (new

�1

X

� 9

H

)c

= f

0

(9

X

c) t 9

X

c

= f

0

c

0

By the induction hypothesis there is an A

0

(s)-computation with trace t

0

such that lim t

0

= c

0

and fn t

0

w (d

0

! e

0

). For i 2 r(t

0

) let d

i

= 8

X

(v(t

0

)

i

),

i.e., the least d

i

such that 9

X

(d

i

) w v(t

0

)

i

, and e

i

= 9

X

(v(t

0

)

i+1

). We can

for each i 2 r(t

0

) construct an A(s)-computation with trace t

i

such that

fn t

i

w (d

i

! e

i

) and lim t

i

= c

0

. It follows from Theorem 8.7.1 that there

is a computation t with lim t = c and

fn t w

\

i2r(u)

fn t

i

= E

X

(fnu) w (d! e):

Proof of Proposition 9.7.12

Note that W(E[[A

0

]]�s

0

) \ fd

0

g

u

= W(E[[A]]�s) \ fdg

u

, if A

0

(s

0

) : d

0

�!

�

A(s) : d.

The proposition is proved by induction on pairs (A; n), under the lexical

ordering, where n is the number of computation steps from A

0

(s

0

) : d

0

to

A(s) : d. Let fe

i

g

i2!

be a chain in K(U). such that e =

S

i2!

e

i

.

Suppose A is a tell constraint c. It follows that c v e. The computation

(A(s) : e

0

; A(s) : e

1

; : : :) is initially fair.

Suppose A is a conjunction. It follows from the computation rules

that A

0

is either a conjunction or a selection. If A

0

is a selection we

can �nd an agent A

1

, an oracle s

1

, a constraint d

1

and n

0

< n such that

A

0

(s

0

) : d

0

�!

n�n

0

A

1

(s

1

) : d

1

and A

1

(s

1

) : d

1

�!

n

0

A(s) : d. It fol-

lows that we can apply the induction hypothesis (since (A; n

0

) < (A; n)
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under the lexical ordering) and conclude that there is an initially fair A(s)-

computation. Suppose A

0

=

V

j2I

A

j

0

and A =

V

j2I

A

j

. We know that for

all j 2 I we have A

j

0

(�

j

s

0

) : d �!

n

A

j

(�

j

s) : d. By the induction hypothe-

sis it follows that there is an initially fair A

j

(�

j

s)-computation with limit e,

for each j 2 I . We can immediately form an initially fair A(s)-computation.

Suppose A is a selection (c

1

) B

1

[] : : : [] c

m

) B

m

). If the oracle s

begins with a 0 it follows that c

k

6v e, for all k � m. Thus the computation

(A(s) : e

0

; A(s) : e

1

; : : :) is initially fair. If s begins with k, where 1 � k � m,

it follows that c

k

v e. Let l 2 ! be such that e

l

w c

k

. We have an initially

fair computation (A(s) : e

0

; A(s) : e

l

; B

k

(s

0

) : e

l

; B

k

(s

0

) : e

l+1

; : : :), where s

0

is the tail of s.

Suppose A is an existential quanti�cation 9

c

X

A

0

. The case when A

0

is not

an existential quanti�cation can be treated using an argument similar to the

case for conjunctions. Suppose A

0

is an existential quanti�cation. Let e

0

=

F(E[[A

0

]]�s)(9

X

e). By Proposition 9.7.9 there is a trace t such that lim t = e

0

and fn t w (9

X

(e)! e

0

) and fn t v f . By the induction hypothesis there is

an initially fair A

0

(s)-computation with limit e

0

. By Lemma 9.7.11 there is

an A

0

(s)-computation with functionality stronger than fn t and limit e

0

. By

Theorem 8.7.1 it follows that these two computations may be combined into

an initially fair A

0

(s)-computation with limit e

0

and functionality stronger

than fn t. Let B be the agent

V

i2!

