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The buzz

Stochastic (Merriam-Webster Online Dictionary)
Greek stochastikos skillful in aiming, from stochazesthai to aim at, guess
at, from stochos target, aim, guess. Date: 1934.

1. Random; specifically: involving a random variable <a stochastic
process>.

2. Involving chance or probability: probabilistic <a stochastic model of
radiation-induced mutation>.
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The buzz (cont)

Mesoscopic (Merriam-Webster)
No entries found. -Did you mean masochistic?

Mesoscopic scale (Wikipedia, Oct 2008)
In physics and chemistry, the mesoscopic scale refers to the length scale
at which one can reasonably discuss the properties of a material or
phenomenon without having to discuss the behavior of individual atoms,
and concepts of averages such as density and temperature are useful.
Page removed in 2010!

Mesoscopic physics (Wikipedia, Mar 2013)
There is no rigid definition for mesoscopic physics, but the systems studied
are normally in the range of 100nm (the size of a typical virus) to 1000nm
(the size of a typical bacterium).
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Scales in modeling chemical reactions

System size Ω
(# molecules)

Model Idea

. 102 Micro Movement of individual atoms/molecules
Collisions → (Possible) reactions

∼ 101–106 Meso Non-individual, assuming well-stirred mixture
A stochastic model is used for reactions

& 106 Macro “Average”; —in the limit of many molecules

-With a mesoscopic (continuous-time Markov chain), an accurate but still
manageable non-individual model is possible thanks to stochasticity.
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Diffusion-controlled kinetics

Model Assumption

BD (Smoluchowski) Brownian motion of individual molecules
CTMC (Master equation) Non-individual, (locally) well-stirred
SDE (Langevin) Continuous approximation
ODE (Reaction rate) Continuous, deterministic

Up next: (1) Diffusion & (2) Stochastic chemical kinetics.
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1. Stochastic modeling Brownian motion

Brownian motion

Example: Particle in a fluid (Einstein 1905, & some others...).

A stochastic model is simpler but depends on randomness.
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1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

X
Y

X

X

X

Y

Y

Y

X V

I P ∝ nX (“number of
X -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.

There are several examples of when stochastic models more easily can
capture actual observed behavior...

S. Engblom (Uppsala University) RDME 130328 7 / 36



1. Stochastic modeling (Bio-)Chemical kinetics

Multistability

Figure: Solid: deterministic, dashed: stochastic.
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1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic resonance

Figure: Solid: deterministic, dashed: stochastic.
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1. Stochastic modeling (Bio-)Chemical kinetics

Stochastic focusing

Figure: Nonlinear response to twofold signal increase; solid: partially
deterministic, dashed: fully stochastic.
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1. Stochastic modeling (Bio-)Chemical kinetics

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout the
volume (homogeneous).
Assumption #2: the energy of a molecule does not depend on its position
in the volume (thermal equilibrium).

-Let the state vector x ∈ ZD
+ count the number of molecules of each of D

species.
-Let R specified reactions be defined as transitions between these states,

x
wr (x)−−−→ x − Nr , N ∈ ZD×R (stoichiometric matrix)

where each transition intensity or propensity wr : ZD
+ → R+ is the

probability of reacting per unit of time. This probability can be shown to
exist provided that the system is well-stirred!
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1. Stochastic modeling (Bio-)Chemical kinetics

“Direct method”
(Doob ∼’45, Gillespie ’76)

Simulate a single stochastic trajectory X (t) “an outcome”:

0. Let t = 0 and set the state x to the initial number of molecules.

1. Compute the total reaction intensity W :=
∑

r wr (x). Generate the
time to the next reaction τ := −W−1 log u1 where u1 ∈ (0, 1) is a
uniform random number. Determine also the next reaction r by the
requirement that

r−1∑
s=1

ws(x) < Wu2 ≤
r∑

s=1

ws(x),

where u2 is again a uniform random deviate in (0, 1).

2. Update the state of the system by setting t := t + τ and x := x −Nr .

3. Repeat from step 1 until some final time T is reached.
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1. Stochastic modeling (Bio-)Chemical kinetics

“Next reaction method”

0. Let t = 0 and set the state x to the initial number of molecules.
Generate the dependency graph G . Determine the absolute waiting
times τr for all reactions r . Store those values in a heap H.

1. Remove the smallest time τr = H0 from the top of H, execute the rth
reaction x := x − Nr and set t := τr .

2. For all dependencies r → j in G , update the jth waiting time by
rescaling, thus accounting for the new propensity.

3. Also generate a new absolute time τnewr . Adjust the contents of H by
replacing the old value of τr with the new one.
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1. Stochastic modeling (Bio-)Chemical kinetics

Kolmogorov’s forward differential system/Master equation
(Kolmogorov ’31, Nordsieck/Lamb/Uhlenbeck ’40)

With states x ∈ ZD
+, let p(x , t) := P(X (t) = x |X (0)). Then the chemical

master equation (CME) is given by

∂p(x , t)

∂t
=

R∑
r=1

wr (x + Nr )p(x + Nr , t)−
R∑

r=1

wr (x)p(x , t)

=:Mp.

