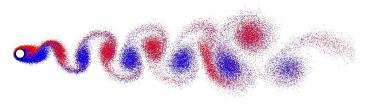
A new take at Adaptive Fast Multipole Methods: application, implementation, and hybrid CPU/GPU parallelism



Stefan Engblom

UPMARC @ TDB/IT, Uppsala University

KCSE seminar, Stockholm, November 6, 2013

S. Engblom (TDB/IT/UU)

New Parallel Adaptive FMMs

KCSE 131106 1 / 29

- Background: design of vertical axis wind turbines
- Discretization using a vortex formulation
- Fast multipole methods...
 - ...with space adaptivity...
 - …in parallel…
 - ...optimally on hybrid CPU/GPU-systems

Joint work in part with **Paul Deglaire** and **Anders Goude** at the Division for Electricity and Lightning Research, and with **Marcus Holm** and **Sverker Holmgren** at the Division of Scientific Computing.

Backgroun

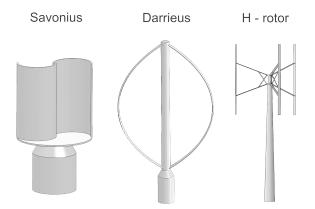
Background

Pros/cons of VAWTs:

- $+ \ \, {\rm Generator} \ \, {\rm at} \ \, {\rm ground} \ \, {\rm level}$
- + Less gravitational loads
- + No gears
- + Easier maintenance
- + Less noise
 - Fatigue loads
 - Start-up
 - Aerodynamics model

YouTube: Vertical Wind 200kW (March 2010)

VAWTs



Vortex formulation

In 2D, let the velocity field $\mathbf{u}(z, t)$ solve the Navier-Stokes equations with BCs (identifying the complex number z = x + iy with the space coordinate (x, y)). Introduce the *vorticity* $\omega \equiv \nabla \times \mathbf{u} \cdot \hat{k}$ and consider the two-step formulation:

$$\begin{aligned} \omega_t + \mathbf{u} \cdot \nabla \omega &= 0 \qquad (\text{advection}), \\ \omega_t &= \nu \Delta \omega \quad (\text{diffusion}). \end{aligned}$$

-Hence; how do we obtain **u** from ω ?

One can show that $\mathbf{u} = \mathbf{u}_{\omega} + \nabla \phi$ for some ϕ s.t. $\Delta \phi = 0$ accounting for the BCs. In turn,

$$\mathbf{u}_{\omega}(z,t) = \int_{\Omega} K(z-z')\omega(z',t) \, dz',$$

where $K = -i/(2\pi z)$ is the *Green's function* for $-\Delta$. If the vorticity is discretized,

$$\omega(z,t)=\sum_{j}\delta(z-z_{j})\Gamma_{j},$$

with $z_j = z_j(t)$, then the velocity field is obtained from

$$\mathbf{u}_{\omega}(z,t) = \sum_{j} K(z-z_j) \Gamma_j.$$

To *advect*, evaluate the velocity field in all vorticity points z_j ,

$$\mathbf{u}_{\omega}(z_j,t) = \sum_{i\neq j} K(z_j-z_i) \Gamma_i,$$

an N-body problem.

To diffuse, just add a normally distributed random number,

$$\mathbf{u}_{\omega}(z_j, t + \Delta t) = \mathbf{u}_{\omega}(z_j, t) + \sqrt{2\nu\Delta t}\mathcal{N}(0, 1).$$

In practice, there are also redistribution-type methods such that Γ_i is made time-dependent.

FMM

Fast multipole method

Main idea: all charges/potentials/bodies inside two well-separated sets can interact through an operator of low effective rank.

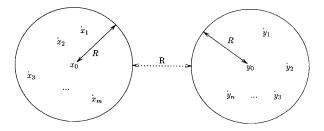


FIG. 1. Well-separated sets in the plane.