9

X

(e

i

), i.e., a conjunction of agents

in which each agent is a tell constraint, and let s

0

be an oracle such that

�

0

s

0

= s. Clearly there is an input-free A

0

^ B(s

0

)-computation which is

initially fair and has limit e

0

. Let (w

i

)

i2!

be the sequence of stores of

the computation and (A

0

i

)

i2!

the agents in the computation derived from

the agent A

0

, and r the set of computation steps performed by A

0

in the

computation.

We will now give c

i

and d

i

, for i 2 !, such that 9

c

i

X

A

0

i

: d

i

is an initially

fair computation with limit e.

Let c

0

= d

0

= ?. If i 2 r, let d

i+1

= d

i

t 9

X

(w

i+1

) and c

i+1

= w

i+1

.

If i 62 r, let d

i+1

= d

i

t e

k

if the ith step was performed by executing the

kth factor of B. Let d

i+1

= d

i

otherwise. Let c

i+1

= c

i

. It is straight-

forward to verify that the constructed computation is indeed an initially

fair computation with limit e.

Suppose A is a call p(X). If the de�nition of p is of the form p(Y ) ::A

0

it follows from the computation rules that

(A(s) : e

0

; A

0

[Y=X ](s) : e

0

; A

0

[Y=X ](s) : e

1

; : : :)

is an initially fair computation.
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Chapter 10

Concluding Remarks

In the introductory chapter I stated three goals of the thesis. The �rst goal

was that the semantics should consider a formalism with the expressiveness

of a normal programming language, with data structures, recursion, process

creation and a 
exible communication model. The second goal was that the

semantics should consider in�nite computations, and the third goal was to

strive for semantic models that are based on abstract decencies between the

input and output of processes and to avoid models based on communication

events. In this chapter I discuss how these goals were ful�lled, and point

out some further directions of research.

Concurrent constraint programming turned out to be an appropriate

formalism for the exploration of concurrency. Ccp is on one hand a power-

ful concurrent programming language, and has a relatively straight-forward

formal de�nition. Also, ccp is parametric in the sense that the constraint

system can be any system of logic formulas (that satis�es some simple re-

quirements); this means that results about the semantics of ccp have a very

wide range of potential applications.

There were, however, a few early decisions in my formal de�nition of ccp

that made the further developments unnecessarily complicated. The mech-

anism for parameter passing made it more di�cult than necessary to reason

formally about the semantics of calls. The way of de�ning calls also made

it necessary to require that formulas such as X = Y should be a part of the

constraint system; a di�erent formalisation of the operational semantics of

calls would have made it possible to greatly simplify the de�nition of con-

straint systems. Also, the operational semantics of the existential quanti�er

made the proof of �nite con
uence unnecessarily complicated.

One goal of this thesis is to give denotational semantics for ccp. To

discuss how well this goal was ful�lled, we must �rst ask ourselves what

constitutes a denotational semantics. It is generally agreed that a deno-

tational semantics should be compositional and give meaning to loop con-

structs and recursive programs by �xpoint iteration. However, a `semantics'

171
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whose domains are based on the syntactic forms of programs and programs

fragments, with in�nite unfoldings to describe the meaning of recursive pro-

grams, would satisfy these requirements, even though it is clearly unaccept-

able. One way of ruling out semantics models based on the syntactic form is

the requirement that a denotational semantics should be fully abstract, but

for some languages (such as ccp) there is no fully abstract �xpoint seman-

tics. One can also wonder whether full abstraction is a reasonable criteria

even for languages where there is a fully abstract �xpoint semantics. For the

deterministic data 
ow language considered by Kahn (and also for deter-

ministic ccp) there is a very elegant fully abstract �xpoint semantics whose

domain is the continuous functions from input to output histories, but the

trace-based semantics of non-deterministic data 
ow is by Russell's proof

also a fully abstract semantics for deterministic data 
ow. Yet I am sure

that no-one will disagree with me when I claim that Kahn's semantics is

preferable to a trace-based semantics. Why is Kahn's semantics better? The

di�erence lies in the choice of domains. A semantics whose domain consists

of the continuous function over some space is clearly more attractive than a

semantics based on uncountable sets of in�nite sequences of events. A space

of continuous functions is a well-understood mathematical concept, but if

we represent the same process using the set of possible traces the properties

of the process disappear behind the peculiarities of the trace representa-

tion. The conclusion I draw is that besides the useful requirement of full

abstraction the formulation of the semantics also matters; we should strive

for formulations of the semantics where the domain and the composition

operations are given at the highest possible level of abstraction.

