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Outline

I Background: design of vertical axis wind turbines

I Discretization using a vortex formulation

I Fast multipole methods...

I ...with space adaptivity...
I ...in parallel...
I ...optimally on hybrid CPU/GPU-systems

Joint work in part with Paul Deglaire and Anders Goude at the Division
for Electricity and Lightning Research, and with Marcus Holm and
Sverker Holmgren at the Division of Scientific Computing.
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Background

Background

Pros/cons of VAWTs:

+ Generator at ground level

+ Less gravitational loads

+ No gears

+ Easier maintenance

+ Less noise

- Fatigue loads

- Start-up

- Aerodynamics model

YouTube: Vertical Wind
200kW (March 2010)
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http://www.youtube.com/watch?v=aP9tmIVT-XU
http://www.youtube.com/watch?v=aP9tmIVT-XU


Background

VAWTs
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Vortex formulation

Vortex formulation

In 2D, let the velocity field u(z , t) solve the Navier-Stokes equations with
BCs (identifying the complex number z = x + iy with the space coordinate
(x , y)). Introduce the vorticity ω ≡ ∇× u · k̂ and consider the two-step
formulation:

ωt + u · ∇ω = 0 (advection),
ωt = ν∆ω (diffusion).

-Hence; how do we obtain u from ω?
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Vortex formulation

One can show that u = uω +∇φ for some φ s.t. ∆φ = 0 accounting for
the BCs. In turn,

uω(z , t) =

∫
Ω

K (z − z ′)ω(z ′, t) dz ′,

where K = −i/(2πz) is the Green’s function for −∆.
If the vorticity is discretized,

ω(z , t) =
∑
j

δ(z − zj)Γj ,

with zj = zj(t), then the velocity field is obtained from

uω(z , t) =
∑
j

K (z − zj)Γj .
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Vortex formulation

To advect, evaluate the velocity field in all vorticity points zj ,

uω(zj , t) =
∑
i 6=j

K (zj − zi )Γi ,

an N-body problem.
To diffuse, just add a normally distributed random number,

uω(zj , t + ∆t) = uω(zj , t) +
√

2ν∆tN (0, 1).

In practice, there are also redistribution-type methods such that Γi is made
time-dependent.
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FMMs

Fast multipole method
Main idea: all charges/potentials/bodies inside two well-separated sets
can interact through an operator of low effective rank.

282 GREENGARD AND ROKHLIN

THEOREM 2.1. (Multipole expansion). Suppose that m
charges of strengths hqi , i 5 1, ..., mj are located at points
hzi , i 5 1, ..., mj, with uzi u , r. Then for any z [ C with
uzu . r, the potential f(z) is given by

f(z) 5 Q log(z) 1 Oy
k51

ak

zk , (2.2)

FIG. 1. Well-separated sets in the plane.
where

Q 5 Om
i51

qi , ak 5 Om
i51

2qizk
i

k
. (2.3) that hy1 , y2 , ..., ynj is another set of points in C (Fig. 1).

We say that the sets hxij and hyij are well separated if there
exist points x0 , y0 [ C and a real r . 0 such that

Furthermore, for any p $ 1,

uxi 2 x0u , r for all i 5 1, ..., m,
uyj 2 y0u , r for all j 5 1, ..., n,Uf(z) 2 Q log(z) 2 Op

k51

ak

zkU# a Ur
zUp11

# S A
c 2 1DS1

cDp

, ux0 2 y0u . 3r.
(2.4)

In order to obtain the potential (or force) at the points
hyj j due to the charges at the points hxij directly, wewhere
could compute

c 5 UzrU, A 5 Om
i51

uqi u, and a 5
A

1 2 ur/zu
. (2.5) Om

i51
fxi

(yj ) for all j 5 1, ..., n. (2.7)

Proof. The form of the multipole expansion (2.2) is an This clearly requires order nm work (evaluating m fields
immediate consequence of the preceding lemma and the at n points). Now suppose that we first compute the coeffi-
fact that f(z) 5 om

i51 fzi
(z). To obtain the error bound cients of a p-term multipole expansion of the potential due

