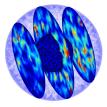
Mesoscopic Stochastic Modeling of Reaction-Transport Processes



Stefan Engblom

Division of Scientific Computing Department of Information Technology Uppsala University

Guest Lecture, ETH, March 28, 2013

RDME

Stochastic (*Merriam-Webster Online Dictionary*)

Greek *stochastikos* skillful in aiming, from *stochazesthai* to aim at, guess at, from *stochos* target, aim, guess. Date: 1934.

- 1. Random; specifically: involving a random variable *<a stochastic process>*.
- 2. Involving chance or probability: probabilistic *<a* stochastic model of radiation-induced mutation*>*.

The buzz (cont)

Mesoscopic (Merriam-Webster)

No entries found. -Did you mean masochistic?

Mesoscopic scale (Wikipedia, Oct 2008)

In <u>physics</u> and <u>chemistry</u>, the **mesoscopic scale** refers to the length scale at which one can reasonably discuss the properties of a material or phenomenon without having to discuss the behavior of individual atoms, and concepts of averages such as <u>density</u> and <u>temperature</u> are useful. Page removed in 2010!

Mesoscopic physics (Wikipedia, Mar 2013)

There is no rigid definition for mesoscopic physics, but the systems studied are normally in the range of 100nm (the size of a typical virus) to 1000nm (the size of a typical bacterium).

Scales in modeling chemical reactions

System size Ω (# molecules)	Model	Idea
$\lesssim 10^2$	Micro	Movement of individual atoms/molecules
		$Collisions \to (Possible) \; reactions$
$\sim 10^1$ – 10^6	Meso	Non-individual, assuming well-stirred mixture
		A stochastic model is used for reactions
$\gtrsim 10^6$	Macro	"Average"; —in the limit of many molecules

-With a mesoscopic (continuous-time Markov chain), an accurate but still manageable *non-individual* model is possible thanks to stochasticity.

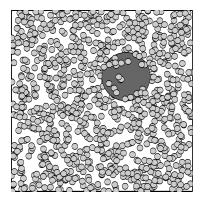
Diffusion-controlled kinetics

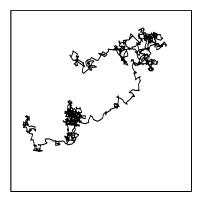
Model	Assumption
BD (Smoluchowski)	Brownian motion of individual molecules
CTMC (Master equation)	Non-individual, (locally) well-stirred
SDE (Langevin)	Continuous approximation
ODE (Reaction rate)	Continuous, deterministic

Up next: (1) Diffusion & (2) Stochastic chemical kinetics.

Brownian motion

Example: Particle in a fluid (Einstein 1905, & some others...).





A stochastic model is simpler but depends on randomness.

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

 $\implies P(X + Y \rightarrow Z \text{ in the interval } [0, \Delta t]) = \operatorname{const} \cdot n_X n_Y \Delta t / V.$

It so happens that this receipt describes a continuous-time Markov chain.

There are several examples of when stochastic models more easily can capture actual observed behavior...

Multistability

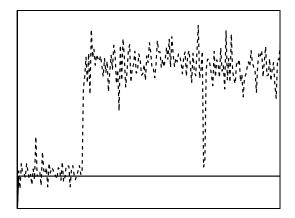


Figure: Solid: deterministic, dashed: stochastic.

Stochastic resonance

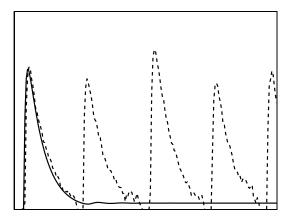


Figure: Solid: deterministic, dashed: stochastic.

Stochastic focusing

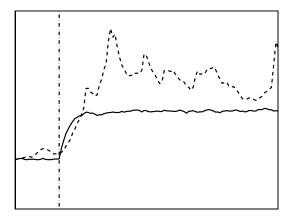


Figure: Nonlinear response to twofold signal increase; solid: partially deterministic, dashed: fully stochastic.

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout the volume (*homogeneous*).

Assumption #2: the energy of a molecule does not depend on its position in the volume (*thermal equilibrium*).

-Let the state vector $x \in \mathbf{Z}_+^D$ count the number of molecules of each of D species.

-Let R specified reactions be defined as *transitions* between these states,

$$x \xrightarrow{w_r(x)} x - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D imes R}$$
 (stoichiometric matrix)

where each transition intensity or *propensity* $w_r : \mathbf{Z}_+^D \to \mathbf{R}_+$ is the probability of reacting per unit of time. This probability can be shown to exist provided that the system is well-stirred!