The fully abstract semantics satis�es this requirement partially in that

the composition operators are given in terms of the functionality and limit

of traces, but the domain of the fully abstract semantics is the set of all

subtrace-closed sets of traces, which is not the most elegant construction

one can imagine.

One reason to consider fully abstract semantics is that the set of algebraic

identities satis�ed by a fully abstract semantics will be the identities satis�ed

by any semantics. In the case of ccp, the fully abstract semantics turns out

to satisfy the axioms of intuitionistic linear algebra, an algebra which was

de�ned to capture the properties of intuitionistic linear logic. It was also

interesting to note that selection could be expressed using other operations

of intuitionistic linear logic. It is di�cult to judge the importance of these

results, but to me the match between ccp and intuitionistic linear algebra

seems too strong to be dismissed as a coincidence.

Two proofs of full abstraction were given. The �rst relied on the use of

in�nite conjunctions to provide an appropriate context and as it could be

argued that this context is not a realistic program I gave a second proof

in which the context was �nite but depended on an in�nite input. It is
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worthwhile to ask whether it really is necessary to introduce in�nite infor-

mation in the context. After all, the set of �nite agents is countable (if we

make some reasonable assumptions on the constraint system) so one would

expect that a countable set of contexts should be su�cient to distinguish

agents with di�ering behaviour. Even though the set of traces of an agent

are in general uncountable it may be possible to select a set of `countable'

traces so that if two agents di�er in behaviour, there is some computable

trace that one agent can exhibit but not the other. What is interesting here

is not (only) the prospect of �nding a slightly more general proof of full

abstraction, but also the idea that a there may be a countable set of traces

that can capture the in�nite behaviour of agents.

The idea behind the oracle semantics is to record the non-deterministic

choices made by an agent. This simple idea made it possible to show a

generalised con
uence property that involves in�nite sets of in�nite compu-

tations.

The �xpoint semantics based on oracles is a fairly straight-forward con-

struction, where the semantics of an agent is given in terms of domain con-

structions and operations which are of a high level of abstraction. However,

the �xpoint semantics fails to be fully abstract. This is not surprising in

view of the results presented in the thesis, but even with the negative results

in mind it is still disappointing to discover that the oracles do not provide

su�cient information to allow a �xpoint semantics. However, the �xpoint

semantics obtained is nevertheless a fairly compact construction based on

simple concepts, and I hope it will prove useful in the future research on

the semantics of concurrency.

One possible application of the �xpoint semantics is in the static anal-

ysis of concurrent programs. An analysis based on the �xpoint semantics

could of course only provide information about the external behaviour of

agents, in contrast to other static analyses, which typically are intended to

provide information about internal aspects of computations. Information

about the external behaviour of a process could be used in various compiler

optimisations, and also as a program development tool.



174 chapter 10. concluding remarks



References

[1] Samson Abramsky. Experiments, powerdomains and fully abstract

models for applicative multiprogramming. In Proc. Foundations of

Computation Theory, volume 158 of Lecture Notes in Computer Sci-

ence, pages 1{13. Springer-Verlag, 1983.

[2] Samson Abramsky. Semantic foundations of applicative multiprogram-

ming. In Proc. ICALP '83, volume 154 of Lecture Notes in Computer

Science, pages 1{14. Springer-Verlag, 1983.

