Towards consistent and effective modeling in the stochastic reaction-diffusion framework

Stefan Engblom

Div of Scientific Computing, Dept of Information Technology, Uppsala University

Mathematical Institute, University of Oxford, May 15, 2015

Outline

1. Framework

"How": stochastic R & D from the bottom and up "Why": a case study in controlled stochastic focusing The framework: event-based mesoscopic R & D

- Development: modeling and analysis
 Unstructured meshes
 Convergence, finite element methods and backward analysis
 Modeling of subdiffusion
- 3. Applications Multiscale neuronal model National-scale epidemics

Summary

Outline

A kind of overview talk... ...but with several special cases/models/applications...

For details: Programs, Papers, and Preprints are available from my web-page.

Brownian motion

Example: Particle diffusing in a fluid.

 $(micro) \rightarrow (stoch)$ The stochastic model is simpler but random (*error:* microscale effects in a statistical sense only).

 $(\text{stoch}) \rightarrow (\text{meso})$ Discrete space approximation (*error*: finite h > 0).

The mesoscopic stochastic model is a continuous-time Markov chain.

Chemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-Required: a model of physics in the zoomed in situation.

Chemical reactions

(Locally) well-stirred

Example: Bimolecular reaction $X + Y \rightarrow Z$ in a volume V.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in } [0, \Delta t])$?

As $\Delta t \rightarrow 0$ we recover again a continuous-time Markov chain.

Case study: the SFE (Why noise?)

Open-loop slowly fluctuating enzyme system

SFE-assumptions:

- 1. $\alpha_C \gg 1$ (high influx of C)
- 2. $k \gg \alpha_E + \mu_E$ (comparably slow enzyme fluctuations)
- k ≫ 1 (strong enzyme to substrate coupling)

4.
$$E^* = N \frac{\alpha_E}{\alpha_E + \mu_E}$$
 small (\leq 10)

-Very basic motif; low copy numbers, nonlinear...

Stochastic focusing

Stochastic vs. deterministic (well-stirred)

- Figure: Steady-state mean of C ("response") as a function of the mean of E* ("signal")
- The large difference (log scale!) is a consequence of stochastic focusing
- Originally proposed as a signal detection mechanism

-Note: well-stirred case (no space)! Can show that there exists spatial stochastic focusing as well...

Stochastic focusing (cont)

Signal detection, really?

Top: output noise as a function of average E^* , *bottom:* sensitivity to parameter perturbations (histograms from 10,000 trials).

Closed-loop slowly fluctuating enzyme system SFE with negative feedback

The transition $E \to E^*$ now has rate $\alpha_E(1 + f(x))$ instead, with x either C or P. Note: with x = C this mechanism has very recently been observed experimentally!

Controlled Stochastic Focusing

Top: Open- and Closed Loop responses to a change in $N = E + E^*$, *bottom:*

responses to perturbations in parameters.

Some focused conclusions...

- Dramatic noise reduction and increased robustness, very accurate control possible (*note:* 10 molecules!)
- In fact, a certain deterministic model very closely predicts the controlled system
- Of course, this analysis and insight is only meaningful in the presence of noise

⇒ There are many more examples where **noise**, **discreteness**, and **nonlinearities** make a huge impact and where effective deterministic models are very difficult to derive.

Back to the details...

Mesoscopic well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the *local* volume (and an energy which is independent on position).

-State $X \in \mathbf{Z}_{+}^{D}$, counting the number of molecules of each of D species. -Reactions are transitions between these states,

$$X \xrightarrow{w_r(X)} X - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D \times R}$$
 (stoichiometric matrix)

where the propensity $w_r : \mathbf{Z}^D_+ \to \mathbf{R}_+$, r = 1...R, is the probability of reacting per unit of time.

 \implies Jump SDE formulation: $dX_t = -\mathbb{N}\mu(dt)$

Back to the details...

Mesoscopic well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the *local* volume (and an energy which is independent on position).

-State $X \in \mathbf{Z}_{+}^{D}$, counting the number of molecules of each of D species. -Reactions are transitions between these states,

$$X \xrightarrow{w_r(X)} X - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D imes R}$$
 (stoichiometric matrix)

where the propensity $w_r : \mathbf{Z}^D_+ \to \mathbf{R}_+$, r = 1...R, is the probability of reacting per unit of time.

 \implies Jump SDE formulation: $dX_t = -\mathbb{N}\mu(dt) = -\mathbb{N}\mu(w(X_{t-}); dt)$ such that $E[\mu(w(x); dt)] = w(x) dt$.

Back to the details...

Mesoscopic spatial kinetics

Assuming that the domain Ω has been subdivided into small enough computational cells Ω_j such that diffusion suffices to make each cell well-stirred.