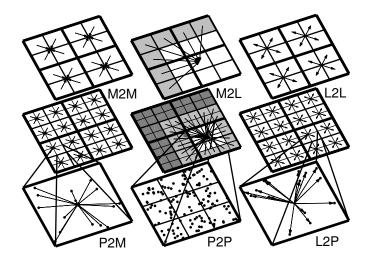
Figure: Found at p. 3 of Greengard and Rokhlin: "A Fast Algorithm for Particle Simulations" *J. Comput. Phys.* **73**(2):325–348 (1987).

Bottom-up, then top-down

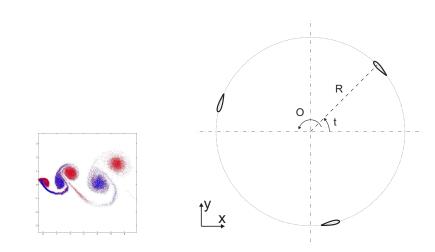
Distribute the points in a recursive tree of boxes where each box has 4 children (2D).

- 1. *Initialize* at the finest level in the tree, expanding each potential in a *multipole series* around the midpoint of the box.
- 2. Go upwards and shift all multipole expansions to parents, yielding a "top expansion" for the whole enclosing box.
- 3. Go downwards and, for all well-separated boxes, *shift-and-convert* all expansions into *local* expansions (eg. polynomials). Also, *shift* all such expansions to children, yielding a local field in each box.

Particles, Multipole, and Local...



Illustrations



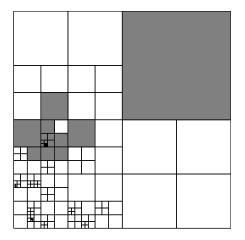
Test: flat plate. Production runs: 3-bladed turbine, small turbine park.

S. Engblom (TDB/IT/UU)

New Parallel Adaptive FMMs

Adaptivity

Want adaptivity, but quite complicated... The "C" in $\mathcal{O}(N)$ can be rather large.

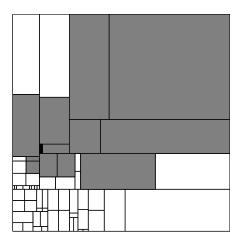


(shaded boxes interact; different sizes means different levels in the multipole tree)

S. Engblom (TDB/IT/UU)

Asymmetric adaptivity/Balanced implementation

Idea: split around the median point instead of around the geometric midpoint. Easier to get the communication localized.



(all boxes shown here reside at the same level in the tree)

The θ -criterion

As the mesh looses regularity, it becomes important to keep track of what sets are really well-separated.

Criterion

Let the sets $S_1, S_2 \subset \mathbf{R}^D$ be contained inside two disjoint spheres such that $||S_1 - x_0|| \le r_1$ and $||S_2 - y_0|| \le r_2$. Given $\theta \in (0, 1)$, if $d \equiv ||x_0 - y_0||$, $R \equiv \max\{r_1, r_2\}$, and $r \equiv \min\{r_1, r_2\}$, then the two sets are *well-separated* whenever $R + \theta r \le \theta d$.

In other words: any of the two sets may be expanded by a factor of $1/\theta$ and arbitrarily rotated about its center point without touching the other set.

Asymmetric adaptivity

Rules of Procedure

- $\S1$ A box is strongly connected to itself.
- §2 By default, children to strongly connected boxes are also strongly connected.
- §3 *However*, if two such children satisfy the θ -criterion, then they become weakly connected.

-At any level in the tree, weakly connected (= well-separated) boxes can interact through M2L-shifts. Strongly connected boxes, however, either have to interact on a more highly resolved level in the tree, or interact directly.

Thanks to a static data structure, these rules are highly implementable.

FMMs Adaptivity

Asymmetric adaptivity



Figure: Typical M2L interaction list ($\theta = 1/2$).

S. Engblom (TDB/IT/UU)

Theory (1/2)

$$\Phi(x_i) = \sum_{j=1, j \neq i}^{N} \mathbf{G}(x_i, x_j), \quad x_i \in \mathbf{R}^D, \quad i = 1 \dots N.$$

(*Model:* the harmonic 1/r potential...)

