Pathwise analysis for split-step methods and multiscale variable splitting in spatial stochastic kinetics

Stefan Engblom

Div of Scientific Computing, Dept of Information Technology, Uppsala University

SciCADE 2015, September 14, 2015
1. Framework
 The model: stochastic R & D from the bottom and up
 The framework: event-based mesoscopic R & D top down

2. Analysis
 Assumptions and \textit{a priori} results
 Split-step methods
 Multiscale variable splitting methods

3. Applications
 Multiscale neuronal model
 National-scale epidemics

Summary
Brownian motion

Example: Particle diffusing in a fluid.

(micro) → (stoch) The stochastic model is simpler but random (*error:* microscale effects in a statistical sense only).

(stoch) → (meso) Discrete space approximation (*error:* finite $h > 0$).

The mesoscopic stochastic model is a continuous-time Markov chain.
Chemical reactions

Example: Bimolecular reaction \(X + Y \rightarrow Z \).

-Required: a model of physics in the zoomed in situation.
Chemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

- Required: a model of physics in the zoomed in situation.
- Assuming locally well-stirred, what is the probability $P(1X$ and $1Y$ reacts in $[0, \Delta t])$ in a volume V?
Chemical reactions

(Locally) well-stirred

Example: Bimolecular reaction $X + Y \rightarrow Z$.

$-P(1X \text{ and } 1Y \text{ reacts in } [0, \Delta t])$ in a volume V...

Well-stirred, then

- $P \propto n_X$ ("number of X-molecules")
- $P \propto n_Y$
- $P \propto 1/V$
- $P \propto \Delta t$

$\implies P(X + Y \rightarrow Z \text{ in } [0, \Delta t]) = \text{const} \cdot n_X n_Y \Delta t / V$.

As $\Delta t \rightarrow 0$ we recover again a continuous-time Markov chain.
Back to the details...

Mesoscopic well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the *local* volume.

- State $X \in \mathbb{Z}^D$, counting the number of molecules of each of D species.
- Reactions are transitions between these states,

$$X \xrightarrow{w_r(X)} X - \mathbb{N}_r,$$
where the *propensity* $w_r : \mathbb{Z}^D_+ \rightarrow \mathbb{R}_+$, $r = 1 \ldots R$, is the probability of reacting per unit of time.

Jump SDE formulation:

$$dX_t = - \mathbb{N}_r \mu(dt),$$

(where $E[\mu_r(w_r(X); dt)] = E[w_r(X)] dt$),

Poisson representation:

$$X_t = X_0 - \mathbb{N}_r \Pi(\int_0^t w(X_s) \, ds),$$

(Π_r a unit-rate Poisson process).
Back to the details...

Mesoscopic spatial kinetics

Assuming that the domain Ω has been subdivided into small enough computational cells Ω_j such that diffusion suffices to make each cell well-stirred.

- The state of the system is now an array \mathbf{X} with $D \times K$ elements; D chemically active species \mathbf{X}_{ij}, $i = 1, \ldots, D$, counted separately in K cells, $j = 1, \ldots, K$.

- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in \mathbf{X}) and by diffusion/transport where molecules move to adjacent cells (horizontally in \mathbf{X}).
Reactions

By assumption, each cell is well-stirred and consequently the jump SDE is valid as a description of reactions,

\[d\mathbf{X}_t = -\mathbf{N}\mu(dt), \]

where \(\mu \) is now \(R \)-by-\(K \); \(E[\mu_{rj}]dt^{-1} \) = propensity of the \(r \)th reaction in the \(j \)th cell.
Diffusion
(as an important example of transport)

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$X_{ik} \xrightarrow{q_{kji}X_{ik}} X_{ij},$$

where q_{kji} is non-zero only for connected cells.

