Simulation of stochastic reaction-diffusion processes on unstructured meshes

Stefan Engblom
CSC/NA
Royal Institute of Technology (KTH)

Uppsala, December 18, 2009
Joint work with

Andreas Hellander, Lars Ferm, Per Lötstedt.
• Motivation for stochastic chemical kinetics
• Well-stirred chemical kinetics
• Spatially inhomogeneous kinetics
• Unstructured meshes
• Examples
• Conclusions
Modelling chemical reactions

<table>
<thead>
<tr>
<th>System size Ω (# molecules)</th>
<th>Model</th>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>$< 10^2$</td>
<td>Micro</td>
<td>Movement of individual atoms/molecules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collisions \rightarrow (Possible) reactions</td>
</tr>
<tr>
<td>$\sim 10^1 - 10^6$</td>
<td>Meso</td>
<td>Non-individual, assuming well-stirred mixture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A stochastic model is used for reactions</td>
</tr>
<tr>
<td>$\geq 10^6$</td>
<td>Macro</td>
<td>“Average”; in the limit of many molecules</td>
</tr>
</tbody>
</table>

- With a mesoscopic stochastic model, an accurate but still manageable *non-individual* model is possible thanks to randomness (both the micro- and the macroscopic models are deterministic).
Well-stirred

Assumption #1: the chance of finding a molecule is equal throughout the volume (*homogeneous*).

Assumption #2: the energy of a molecule does not depend on its position in the volume (*thermal equilibrium*).

- Under these assumptions there is a favourable stochastic model of chemical kinetics — a *continuous-time Markov chain*.
- Actual behaviour often easier to capture: multi-stability, resonance and focusing effects.
Well-stirred kinetics (*Gillespie ’76, ’92, Gardiner, van Kampen*)

- Let the state vector \(x \in \mathbb{Z}_+^D \) count the number of molecules of each of \(D \) species.

- Let \(R \) specified reactions be defined as *transitions* between the states,

\[
x \xrightarrow{w_r(x)} x - N_r, \quad N \in \mathbb{Z}^{D \times R} \text{ (stoichiometric matrix)}
\]

where each transition intensity or *propensity* \(w_r : \mathbb{Z}_+^D \to \mathbb{R}_+ \) is the probability of reacting per unit of time. *This probability can be shown to exist provided that the system is well-stirred!*
The chemical master equation is given by

\[
\frac{\partial p(x, t)}{\partial t} = \sum_{r=1}^{R} w_r(x + \mathbb{N}_r)p(x + \mathbb{N}_r, t) - \sum_{r=1}^{R} w_r(x)p(x, t)
\]

\[=: \mathcal{M}p.\]

-A gain-loss discrete PDE in \(D\) dimensions for the probability density.

-Several exact Monte Carlo-type simulation algorithms exist ("SSA", "NRM", ...); determine what event and when.
Not well-stirred:

- When the molecular movement (diffusion) is slow compared to the reaction intensity, large *local* concentrations may easily build up.
- When some reactions are *localised* — e.g. depend on an enzyme molecule situated at a precise position.

These conditions are not unusual for reactions taking place inside living cells!
Mesoscopic spatial kinetics

- Not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_j such that their individual volume $|\Omega_j|$ is small, then diffusion suffices to make each cell well-stirred.

![Diagram of a mesh]

Figure 1: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of molecules in each dual cell.
• D chemically active species X_{ij} for $i = 1, \ldots, D$ but now counted separately in K cells, $j = 1, \ldots, K$.

• The state of the system is an array x with $D \times K$ elements.

• This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion where molecules move to adjacent cells (horizontally in x).
Reactions

By assumption, each cell is well-stirred and consequently the master equation is valid as a description of reactions,

\[
\frac{\partial p(x, t)}{\partial t} = M p(x, t) := \sum_{j=1}^{K} \sum_{r=1}^{R} w_r(x_j + N_r) p(x_1, \ldots, x_j + N_r, \ldots, x_K, t) - \sum_{j=1}^{K} \sum_{r=1}^{R} w_r(x_j) p(x, t).
\]
Diffusion

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$X_{ik} \xrightarrow{q_{kj} x_{ik}} X_{ij},$$

where q_{kj} is non-zero only for connected cells.