"Direct method" (Doob ~'45, Gillespie '76)

Simulate a single stochastic trajectory X(t) "an outcome":

- 0. Let t = 0 and set the state x to the initial number of molecules.
- 1. Compute the total reaction intensity $W := \sum_r w_r(x)$. Generate the time to the next reaction $\tau := -W^{-1} \log u_1$ where $u_1 \in (0,1)$ is a uniform random number. Determine also the next reaction r by the requirement that

$$\sum_{s=1}^{r-1} w_s(x) < W u_2 \leq \sum_{s=1}^r w_s(x),$$

where u_2 is again a uniform random deviate in (0, 1).

- 2. Update the state of the system by setting $t := t + \tau$ and $x := x \mathbb{N}_r$.
- 3. Repeat from step 1 until some final time T is reached.

"Next reaction method"

- 0. Let t = 0 and set the state x to the initial number of molecules. Generate the dependency graph G. Determine the *absolute* waiting times τ_r for all reactions r. Store those values in a heap H.
- 1. Remove the smallest time $\tau_r = H_0$ from the top of H, execute the rth reaction $x := x N_r$ and set $t := \tau_r$.
- 2. For all dependencies $r \rightarrow j$ in *G*, update the *j*th waiting time by rescaling, thus accounting for the new propensity.
- 3. Also generate a new absolute time τ_r^{new} . Adjust the contents of *H* by replacing the old value of τ_r with the new one.

Kolmogorov's forward differential system/Master equation (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40)

With states $x \in \mathbf{Z}_{+}^{D}$, let p(x, t) := P(X(t) = x | X(0)). Then the *chemical* master equation (CME) is given by

$$\frac{\partial p(x,t)}{\partial t} = \sum_{r=1}^{R} w_r(x+\mathbb{N}_r)p(x+\mathbb{N}_r,t) - \sum_{r=1}^{R} w_r(x)p(x,t)$$
$$=: \mathcal{M}p.$$

-A gain-loss discrete PDE in *D* dimensions for the probability density *conditioned upon an initial state*.

Inhomogeneous kinetics

Not well-stirred:

- When the molecular movement (diffusion) is slow compared to the reaction intensity — large *local* concentrations may easily build up.
- When some reactions are *localized* e.g. depend on an enzyme emitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside living cells!

Microscopic kinetics

- Molecular dynamics...
 -Many different algorithms, usually very expensive simulations.
- Smoluchowski kinetics (diffusion-controlled limit): individual coordinates of molecules, Brownian motion in space. The *Smoluchowski PDE* evolves the spatial probability density in time and the reactions are to be incorporated as boundary conditions.
 One exact algorithm: Green's function reaction dynamics (GFRD).
 -Various software for approximations: "MCell", "SmolDyn", "ChemCell"...

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_j such that their individual volume $|\Omega_j|$ is small, then diffusion suffices to make each cell well-stirred.

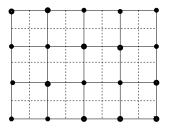


Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of molecules in each dual cell.

Mesoscopic spatial kinetics (cont)

- ▶ D chemically active species X_{ij} for i = 1,..., D but now counted separately in K cells, j = 1,..., K.
- The state of the system is now an array **x** with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion/transport where molecules move to adjacent cells (horizontally in x).

Reactions

By assumption, each cell is well-stirred and consequently the master equation is valid as a description of *reactions*,

$$\begin{aligned} \frac{\partial p(\mathbf{x},t)}{\partial t} = & \mathcal{M} p(\mathbf{x},t) := \\ & \sum_{j=1}^{K} \sum_{r=1}^{R} w_r(\mathbf{x}_{.j} + \mathbb{N}_r) p(\mathbf{x}_{.1}, \dots, \mathbf{x}_{.j} + \mathbb{N}_r, \dots, \mathbf{x}_{.K}, t) \\ & - \sum_{j=1}^{K} \sum_{r=1}^{R} w_r(\mathbf{x}_{.j}) p(\mathbf{x}, t). \end{aligned}$$

Diffusion

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$X_{ik} \xrightarrow{q_{kj}\mathbf{x}_{ik}} X_{ij},$$

where q_{ki} is non-zero only for connected cells.

-*Ideally*, q_{kj} should be taken as the inverse of the mean first exit time for a single molecule of species *i* from cell Ω_k to Ω_j . $\Longrightarrow q_{kj} \propto \sigma^2/h^2$, where $\sigma^2/2$ is the macroscopic diffusion, *h* the local length.