For a certain array multiplication $\otimes (\ldots)$,

$$dX_t = S \otimes (-\nu^T + \nu)(dt),$$

where S is 1-by-K of all 1’s, and ν is K-by-K-by-D; $E[\nu_{kji}]dt^{-1} =$ diffusion rate of the ith species from cell Ω_k to cell Ω_j.
The reaction-diffusion jump SDE
“RDME”

Combining reactions with diffusions we arrive at

\[dX_t = -N\mu(dt) + S \otimes (-\nu^T + \nu)(dt). \]

- An approximation, valid when

\[\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta, \]

\(\rho \) the molecular radius, \(\tau_\Delta \) average molecular survival time.
Outlook

Event-based mesoscopic framework

Figure: Primal mesh (thin), dual mesh (blue). The nodal dofs are the # of molecules in each dual cell.

Local physics within each small voxel, connected through transport mechanisms (diffusion).
Motivation...
...for the effort with stating assumptions and \textit{a priori} results

Scalar ODE+Euler forward,

\[y' = f(y), \]
\[y_{n+1} = y_n + hf(y_n), \quad y_n \approx y(t_n) = y(n \cdot h). \]

Assume:

1. \(f \) is (locally) Lipschitz, \(|f(x) - f(y)| \leq L_Y |x - y| \) whenever \(|x| \vee |y| \leq Y \),
2. \textit{a priori} stability, \(|y| \vee |y_n| \leq Y \)

Then, straightforwardly, \(e_n = |y_n - y(t_n)| \) is \(O(h) \).

\textbf{Problem}: assumptions and analysis are both incomplete without a verification of the 2nd assumption above.

-Additional complications in the stochastic setting (…).
Assumptions & *a priori*: well-stirred case

Recall: CTMC \(X(t) \in \mathbb{Z}_+^D \) governed by transitions

\[
X \xrightarrow{w_r(X)} X - N_r, \quad r = 1 \ldots R, \quad N \in \mathbb{Z}^{D \times R},
\]

or, to get some ODE-feeling, “\(X'(t) = -Nw(X) \)“.

Norm \(\|x\|_I := I^T x, \ x \in \mathbb{Z}_+^D, \) for min; \(I_i = 1 \).
Assumptions & a priori: well-stirred case

Recall: CTMC $X(t) \in \mathbb{Z}_+^D$ governed by transitions

$$X \xrightarrow{w_r(X)} X - N_r, \quad r = 1 \ldots R, \quad N \in \mathbb{Z}^{D \times R},$$

or, to get some ODE-feeling, “$X'(t) = -NW(X)$”.

Norm $\|x\|_I := I^{T}x$, $x \in \mathbb{Z}_+^D$, for $\min_i l_i = 1$.

Assumptions: $x, y \in \mathbb{Z}_+^D$,

(i) $-I^{T}NW(x) \leq A + \alpha \|x\|_I$,
(ii) $(-I^{T}N)^2w(x)/2 \leq B + \beta_1 \|x\|_I + \beta_2 \|x\|_I^2$,
(iii) $|w_r(x) - w_r(y)| \leq L_r(P)\|x - y\|$, $r = 1, \ldots, R$, and $\|x\|_I \vee \|y\|_I \leq P$.

S. Engblom (Uppsala University)

Consistent & Efficient R-D simulations
Assumptions & \textit{a priori}: well-stirred case

Results

With suitable initial data...

\begin{itemize}
\item $E \sup_{s \in [0,t]} \|X_s\|_p^p$ bounded, any $p \geq 1$
\item if $X_0 = Y_0$ almost surely, then $E\|X_t - Y_t\|^2 = 0$
\item if $\alpha + \beta_2(p - 1) < 0$, then $E \|X_t\|^p$ bounded as $t \to \infty$
\end{itemize}

-Can also elaborate on continuity wrt parameter perturbations (...)

2. Analysis

Split-step methods

Split-step method

Set-up

Split into two sets of reaction pathways

\[
\mathbb{N} = \begin{bmatrix} \mathbb{N}^{(1)} & \mathbb{N}^{(2)} \end{bmatrix}, \quad w(x) = \begin{bmatrix} w^{(1)}(x) ; w^{(2)}(x) \end{bmatrix},
\]

where \(\mathbb{N}^{(i)} \) is \(D \)-by-\(R_i \), \(i \in \{1, 2\} \), \(R_1 + R_2 = R \).