-A gain-loss discrete PDE in D dimensions for the probability density
conditioned upon an initial state.
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1. Stochastic modeling Spatial chemical kinetics

Inhomogeneous kinetics

Not well-stirred:

I When the molecular movement (diffusion) is slow compared to the
reaction intensity — large local concentrations may easily build up.

I When some reactions are localized — e.g. depend on an enzyme
emitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside living
cells!
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1. Stochastic modeling Spatial chemical kinetics

Microscopic kinetics

I Molecular dynamics...
-Many different algorithms, usually very expensive simulations.

I Smoluchowski kinetics (diffusion-controlled limit): individual
coordinates of molecules, Brownian motion in space. The
Smoluchowski PDE evolves the spatial probability density in time and
the reactions are to be incorporated as boundary conditions.
-One exact algorithm: Green’s function reaction dynamics (GFRD).
-Various software for approximations: “MCell”, “SmolDyn”,
“ChemCell”...
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1. Stochastic modeling Spatial chemical kinetics

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdivided
into smaller computational cells Ωj such that their individual volume |Ωj |
is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of
molecules in each dual cell.
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1. Stochastic modeling Spatial chemical kinetics

Mesoscopic spatial kinetics (cont)

I D chemically active species Xij for i = 1, . . . ,D but now counted
separately in K cells, j = 1, . . . ,K .

I The state of the system is now an array x with D × K elements.

I This state is changed by chemical reactions occurring between the
molecules in the same cell (vertically in x) and by diffusion/transport
where molecules move to adjacent cells (horizontally in x).
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1. Stochastic modeling Spatial chemical kinetics

Reactions

By assumption, each cell is well-stirred and consequently the master
equation is valid as a description of reactions,

∂p(x, t)

∂t
=Mp(x, t) :=

K∑
j=1

R∑
r=1

wr (x·j + Nr )p(x·1, . . . , x·j + Nr , . . . , x·K , t)

−
K∑
j=1

R∑
r=1

wr (x·j)p(x, t).
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1. Stochastic modeling Spatial chemical kinetics

Diffusion

A natural model of diffusion from one cell Ωk to another cell Ωj is

Xik
qkjxik−−−→ Xij ,

where qkj is non-zero only for connected cells.
-Ideally, qkj should be taken as the inverse of the mean first exit time for a
single molecule of species i from cell Ωk to Ωj . =⇒ qkj ∝ σ2/h2, where
σ2/2 is the macroscopic diffusion, h the local length.
The diffusion master equation can therefore be written

∂p(x, t)

∂t
=

D∑
i=1

K∑
k=1

K∑
j=1

qkj(xik + Mkj ,k)p(x1·, . . . , xi · + Mkj , . . . , xD·, t)

−qkjxikp(x, t) =: Dp(x, t).

The transition vector Mkj is zero except for Mkj ,k = −Mkj ,j = 1.
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1. Stochastic modeling Spatial chemical kinetics

The reaction-diffusion master equation
“RDME”

Combining reactions with diffusions,

∂p(x, t)

∂t
= (M+D)p(x, t).

-An approximation! Valid when

ρ2 � h2 � σ2τ∆,

ρ the molecular radius, τ∆ average molecular survival time.
-Once formulated, any algorithm for sampling from the CME can also
simulate the RDME. For a spatially resolved model, most of the simulation
time is spent on diffusion events.
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1. Stochastic modeling Spatial chemical kinetics

“Next subvolume method”

0. Initialize: Compute the sum σrk of all reaction rates wrk and the sum
σdk of all diffusion rates in all subvolumes k = 1, . . . ,Ncells. Compute
the time until the next event in each subvolume and store all times in
a heap H.

1. Select the next subvolume ζn where an event takes place by
extracting the minimum τn from the top of H, set t = τn.

2. Determine if the event in ζn is a reaction or a diffusion event. Let it be
a reaction if (σrn + σdn )× rand < σrn, otherwise it is a diffusion event.

3. Reaction event: determine the reaction channel that fires. This is
done as in the Direct method. Update x(:, n) := x(:, n)− Nr .

4. Diffusion event: determine which species diffuses and subsequently,
determine to which neighboring subvolume ζn′ . This is again done as
in the Direct method. Update: x(s, n) := x(s, n)− 1 and x(s, n′) + 1.