The diffusion master equation can therefore be written

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \sum_{i=1}^{D} \sum_{k=1}^{K} \sum_{j=1}^{K} q_{kj}(\mathbf{x}_{ik} + \mathbb{M}_{kj,k}) p(\mathbf{x}_{1.},\ldots,\mathbf{x}_{i.} + \mathbb{M}_{kj},\ldots,\mathbf{x}_{D.},t) - q_{kj}\mathbf{x}_{ik}p(\mathbf{x},t) =: \mathcal{D}p(\mathbf{x},t).$$

The transition vector \mathbb{M}_{kj} is zero except for $\mathbb{M}_{kj,k} = -\mathbb{M}_{kj,j} = 1$.

The reaction-diffusion master equation "RDME"

Combining reactions with diffusions,

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = (\mathcal{M} + \mathcal{D})p(\mathbf{x},t).$$

-An approximation! Valid when

$$\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta,$$

 ρ the molecular radius, τ_{Δ} average molecular survival time. -Once formulated, any algorithm for sampling from the CME can also simulate the RDME. For a spatially resolved model, most of the simulation time is spent on diffusion events.

"Next subvolume method"

- 0. Initialize: Compute the sum σ_k^r of all reaction rates w_{rk} and the sum σ_k^d of all diffusion rates in all subvolumes $k = 1, \ldots, N_{\text{cells}}$. Compute the time until the next event in each subvolume and store all times in a heap H.
- 1. Select the next subvolume ζ_n where an event takes place by extracting the minimum τ_n from the top of H, set $t = \tau_n$.
- 2. Determine if the event in ζ_n is a reaction or a diffusion event. Let it be a reaction if $(\sigma_n^r + \sigma_n^d) \times \text{rand} < \sigma_n^r$, otherwise it is a diffusion event.

"Next subvolume method"

- 0. Initialize: Compute the sum σ_k^r of all reaction rates w_{rk} and the sum σ_k^d of all diffusion rates in all subvolumes $k = 1, \ldots, N_{\text{cells}}$. Compute the time until the next event in each subvolume and store all times in a heap H.
- 1. Select the next subvolume ζ_n where an event takes place by extracting the minimum τ_n from the top of H, set $t = \tau_n$.
- 2. Determine if the event in ζ_n is a reaction or a diffusion event. Let it be a reaction if $(\sigma_n^r + \sigma_n^d) \times \text{rand} < \sigma_n^r$, otherwise it is a diffusion event.
- 3. *Reaction event:* determine the reaction channel that fires. This is done as in the Direct method. Update $\mathbf{x}(:, n) := \mathbf{x}(:, n) \mathbb{N}_r$.
- 4. Diffusion event: determine which species diffuses and subsequently, determine to which neighboring subvolume $\zeta_{n'}$. This is again done as in the Direct method. Update: $\mathbf{x}(s, n) := \mathbf{x}(s, n) 1$ and $\mathbf{x}(s, n') + 1$.
- 5. Update the reaction- and diffusion rates of subvolumes ζ_n and $\zeta_{n'}$ using G. Compute a new waiting time τ_n for subvolume ζ_n and add it to the heap H.

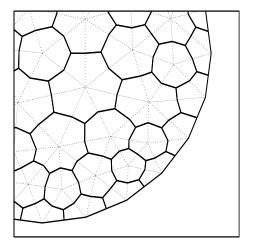
Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles). -How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. Briefly, a numerical method applied to $u_t = \sigma^2/2 \Delta u$ yields the discretized form

$$\frac{d\mathbf{u}}{dt} = \frac{\sigma^2}{2} D\mathbf{u}.$$

-Define $\varphi_{ij} = E \Omega_j^{-1} \mathbf{x}_{ij}$. By linearity of the diffusion intensities, the diffusion master equation implies

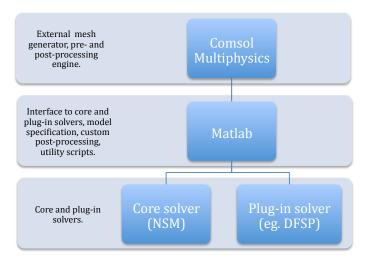
$$\begin{aligned} \frac{d\varphi_{ij}}{dt} &= \sum_{k=1}^{K} \frac{|\Omega_k|}{|\Omega_j|} q_{kj} \varphi_{ik} - \left(\sum_{k=1}^{K} q_{jk}\right) \varphi_{ij},\\ \Longleftrightarrow \frac{d\varphi_{i\cdot}^T}{dt} &= \mathbf{Q} \varphi_{i\cdot}^T. \end{aligned}$$



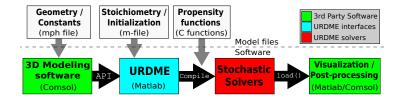
Assuming point-wise convergence of the numerical discretization \rightarrow diffusion PDE, the consistency in this interpretation ensures convergence in distribution to the correct Brownian motion as the mesh-size $h \rightarrow 0$.

