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Overview (Bio-)Chemical kinetics

Stochastic modeling of biochemical reactions
The well-stirred case

Example: Bimolecular reaction X + Y → Z .

-What is the probability P(1X and 1Y reacts in the interval [0,∆t])?

X
Y
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X

X
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Y

Y

X V

I P ∝ nX (“number of
X -molecules”)

I P ∝ nY

I P ∝ 1/V

I P ∝ ∆t

=⇒ P(X + Y → Z in the interval [0,∆t]) = const · nXnY ∆t/V .

It so happens that this receipt describes a continuous-time Markov chain.
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Overview (Bio-)Chemical kinetics

Kolmogorov’s forward differential system/Master equation
(Kolmogorov ’31, Nordsieck/Lamb/Uhlenbeck ’40)

-State x ∈ ZD
+, the number of molecules of each of D species.

-R specified reactions defined as transitions between these states,

x
wr (x)−−−→ x − Nr , N ∈ ZD×R (stoichiometric matrix)

under a transition intensity or propensity wr .

Let p(x , t) := P(X (t) = x |X (0)). Then the chemical master equation
(CME) is given by

∂p(x , t)

∂t
=

R∑
r=1

wr (x + Nr )p(x + Nr , t)−
R∑

r=1

wr (x)p(x , t)

=:Mp,

a gain-loss discrete PDE in D dimensions for the probability.
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Overview Spatial chemical kinetics

Brownian motion
Einstein 1905, & some others...

Example: Particle in a fluid.

The idea of reaction-diffusion master equations: couple well-stirred
reactions with a description of diffusion.
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Overview Spatial chemical kinetics

Mesoscopic spatial kinetics
NOT well-stirred

-Generally not well-stirred in the whole volume, but if the domain Ω is
subdivided into smaller computational cells Ωj such that their individual
volume |Ωj | is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of
molecules in each dual cell.
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Overview Spatial chemical kinetics

The reaction-diffusion master equation
“RDME”

I The state of the system is now an array x with D × K elements.

I This state is changed by chemical reactions occurring between the
molecules in the same cell (vertically in x) and by diffusion/transport
where molecules move to adjacent cells (horizontally in x).

Hence when combining reactions with diffusions,

∂p(x, t)

∂t
= (M+D)p(x, t).
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All events method

Sampling the CME
(Doob ∼’45, Gillespie ’76)

Simulate a single stochastic trajectory X (t) “an outcome”:

0. Let t = 0 and set the initial state x .

1. Compute the total intensity W as the sum of all reaction- and all
transport intensities. Generate the time to the next event
τ := −W−1 log u1 where u1 ∈ (0, 1) is a uniform random number.

2. Determine the next event r by drawing u2, again a uniform random
deviate in (0, 1). The probability of each event is determined by its
proportion in W .

3. Update the state of the system accordingly and repeat from step 1
until some final time T is reached.

-Complexity: for a 3D model, 10.000 voxels with 10–100 species would be
normal. Time between diffusion events scales as h2.
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All events method

Next reaction method
A version thereof...

I Note that one random number determines when the next event
happens, another random number what happens.

I An alternative: if instead each reaction channel gets its own Poisson
process, and we let them compete, we get the so-called “Next
Reaction Method”.

I Events that “loose” in this process are rescaled and rescheduled for a
later time.

I Complexity: the reason this is a viable approach is the existence of
efficient data-structures (binary heap).
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All events method

“All events method”
(..., Engblom ’09, Rathinam et al. ’10, Anderson ’12)

In fact, if

I all events gets its own uniquely
identifiable Poisson process
(stream of random numbers)

I we take care of events that “go
to sleep”, i.e. produces a zero
intensity (infinite waiting time)

then we can compare results from
these types of models per trajectory.
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=⇒ E [Xt(θ + δ)− Xt(θ)]2 = E [Xt(θ + δ; ω)− Xt(θ; ω)]2 ∼ O(δ).
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All events method Sample use: forward sensitivity estimation

Forward sensitivity
Stochastic focusing example

Enzymatic reaction of a complex into a product,

C + E
ν C ·E−−−→ P + E .

