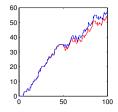
Sensitivity estimation and inverse problems in spatial stochastic models of chemical kinetics



Stefan Engblom Pavol Bauer

Div of Scientific Computing, Dept of Information Technology Uppsala University

ENUMATH EPFL, August 29, 2013

Outline

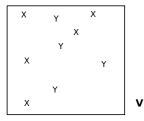
- Brief overview: stochastic modeling of diffusion-controlled reactions (Bio-)Chemical kinetics Spatial chemical kinetics
- 2. An "All Events Method"-implementation Sample use: forward sensitivity estimation
- 3. Inverse formulation Sample use: "evolutionary" optimal control setup

Conclusions

Stochastic modeling of biochemical reactions The well-stirred case

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?

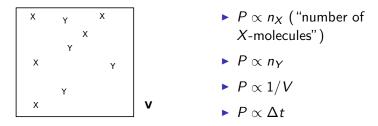


- P ∝ n_X ("number of X-molecules")
- $P \propto n_Y$
- $P \propto 1/V$
- $P \propto \Delta t$

Stochastic modeling of biochemical reactions

Example: Bimolecular reaction $X + Y \rightarrow Z$.

-What is the probability $P(1X \text{ and } 1Y \text{ reacts in the interval } [0, \Delta t])$?



 $\implies P(X + Y \rightarrow Z \text{ in the interval } [0, \Delta t]) = \text{const} \cdot n_X n_Y \Delta t / V.$

It so happens that this receipt describes a continuous-time Markov chain.

Kolmogorov's forward differential system/Master equation (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40)

- -State $x \in \mathbf{Z}_{+}^{D}$, the number of molecules of each of *D* species.
- $\ensuremath{\text{-R}}$ specified reactions defined as $\ensuremath{\textit{transitions}}$ between these states,

 $x \xrightarrow{w_r(x)} x - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D \times R}$ (stoichiometric matrix)

under a transition intensity or propensity w_r .

Kolmogorov's forward differential system/Master equation (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40)

-State $x \in \mathbf{Z}_{+}^{D}$, the number of molecules of each of *D* species. -*R* specified reactions defined as *transitions* between these states,

$$x \xrightarrow{w_r(x)} x - \mathbb{N}_r, \qquad \mathbb{N} \in \mathbf{Z}^{D imes R}$$
 (stoichiometric matrix)

under a transition intensity or propensity w_r .

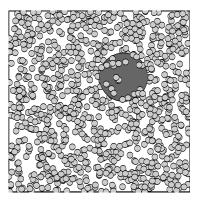
Let p(x, t) := P(X(t) = x | X(0)). Then the *chemical master equation* (CME) is given by

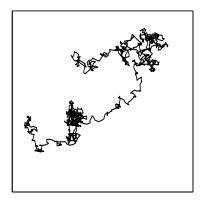
$$\frac{\partial p(x,t)}{\partial t} = \sum_{r=1}^{R} w_r(x+\mathbb{N}_r)p(x+\mathbb{N}_r,t) - \sum_{r=1}^{R} w_r(x)p(x,t)$$
$$=: \mathcal{M}p,$$

a gain-loss discrete PDE in D dimensions for the probability.

Brownian motion

Einstein 1905, & some others... *Example:* Particle in a fluid.





The idea of reaction-diffusion master equations: couple well-stirred reactions with a description of diffusion.

Mesoscopic spatial kinetics

NOT well-stirred

-Generally not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_j such that their individual volume $|\Omega_j|$ is small, then diffusion suffices to make each cell well-stirred.

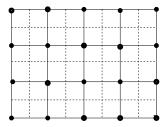


Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the # of molecules in each dual cell.

The reaction-diffusion master equation "RDME"

- The state of the system is now an array **x** with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion/transport where molecules move to adjacent cells (horizontally in x).

Spatial chemical kinetics

The reaction-diffusion master equation "RDME"

- The state of the system is now an array **x** with $D \times K$ elements.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in x) and by diffusion/transport where molecules move to adjacent cells (horizontally in x).

Hence when combining reactions with diffusions,

$$\frac{\partial p(\mathbf{x},t)}{\partial t} = (\mathcal{M} + \mathcal{D})p(\mathbf{x},t).$$

Sampling the CME

(Doob \sim '45, Gillespie '76)

Simulate a single stochastic trajectory X(t) "an outcome":

- 0. Let t = 0 and set the initial state x.
- 1. Compute the total intensity W as the sum of all reaction- and all transport intensities. Generate the *time to the next event* $\tau := -W^{-1} \log u_1$ where $u_1 \in (0, 1)$ is a uniform random number.
- 2. Determine the next event r by drawing u_2 , again a uniform random deviate in (0, 1). The probability of each event is determined by its proportion in W.
- 3. Update the state of the system accordingly and repeat from step 1 until some final time *T* is reached.