5. Update the reaction- and diffusion rates of subvolumes ζn and ζn′

using G. Compute a new waiting time τn for subvolume ζn and add it
to the heap H.
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1. Stochastic modeling Spatial chemical kinetics

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries? Attempt to converge in
expectation to the macroscopic diffusion equation. Briefly, a numerical
method applied to ut = σ2/2 ∆u yields the discretized form

du

dt
=
σ2

2
Du.

-Define ϕij = E Ω−1
j xij . By linearity of the diffusion intensities, the

diffusion master equation implies

dϕij

dt
=

K∑
k=1

|Ωk |
|Ωj |

qkjϕik −

(
K∑

k=1

qjk

)
ϕij ,

⇐⇒
dϕT

i ·
dt

= QϕT
i · .
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1. Stochastic modeling Spatial chemical kinetics

Assuming point-wise convergence of the numerical discretization →
diffusion PDE, the consistency in this interpretation ensures convergence
in distribution to the correct Brownian motion as the mesh-size h→ 0.
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1. Stochastic modeling Spatial chemical kinetics

URDME
Unstructured Reaction-Diffusion Master Equation

!

Core!and!plug-in!
solvers.!

Interface!to!core!and!
plug-in!solvers,!model!
speci8ication,!custom!
post-processing,!
utility!scripts.!

External!!mesh!
generator,!pre-!and!
post-processing!

engine.!
Comsol!

Multiphysics!!

Matlab!

Core!solver!
(NSM)!

Plug-in!solver!
(eg.!DFSP)!
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1. Stochastic modeling Spatial chemical kinetics

URDME

load()API Compile
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2. Computations by examples

Computations

I “Semi-live”: X + Y ←→ Z .

I Bistable models;

I non-spatial (hence
non-URDME!)

I spatial

I Spatial oscillations in E. coli.
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2. Computations by examples

Bistable system, 2 competing species (non-spatial)

A simple model of two mutually cooperatively repressing gene products X
and Y . Relying on adiabatic approximations the model is

∅ a/(b+y2)−−−−−→ X ∅ c/(d+x2)−−−−−−→ Y

X
µx−→ ∅ Y

µy−→ ∅

2 species/dimensions: the CME is a feasible approach.
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2. Computations by examples

(a) Solution to the master equation,
discrete spectral method.

(b) Stochastic simulation.
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2. Computations by examples

Bistable double-negative feedback system (spatial)

EA
k1−→ EA + A EB

k1−→ EB + B

EA + B
ka


kd

EAB EB + A
ka


kd

EBA

EAB + B
ka


kd

EAB2 EBA + A
ka


kd

EBA2

A
k4−→ ∅ B

k4−→ ∅

Slow/intermediate/fast diffusion in a simple model of an S. cerevisiae cell
with internal structures in the form of a nucleus and a large vacuole.
Molecules are not allowed to diffuse across the membranes and enter the
organelles.
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2. Computations by examples

(c) Species A. (d) Species B.

www.urdme.org.
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2. Computations by examples
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(f) σ2 = 4× 10−13

Figure: The total number of A and B molecules as the diffusion constant is
varied. Right: local bistability is lost.

S. Engblom (Uppsala University) RDME 130328 32 / 36



2. Computations by examples

MinD oscillations
Oscillations of proteins involved in the cell division of E. coli:

MinD c atp
kd−→ MinD m MinD c atp + MinD m

kdD−−→ 2MinD m

Min e+MinD m
kde−−→ MinDE MinDE

ke−→ MinD c adp + Min e

MinD c adp
kp−→ MinD c atp

www.urdme.org.
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2. Computations by examples
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2. Computations by examples
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Figure3:Thegeometryandmesh(a).Moredescriptionhere
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Figure 3: (A) Geometry and mesh modeling of an E. Coli cell. (B) Temporal average
concentration of MinD protein as a function of position along the long axis of the E. Coli
cell (top), and the time series plot of the oscillations. (C) Six E. Coli cells of increasing
lengths, as specified in the parameter sweep described in Table 1. The color intensity shows
the temporal average concentration of MinD protein along the membrane. (D) Parameter
sweep shows how the relative concentration of MinD changes as the bacterium grows.
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Summary

Summary

I Well stirred case: stochastic mesoscopic modeling in chemical kinetics
can combine simplicity with accuracy

I Spatially inhomogeneous case:
-microscopic kinetics usually very expensive
-local well-stirredness implies the reaction-diffusion master equation
-the RDME is a computationally feasible alternative

I Unstructured meshes: consistency with macroscopic equations, and
with microscopic diffusion

I Computational issues arise due to high temporal resolution

I Free software URDME (www.urdme.org). Currently relying on
Matlab+Comsol. Ongoing: support for R and Python.
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