Combine with

∅
kE


µEE

E , ∅
kC


µCC

C , P
µPP−−→ ∅.

-Interested in kE → (1 + δ) · kE . Example: take δ = −1/2.
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All events method Sample use: forward sensitivity estimation

Results in 0D (well-stirred)
Deterministic equations
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Expected: factor of 2 increase.
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All events method Sample use: forward sensitivity estimation

Results in 0D (well-stirred)
Stochastic equations - stochastic focusing effect
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All events method Sample use: forward sensitivity estimation

Results in 1D
Setup

h

di�usion

1

1

1

x

y
z

-Diffusion σ along the x-axis
(assumed well-stirred in each
yz-plane).

-In this case we compare with an
“unperturbed case” with a
birth-rate kE/2 · (1 + 2x).
I.e.

∫
kEdV is unaffected and we

can think of this as a spatial
stochastic focusing.
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All events method Sample use: forward sensitivity estimation

Results in 1D (cont)
Spatial profile
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All events method Sample use: forward sensitivity estimation

Results in 1D (cont)
Global effect
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Inverse problem Sample use: “evolutionary” optimal control setup

Optimal control of rates

As before,

C + E
ν C ·E−−−→ P + E ,

∅
s(t)


µEE

E , ∅
kC


µCC

C , P
µPP−−→ ∅,

hence E is now under control through the signal s(t) (“open-loop
control”).

-Basic idea: under evolutionary pressure we can expect an important
chemical network inside a cell to be nearly optimal.

S. Engblom (Uppsala University) Sensitivity and inverse problems in URDME ENUMATH 130829 17 / 25



Inverse problem Sample use: “evolutionary” optimal control setup

Optimal control of rates (cont)
Notion of optimality

Maximize

M[P] := E
[∫ T

0
ϕ(Pt) dt

]
,

with a nonlinear payoff function ϕ(P),

ϕ(P) = 0, P ≤ c−
ϕ(P) = τ(P − c−), c− < P ≤ C+

ϕ(P) = τ(C+ − c−), C+ < P


Constraints on the production signal s

maxt∈[0,T ] s(t) ≤ S∞∫ T
0 s(t) dt ≤ S1

}
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Inverse problem Sample use: “evolutionary” optimal control setup

Results
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-Results from non-spatial deterministic ODE, solved by the Nelder-Mead
simplex method.
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Inverse problem Sample use: “evolutionary” optimal control setup

Results with penalty
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M2[P] :=
∫ T

0 ϕ(Pt) + ε|s ′(t)| dt
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Inverse problem Sample use: “evolutionary” optimal control setup

Results
Boundary case
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Inverse problem Sample use: “evolutionary” optimal control setup

Stochastic case

Very little work to bring this particular set-up into the stochastic setting:

I Start with the solution obtained from the ODE-case.

I Fix N, the number of trajectories, outside the optimization routine
(estimating the expectation with an average).

I Increase N after a solution was obtained.

Since we continuously evaluate small modifications to the control strategy,
removing noise is crucial (or otherwise N must be very large).

S. Engblom (Uppsala University) Sensitivity and inverse problems in URDME ENUMATH 130829 22 / 25



Inverse problem Sample use: “evolutionary” optimal control setup

Results: ODE → stochastic
Boundary case
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Inverse problem Sample use: “evolutionary” optimal control setup

Results: ODE → stochastic
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Conclusions

Summary & Conclusions

I (Spatial) Stochastic mesoscopic modeling in chemical kinetics can
combine simplicity with accuracy

I Sensitivity computations and an implementation of an “All Events
Method”; example of uses in forward computations as well as in
backward/inverse formulations

I Implemented in upcoming new release of free software URDME
(www.urdme.org)

I Good model problems are a challenge to formulate (ideas are
welcome!)...

Thank you for listening!
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