Stochastic Modeling in Reaction-Transport Processes: Forward and Backward considerations

Stefan Engblom

Division of Scientific Computing Department of Information Technology Uppsala University

BSSE Seminar, ETH, March 26, 2013

Today

Agenda: give an overview of computational stochastic modeling in (bio-)chemical kinetics, specifically targeting cell biology. I also like to discuss some different possibilities for inverse formulations ("given observations, find the model").

Program

- Stochastic modeling Brownian motion (Bio-)Chemical kinetics Spatial chemical kinetics
- 2. Computations by examples
- Inverse formulations Reaction rates from observations Molecular movements from observations Optimal rates

Conclusions

Brownian motion

Einstein 1905, & some others...

Example: Particle in a fluid.

Brownian motion

Einstein 1905, & some others...

Example: Particle in a fluid.

A stochastic model is simpler but depends on randomness.

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

P ∝ n_X ("number of X-molecules")

 $\blacktriangleright P \propto n_Y$

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

- P ∝ n_X ("number of X-molecules")
- $P \propto n_Y$
- $P \propto 1/V$
- $P \propto \Delta t$

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

 $\implies P(X + Y \rightarrow Z \text{ in the interval } [0, \Delta t]) = \operatorname{const} \cdot n_X n_Y \Delta t / V.$

It so happens that this receipt describes a continuous-time Markov chain.

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout the volume (*homogeneous*).

Assumption #2: the energy of a molecule does not depend on its position in the volume (*thermal equilibrium*).

Well-stirred kinetics

Assumption #1: the chance of finding a molecule is equal throughout the volume (*homogeneous*).

Assumption #2: the energy of a molecule does not depend on its position in the volume (*thermal equilibrium*).

-State vector $x \in \mathbf{Z}_+^D$ counting the number of molecules of each of D species.

-R specified reactions defined as *transitions* between these states,

 $x \xrightarrow{w_r(x)} x - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D \times R}$ (stoichiometric matrix)

where each transition intensity or *propensity* $w_r : \mathbf{Z}_+^D \to \mathbf{R}_+$ is the probability of reacting per unit of time.

Simulating the chain

(Doob \sim '45, Gillespie '76)

Simulate a single stochastic trajectory X(t) "an outcome":

- 0. Let t = 0 and set the state x to the initial number of molecules.
- 1. Compute the total reaction intensity $W := \sum_r w_r(x)$. Generate the time to the next reaction $\tau := -W^{-1} \log u_1$ where $u_1 \in (0,1)$ is a uniform random number. Determine also the next reaction r by the requirement that

$$\sum_{s=1}^{r-1} w_s(x) < W u_2 \leq \sum_{s=1}^r w_s(x),$$

where u_2 is again a uniform random deviate in (0, 1).

- 2. Update the state of the system by setting $t := t + \tau$ and $x := x \mathbb{N}_r$.
- 3. Repeat from step 1 until some final time T is reached.

Kolmogorov's forward differential system/Master equation (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40)

With states $x \in \mathbf{Z}_{+}^{D}$, let p(x, t) := P(X(t) = x | X(0)). Then the *chemical* master equation (CME) is given by

$$\frac{\partial p(x,t)}{\partial t} = \sum_{r=1}^{R} w_r(x+\mathbb{N}_r)p(x+\mathbb{N}_r,t) - \sum_{r=1}^{R} w_r(x)p(x,t)$$
$$=: \mathcal{M}p.$$

-A gain-loss discrete PDE in *D* dimensions for the probability density *conditioned upon an initial state*.

Inhomogeneous kinetics

Not well-stirred:

- When the molecular movement (diffusion) is slow compared to the reaction intensity — large *local* concentrations may easily build up.
- When some reactions are *localized* e.g. depend on an enzyme emitted from a precise position, or are located to, say, a membrane.

These conditions are not unusual for reactions taking place inside living cells!

Mesoscopic spatial kinetics

-Not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_j such that their individual volume $|\Omega_j|$ is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of molecules in each dual cell.

Mesoscopic spatial kinetics (cont)

- ▶ D chemically active species X_{ij} for i = 1,..., D but now counted separately in K cells, j = 1,..., K.
- The state of the system is now an array **x** with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion/transport where molecules move to adjacent cells (horizontally in x).