(2.4), observe that to the charges q1 , q2 , ..., qm about x0 , using Theorem 2.1.
This requires a number of operations proportional to mp.
Evaluating the resulting multipole expansion at all pointsUf(z) 2 Q log(z) 2 Op

k51

ak

zkU5 U Oy
k5p11

ak

zkU. yj requires order np work, and the total amount of compu-
tation is of the order O(mp 1 np). Moreover, by (2.6),

Substituting for ak the expression in (2.3), we have UOm
i51

fxi
(yj ) 2 Q log(yj 2 x0) 2 Op

k51

ak

uyj 2 x0uk
U# A S1

2Dp

,

U Oy
k5p11

ak

zkU# A Oy
k5p11

rk

k uzuk
# A Oy

k5p11
Ur
zUk

5 a Ur
zUp11

and in order to obtain a relative precision « (with respect
to the total charge), p must be of the order 2log2(«). Once

5 S A
c 2 1DS1

cDp

. the precision is specified, the amount of computation has
been reduced to

In particular, if c $ 2, then O(m) 1 O(n),

which is significantly smaller than nm for large n and m.Uf(z) 2 Q log(z) 2 Op
k51

ak

zkU# A S1
2Dp

. (2.6)

2.1. Translation Operators and Error Bounds

The following three lemmas constitute the principal ana-Finally, we demonstrate, with a simple example, how
multipole expansions can be used to speed up calculations lytical tool of this paper, allowing us to manipulate

multipole expansions in the manner required by the fastwith potential fields. Suppose that charges of strengths q1 ,
q2 , ..., qm are located at the points x1 , x2 , ..., xm [ C and algorithm. Lemma 2.3 provides a formula for shifting the

Figure: Found at p. 3 of Greengard and Rokhlin: “A Fast Algorithm for Particle
Simulations” J. Comput. Phys. 73(2):325–348 (1987).
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FMMs

Bottom-up, then top-down

Distribute the points in a recursive tree of boxes where each box has 4
children (2D).

1. Initialize at the finest level in the tree, expanding each potential in a
multipole series around the midpoint of the box.

2. Go upwards and shift all multipole expansions to parents, yielding a
“top expansion” for the whole enclosing box.

3. Go downwards and, for all well-separated boxes, shift-and-convert all
expansions into local expansions (eg. polynomials). Also, shift all such
expansions to children, yielding a local field in each box.
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FMMs

Particles, Multipole, and Local...

L2L

L2P

M2L

P2P

M2M

P2M
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FMMs

Illustrations

O
t

R

y
x

Test: flat plate.
Production runs: 3-bladed turbine, small turbine park.
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http://user.it.uu.se/~stefane/animations/collection/FMM/flatplate.gif
http://user.it.uu.se/~stefane/animations/collection/FMM/vortex3bladeslarger.avi
http://user.it.uu.se/~stefane/animations/collection/FMM/fourturbines3blades.avi


FMMs Adaptivity

Adaptivity
Want adaptivity, but quite complicated... The “C ” in O (N) can be rather
large.

(shaded boxes interact; different sizes means different levels in the multipole tree)
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FMMs Adaptivity

Asymmetric adaptivity/Balanced implementation
Idea: split around the median point instead of around the geometric
midpoint. Easier to get the communication localized.

(all boxes shown here reside at the same level in the tree)
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FMMs Adaptivity

The θ-criterion

As the mesh looses regularity, it becomes important to keep track of what
sets are really well-separated.

Criterion
Let the sets S1,S2 ⊂ RD be contained inside two disjoint spheres such
that ‖S1 − x0‖ ≤ r1 and ‖S2 − y0‖ ≤ r2. Given θ ∈ (0, 1), if
d ≡ ‖x0 − y0‖, R ≡ max{r1, r2}, and r ≡ min{r1, r2}, then the two sets
are well-separated whenever R + θr ≤ θd .

In other words: any of the two sets may be expanded by a factor of 1/θ
and arbitrarily rotated about its center point without touching the other
set.
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FMMs Adaptivity

Asymmetric adaptivity
Rules of Procedure

§1 A box is strongly connected to itself.

§2 By default, children to strongly connected boxes are also strongly
connected.

§3 However, if two such children satisfy the θ-criterion, then they
become weakly connected.

-At any level in the tree, weakly connected (= well-separated) boxes can
interact through M2L-shifts. Strongly connected boxes, however, either
have to interact on a more highly resolved level in the tree, or interact
directly.