Method:

\[
Y_{t+h/2} = Y_t - \sum_{r \in \mathcal{R}_1} \mathbb{N}_r \Pi_r \left(\int_{t}^{t+h/2} 2w_r(Y_s^-) \, ds \right)
\]

\[
Y_{t+h} = Y_{t+h/2} - \sum_{r \in \mathcal{R}_2} \mathbb{N}_r \Pi_r \left(\int_{t+h/2}^{t+h} 2w_r(Y_s^-) \, ds \right).
\]
Split-step method

Results

Assume the (Assumptions) hold for both sub-systems. Then

- \(E \sup_{s \in [0,t]} \| Y_s \|_p^p \) bounded, any \(p \geq 1 \)
- \(E \| Y_t - X_t \|^2 = O(h) \), any finite \(t \)
Assumptions & a priori: R&D case

Recall: CTMC $\mathbb{X}(t) \in \mathbb{Z}_+^{D \times K}$ with transitions

$$
\begin{align*}
\mathbb{X}_{.,k} & \xrightarrow{w_{rk}(\mathbb{X}_{.,k})} \mathbb{X}_{.,k} - \mathbb{N}_r, \\
\mathbb{X}_{ik} & \xrightarrow{q_{kji}\mathbb{X}_{ik}} \mathbb{X}_{ij},
\end{align*}
$$

$k = 1...K, i = 1...D, r = 1...R$. To get “PDE-feeling”,

$$
\mathbf{u}_t = -\mathbb{N}u + \mathbf{Q}u,
$$

$$
\approx \nabla \cdot \Sigma \nabla
$$
Assumptions & a priori: R&D case

Recall: CTMC $\mathbb{X}(t) \in \mathbb{Z}^{D \times K}_+$ with transitions

$$
\mathbb{X}_{.,k} \xrightarrow{w_{rk}(\mathbb{X}_{.,k})} \mathbb{X}_{.,k} - \mathbb{N}_r, \quad \mathbb{X}_{ik} \xrightarrow{q_{kj}} \mathbb{X}_{ij},
$$

$k = 1...K, i = 1...D, r = 1...R$. To get “PDE-feeling”,

$$
\mathbf{u}_t = -\mathbb{N} \mathbf{u}(\mathbf{u}) + \mathbf{Q} \mathbf{u}.
\approx \nabla \cdot \Sigma \nabla
$$

Assumptions:

- on the mesh, some natural and quite weak assumptions (…)
- reactions, as before, plus
 (iv) $w_{rk}(x) = \Omega_k u_r(\Omega_k^{-1} x)$, “density dependent”
- diffusion:
 (i) $(x^{p-1} \odot \Omega)^T Q x \leq R_p \|x\|_p^p, \ p \geq 1, \ x \in \mathbb{R}_+^K$, consistency with p-norm decay of diffusion
Assumptions & a priori: R&D case

Results

\[\text{Norm } \| \mathbf{X} \|_{I,p}^p \equiv \sum_{k=1}^{K} \| \mathbf{X}_k \|_{I}^p \Omega_{k}^{1-p} \approx \int_{V} \| \mathbf{u} \|_{I}^p \, dV. \]

With suitable initial data...

