Spatial Stochastic Modeling in URDME: consistency, software, and applications to neuronal processes

Pavol Bauer Stefan Engblom

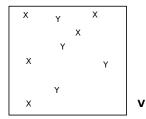
Division of Scientific Computing Department of Information Technology Uppsala University

INCF Workshop, San Diego, October 5, 2013

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?



Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

 $\implies P(X + Y \rightarrow Z \text{ in the interval } [0, \Delta t]) = \operatorname{const} \cdot n_X n_Y \Delta t / V.$

It so happens that this receipt describes a continuous-time Markov chain.

Kolmogorov's forward differential system/Master equation Well-stirred stochastic chemical kinetics

-State $x \in \mathbf{Z}_{+}^{D}$, counting the number of molecules of each of D species. -R specified reactions defined as *transitions* between these states,

$$x \xrightarrow{w_r(x)} x - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D imes R}$$
 (stoichiometric matrix)

under a transition intensity or propensity w_r .

Let p(x, t) := P(X(t) = x | X(0)). Then the *chemical master equation* (CME) is given by

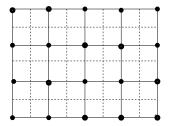
$$\frac{\partial p(x,t)}{\partial t} = \sum_{r=1}^{R} w_r(x + \mathbb{N}_r) p(x + \mathbb{N}_r, t) - \sum_{r=1}^{R} w_r(x) p(x, t)$$
$$=: \mathcal{M}p,$$

a gain-loss discrete PDE in D dimensions for the probability.

Mesoscopic spatial kinetics

Not well-stirred

-Not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_j such that their individual volume $|\Omega_j|$ is small, then diffusion suffices to make each cell well-stirred.



Diffusion

Not well-stirred

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$X_{ik} \xrightarrow{q_{kj}\mathbf{x}_{ik}} X_{ij},$$

where q_{ki} is non-zero only for connected cells.

-For best consistency, q_{kj} should be taken as the inverse of the mean first exit time. $\implies q_{kj} \propto \sigma^2/h^2$, where $\sigma^2/2$ is the macroscopic diffusion, h the local length.

The diffusion master equation can therefore be written

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \sum_{i=1}^{D} \sum_{k=1}^{K} \sum_{j=1}^{K} q_{kj}(\mathbf{x}_{ik} + \mathbb{M}_{kj,k}) p(\mathbf{x}_{1.},\ldots,\mathbf{x}_{i.} + \mathbb{M}_{kj},\ldots,\mathbf{x}_{D.},t) - q_{kj}\mathbf{x}_{ik}p(\mathbf{x},t) =: \mathcal{D}p(\mathbf{x},t).$$

The transition vector \mathbb{M}_{kj} is zero except for $\mathbb{M}_{kj,k} = -\mathbb{M}_{kj,j} = 1$.

The reaction-diffusion master equation "RDME"

- The state of the system is now an array **x** with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion/transport where molecules move to adjacent cells (horizontally in x).

Hence when combining reactions with diffusions,

$$\frac{\partial \boldsymbol{p}(\mathbf{x},t)}{\partial t} = (\mathcal{M} + \mathcal{D})\boldsymbol{p}(\mathbf{x},t).$$

The reaction-diffusion master equation "RDME"

- The state of the system is now an array **x** with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion/transport where molecules move to adjacent cells (horizontally in x).

Hence when combining reactions with diffusions,

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = (\mathcal{M} + \mathcal{D})p(\mathbf{x},t).$$

-An approximation! Valid when

$$\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta,$$

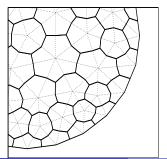
 ρ the molecular radius, τ_{Δ} average molecular survival time.

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles). -How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. Briefly, a numerical method applied to $u_t = \sigma^2/2 \Delta u$ yields the discretized form

$$\frac{d\mathbf{u}}{dt} = \frac{\sigma^2}{2} D\mathbf{u}$$

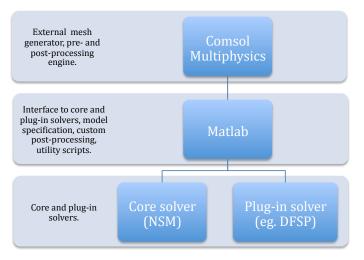
Can now obtain \mathcal{D} from the numerical $\sigma^2/2 D$.