Thanks to a static data structure, these rules are highly implementable.
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FMMs Adaptivity

Asymmetric adaptivity

Figure: Typical M2L interaction list (θ = 1/2).
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FMMs Adaptivity

Theory (1/2)

Φ(xi ) =
N∑

j=1,j 6=i

G (xi , xj), xi ∈ RD , i = 1 . . .N.

(Model: the harmonic 1/r potential...)

Assumption (Kernel regularity)

For α, β ∈ ZD
+ with |α|, |β| ≤ p + 1,

|∂αx ∂βy G (x , y)| ≤ C
n!

‖x − y‖n+1
, (1)

where n ≡ |α + β|. Additionally, G is positive and satisfies

‖x − y‖−1 ≤ cG (x , y). (2)
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FMMs Adaptivity

Theory (2/2)

Assumption (Rotational invariance)

For any rotation T of the coordinate system,

G (x , y) = G (Tx ,Ty). (3)

=⇒ Then the relative error for the pth order adaptive fast multipole
method under the θ-criterion is bounded by a constant× θp+1/(1− θ)2.
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FMMs Adaptivity

Really accurate?
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Figure: Errors for two different distribution of points and three distinct θs. Note:
signed potential 1/(zi − zj).
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FMMs Adaptivity

Efficient way of handling adaptivity?
Theory: O

(
θ−2 log−2 θ · N log2 TOL

)
. (=⇒ θopt = exp(−1) ≈ 0.368)
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Figure: Adaptive vs. uniform FMM. Two different distribution of points.

“Normal” := N (0, σ), but rejected to fit within the positive unit square.

“Layer” := the x-coordinate is U[0, 1] instead.
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FMMs Adaptivity

Scalable?
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FMMs Data-parallel implementation

Implementability?
GPU-card
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FMMs Data-parallel implementation

GPU implementation
Intel Xeon 6c W3680 @3.33GHz vs. Nvidia Tesla C2075 448c

GPU speedup for (1) direct O(N2) all-pairs interaction, and (2) FMM.
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Note: single threaded CPU.
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FMMs Data-parallel implementation

GPU implementation
Intel Xeon 6c W3680 @3.33GHz vs. Nvidia Tesla C2075 448c
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FMMs CPU/GPU autotuned implementation

Lessons learnt from the GPU =⇒ Hybrid implementation

I Good speedup obtained across all operations in the FMM

I Coding complexity ∼ ×4 for topological parts

-For a 4+ core computer it seems reasonable that a hybrid approach would
be beneficial. For example: offloading the local and perfectly data-parallel
P2P evaluation to the GPU. Loadbalance?

-Idea: the FMM is most often used in a dynamic/iterative context.
=⇒ Measure the performance and adjust the parameters of the algorithm
for the next iteration.

In the present context: Nlevels controls the amount of work left at the finest
level (P2P), θ controls connectivity and the number of expansion
coefficients. A regulating autotuner can be designed to wisely “crawl” this
parameter space and continuously find the performance sweet spot.
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FMMs CPU/GPU autotuned implementation

Results

“Superglue” task-based programming model.

Figure: Superglue Execution Visualizator
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FMMs CPU/GPU autotuned implementation

Results
Note: 8c CPU vs. 8c CPU+448c GPU
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Conclusions

Conclusions

I Academic sw-project driven by a concrete problem.
I Nice aspect: the steady and controlled growth of performance and

complexity:

1. Stand-alone recursive uniform FMM implementation (Nmax ∼ 20, 000).
2. Matlab-interface to a direct N-body evaluation (N ∼ 10, 000).
3. First efficient working copy of uniform FMM; later heavily optimized,

eg. BLAS L3 (N ∼ 1, 000, 000, memory bound!).
4. Added adaptivity – took the time to investigate a novel approach.
5. Fully data-parallel GPU-implementation CUDA/C++.
6. Hybrid-implementation: threaded (task-based) version on the CPU

which runs concurrently with perfectly data-parallel tasks on the GPU
(N ∼ 10, 000, 000).

7. Todo: 3D...?

I Increasingly sophisticated regression tests.

I Academic environment; clarity wrt to goals is very important.
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Conclusions

Conclusions

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention and for the lunch!
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