Reactions

By assumption, each cell is well-stirred and consequently the master equation is valid as a description of *reactions*,

$$\begin{aligned} \frac{\partial p(\mathbf{x},t)}{\partial t} = & \mathcal{M} p(\mathbf{x},t) := \\ & \sum_{j=1}^{K} \sum_{r=1}^{R} w_r(\mathbf{x}_{.j} + \mathbb{N}_r) p(\mathbf{x}_{.1}, \dots, \mathbf{x}_{.j} + \mathbb{N}_r, \dots, \mathbf{x}_{.K}, t) \\ & - \sum_{j=1}^{K} \sum_{r=1}^{R} w_r(\mathbf{x}_{.j}) p(\mathbf{x},t). \end{aligned}$$

Diffusion

A natural model of diffusion from one cell Ω_k to another cell Ω_i is

$$X_{ik} \xrightarrow{q_{kj}\mathbf{x}_{ik}} X_{ij},$$

where q_{ki} is non-zero only for connected cells.

Diffusion

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$X_{ik} \xrightarrow{q_{kj}\mathbf{x}_{ik}} X_{ij},$$

where q_{ki} is non-zero only for connected cells.

-*Ideally*, q_{kj} should be taken as the inverse of the mean first exit time for a single molecule of species *i* from cell Ω_k to Ω_j . $\Longrightarrow q_{kj} \propto \sigma^2/h^2$, where $\sigma^2/2$ is the macroscopic diffusion, *h* the local length.

Diffusion

A natural model of diffusion from one cell Ω_k to another cell Ω_j is

$$X_{ik} \xrightarrow{q_{kj}\mathbf{x}_{ik}} X_{ij},$$

where q_{ki} is non-zero only for connected cells.

-*Ideally*, q_{kj} should be taken as the inverse of the mean first exit time for a single molecule of species *i* from cell Ω_k to Ω_j . $\Longrightarrow q_{kj} \propto \sigma^2/h^2$, where $\sigma^2/2$ is the macroscopic diffusion, *h* the local length.

The diffusion master equation can therefore be written

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = \sum_{i=1}^{D} \sum_{k=1}^{K} \sum_{j=1}^{K} q_{kj}(\mathbf{x}_{ik} + \mathbb{M}_{kj,k}) p(\mathbf{x}_{1.},\ldots,\mathbf{x}_{i.} + \mathbb{M}_{kj},\ldots,\mathbf{x}_{D.},t) - q_{kj}\mathbf{x}_{ik}p(\mathbf{x},t) =: \mathcal{D}p(\mathbf{x},t).$$

The transition vector \mathbb{M}_{kj} is zero except for $\mathbb{M}_{kj,k} = -\mathbb{M}_{kj,j} = 1$.

The reaction-diffusion master equation "RDME"

Combining reactions with diffusions,

$$rac{\partial p(\mathbf{x},t)}{\partial t} = (\mathcal{M} + \mathcal{D})p(\mathbf{x},t).$$

The reaction-diffusion master equation "RDME"

Combining reactions with diffusions,

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = (\mathcal{M} + \mathcal{D})p(\mathbf{x},t).$$

-An approximation! Valid when

$$\rho^2 \ll h^2 \ll \sigma^2 \tau_\Delta,$$

 ρ the molecular radius, τ_{Δ} average molecular survival time. -Once formulated, any algorithm for sampling from the CME can also simulate the RDME. For a spatially resolved model, most of the simulation time is spent on diffusion events.

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles). -How to handle complicated geometries?

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles). -How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. Briefly, a numerical method applied to $u_t = \sigma^2/2 \Delta u$ yields the discretized form

$$\frac{d\mathbf{u}}{dt} = \frac{\sigma^2}{2} D\mathbf{u}.$$

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles). -How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. Briefly, a numerical method applied to $u_t = \sigma^2/2 \Delta u$ yields the discretized form

$$\frac{d\mathbf{u}}{dt} = \frac{\sigma^2}{2} D\mathbf{u}.$$

-Define $\varphi_{ij} = E \Omega_j^{-1} \mathbf{x}_{ij}$. By linearity of the diffusion intensities, the diffusion master equation implies

$$\begin{aligned} \frac{d\varphi_{ij}}{dt} &= \sum_{k=1}^{K} \frac{|\Omega_k|}{|\Omega_j|} q_{kj} \varphi_{ik} - \left(\sum_{k=1}^{K} q_{jk}\right) \varphi_{ij},\\ \Longleftrightarrow \frac{d\varphi_{i\cdot}^T}{dt} &= \mathbf{Q} \varphi_{i\cdot}^T. \end{aligned}$$

Assuming point-wise convergence of the numerical discretization \rightarrow diffusion PDE, the consistency in this interpretation ensures convergence in distribution to the correct Brownian motion as the mesh-size $h \rightarrow 0$.