- \blacktriangleright Assume point-wise convergence of the numerical discretization \rightarrow diffusion PDE
- Then the consistency in this interpretation ensures convergence in distribution to the correct Brownian motion as the mesh-size h → 0

URDME

Unstructured Reaction-Diffusion Master Equation

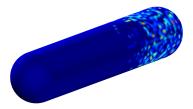


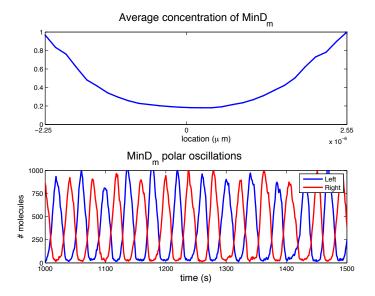
www.urdme.org.

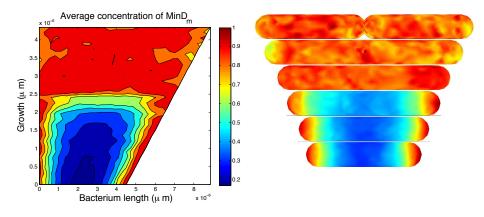
MinD oscillations

Oscillations of proteins involved in the cell division of E. coli:

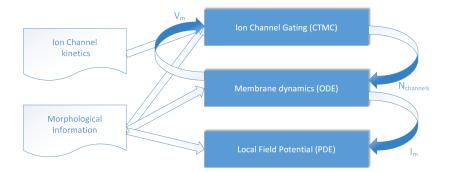
 $\begin{array}{lll} \operatorname{MinD_c_atp} & \stackrel{k_d}{\longrightarrow} & \operatorname{MinD_m} & \operatorname{MinD_c_atp} + \operatorname{MinD_m} & \stackrel{k_{dD}}{\longrightarrow} & 2\operatorname{MinD_m} \\ \operatorname{Min_e+MinD_m} & \stackrel{k_{de}}{\longrightarrow} & \operatorname{MinDE} & \operatorname{MinD_c_adp} + \operatorname{MinD_c_adp} + \operatorname{MinD_c_adp} & \\ \operatorname{MinD_c_adp} & \stackrel{k_p}{\longrightarrow} & \operatorname{MinD_c_atp} & \end{array}$







Application: multiscale neuronal model



Joint work: Stefan Engblom, Pavol Bauer, Emil Berwald

Bottom level

The gating process of ion channels can be mesoscopically described as

$$N_0 \underset{\beta_m(\underline{V_m})N_1}{\overset{3\alpha_m(\underline{V_m})N_1}{\rightleftharpoons}} N_1 \underset{2\beta_m(\underline{V_m})N_2}{\overset{2\alpha_m(\underline{V_m})N_1}{\rightleftharpoons}} N_2 \underset{3\beta_m(\underline{V_m})N_3}{\overset{\alpha_m(\underline{V_m})N_2}{\rightleftharpoons}} N_3,$$

again a *continuous-time Markov chain*. *Output:* N_3 , the number of open gates.

For efficient model coupling we use *"tau-leaping"* - which is a consistent time discretization method (Euler method):

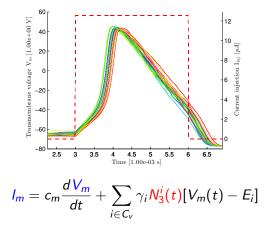
$$\mathbf{X}_{n+1} = \mathbf{X}_n - \sum_r \mathbb{N}_r P_r(w_r(\mathbf{X}_n)\tau),$$

X state variable, P_r Poisson random variable, w_r propensity, and τ timestep.

Middle level

Membrane dynamics

- Morphological information extracted using the *Trees toolbox*
- System of current-balance and cable equations is solved for each time step τ



Top level Maxwell's equations, potential form

We seek the *electric field intensity* E in terms of the *electric scalar* potential V,

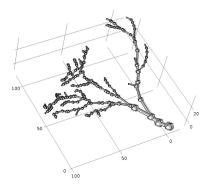
$$\mathbf{E} = -\nabla V.$$

Trans-membrane current l_m is scaled with the compartement surface area and coupled as a current source,

$$-\nabla\cdot\left(\sigma\nabla V+\varepsilon_{0}\varepsilon_{r}\frac{\partial}{\partial t}\nabla V\right)=\frac{1}{\Omega_{c}}I_{m},$$

with conductivity σ and permittivity ε . Finally, the time dependent potential V is solved via finite element methods.

Top level Geometry coupling



- Bottom and middle level: compartments (cylindrical volumes)
- Coupling with PDE requires a mesh
- Approximation with curves much more efficient than volumetric elements

Coupled solution

Summary & Conclusions

- Stochastic mesoscopic modeling in chemical kinetics can combine simplicity with accuracy
- Spatial modeling is also possible and often necessary, consistency through numerical methods
- Free software URDME (www.urdme.org), organized in loosely coupled layers, easy to extend and modify
- Sample neuronal application: coupling very different types of models was possible thanks to this software architecture

Thank you for listening

Input and exchange of ideas is very much welcome!