- ► The state of the system is now an array X with D × K elements; D chemically active species X_{ij}, i = 1,..., D, counted separately in K cells, j = 1,..., K.
- ► This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in X) and by diffusion/transport where molecules move to adjacent cells (horizontally in X).

Reactions

By assumption, each cell is well-stirred and consequently the jump SDE is valid as a description of *reactions*,

$$d\mathbb{X}_t = -\mathbb{N}\mu(dt),$$

where μ is now *R*-by-*K*; $E[\mu_{rj}]dt^{-1} =$ propensity of the *r*th reaction in the *j*th cell.

Diffusion

A natural model of diffusion from one cell Ω_k to another cell Ω_i is

$$\mathbb{X}_{ik} \xrightarrow{q_{kj}\mathbb{X}_{ik}} \mathbb{X}_{ij},$$

where q_{kj} is non-zero only for connected cells.

Assuming that the diffusion constants are the same for all species,

$$d\mathbb{X}_t = \mathbb{E}(-\nu^T + \nu)(dt),$$

where \mathbb{E} is *D*-by-*K* of all 1's, and ν is *K*-by-*K*; $E[\nu_{kj}] = q_{kj} \mathbb{X}_{ik} dt$.

The reaction-diffusion jump SDE "RDME"

Combining reactions with diffusions we arrive at

$$d\mathbb{X}_t = -\mathbb{N}\mu(dt) + \mathbb{E}(-\nu^T + \nu)(dt).$$

-An approximation, valid when

$$\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta,$$

 ρ the molecular radius, τ_{Δ} average molecular survival time.

Outlook Event-based mesoscopic framework

Figure: Primal mesh (thin), dual mesh (blue). The nodal dofs are the # of molecules in each dual cell.

Local physics within each small voxel, *connected* through transport mechanisms (diffusion).

Unstructured meshes

Consistency in mean

-*Idea:* converge in expectation to the macroscopic diffusion equation. A numerical method applied to $u_t = \sigma^2/2 \Delta u$ yields the *discretized* form

$$\frac{d\mathbf{u}}{dt} = \frac{\sigma^2}{2} D\mathbf{u}$$

-Concentration $\varphi_{ij} = E[\Omega_j^{-1} \mathbb{X}_{ij}]$. By linearity of the diffusion intensities,

$$\begin{aligned} \frac{d\varphi_{ij}}{dt} &= \sum_{k=1}^{K} \frac{|\Omega_k|}{|\Omega_j|} q_{kj} \varphi_{ik} - \left(\sum_{k=1}^{K} q_{jk}\right) \varphi_{ij},\\ \iff \frac{d\varphi_{i\cdot}^T}{dt} &= \mathbf{Q} \varphi_{i\cdot}^T. \end{aligned}$$

Weak convergence

Consistency in mean

Key observation: by linearity, the diffusion CTMC/jump SDE over the unstructured grid has an expected value which coincides with the exact solution to the deterministic numerical method.

If the latter converges as the mesh $h \rightarrow 0$ (to the solution of the diffusion PDE), then the former converges in mean value.

The FEM A compact summary

Consider the strong formulation $u_t = \sigma^2/2 \Delta u$ in Ω . Multiply by a test-function $v \in V$ and integrate...

- 1. Variational form (Green's theorem): find $u \in V$ s.t. $(v, u_t) = -\sigma^2/2 (\nabla v, \nabla u)$ for $\forall v \in V$, where $(f, g) \equiv \int_{\Omega} fg \, dx$.
- 2. A FEM is obtained by approximating $V \approx V_h = \text{span}_i \varphi_i \subset V$.
- 3. With $u_h = \sum_i \mathbf{u}_i(t)\varphi_i$ we get $M\mathbf{u}_t = -\sigma^2/2A\mathbf{u}$; $M_{ij} = (\varphi_i, \varphi_j)$, $A_{ij} = (\nabla \varphi_i, \nabla \varphi_j)$.

FEM convergence

 $M\mathbf{u}_t = -\sigma^2/2 A\mathbf{u}$, or, $\mathbf{u}_t = -\sigma^2/2 M^{-1}A\mathbf{u} = \sigma^2/2 D\mathbf{u}$.

- 1. Converges in L^2 , $||u_h u|| = O(h^2)$ as $h \to 0$, under very mild assumptions on the mesh.
- 2. Under stringent conditions on the mesh, the maximum principle holds.
- 3. If these conditions are violated, "negative" diffusion take place (must be truncated).
- 4. Backward analysis: in this case the solution satisfies exactly a perturbed equation $\tilde{u}_t = \nabla \cdot (\tilde{\sigma}^2(x)/2 \times \nabla \tilde{u})$, where $\tilde{\sigma}$ can be explicitly obtained, $\|\tilde{\sigma} \sigma\|$ is small, and where $\|\tilde{u} u\| \leq C \|\tilde{\sigma} \sigma\|$.