[3] Samson Abramsky and Stephen Vickers. Quantales, observational

logic, and process semantics. Technical Report DOC 90/1, Imperial

College, Dept. of Computing, January 1990.

[4] K. R. Apt and G. D. Plotkin. Countable nondeterminism and ran-

dom assignment. Journal of the ACM, 33(4):724{767, October 1986.

First published as technical report, Department of Computer Science,

University of Edinburgh, 1982.

[5] Joe Armstrong, Robert Virding, and Mike Williams. Concurent Pro-

gramming in ERLANG. Prentice-Hall, 1993.

[6] Geo� Barret. The �xed point theory of unbounded non-determinism.

Formal Aspects of Computing, 3:110{128, 1991.

[7] J. A. Bergstra and J. W. Klop. Process algebra for synchronous com-

munication. Information and Control, 60:109{137, 1984.

[8] Per Brinch Hansen. The nucleus of a multiprogrammed system. Com-

munications of the ACM, 13(4):238{250, April 1970.

[9] J. Dean Brock and William B. Ackerman. Scenarios: a model of non-

determinate computation. In Diaz and Ramos, editors, Formalization

of Programming Concepts, LNCS 107, volume 107 of Lecture Notes in

Computer Science, pages 252{259. Springer-Verlag, 1981.

[10] Jarvis Dean Brock. A Formal Model of Non-determinate Data
ow

Computation. PhD thesis, Massachusetts Institute of Technology, 1983.

175



176 references

[11] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of com-

municating sequential processes. Journal of the ACM, 31(3):560{599,

1984.

[12] S. D. Brookes and A. W. Roscoe. An improved failures model for

communicating processes. In Brookes, Roscoe, and Winskel, editors,

Proc. Seminar on Concurrency, 1984, volume 197 of Lecture Notes in

Computer Science, pages 268{280. Springer-Verlag, 1985.

[13] Stephen Brookes. Full abstraction for a shared variable parallel lan-

guage. In Proc. 8

th

IEEE Int. Symp. on Logic in Computer Science,

pages 98{109, 1993.

[14] Manfred Broy. A theory for nondeterminism, parallelism, communica-

tion, and concurrency. Theoretical Computer Science, 45:1{61, 1986.

[15] J. M. Cadiou and J. J. L�evy. Mechanizable proofs about parallel pro-

cesses. In Switching and Automata Theory Symposium, volume 14,

pages 34{48. IEEE, 1973.

[16] Bj�orn Carlson. An Approximation Theory for Constraint Logic Pro-

grams . Thesis for the Degree of Licientiate of Philosophy, Uppsala

University, 1991.

[17] Keith Clark and Steve Gregory. A relational language for parallel pro-

gramming. In ACM conference on Functional Programming and com-

puter architecture, pages 171{178. ACM, 1981.

[18] Keith Clark and Steve Gregory. Parlog: Parallel programming in logic.

ACM Trans. on Programming Languages and Systems, 8(1):1{49, 1986.

[19] William Douglas Clinger. Foundations of Actor Semantics. PhD thesis,

MIT, May 1981.

[20] Rina S. Cohen and Arie Y. Gold. Theory of !-languages. I: Characteri-

zations of !-context-free languages. Journal of Computer and Systems

Sciences, 15:169{184, 1977.

[21] J. W. de Bakker and J. N. Kok. Uniform abstraction. atomicity and

contractions in the comparative semantics of concurrent Prolog. In

Proceedings of the International Conference on Fifth Generation Com-

puter Systems, pages 347{355. ICOT, 1988.

[22] F. S. de Boer, J. N. Kok, C. Palamidessi, and J. J. M. M. Rutten. The

failure of failures in a paradigm for asynchronous communication. In

Proceedings of CONCUR'91, number 527 in Lecture Notes in Computer

Science, pages 111{126. Springer-Verlag, 1991.



references 177

[23] Frank S. de Boer and Catuscia Palamidessi. A fully abstract model for

concurrent constraint programming. In Proceedings of the International

Joint Conference on Theory and Practice of Software Development,

number 493 in Lecture Notes in Computer Science, pages 296{319.