URDME

Unstructured Reaction-Diffusion Master Equation

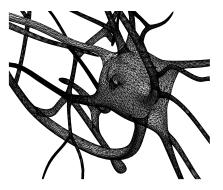


URDME



Computations

- "Semi-live": $X + Y \leftrightarrow Z$.
- Bistable models;
 - non-spatial (hence non-URDME!)
 - spatial
- Spatial oscillations in *E. coli*.

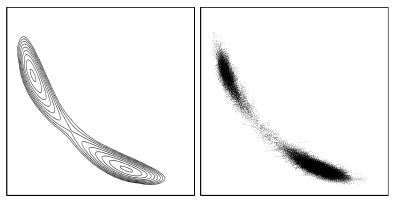


Bistable system, 2 competing species (non-spatial)

A simple model of two mutually cooperatively repressing gene products X and Y. Relying on adiabatic approximations the model is

$$\begin{array}{cccc} \emptyset & \xrightarrow{a/(b+y^2)} & X & & \emptyset & \xrightarrow{c/(d+x^2)} & Y \\ X & \xrightarrow{\mu x} & \emptyset & & Y & \xrightarrow{\mu y} & \emptyset \end{array}$$

2 species/dimensions: the CME is a feasible approach.



(a) Solution to the master equation, discrete spectral method.

(b) Stochastic simulation.

Bistable double-negative feedback system (spatial)

$$\begin{array}{ll} E_A \xrightarrow{k_1} E_A + A & E_B \xrightarrow{k_1} E_B + B \\ E_A + B \xrightarrow{k_a} E_A B & E_B + A \xrightarrow{k_a} E_B A \\ E_A B + B \xrightarrow{k_a} E_A B_2 & E_B A + A \xrightarrow{k_a} E_B A_2 \\ A \xrightarrow{k_4} \emptyset & B \xrightarrow{k_4} \emptyset \end{array}$$

Slow/intermediate/fast diffusion in a simple model of an *S. cerevisiae* cell with internal structures in the form of a nucleus and a large vacuole. Molecules are not allowed to diffuse across the membranes and enter the organelles.

(c) Species A.

(d) Species B.

www.urdme.org.

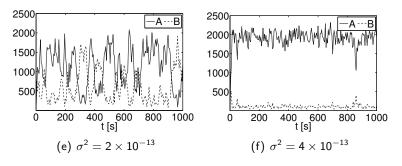


Figure: The total number of *A* and *B* molecules as the diffusion constant is varied. *Right:* local bistability is lost.

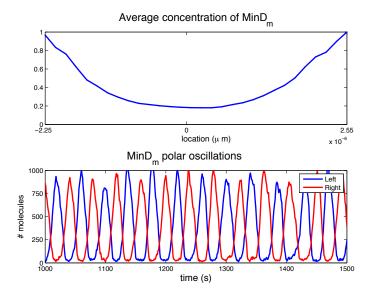
MinD oscillations

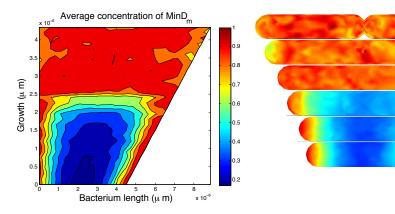
Oscillations of proteins involved in the cell division of E. coli:

 $\begin{array}{lll} \operatorname{MinD_c_atp} & \stackrel{k_d}{\longrightarrow} & \operatorname{MinD_m} & \operatorname{MinD_c_atp} + \operatorname{MinD_m} & \stackrel{k_{dD}}{\longrightarrow} & 2\operatorname{MinD_m} \\ \operatorname{Min_e+MinD_m} & \stackrel{k_{de}}{\longrightarrow} & \operatorname{MinDE} & \operatorname{MinD_c_adp} + \operatorname{MinD_c_adp} + \operatorname{MinD_c_adp} & \\ \operatorname{MinD_c_adp} & \stackrel{k_p}{\longrightarrow} & \operatorname{MinD_c_atp} & \end{array}$



www.urdme.org.





Summary

- Well stirred case: stochastic mesoscopic modeling in chemical kinetics can combine simplicity with accuracy
- Spatially inhomogeneous case:
 -microscopic kinetics usually very expensive
 -local well-stirredness implies the reaction-diffusion master equation
 -the RDME is a computationally feasible alternative
- Unstructured meshes: consistency with macroscopic equations, and with microscopic diffusion
- Computational issues arise due to high temporal resolution
- Free software URDME (www.urdme.org). Currently relying on Matlab+Comsol. Ongoing: support for R and Python.