-*Challenges:* (*i*) convergence *in distribution* — retrieving the correct Brownian motion, (*ii*) convergence *with reactions*, (*iii*) getting to grip of *when it actually matters*...

Modeling of subdiffusion

Microscale random walks

Joint PDF for the jump \mathbf{x} and time until the next jump t,

$$\Psi(\mathbf{x},t) = \psi(t) \, \lambda(\mathbf{x}).$$

Expected waiting time $\tau^* \equiv \int_0^\infty t \, \psi(t) \, dt$ Jump length variance $\Sigma^2 \equiv \int_{\mathbb{R}^d} \|\mathbf{x}\|_2^2 \, \lambda(\mathbf{x}) \, d\mathbf{x}$

Characterization:

- τ^* and Σ^2 finite \Rightarrow Brownian motion
- diverging τ^* with finite $\Sigma^2 \Rightarrow$ subdiffusion
- diverging Σ^2 with finite $\tau^* \Rightarrow$ superdiffusion

Subdiffusion

Random walk

• Gaussian jump length PDF
$$\lambda(\mathbf{x}) = \frac{1}{(4 \pi \sigma^2)^{d/2}} e^{-\|\mathbf{x}\|_2^2/(4 \sigma^2)}$$
, $\Sigma^2 = 2 \sigma^2 < \infty$

• Mittag-Leffler waiting time PDF
$$\psi(t) = \frac{t^{\alpha-1}}{\tau^{\alpha}} E_{\alpha,\alpha} \left(-\left(\frac{t}{\tau}\right)^{\alpha} \right), \tau^* = \infty$$

• Mean square displacement
$$\left< \|\mathbf{x}\|_2^2(t) \right> = \frac{2 \, d \, K_\alpha}{\Gamma(1+\alpha)} \, t^{\alpha}$$

Macroscopic model

Fractional PDE

$$rac{\partial^{lpha}}{\partial t^{lpha}} U = K_{lpha} \Delta U, \qquad K_{lpha} \equiv rac{\sigma^2}{\tau^{lpha}}.$$

Subdiffusion

Mesoscopic model

Assuming ordinary diffusion on a mesh of interest can be simulated:

Approximation through a Markov chain over N internal states,

$$\psi(t) = \frac{t^{\alpha-1}}{\tau^{\alpha}} E_{\alpha,\alpha} \left(-\left(\frac{t}{\tau}\right)^{\alpha} \right) \approx \sum_{i=1}^{N} \mu_i \tau_i^{-1} e^{-t/\tau_i}$$

- ▶ In the *i*th internal state, the diffusion of *u_i* is ordinary
- At the macroscopic level $U = \sum_{i=1}^{N} u_i$ diffuses anomalously according to the subdiffusion FPDE

-Hence again, this numerical method is consistent in the sense of mean value with the macroscopic description (as $(h, N) \rightarrow (0, \infty)$).

Ongoing research...

Bimolecular reactions

S. Engblom (Uppsala University)

150515 26 / 42

Application: multiscale neuronal model

Bottom level

lon channel gating

Gating process: sodium channels.

Bottom level lon channel gating

The gating process of ion channels can be mesoscopically described as

$$N_0 \underset{\beta_m(\mathbf{V}_m)N_1}{\overset{3\alpha_m(\mathbf{V}_m)N_1}{\rightleftharpoons}} N_1 \underset{2\beta_m(\mathbf{V}_m)N_2}{\overset{2\alpha_m(\mathbf{V}_m)N_1}{\rightleftharpoons}} N_2 \underset{3\beta_m(\mathbf{V}_m)N_3}{\overset{\alpha_m(\mathbf{V}_m)N_2}{\rightleftharpoons}} N_3,$$

again a *continuous-time Markov chain*. *Output:* N_3 , the number of open gates.

For efficient model coupling we freeze the voltage dependency for a short time-step τ ("Euler method/1st order Strang split"):

$$X_{t+\tau} = X_t - \int_t^{t+\tau} \mathbb{N}\mu(V_m(t), w(X_{s-}); ds).$$

Middle level Membrane dynamics

S. Engblom (Uppsala University) Consistent & Efficient R-D simulations

Middle level

Membrane dynamics

- Morphological information extracted using the *Trees toolbox*
- System of current-balance and cable equations is solved for each time step τ

Top level Maxwell's equations, potential form

Electric field intensity E in terms of the electric scalar potential V,

$$\mathsf{E} = -\nabla V.$$

Trans-membrane current l_m is scaled with the compartement surface area and coupled as a current source,

$$-\nabla\cdot\left(\sigma\nabla V+\varepsilon_{0}\varepsilon_{r}\frac{\partial}{\partial t}\nabla V\right)=\frac{1}{\Omega_{c}}I_{m},$$

with conductivity σ and permittivity ε . The time dependent potential V is solved via finite element methods.