Springer-Verlag, 1991.

[24] Frank S. de Boer, Alessandra Di Pierro, and Catuscia Palamidessi.

Nondeterminism and in�nite computations in constraint programming.

Theoretical Computer Science, 151:36{78, 1995.

[25] Jack B. Dennis. First version of a data 
ow procedure language. Tech-

nical Report 61, Laboratory for Computer Science, Massachusetts In-

stitute of Technology, May 1975. First published in B. Robinet (ed),

Programming Symposium: Proceedings Colloque sur la Programmation,

Lecture Notes in Computer Science 19, April 1974., 362-376.

[26] E. W. Dijkstra. Co-operating sequential processes. In F. Genuys,

editor, Programming Languages, pages 43{112. Academic Press, New

York, 1968. First published as Technical Report EWD-123, Technolog-

ical University, Eindhoven, 1965.

[27] Ian Foster and Stephen Taylor. Strand: A practical programming tool.

In Ewing L. Lusk and Ross A. Overbeek, editors, North American

Conference on Logic Programming, pages 497{512. MIT Press, 1989.

[28] Ian Foster and Stephen Taylor. Strand: New Concepts in Parallel

Programming. Prentice-Hall, 1989.

[29] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislowe, and

D. S. Scott. A Compendium of Continuous Lattices. Springer-Verlag,

1980.

[30] Leon Henkin, J. Donald Monk, and Alfred Tarski. Cylindric Algebras,

volume 1. North-Holland, 1971.

[31] C. A. R. Hoare. Communicating sequential processes. Communications

of the ACM, 21(8):666{676, August 1978.

[32] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

[33] Radha Jagadeesan, Keshav Pingali, and Prakash Panangaden. A

fully abstract semantics for a functional programming language with

logic variables. ACM Trans. on Programming Languages and Systems,

13(4):577{625, October 1991. Also in Proceedings of the IEEE Sym-

posium on Logic in Computer Science 1989.



178 references

[34] Bengt Jonsson. A model and proof system for asynchronous networks.

In Proc. 4

th

ACM Symp. on Principles of Distributed Computing, pages

49{58, Minaki, Canada, 1985.

[35] Bengt Jonsson. A fully abstract trace model for data
ow and asyn-

chronous networks. Distributed Computing, 7:197{212, 1994.

[36] Mark B. Josephs. Receptive process theory. Acta Informatica, 29:17{

31, 1992.

[37] Gilles Kahn. The semantics of a simple language for parallel program-

ming. In Proceedings of IFIP Congress, pages 471{475. North-Holland,

1974.

[38] Peter Kearney and John Staples. An extensional �xed-point semantics

for nondeterministic data 
ow. Theoretical Computer Science, 91:129{

179, 1991.

[39] Robert M. Keller. Denotational models for parallel programs with

indeterminate operators. In Neuhold, editor, Formal Descriptions of

Programming Concepts, pages 337{366. North-Holland, 1978.

[40] Joost N. Kok. A fully abstract semantics for data 
ow nets. In Proc.

PARLE, volume 259 of Lecture Notes in Computer Science, pages 351{

368. Springer-Verlag, 1987.

[41] Paul R. Kosinski. A straight-forward denotational semantics for nonde-

terminate data 
ow programs. In Proc. 5

th

ACM Symp. on Principles

of Programming Languages, pages 214{219, 1978.

[42] Paul Roman Kosinski. Denotational semantics of determinate and

Nondeterminate Data Flow Programs. PhD thesis, MIT, May 1979.

[43] Marta Kwiatkowska. In�nite behaviour and fairness in concurrent con-

straint programming. In Semantics: Foundations and Applications,

volume 666 of Lecture Notes in Computer Science, pages 348{383.

Springer-Verlag, 1992.