- only reactions: as before
- pure diffusion: \(E \| \mathbf{X}_t \|_{I,p}^p \) bounded in finite time, or even grows very slowly for \(R_p \leq 0 \)
- full R&D: \(E \sup_{s \in [0,t]} \| \mathbf{X}_s \|_{I,p}^p \) bounded, any \(p \geq 1 \)
Multiscale variable splitting

Set-up: ϵ, h

Consider the separation of scales:

- species are either abundant $\sim \epsilon^{-1}$, or appear in low copy numbers ~ 1 (on a per voxel basis!)
- rate- and diffusion constants are either fast ~ 1, or slow ϵ (per reaction/per species)

\Rightarrow rescaled variable $\bar{X}_t = \bar{X}_{ij}(t) \sim 1$.
Multiscale variable splitting

Set-up: ϵ, h

Consider the separation of scales:

- species are either abundant $\sim \epsilon^{-1}$, or appear in low copy numbers ~ 1 (on a per voxel basis!)
- rate- and diffusion constants are either fast ~ 1, or slow ϵ (per reaction/per species)

\Rightarrow rescaled variable $\bar{X}_t = \bar{X}_{ij}(t) \sim 1$.

Multiscale splitting methods:

“Exact”, \bar{Y}_t all Poisson processes driving an abundant species are replaced with mean drift terms, $\Pi(T) \approx T$

“Numerical”, $\bar{Y}_t^{(h)}$ discrete steps h; low copy number variables are first simulated in $[t, t+h)$ letting abundant species be frozen at time t, next abundant species are integrated in $[t, t+h)$
Multiscale variable splitting

Results

Under the \textit{a priori} conditions above and under similar (Assumptions) for the splitted system \(\bar{Y}^{(h)}_t \) (...), then

\begin{itemize}
 \item \(E \sup_{s \in [0,t]} \| \bar{Y}_s \|_{l,p}^p \) bounded, any \(p \geq 1 \)
 \item \(E \| \bar{Y}_t - \bar{X}_t \|^2 = O(\epsilon) \), any finite \(t \)
 \item \(E \sup_{s \in [0,t]} \| \bar{Y}^{(h)}_s \|_{l,p}^p \) bounded, any \(p \geq 1 \)
 \item \(E \| \bar{Y}^{(h)}_t - \bar{Y}_t \|^2 = O(h) \), any finite \(t \)
\end{itemize}

- Additional conditions for this concerns the reaction topology: effectively fast reactions must not affect low copy number species (…)

Application: multiscale neuronal model

- Ion Channel Gating (CTMC)
- Membrane dynamics (ODE)
- Local Field Potential (PDE)
- Morphological Information
- Ion Channel kinetics

V_m, $N_{channels}$, I_m
Bottom level
Ion channel gating

Gating process: sodium channels.
Bottom level

Ion channel gating

The gating process of ion channels can be mesoscopically described as

\[
\begin{align*}
N_0 & \xrightarrow{3\alpha_m(V_m)} N_0 & \xrightarrow{2\alpha_m(V_m)} N_1 & \xrightarrow{\alpha_m(V_m)} N_2 & \xrightarrow{3\beta_m(V_m)} N_3, \\
\beta_m(V_m) & N_1 & 2\beta_m(V_m) & N_2 & 3\beta_m(V_m) N_3,
\end{align*}
\]

again a continuous-time Markov chain. Output: \(N_3 \), the number of open gates.

For efficient model coupling we freeze the voltage dependency for a short time-step \(\tau \) ("split-step" or "1st order Strang split"):

\[
X_{t+\tau} = X_t - \int_t^{t+\tau} \mathbb{N} \mu(V_m(t), w(X_{s-}); ds).
\]
Middle level

Membrane dynamics

Cable equation circuit.
Morphological information extracted using the Trees toolbox

System of current-balance and cable equations is solved for each time step τ

\[I_m = c_m \frac{dV_m}{dt} + \sum_{i \in C_v} \gamma_i N_3^i(t)[V_m(t) - E_i] \]
Top level
Maxwell’s equations, potential form

Electric field intensity \(\mathbf{E} \) in terms of the *electric scalar potential* \(V \),

\[
\mathbf{E} = -\nabla V.
\]

Trans-membrane current \(I_m \) is scaled with the compartment surface area and coupled as a current source,

\[
-\nabla \cdot \left(\sigma \nabla V + \varepsilon_0 \varepsilon_r \frac{\partial}{\partial t} \nabla V \right) = \frac{1}{\Omega_c} I_m,
\]

with conductivity \(\sigma \) and permittivity \(\varepsilon \). The time dependent potential \(V \) is solved via finite element methods.
Sample simulation
Application: national-scale epidemics

- Modeling the spread of verotoxinogenic *E. coli* O157:H7 (VTEC O157:H7) in the Swedish cattle population

- Important *zoonotic pathogen* (animal → humans) of great public health interest, causing enteroheamorrhagic colitis (EHEC) in humans (∼500 cases annually in Sweden).