Top level Geometry coupling

- Bottom and middle level: compartments (cylindrical volumes)
- Coupling with PDE requires a free space mesh
- Modeling the neuron via 3D curves

Sample simulation

Application: national-scale epidemics

- Modeling the spread of verotoxinogenic *E. coli* O157:H7 (VTEC O157:H7) in the Swedish cattle population
- Important zoonotic pathogen (animal → humans) of great public health interest, causing enteroheamorrhagic colitis (EHEC) in humans (~500 cases anually in Sweden)
- Infected animals show no signs of the disease!
- Cattle is a main reservoir of the bacteria, ongoing research to better understand the epidemiology of VTEC O157:H7 in the cattle population
- Mixed event-based approach:
 - Data-driven simulation using all registred cattle events 2005-2013
 - Stochastic simulation of within-herd dynamics (i.e. mesoscopic)

Data-driven

REPORTER	WHERE	ABATTOIR	DATE	EVENT	ANIMALID	BIRTHDATE
83466 83958 83958 83829 83829 54234 83829	83958 83466 83829 83958 83958 83829 54234	0 0 0 0 0 0	2009-10-01 2009-10-01 2012-03-15 2012-03-15 2012-03-15 2012-04-11 2012-04-11	2 1 2 1 4 1 2	SE0834660433 SE0834660433 SE0834660433 SE0834660433 SE0834660433 SE0834660433 SE0834660433	1997-04-04 1997-04-04 1997-04-04 1997-04-04 1997-04-04 1997-04-04 1997-04-04
83829	83958	0	2012-04-11	5	SE0834660433	1997-04-04

Total: 18 649 921 reports and 37 221 holdings

Events

- ▶ Exit (n=1 438 506)
- Enter (n=3 479 000)
- Internal transfer (n=6 593 921)
- External transfer (n=732 292)

Events

(*Note:* pop. density UK:Sweden is \gtrsim 10:1)

Epidemic model

"Locally well-stirred" (SIS_E)

Model states: **S**usceptible, Infected, in \sim 40,000 holdings and in 3 age categories {*calves*, *youngstock*, *adults*}.

Environmental infectious pressure

$$\frac{d\varphi_i}{dt} = \frac{\alpha \sum_j I_{i,j}(t)}{\sum_j S_{i,j}(t) + I_{i,j}(t)} - \beta(t)\varphi_i(t)$$

Finding: $\beta = \beta(t)$ required in the Swedish climate.

State transitions at node *i* in the *j*th age category,

Rate
$$S_{i,j} \rightarrow I_{i,j} = \gamma_j \varphi_i(t) S_{i,j}(t)$$

Rate $I_{i,j} \rightarrow S_{i,j} = \frac{I_{i,j}(t)}{\delta_j}$

Sample simulation

http://user.it.uu.se/~stefane/animations/collection/siminf/ siminf_sample.gif

Parallel performance

Feasibility of parameter estimation Setup: determine $\hat{k} = \arg \min_k G(k)$,

$$G(k)^2 = M^{-1} \sum_{i=1}^M \|S \circ x^{(i)}_{ ext{simulated}}(k) - S \circ x_{ ext{input}}(k^*)\|^2$$

S a "smoothing statistics" (...)

Using $M \in \{10, 20, 40\}$ trajectories for G and N = 20 iterations of an optimization routine:

М	Residual	12 cores	32 cores
10	0.174	46.6 min	30.2 min
20	0.090	94.2 min	61.5 min
40	0.036	189.3 min	123.7 min

Summary

- Mesoscopic stochastic R & D, event-based computational framework: fairly intuitive modeling, coupling and up/down-scaling, analysis of numerical methods, efficient simulation algorithms
- Terms & conditions. If used when required: accurately capturing a stochastic nonlinear phenomenon is a very hard constraint for method's development!
- Consistency with macroscopic equations. The numerical method's convergence to the macroscopic equation implies convergence in mean (/weak convergence) of the corresponding stochastic model, FEM, backward analysis
- Multiscale neuronal application solved in URDME (GitHub): coupling different types of models
- Epidemiological national-scale model solved in SimInf (GitHub): data-driven simulation, parallel performance

Acknowledgments

 \sim In order of appearance

- Pavol Bauer (UU)
- Andreas Milias-Argeitis, Mustafa Khammash (ETH)
- ▶ Per Lötstedt, Andreas Hellander, Lina Meinecke, Emilie Blanc (UU)
- Augustin Chevallier (ENS Cachan), Emil Berwald (UU)
- Stefan Widgren (SVA)

Programs, Papers, and Preprints are available from my web-page. Thank you for the attention!