Assumption (Kernel regularity) For $\alpha, \beta \in \mathbf{Z}^{D}_{+}$ with $|\alpha|, |\beta| \le p + 1$, $|\partial_{x}^{\alpha} \partial_{y}^{\beta} G(x, y)| \le C \frac{n!}{\|x - y\|^{n+1}},$ (1)

where $n \equiv |\alpha + \beta|$. Additionally, G is positive and satisfies

$$||x - y||^{-1} \le cG(x, y).$$
 (2)

Theory (2/2)

Assumption (Rotational invariance)

For any rotation T of the coordinate system,

$$G(x,y) = G(Tx,Ty).$$
(3)

\implies Then the relative error for the *p*th order adaptive fast multipole method under the θ -criterion is bounded by a constant $\times \theta^{p+1}/(1-\theta)^2$.

FMMs Adaptivity

Really accurate?

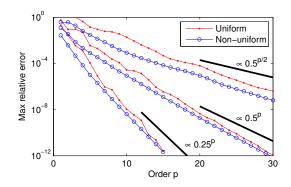


Figure: Errors for two different distribution of points and three distinct θ s. Note: signed potential $1/(z_i - z_j)$.

Adaptivity

Efficient way of handling adaptivity? Theory: $\mathcal{O}\left(\theta^{-2}\log^{-2}\theta \cdot N\log^2 \text{TOL}\right)$. ($\Longrightarrow \theta_{\text{opt}} = \exp(-1) \approx 0.368$)

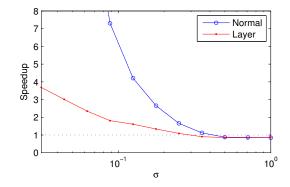


Figure: Adaptive vs. uniform FMM. Two different distribution of points.

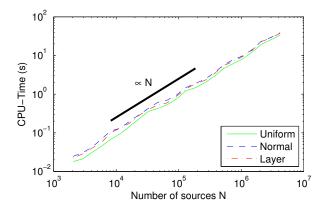
"Normal" := $\mathcal{N}(0, \sigma)$, but rejected to fit within the positive unit square. "Layer" := the x-coordinate is U[0, 1] instead.

S. Engblom (TDB/IT/UU)

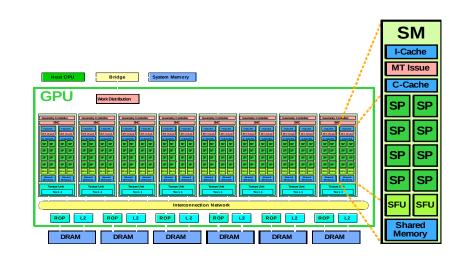
KCSE 131106 20 / 29

Adaptivity

Scalable?



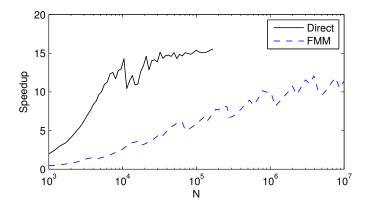
Implementability? GPU-card



GPU implementation

Intel Xeon 6c W3680 @3.33GHz vs. Nvidia Tesla C2075 448c

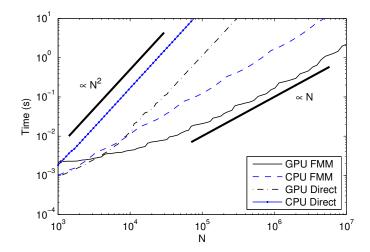
GPU speedup for (1) direct $O(N^2)$ all-pairs interaction, and (2) FMM.



Note: single threaded CPU.

GPU implementation

Intel Xeon 6c W3680 @3.33GHz vs. Nvidia Tesla C2075 448c



Note: single threaded CPU.

S. Engblom (TDB/IT/UU)

Lessons learnt from the GPU \implies Hybrid implementation

- Good speedup obtained across all operations in the FMM
- \blacktriangleright Coding complexity $\sim \times 4$ for topological parts

-For a 4+ core computer it seems reasonable that a hybrid approach would be beneficial. *For example:* offloading the local and perfectly data-parallel P2P evaluation to the GPU. Loadbalance?