- In Germany during the summer 2011, a particularly aggressive variant emerged, with 3,816 reported cases and 54 deceased.

- *Infected animals show no signs of the disease!*

- Cattle is a main reservoir of the bacteria, ongoing research to better understand the epidemiology of VTEC O157:H7 in the cattle population

- Mixed event-based approach:
 - Data-driven simulation using all registered cattle events 2005-2013
 - Stochastic simulation of within-herd dynamics (i.e. mesoscopic)
Data-driven

<table>
<thead>
<tr>
<th>REPORTER</th>
<th>WHERE</th>
<th>ABATTOIR</th>
<th>DATE</th>
<th>EVENT</th>
<th>ANIMALID</th>
<th>BIRTHDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>83466</td>
<td>83958</td>
<td>0</td>
<td>2009-10-01</td>
<td>2</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83958</td>
<td>83466</td>
<td>0</td>
<td>2009-10-01</td>
<td>1</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83958</td>
<td>83829</td>
<td>0</td>
<td>2012-03-15</td>
<td>2</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>83958</td>
<td>0</td>
<td>2012-03-15</td>
<td>1</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>83958</td>
<td>0</td>
<td>2012-03-15</td>
<td>4</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>54234</td>
<td>83829</td>
<td>0</td>
<td>2012-04-11</td>
<td>1</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>54234</td>
<td>0</td>
<td>2012-04-11</td>
<td>2</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>83958</td>
<td>0</td>
<td>2012-04-11</td>
<td>5</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
</tbody>
</table>

Total: 18,649,921 reports and 37,221 holdings

Events

- Exit (n=1,438,506)
- Enter (n=3,479,000)
- Internal transfer (n=6,593,921)
- External transfer (n=732,292)
Events

(Note: Germany:Sweden, pop. density ~ 10:1, area ~ 7:9)
Epidemic model

“Locally well-stirred” (SIS_E)

Model states: **Susceptible**, **Infected**, in $\sim40,000$ holdings and in 3 age categories \{*calves*, *youngstock*, *adults*\}.

Environmental infectious pressure

\[
\frac{d\varphi_i}{dt} = \frac{\alpha \sum_j l_{i,j}(t)}{\sum_j S_{i,j}(t) + l_{i,j}(t)} - \beta(t)\varphi_i(t)
\]

Finding: $\beta = \beta(t)$ required in the Swedish climate.

State transitions at node i in the jth age category,

Rate $S_{i,j} \rightarrow I_{i,j} = \gamma_j \varphi_i(t) S_{i,j}(t)$

Rate $I_{i,j} \rightarrow S_{i,j} = \frac{l_{i,j}(t)}{\delta_j}$
Sample simulation

http://user.it.uu.se/~stefane/animations/collection/siminf/siminf_sample.gif
Summary

- Mesoscopic stochastic R & D, **event-based computational framework**: fairly intuitive modeling, coupling and up/down-scaling, simulation algorithms

- **Terms & conditions**. If used when required: accurately capturing a stochastic nonlinear phenomenon is a very hard constraint for method’s development!

- Well-posedness, stability, convergence... of simple numerical methods

- Multiscale neuronal application solved in **URDME** (GitHub): coupling different types of models

- Epidemiological national-scale model solved in **SimInf** (GitHub): data-driven simulation
Acknowledgments

~In order of appearance

- Augustin Chevallier (ENS Cachan)
- Pavol Bauer (UU)
- Emil Berwald (UU)
- Stefan Widgren (SVA)

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention!