Stochastic Modeling in Reaction-Transport Processes: Forward and Backward considerations

Stefan Engblom

Division of Scientific Computing
Department of Information Technology
Uppsala University

BSSE Seminar, ETH, March 26, 2013

Today

Agenda: give an overview of computational stochastic modeling in (bio-)chemical kinetics, specifically targeting cell biology. I also like to discuss some different possibilities for inverse formulations ("given observations, find the model").

Program

1. Stochastic modeling Brownian motion (Bio-)Chemical kinetics Spatial chemical kinetics
2. Computations by examples
3. Inverse formulations

Reaction rates from observations
Molecular movements from observations
Optimal rates

Conclusions

Brownian motion

Einstein 1905, \& some others...

Example: Particle in a fluid.

Brownian motion

Einstein 1905, \& some others...
Example: Particle in a fluid.

A stochastic model is simpler but depends on randomness.

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X+Y \rightarrow Z$.
-What is the probability $P(1 X$ and $1 Y$ reacts in the interval $[0, \Delta t])$?

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X+Y \rightarrow Z$. -What is the probability $P(1 X$ and $1 Y$ reacts in the interval $[0, \Delta t])$?

- $P \propto n_{X}$ ("number of X-molecules")
- $P \propto n_{Y}$

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X+Y \rightarrow Z$. -What is the probability $P(1 X$ and $1 Y$ reacts in the interval $[0, \Delta t])$?

- $P \propto n_{X}$ ("number of X-molecules")
- $P \propto n_{Y}$
- $P \propto 1 / V$
- $P \propto \Delta t$

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X+Y \rightarrow Z$.
-What is the probability $P(1 X$ and $1 Y$ reacts in the interval $[0, \Delta t])$?

- $P \propto n_{X}$ ("number of X-molecules")
- $P \propto n_{Y}$
- $P \propto 1 / V$
- $P \propto \Delta t$
$\Longrightarrow P(X+Y \rightarrow Z$ in the interval $[0, \Delta t])=$ const $\cdot n_{X} n_{Y} \Delta t / V$.
It so happens that this receipt describes a continuous-time Markov chain.

Well-stirred kinetics

Assumption \#1: the chance of finding a molecule is equal throughout the volume (homogeneous).
Assumption \#2: the energy of a molecule does not depend on its position in the volume (thermal equilibrium).

Well-stirred kinetics

Assumption \#1: the chance of finding a molecule is equal throughout the volume (homogeneous).
Assumption \#2: the energy of a molecule does not depend on its position in the volume (thermal equilibrium).
-State vector $x \in \mathbf{Z}_{+}^{D}$ counting the number of molecules of each of D species.
$-R$ specified reactions defined as transitions between these states,

$$
x \xrightarrow{w_{r}(x)} x-\mathbb{N}_{r}, \quad \mathbb{N} \in \mathbf{Z}^{D \times R} \text { (stoichiometric matrix) }
$$

where each transition intensity or propensity $w_{r}: \mathbf{Z}_{+}^{D} \rightarrow \mathbf{R}_{+}$is the probability of reacting per unit of time.

Simulating the chain

(Doob ~'45, Gillespie '76)
Simulate a single stochastic trajectory $X(t)$ "an outcome":
0 . Let $t=0$ and set the state x to the initial number of molecules.

1. Compute the total reaction intensity $W:=\sum_{r} w_{r}(x)$. Generate the time to the next reaction $\tau:=-W^{-1} \log u_{1}$ where $u_{1} \in(0,1)$ is a uniform random number. Determine also the next reaction r by the requirement that

$$
\sum_{s=1}^{r-1} w_{s}(x)<W u_{2} \leq \sum_{s=1}^{r} w_{s}(x)
$$

where u_{2} is again a uniform random deviate in $(0,1)$.
2. Update the state of the system by setting $t:=t+\tau$ and $x:=x-\mathbb{N}_{r}$.
3. Repeat from step 1 until some final time T is reached.

Kolmogorov's forward differential system/Master equation

 (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40)With states $x \in \mathbf{Z}_{+}^{D}$, let $p(x, t):=P(X(t)=x \mid X(0))$. Then the chemical master equation (CME) is given by

$$
\begin{aligned}
\frac{\partial p(x, t)}{\partial t} & =\sum_{r=1}^{R} w_{r}\left(x+\mathbb{N}_{r}\right) p\left(x+\mathbb{N}_{r}, t\right)-\sum_{r=1}^{R} w_{r}(x) p(x, t) \\
& =: \mathcal{M} p
\end{aligned}
$$

-A gain-loss discrete PDE in D dimensions for the probability density conditioned upon an initial state.

Inhomogeneous kinetics

Not well-stirred:

- When the molecular movement (diffusion) is slow compared to the reaction intensity - large local concentrations may easily build up.
- When some reactions are localized - e.g. depend on an enzyme emitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside living cells!

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_{j} such that their individual volume $\left|\Omega_{j}\right|$ is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the \# of molecules in each dual cell.

Mesoscopic spatial kinetics (cont)

- D chemically active species $X_{i j}$ for $i=1, \ldots, D$ but now counted separately in K cells, $j=1, \ldots, K$.
- The state of the system is now an array \mathbf{x} with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in \mathbf{x}) and by diffusion/transport where molecules move to adjacent cells (horizontally in \mathbf{x}).

Reactions

By assumption, each cell is well-stirred and consequently the master equation is valid as a description of reactions,

$$
\begin{aligned}
\frac{\partial p(\mathbf{x}, t)}{\partial t}= & \mathcal{M p}(\mathbf{x}, t):= \\
& \sum_{j=1}^{K} \sum_{r=1}^{R} w_{r}\left(\mathbf{x}_{\cdot j}+\mathbb{N}_{r}\right) p\left(\mathbf{x} \cdot 1, \ldots, \mathbf{x}_{\cdot j}+\mathbb{N}_{r}, \ldots, \mathbf{x} \cdot K, t\right) \\
- & \sum_{j=1}^{K} \sum_{r=1}^{R} w_{r}\left(\mathbf{x}_{\cdot j}\right) p(\mathbf{x}, t)
\end{aligned}
$$

Diffusion

A natural model of diffusion from one cell Ω_{k} to another cell Ω_{j} is

$$
X_{i k} \xrightarrow{q_{k j} x_{i k}} X_{i j},
$$

where $q_{k j}$ is non-zero only for connected cells.

Diffusion

A natural model of diffusion from one cell Ω_{k} to another cell Ω_{j} is

$$
X_{i k} \xrightarrow{q_{k j} x_{i k}} X_{i j},
$$

where $q_{k j}$ is non-zero only for connected cells.
-Ideally, $q_{k j}$ should be taken as the inverse of the mean first exit time for a single molecule of species i from cell Ω_{k} to $\Omega_{j} . \Longrightarrow q_{k j} \propto \sigma^{2} / h^{2}$, where $\sigma^{2} / 2$ is the macroscopic diffusion, h the local length.

Diffusion

A natural model of diffusion from one cell Ω_{k} to another cell Ω_{j} is

$$
X_{i k} \xrightarrow{q_{k j} \mathbf{x}_{i k}} X_{i j}
$$

where $q_{k j}$ is non-zero only for connected cells.
-Ideally, $q_{k j}$ should be taken as the inverse of the mean first exit time for a single molecule of species i from cell Ω_{k} to $\Omega_{j} . \Longrightarrow q_{k j} \propto \sigma^{2} / h^{2}$, where $\sigma^{2} / 2$ is the macroscopic diffusion, h the local length.
The diffusion master equation can therefore be written

$$
\begin{gathered}
\frac{\partial p(\mathbf{x}, t)}{\partial t}=\sum_{i=1}^{D} \sum_{k=1}^{K} \sum_{j=1}^{K} q_{k j}\left(\mathbf{x}_{i k}+\mathbb{M}_{k j, k}\right) p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i \cdot}+\mathbb{M}_{k j}, \ldots, \mathbf{x}_{D \cdot}, t\right) \\
-q_{k j} \mathbf{x}_{i k} p(\mathbf{x}, t)=: \mathcal{D} p(\mathbf{x}, t)
\end{gathered}
$$

The transition vector $\mathbb{M}_{k j}$ is zero except for $\mathbb{M}_{k j, k}=-\mathbb{M}_{k j, j}=1$.

The reaction-diffusion master equation "RDME"

Combining reactions with diffusions,

$$
\frac{\partial p(\mathbf{x}, t)}{\partial t}=(\mathcal{M}+\mathcal{D}) p(\mathbf{x}, t)
$$

The reaction-diffusion master equation

 "RDME"Combining reactions with diffusions,

$$
\frac{\partial p(\mathbf{x}, t)}{\partial t}=(\mathcal{M}+\mathcal{D}) p(\mathbf{x}, t)
$$

-An approximation! Valid when

$$
\rho^{2} \ll h^{2} \ll \sigma^{2} \tau_{\Delta},
$$

ρ the molecular radius, τ_{Δ} average molecular survival time.
-Once formulated, any algorithm for sampling from the CME can also simulate the RDME. For a spatially resolved model, most of the simulation time is spent on diffusion events.

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles). -How to handle complicated geometries?

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. Briefly, a numerical method applied to $u_{t}=\sigma^{2} / 2 \Delta u$ yields the discretized form

$$
\frac{d \mathbf{u}}{d t}=\frac{\sigma^{2}}{2} D \mathbf{u}
$$

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. Briefly, a numerical method applied to $u_{t}=\sigma^{2} / 2 \Delta u$ yields the discretized form

$$
\frac{d \mathbf{u}}{d t}=\frac{\sigma^{2}}{2} D \mathbf{u}
$$

-Define $\varphi_{i j}=E \Omega_{j}^{-1} \mathbf{x}_{i j}$. By linearity of the diffusion intensities, the diffusion master equation implies

$$
\begin{aligned}
\frac{d \varphi_{i j}}{d t} & =\sum_{k=1}^{K} \frac{\left|\Omega_{k}\right|}{\left|\Omega_{j}\right|} q_{k j} \varphi_{i k}-\left(\sum_{k=1}^{K} q_{j k}\right) \varphi_{i j} \\
\Longleftrightarrow \frac{d \varphi_{i}^{T}}{d t} & =Q \varphi_{i \cdot}^{T}
\end{aligned}
$$

Assuming point-wise convergence of the numerical discretization \rightarrow diffusion PDE, the consistency in this interpretation ensures convergence in distribution to the correct Brownian motion as the mesh-size $h \rightarrow 0$.

(Forward) Computations by examples

- Bistable model
- Spatial oscillations in E. coli.

Bistable double-negative feedback system

$$
\begin{array}{ll}
E_{A} \xrightarrow{k_{1}} E_{A}+A & E_{B} \xrightarrow{k_{1}} E_{B}+B \\
E_{A}+B \underset{k_{d}}{\stackrel{k_{a}}{\rightleftharpoons}} E_{A} B & E_{B}+A \underset{k_{d}}{k_{a}} E_{B} A \\
E_{A} B+B \underset{k_{d}}{k_{a}} E_{A} B_{2} & E_{B} A+A \underset{k_{d}}{\stackrel{k_{a}}{=}} E_{B} A_{2} \\
A \xrightarrow{k_{4}} \emptyset & B \xrightarrow{k_{4}} \emptyset
\end{array}
$$

Slow/intermediate/fast diffusion in a simple model of an S. cerevisiae cell with internal structures in the form of a nucleus and a large vacuole. Molecules are not allowed to diffuse across the membranes and enter the organelles.

"URDME" software www.urdme.org.

Figure: The total number of A and B molecules as the diffusion constant is varied. Right: local bistability is lost.

MinD oscillations

Oscillations of proteins involved in the cell division of E. coli:
MinD_c_atp $\xrightarrow{k_{d}}$ MinD_m MinD_c_atp + MinD_m $\xrightarrow{k_{d D}}$ 2MinD_m
Min_e+MinD_m $\xrightarrow{k_{d e}}$ MinDE MinDE $\xrightarrow{k_{e}}$ MinD_c_adp + Min_e
MinD_c_adp $\xrightarrow{k_{p}}$ MinD_c_atp

"URDME" software www.urdme.org.

Average concentration of $\mathrm{MinD}_{\mathrm{m}}$

Inverse or 'Backwards' formulations

- Reaction rates from observations...
- ...diffusion rates from observations
- "Evolutionary" optimal control setup

None of these formulations are in a 'final' state.

Rate coefficients from observations

Physics: linear birth-death process with hidden parameters (k, μ) :

$$
\left.\begin{array}{ccc}
\emptyset & \xrightarrow{k} & x \\
x & \xrightarrow{\mu x} & \emptyset
\end{array}\right\}
$$

Data:

Task: find the rates (k, μ).

Convergence: increasing the temporal resolution:

Maximum Likelihood

In a nutshell: find the parameters (k, μ) that maximizes the probability of obtaining the data we did observe (...)
-Model: let us assume independent observations, say, Gaussians around a certain predicted value $x(t)$,

$$
\begin{aligned}
& P\left(X\left(t_{1}\right)=x_{1} \mid X(0)=x_{0}\right) \propto \exp \left(-\left[x_{1}-x\left(t_{1} \mid x_{0}, t_{0}\right)\right]^{2} / 2 \sigma^{2}\right) \\
& P\left(X\left(t_{2}\right)=x_{2} \mid X\left(t_{1}\right)=x_{1}\right) \propto \exp \left(-\left[x_{2}-x\left(t_{2} \mid x_{1}, t_{1}\right)\right]^{2} / 2 \sigma^{2}\right)
\end{aligned}
$$

Maximum Likelihood

In a nutshell: find the parameters (k, μ) that maximizes the probability of obtaining the data we did observe (...)
-Model: let us assume independent observations, say, Gaussians around a certain predicted value $x(t)$,

$$
\begin{aligned}
& P\left(X\left(t_{1}\right)=x_{1} \mid X(0)=x_{0}\right) \propto \exp \left(-\left[x_{1}-x\left(t_{1} \mid x_{0}, t_{0}\right)\right]^{2} / 2 \sigma^{2}\right) \\
& P\left(X\left(t_{2}\right)=x_{2} \mid X\left(t_{1}\right)=x_{1}\right) \propto \exp \left(-\left[x_{2}-x\left(t_{2} \mid x_{1}, t_{1}\right)\right]^{2} / 2 \sigma^{2}\right)
\end{aligned}
$$

Maximum Likelihood

In a nutshell: find the parameters (k, μ) that maximizes the probability of obtaining the data we did observe (...)
-Model: let us assume independent observations, say, Gaussians around a certain predicted value $x(t)$,

$$
\begin{aligned}
& P\left(X\left(t_{1}\right)=x_{1} \mid X(0)=x_{0}\right) \propto \exp \left(-\left[x_{1}-x\left(t_{1} \mid x_{0}, t_{0}\right)\right]^{2} / 2 \sigma^{2}\right) \\
& P\left(X\left(t_{2}\right)=x_{2} \mid X\left(t_{1}\right)=x_{1}\right) \propto \exp \left(-\left[x_{2}-x\left(t_{2} \mid x_{1}, t_{1}\right)\right]^{2} / 2 \sigma^{2}\right)
\end{aligned}
$$

-Linear birth-death ODE is $x^{\prime}(t)=k-\mu x(t)$. Use for the predictor $x\left(t \mid x_{i}, t_{i}\right)$ the solution to the ODE at time t given initial data $\left(x_{i}, t_{i}\right)$.

Linear birth-death

Results (μ)

Dimerization

Slightly more difficult (nonlinear)

$$
\left.\begin{array}{rcc}
\emptyset & \xrightarrow{k} & X \\
X+X & \xrightarrow{\nu x(x-1)} & \emptyset
\end{array}\right\}
$$

Dimerization

Results (ν)

Maximum Likelihood using the CME

-Previously we used a Gaussian probability model. A better model is the chemical master equation.
$\Longrightarrow P\left(X\left(t_{i}\right)=x_{i} \mid X\left(t_{i-1}\right)=x_{i-1}\right)=p\left(x_{i}, t_{i}\right)$ with p a solution to the
CME with initial data $p\left(x_{i-1}, t_{i-1}\right)=1$.
-Observations are still independent (Markov property).

Dimerization

Results (ν)

Diffusion rates from observations

Physics: a single particle at position $Z(t)$ undergoing 2D Brownian motion with hidden diffusion constant: $d Z_{t}=\sigma d W_{t}$, where $Z_{t}=\left[\begin{array}{ll}X_{t} & Y_{t}\end{array}\right], W_{t}=\left[W_{t}^{(x)} W_{t}^{(y)}\right]$.

Data: $N=1000$ observations, $\sigma \in\{1,4\}$. Only ~ 50 observations from within the quarter circle where $\sigma=4$.

Task: determine $\sigma_{1,2}$ and classify the observations accordingly (hence determine $\sigma=\sigma(x, y)$).

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces a Maximum-Likelihood estimator of (i) $\sigma=\left[\sigma_{1} \sigma_{2}\right]$ as well as of (ii) $p_{n k}$, the probability that the nth observation had diffusion constant σ_{k}.

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces a Maximum-Likelihood estimator of (i) $\sigma=\left[\sigma_{1} \sigma_{2}\right]$ as well as of (ii) $p_{n k}$, the probability that the nth observation had diffusion constant σ_{k}.

1. Given values of $\sigma_{1,2}$, we can estimate $p_{n k}$. (Gaussian increments)
2. Given values of $p_{n k}$, we can estimate $\sigma_{1,2}$. (Sample means)

The iteration defined by iterating step $\# 1$ and 2 is (a version of) the Expectation-Maximization algorithm.

Diffusion rates

Results iteration \#2

Diffusion rates

Results iteration \#3

Diffusion rates

Results iteration \#6

Optimal control of rates

Enzymatic reaction of a complex into a product,

$$
C+E \xrightarrow{\nu C \cdot E} P+E .
$$

Combine with

$$
\emptyset \underset{\mu_{E} E}{\stackrel{s(t)}{\rightleftharpoons}} E, \quad \emptyset \underset{\mu_{C} C}{\stackrel{k_{C}}{\rightleftharpoons}} C, \quad P \xrightarrow{\mu_{P} P} \emptyset
$$

such that E is under control through the signal $s(t)$.

Optimal control of rates (cont)

Maximize

$$
\mathcal{M}[P]:=\int_{0}^{T} \varphi\left(P_{t}\right) d t
$$

with a nonlinear payoff function $\varphi(P)$,

$$
\left.\begin{array}{ll}
\varphi(P)=0, & \\
\varphi \leq c_{-} \\
\varphi(P)=\tau\left(P-c_{-}\right), & \\
c_{-}<P \leq C_{+} \\
\varphi(P)=\tau\left(C_{+}-c_{-}\right), & \\
C_{+}<P
\end{array}\right\}
$$

Constraints on the production signal s

$$
\left.\begin{array}{c}
\max _{t \in[0, T]} s(t) \leq S_{\infty}, \\
\int_{0}^{T} s(t) d t \leq S_{1},
\end{array}\right\}
$$

$\mathcal{M}_{2}[P]:=\int_{0}^{T} \varphi\left(P_{t}\right)+\varepsilon\left|s^{\prime}(t)\right| d t$

Summary \& Conclusions

- Stochastic mesoscopic modeling in chemical kinetics can combine simplicity with accuracy
- Spatial modeling is also possible and often necessary, computational issues arise due to high temporal resolution
- Free software URDME (www.urdme.org)
- Examples of inverse formulations, many possibilities; I like to think that it is important to be data- and question driven
- Input is welcome

Thank you for listening!

