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Overview

e Stochastic chemical kinetics: the what and the why
e Multiple scales: a hierarchy of models/solution methods

e The mesoscopic model; master equation/jump SDE

-Poisson random measure and nonlinear noise
e The parareal algorithm

e Combined scales in parallel

-Convergence and homogenization
e Example: stochastic toggle switch
e Example: homogenization of disparate rates

e Conclusions
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System size (2

(# molecules) Model Name
>10° ODE Macroscopic
~ 10%-10% SDE (Langevin) Mesoscopic (continuous)
~ 10'-10% jump SDE (master Mesoscopic (discrete)
equation)
< 10* Brownian dynamics Microscopic

(BD)
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Model Assumption

BD Brownian motion of individual molecules
jump SDE  Non-individual, (locally) well-stirred
SDE Continuous approximation

ODE Continuous, deterministic
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The chemical master equation (Gardiner, van Kampen)

State vector x € Zf counting the number of molecules of each of D
species; R specified reactions defined as transitions between the

states,

p 2, N, N € ZP*® (stoichiometric matriz)

where each propensity w,. : Zf — R.. The master equation is

R

3}9 x,t) Zwr +N)p(z + N, t) — Zwr(a})p(a},t).

r=1

-Discrete PDE in D dimensions for the probability density p.
-Several simulation algorithms exist (SSA, NRM, ...).
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The jump SDE (Plyasunov 05, Li '07, lkeda/Watanabe, Gihman/Skorohod)

-Probability space (3, F, P).

-The Poisson random measure: u(dt X dz; o), o € ¥; an increasing

sequence of arrival times 7, € R, with random “marks” z; uniformly
distributed in [0, W]. Deterministic intensity is m(dt x dz) = dt x dz.
-Closed system: W :=>" max, w,(z).

-Open system: W (t) = > w,(X(t)) (state-dependent intensity).

dX, = ZN/ Wy (X (t=); 2) p(dt x dz)

Y Non(XG dt—ZN/ i (X (1); 2) (= m) (e x d2).

-Where the w, are indicator functions (a thinning of the measure).
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The basic idea... (Lions/Maday/Turinici 00, Staff ‘03, Bal '06)

i = —Au,t € [0,T] with some u(0) = ug.

t
Fily) =y — / Au(t) dt where u(0) =y, and,
0
C: =~ F; but faster!

Discretize time in N = T /At chunks. Any solver S € {Fa;,Cas} can
be used to compute a numerical solution:

70 0 0w ] [ w

S I 0 0 . 0
B(S)v = Fl = = Uyp.

0 -S I 0 Vo 0

0 0 S I | w| [0
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Parareal is the fix-point iteration obtained by using B(Ca;)"! as an

approximate inverse to B(Fa;):
Vit1 = Uk — B(Car) " H(B(Far)vr — ug).
Let vg,0 = up and vg,n, = Catvp, n—1 to start up the algorithm. Then
Vi = FAtVk—1n-1 — [CAtVk—1.n—1 — CAtVk n—1],

where the expensive evaluation of F is trivially parallel.
-In fact, the algorithm is strictly parallel (serial version is pointless).
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Convergence results

-Setup: use for C the macroscopic ODE (rate equations), and use a

stochastic simulation technique for F.
-The RMS-error

- 1/2
(B[Xen - XaJ?) " < Lok

K
< CyrM? ~ (nonlinear transient),

where S o< v/ L (total Lipschitz constant) and where M is the initial
RMS-error.

-(Very) weak error:

IE[Xpn — X, < CspAtF/2,
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Homogenization

-Ultimately, the convergence depends rather strongly on the Lipschitz
constant! The reason is the lack of sufficiently high order (strong)

consistency of C w.r.t. F.

-For stiff models one is often interested in seeking an effective slow
dynamics. A way to achieve this is to replace F with a homogenized

version F";

1 At
FhXy = o / Y (t)dt, where Y (t) = F Xo.

ot Jai—_st

-0t large enough to contain several fast reactions but short enough to
be essentially independent on the slow scales.
-Again, this homogenization is strictly parallel.
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Stochastic toggle switch

Biological 'transistor’ in the regulatory network of E. cols:

@ a/(b+y ), X @ a/(b+x )> Y
X = 0 y 20
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Figure 1: Solid: parallel solution after 0, 1, 2 and 4 iterations.
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Figure 2: Dash-dot: propensities perturbed by +1%.
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Homogenization of disparate rates

Fast dimerization/slow isomerization:

1/e )
X1 —|—X1 — X2—|—X2
1
X2 — YQ 0
1/e
Y2—|—Y2 — Yl —|—Y1 )
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Figure 3: Original (dot) and homogenized (dash) trajectories. In solid:
parallel solution (0 and 1 iteration).

Stefan Engblom, Department of Information Technology, Uppsala University, Sweden 15



Disparate rates Stockholm, October 2008

10 L] L] L] L]
N Error
\ = = = Preconditioned residual
-1
10 'f
10_2 .
10}
10_4 .
10}
10_6 2 2 2 2
0 2 4 6 8 10

iteration

Stefan Engblom, Department of Information Technology, Uppsala University, Sweden 16



Stockholm, October 2008

Conclusions

Mesoscopic stochastic kinetics (jump SDE /master equation):
(locally) well stirred chemical reactions
-macroscopic limit: nonlinear ODE /(reaction-diffusion PDE)

Parareal combination jump SDE/ODE
-RMS-convergence depends on the Lipschitz constant
-convergence of the first moment as At — 0

Homogenization in parallel: homogenized solution rather than a
homogenized equation — generalizes to other types of SDEs
-parareal applied to stiff stochastic equations (previously unclear)

A fix number of parareal iterations can be thought of as a
stochastic/deterministic hybrid with very few parameters

Yet to do: better efficiency through multilevel parallelism,
analysis of open system
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