Lessons learnt from the GPU \implies Hybrid implementation

- Good speedup obtained across all operations in the FMM
- \blacktriangleright Coding complexity $\sim \times 4$ for topological parts

-For a 4+ core computer it seems reasonable that a hybrid approach would be beneficial. *For example:* offloading the local and perfectly data-parallel P2P evaluation to the GPU. Loadbalance?

-*Idea:* the FMM is most often used in a dynamic/iterative context. \implies Measure the performance and adjust the parameters of the algorithm for the next iteration.

Lessons learnt from the GPU \implies Hybrid implementation

- Good speedup obtained across all operations in the FMM
- Coding complexity $\sim \times 4$ for topological parts

-For a 4+ core computer it seems reasonable that a hybrid approach would be beneficial. *For example:* offloading the local and perfectly data-parallel P2P evaluation to the GPU. Loadbalance?

-*Idea:* the FMM is most often used in a dynamic/iterative context. \implies Measure the performance and adjust the parameters of the algorithm for the next iteration.

In the present context: N_{levels} controls the amount of work left at the finest level (P2P), θ controls connectivity and the number of expansion coefficients. A regulating autotuner can be designed to wisely "crawl" this parameter space and continuously find the performance sweet spot.

Results

"Superglue" task-based programming model.

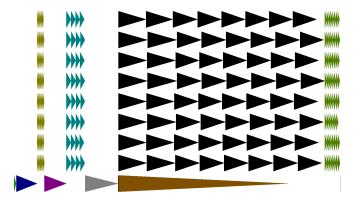
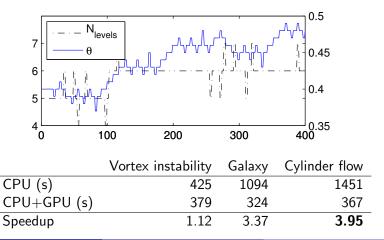


Figure: Superglue Execution Visualizator

Results

Note: 8c CPU vs. 8c CPU+448c GPU



S. Engblom (TDB/IT/UU)

Conclusion

Conclusions

- Academic sw-project driven by a concrete problem.
- Nice aspect: the steady and controlled growth of performance and complexity:

Conclusions

Conclusions

- Academic sw-project driven by a concrete problem.
- Nice aspect: the steady and controlled growth of performance and complexity:
 - 1. Stand-alone recursive uniform FMM implementation ($N_{\rm max} \sim 20,000$).
 - 2. Matlab-interface to a *direct N*-body evaluation ($N \sim 10,000$).
 - 3. First efficient working copy of uniform FMM; later heavily optimized, eg. BLAS L3 ($N \sim 1,000,000$, memory bound!).
 - 4. Added adaptivity took the time to investigate a novel approach.
 - 5. Fully data-parallel GPU-implementation CUDA/C++.
 - 6. Hybrid-implementation: threaded (task-based) version on the CPU which runs concurrently with perfectly data-parallel tasks on the GPU $(N \sim 10,000,000)$.
 - 7. *Todo:* 3D...?
- Increasingly sophisticated regression tests.

Conclusions

- Academic sw-project driven by a concrete problem.
- Nice aspect: the steady and controlled growth of performance and complexity:
 - 1. Stand-alone *recursive* uniform FMM implementation ($N_{max} \sim 20,000$).
 - 2. Matlab-interface to a *direct N*-body evaluation ($N \sim 10,000$).
 - 3. First efficient working copy of uniform FMM; later heavily optimized, eg. BLAS L3 ($N \sim 1,000,000$, memory bound!).
 - 4. Added adaptivity took the time to investigate a novel approach.
 - 5. Fully data-parallel GPU-implementation CUDA/C++.
 - 6. Hybrid-implementation: threaded (task-based) version on the CPU which runs concurrently with perfectly data-parallel tasks on the GPU $(N \sim 10,000,000)$.
 - 7. *Todo:* 3D...?
- Increasingly sophisticated regression tests.
- Academic environment; clarity wrt to goals is *very* important.

Conclusions

Programs, Papers, and Preprints are available from my web-page. Thank you for the attention and for the lunch!