Ideally, q_{kj} should be taken as the inverse of the mean first exit time for a single molecule of species i from cell Ω_k to Ω_j. $\implies q_{kj} \propto \sigma^2/h^2$, where $\sigma^2/2$ is the macroscopic diffusion, h the local length.

The diffusion master equation can therefore be written

$$\frac{\partial p(x, t)}{\partial t} = \sum_{i=1}^{D} \sum_{k=1}^{K} \sum_{j=1}^{K} q_{kj}(x_{ik} + M_{kj,k})p(x_1, \ldots, x_i + M_{kj}, \ldots, x_D, t) - q_{kj}x_{ik}p(x, t) =: \mathcal{D}p(x, t).$$

The transition vector M_{kj} is zero except for $M_{kj,k} = -M_{kj,j} = 1.$
The reaction-diffusion master equation \((Gardiner, \text{ van Kampen}) \)

\[
\frac{\partial p(x, t)}{\partial t} = (\mathcal{M} + \mathcal{D})p(x, t).
\]

- An approximation! Valid when

\[
\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta,
\]

\(\rho \) the molecular radius, \(\tau_\Delta \) average molecular survival time.

- Once formulated, any well-stirred algorithm can simulate the RDME. For a spatially resolved model, most of the simulation time is spent on diffusion events.
Formulation and consistency

-Mean first exit time only known for very simple geometries (e.g. circles).

-A solution in the Cartesian case: ensure that the expected value limits to the macroscopic diffusion equation.

Define $\varphi_{ij} = E\Omega_j^{-1}x_{ij}$. By linearity of the diffusion intensities, the diffusion master equation implies

$$\frac{d\varphi_{ij}}{dt} = \sum_{k=1}^{K} \frac{\Omega_k}{\Omega_j} q_{kj} \varphi_{ik} - \left(\sum_{k=1}^{K} q_{jk} \right) \varphi_{ij},$$

or simply

$$\frac{d\varphi_i^T}{dt} = Q\varphi_i^T.$$
-FEM applied to the macroscopic equation $u_t = \sigma^2 / 2 \Delta u$ with piecewise linear basis functions and lumped mass-matrix yields

$$\frac{du}{dt} = \frac{\sigma^2}{2} Du.$$

With a good triangulation we have point-wise convergence FEM \rightarrow diffusion PDE and the consistency of this interpretation ensures convergence in distribution to Brownian motion as $h \rightarrow 0$.
Bistable double-negative feedback system (Elf/Ehrenberg)

\[
\begin{align*}
E_A & \xrightarrow{k_1} E_A + A & E_B & \xrightarrow{k_1} E_B + B \\
E_A + B & \xrightarrow{k_a, k_d} E_A B & E_B + A & \xrightarrow{k_a, k_d} E_B A \\
E_A B + B & \xrightarrow{k_a, k_d} E_A B_2 & E_B A + A & \xrightarrow{k_a, k_d} E_B A_2 \\
A & \xrightarrow{k_4} \emptyset & B & \xrightarrow{k_4} \emptyset
\end{align*}
\]

Slow/intermediate/fast diffusion in a simple model of an *S. cerevisiae* cell with internal structures in the form of a nucleus and a large vacuole. Molecules are not allowed to diffuse across the membranes and enter the organelles.
(a) Species A.
(b) Species B.
Figure 2: The total number of A and B molecules as the diffusion constant is varied. Right: local bi-stability is lost.
Oscillations of proteins involved in the cell division of *Escherichia coli* bacterium:

- Five species, five reactions (*Fange/Elf*).
- “URDME” software (*Cullhed/Engblom/Hellander*).
- Mesoscopic stochastic kinetics (CTMC/master equation)
 -well-stirred chemical reactions
- Spatially inhomogeneous case:
 -local well-stirredness implies the reaction-diffusion master equation
 -unstructured meshes: consistency with macroscopic equations
- Expensive but structurally simple diffusion suggests hybrid schemes.
- Publicly available software ANSI-C99/Matlab/Comsol “URDME”.