[44] P. J. Landin. A correspondence between ALGOL 60 and Church's

lambda notation: Part I. Communications of the ACM, 8(2):89{101,

February 1965.

[45] F. William Lawvere. Adjointness in foundations. Dialectica,

23(3/4):281{296, 1969.

[46] Daniel J. Lehmann. Categories for �xed-point semantics. In 17th An-

nual Symposium on Foundations of Computer Science, pages 122{126,

1976.



references 179

[47] Daniel J. Lehmann. Categories for Fixed-point Semantics. PhD thesis,

Hebrew University of Jerusalem, 1976.

[48] M. J. Maher. Logic semantics for a class of committed-choice programs.

In 4th International Conference on Logic Programming, pages 858{876.

MIT Press, 1987.

[49] Kim Marriott and Martin Odersky. A con
uent calculus for concur-

rent constraint programming with guarded choice. In Proceedings of

1st Conference on Principles and Practice of Constraint Programming,

volume 976 of Lecture Notes in Computer Science, pages 310{327, Cas-

sis, France, September 1995. Springer-Verlag.

[50] David May. Occam. SIGPLAN Notices, 18(4):69{79, April 1983.

[51] John McCarthy. A basis for a mathematical theory of computation.

In P. Bra�ord and D. Hirschberg, editors, Computer Programming and

Formal Systems, pages 33{70. North-Holland, 1967. An earlier version

was presented at the Western Joint Computer Conference, May 1961.

[52] Nax Paul Mendler, Prakash Panangaden, P. J. Scott, and R. A. G.

Seely. A logical view of concurrent constraint programming. Nordic

Journal of Computing, 2(2):181{220, Summer 1995.

[53] Robin Milner. Processes: A mathematical model of computing agents.

In in Logic Colloquium 1973, pages 157{173. North-Holland, 1973.

[54] Robin Milner. A Calculus of Communicating Systems, volume 92 of

Lecture Notes in Computer Science. Springer-Verlag, 1980.

[55] E. Moreno� and J. B. McLean. Inter-program communications, pro-

gram string structures, and bu�er �les. In Proceedings of the AFIPS

Spring Joint Computer Conference, pages 175{183, 1967.

[56] M. Nivat. In�nite words, in�nite trees, in�nite computations. In J.W.

de Bakker and J. van Leeuven, editors, Foundations of Computer Sci-

ence III, Mathematical Centre Tracts 109, pages 3{52. Matematisch

Centrum, Amsterdam, 1981.

[57] Sven-Olof Nystr�om. Control structures for Guarded Horn Clauses.

In Fifth International Conference Symposium on Logic Programming,

pages 1351{1370, 1988.

[58] Sven-Olof Nystr�om and Bengt Jonsson. Indeterminate concurrent con-

straint programming: a �xpoint semantics for non-terminating compu-

tations. In Proceedings of the 1993 International Logic Programming

Symposium, pages 335{352. MIT Press, 1993.



180 references

[59] H. Ono. Phase structures and quantales - a semantical study of logics

without structural rules. October 1990, Lecture delivered at the con-

ference Logics with restricted structural rules , University of T�ubingen.

Cited in [79].

[60] Erik Palmgren. Denotational semantics of constraint logic programs|

a nonstandard approach. In B. Mayoh, E. Tyugu, and J. Penjam,

editors, Constraint Programming, NATO ASI Series F, pages 261{288.

Springer-Verlag, 1994.

[61] Prakash Panangaden and James R. Russell. A category-theoretic se-

mantics for unbounded nondeterminacy. In Mathematical Foundations

of Programming Semantics, volume 442 of Lecture Notes in Computer

Science, pages 319{332. Springer-Verlag, 1990.

[62] Prakash Panangaden and Vasant Shanbhogue. The expressive power

of indeterminate data
ow primitives. Information and Computation,

98:99{131, 1992.