(Forward) Computations by examples

- Bistable model
- Spatial oscillations in *E. coli*.

Bistable double-negative feedback system

$$\begin{array}{ll} E_A \xrightarrow{k_1} E_A + A & E_B \xrightarrow{k_1} E_B + B \\ E_A + B \xrightarrow{k_a} E_A B & E_B + A \xrightarrow{k_a} E_B A \\ E_A B + B \xrightarrow{k_a} E_A B_2 & E_B A + A \xrightarrow{k_a} E_B A_2 \\ A \xrightarrow{k_4} \emptyset & B \xrightarrow{k_4} \emptyset \end{array}$$

Slow/intermediate/fast diffusion in a simple model of an *S. cerevisiae* cell with internal structures in the form of a nucleus and a large vacuole. Molecules are not allowed to diffuse across the membranes and enter the organelles.

(a) Species A.

(b) Species B.

"URDME" software www.urdme.org.

Figure: The total number of *A* and *B* molecules as the diffusion constant is varied. *Right:* local bistability is lost.

MinD oscillations

Oscillations of proteins involved in the cell division of E. coli:

 $\begin{array}{lll} \operatorname{MinD_c_atp} & \stackrel{k_d}{\longrightarrow} & \operatorname{MinD_m} & \operatorname{MinD_c_atp} + \operatorname{MinD_m} & \stackrel{k_{dD}}{\longrightarrow} & 2\operatorname{MinD_m} \\ \operatorname{Min_e+MinD_m} & \stackrel{k_{de}}{\longrightarrow} & \operatorname{MinDE} & \operatorname{MinD_c_adp} + \operatorname{MinD_c_adp} + \operatorname{MinD_c_adp} & \\ \operatorname{MinD_c_adp} & \stackrel{k_p}{\longrightarrow} & \operatorname{MinD_c_atp} & \end{array}$

"URDME" software www.urdme.org.

Inverse or 'Backwards' formulations

- Reaction rates from observations...
- ...diffusion rates from observations
- "Evolutionary" optimal control setup

None of these formulations are in a 'final' state.

Rate coefficients from observations

Physics: linear birth-death process with hidden parameters (k, μ) :

Data:

Task: find the rates (k, μ) .

Convergence: increasing the temporal resolution:

Maximum Likelihood

. . .

In a nutshell: find the parameters (k, μ) that maximizes the probability of obtaining the data we did observe (...)

-*Model:* let us assume independent observations, say, Gaussians around a certain predicted value x(t),

$$P(X(t_1) = x_1 | X(0) = x_0) \propto \exp\left(-[x_1 - x(t_1 | x_0, t_0)]^2 / 2\sigma^2\right)$$

$$P(X(t_2) = x_2 | X(t_1) = x_1) \propto \exp\left(-[x_2 - x(t_2 | x_1, t_1)]^2 / 2\sigma^2\right)$$

Maximum Likelihood

. . .

In a nutshell: find the parameters (k, μ) that maximizes the probability of obtaining the data we did observe (...)

-*Model:* let us assume independent observations, say, Gaussians around a certain predicted value x(t),

$$P(X(t_1) = x_1 | X(0) = x_0) \propto \exp\left(-[x_1 - x(t_1 | x_0, t_0)]^2 / 2\sigma^2\right)$$

$$P(X(t_2) = x_2 | X(t_1) = x_1) \propto \exp\left(-[x_2 - x(t_2 | x_1, t_1)]^2 / 2\sigma^2\right)$$

indep.
$$\Longrightarrow P \propto \exp\left(-\frac{1}{2\sigma^2} \underbrace{\sum_{i} [x_i - x(t_i | x_{i-1}, t_{i-1})]^2}_{\text{minimize}}\right)$$

Maximum Likelihood

In a nutshell: find the parameters (k, μ) that maximizes the probability of obtaining the data we did observe (...)