[63] D. Park. The `fairness' problem and nondeterministic computing net-

works. In de Bakker and van Leeuwen, editors, Foundations of Com-

puter Science IV, Part 2, pages 133{161, Amsterdam, 1983. Mathe-

matical Centre Tracts 159.

[64] David Park. On the semantics of fair parallelism. In Abstract Software

Speci�cations, Copenhagen Winter School 1979, volume 86 of Lecture

Notes in Computer Science, pages 504{526. Springer-Verlag, 1980.

[65] Gordon D. Plotkin. A structural approach to operational seman-

tics. Technical Report DAIMI FN-19, Computer Science Department,

Aarhus University, Denmark, 1981.

[66] Axel Poign�e. Context-free languages of in�nite words as least �xpoints.

In Proc. Int. Conf. on fundamentals on Computation Theory, Szeged,

Hungary, volume 117 of Lecture Notes in Computer Science, pages

301{310. Springer-Verlag, 1981.

[67] A. W. Roscoe. Unbounded non-determinism in CSP. Journal of Logic

and Computation, 3(2):131{172, 1993.

[68] James R. Russell. Full abstraction for nondeterministic data
ow net-

works. In Proc. 30

th

Annual Symp. Foundations of Computer Science,

pages 170{177, 1989.

[69] James R. Russell. On oraclizable networks and Kahn's principle. In

Proc. 17

th

ACM Symp. on Principles of Programming Languages, pages

320{328, 1990.



references 181

[70] Vijay A. Saraswat. Problems with Concurrent Prolog. Technical Re-

port CMU-CS-86-100, Carnegie-Mellon University, Computer Science

Department, 1986,1985.

[71] Vijay A. Saraswat, Martin Rinard, and Prakash Panangaden. Semantic

foundations of concurrent constraint programming. In Proc. 18

th

ACM

Symp. on Principles of Programming Languages, 1991.

[72] Dana S. Scott. Domains for denotational semantics. In ICALP'82,

number 140 in Lecture Notes in Computer Science, pages 577{613.

Springer-Verlag, 1982.

[73] Robert A. G. Seely. Hyperdoctrines, natural deduction and the Beck

condition. Zeitschr. f. math. Logik und Grundlagen d. Math., 29:505{

542, 1983.

[74] Ehud Shapiro. Concurrent Prolog: A progress report. IEEE Computer,

19(8):44{58, August 1986.

[75] Ehud Shapiro. The family of concurrent logic programming languages.

ACM Computing Surveys, 21(3):412{510, September 1989.

[76] Ehud Y. Shapiro. A subset of Concurrent Prolog and its interpreter.

Technical Report 003, Institute for New Generation Computer Tech-

nology, Tokyo, 1983.

[77] Eugene W. Stark. A simple generalization of Kahn's principle to inde-

terminate data
ow networks. Technical report, State University of New

York, Stony Brook, July 1990. Also published as extended abstract in

Proceedings of the International BCS-FACS Workshop on Semantics

for Concurrency , Leicester 1990, M. Z. Kwiatkowska, M. W. Shields,

R. M. Thomas, (eds.), pp. 157-176, Springer-Verlag.

[78] Allen Stoughton. Fully abstract models of programming languages. Pit-

man, 1988.

[79] A. S. Troelstra. Lectures on Linear Logic. Number 29 in CSLI Lecture

Notes. Center for the study of language and information, Stanford,

1992.

[80] Kazunori Ueda. Concurrent Prolog re-examined. Technical Report 102,

Institute for New Generation Computer Technology, Tokyo, 1985.

[81] Kazunori Ueda. Guarded Horn Clauses. Technical Report 103, Institute

for New Generation Computer Technology, Tokyo, 1985.

[82] Kazunori Ueda. Guarded Horn Clauses. PhD thesis, University of

Tokyo, March 1986.



182 references

[83] Glynn Winskel and Mogens Nielsen. Models for concurrency. Techni-

cal Report PB-463, Computer Science Department, Aarhus University,

1993. To appear in Handbook of Logic in Computer Science, Oxford

University Press.