-*Model:* let us assume independent observations, say, Gaussians around a certain predicted value x(t),

$$P(X(t_1) = x_1 | X(0) = x_0) \propto \exp\left(-[x_1 - x(t_1 | x_0, t_0)]^2 / 2\sigma^2\right)$$

$$P(X(t_2) = x_2 | X(t_1) = x_1) \propto \exp\left(-[x_2 - x(t_2 | x_1, t_1)]^2 / 2\sigma^2\right)$$

indep.
$$\Longrightarrow P \propto \exp\left(-\frac{1}{2\sigma^2} \underbrace{\sum_{i} [x_i - x(t_i | x_{i-1}, t_{i-1})]^2}_{\text{minimize}}\right)$$

-Linear birth-death ODE is $x'(t) = k - \mu x(t)$. Use for the predictor $x(t|x_i, t_i)$ the solution to the ODE at time t given initial data (x_i, t_i) .

. . .

Linear birth-death

Results (μ)

Dimerization

Slightly more difficult (nonlinear)

$$\left. \begin{array}{ccc} \emptyset & \stackrel{k}{\longrightarrow} & X \\ X + X & \stackrel{\nu x(x-1)}{\longrightarrow} & \emptyset \end{array} \right\}$$

Dimerization

Results (ν)

29 / 42

Maximum Likelihood using the CME

-Previously we used a Gaussian probability model. A better model is the chemical master equation.

 $\implies P(X(t_i) = x_i | X(t_{i-1}) = x_{i-1}) = p(x_i, t_i)$ with p a solution to the CME with initial data $p(x_{i-1}, t_{i-1}) = 1$.

-Observations are still independent (Markov property).

Dimerization

Results (ν)

Diffusion rates from observations

Physics: a single particle at position Z(t) undergoing 2D Brownian motion with hidden diffusion constant: $dZ_t = \sigma dW_t$, where $Z_t = [X_t \ Y_t], \ W_t = [W_t^{(x)} \ W_t^{(y)}].$

Data: N = 1000 observations, $\sigma \in \{1, 4\}$. Only ~50 observations from within the quarter circle where $\sigma = 4$.

Task: determine $\sigma_{1,2}$ and classify the observations accordingly (hence determine $\sigma = \sigma(x, y)$).

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces a Maximum-Likelihood estimator of (i) $\sigma = [\sigma_1 \sigma_2]$ as well as of (ii) p_{nk} , the probability that the *n*th observation had diffusion constant σ_k .

Expectation-Maximization algorithm

Briefly, an iterative algorithm which upon convergence produces a Maximum-Likelihood estimator of (i) $\sigma = [\sigma_1 \sigma_2]$ as well as of (ii) p_{nk} , the probability that the *n*th observation had diffusion constant σ_k .

- 1. Given values of $\sigma_{1,2}$, we can estimate p_{nk} . (Gaussian increments)
- 2. Given values of p_{nk} , we can estimate $\sigma_{1,2}$. (Sample means)

The iteration defined by iterating step #1 and 2 is (a version of) the *Expectation-Maximization* algorithm.

Diffusion rates

Results iteration #2

Diffusion rates

Results iteration #3

Diffusion rates

Results iteration #6

Optimal control of rates

Enzymatic reaction of a complex into a product,

$$C+E\xrightarrow{\nu\ C\cdot E}P+E.$$

Combine with

$$\emptyset \stackrel{\mathbf{s}(t)}{\underset{\mu_{E} E}{\rightleftharpoons}} E, \quad \emptyset \stackrel{k_{C}}{\underset{\mu_{C} C}{\rightleftharpoons}} C, \quad P \stackrel{\mu_{P} P}{\longrightarrow} \emptyset$$

such that E is under *control* through the signal s(t).

Optimal control of rates (cont)

Maximize

$$\mathcal{M}[P] := \int_0^T \varphi(P_t) \, dt,$$

with a nonlinear payoff function $\varphi(P)$,

$$\begin{array}{lll} \varphi(P) &=& 0, & P \leq c_{-} \\ \varphi(P) &=& \tau(P - c_{-}), & c_{-} < P \leq C_{+} \\ \varphi(P) &=& \tau(C_{+} - c_{-}), & C_{+} < P \end{array} \right\}$$

Constraints on the production signal s

Summary & Conclusions

- Stochastic mesoscopic modeling in chemical kinetics can combine simplicity with accuracy
- Spatial modeling is also possible and often necessary, computational issues arise due to high temporal resolution
- Free software URDME (www.urdme.org)
- Examples of inverse formulations, many possibilities; I like to think that it is important to be data- and question driven
- Input is welcome

Thank you for listening!