-*Complexity:* for a 3D model, 10.000 voxels with 10–100 species would be normal. Time between diffusion events scales as h^2 .

Next reaction method

A version thereof...

- Note that one random number determines when the next event happens, another random number what happens.
- ► An alternative: if instead each reaction channel gets its own Poisson process, and we let them *compete*, we get the so-called *"Next Reaction Method"*.
- Events that "loose" in this process are rescaled and rescheduled for a later time.
- Complexity: the reason this is a viable approach is the existence of efficient data-structures (binary heap).

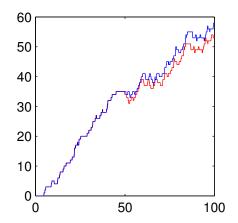
"All events method"

(..., Engblom '09, Rathinam et al. '10, Anderson '12)

In fact, if

- all events gets its own uniquely identifiable Poisson process (stream of random numbers)
- we take care of events that "go to sleep", i.e. produces a zero intensity (infinite waiting time)

then we can compare results from these types of models *per trajectory*.



$$\implies E[X_t(\theta+\delta)-X_t(\theta)]^2 = E[X_t(\theta+\delta;\omega)-X_t(\theta;\omega)]^2 \sim O(\delta).$$

S. Engblom (Uppsala University) Sensitivity and inverse problems in URDME ENUMA

Forward sensitivity

Stochastic focusing example

Enzymatic reaction of a complex into a product,

$$C+E\xrightarrow{\nu\ C\cdot E}P+E.$$

Combine with

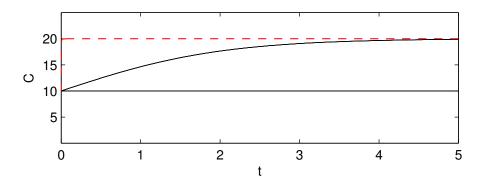
$$\emptyset \underset{\mu_E E}{\stackrel{k_E}{\rightleftharpoons}} E, \quad \emptyset \underset{\mu_C C}{\stackrel{k_C}{\rightleftharpoons}} C, \quad P \xrightarrow{\mu_P P} \emptyset.$$

-Interested in $k_E \rightarrow (1 + \delta) \cdot k_E$. Example: take $\delta = -1/2$.

11 / 25

Results in 0D (well-stirred)

Deterministic equations



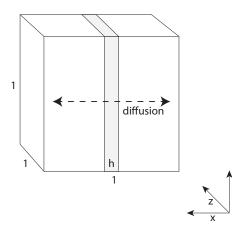
Expected: factor of 2 increase.

Results in 0D (well-stirred)

Stochastic equations - stochastic focusing effect



Results in 1D

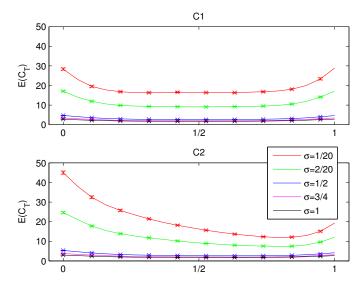


-Diffusion σ along the x-axis (assumed well-stirred in each yz-plane).

-In this case we compare with an "unperturbed case" with a birth-rate $k_E/2 \cdot (1 + 2x)$. I.e. $\int k_E dV$ is unaffected and we can think of this as a *spatial* stochastic focusing.

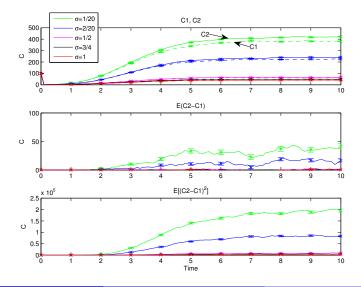
Results in 1D (cont)

Spatial profile



Results in 1D (cont)

Global effect



Optimal control of rates

As before,

$$C+E\xrightarrow{\nu\ C\cdot E}P+E,$$

$$\emptyset \stackrel{\boldsymbol{s(t)}}{\underset{\mu_{E}E}{\overset{\boldsymbol{c}}{\rightleftharpoons}}} E, \quad \emptyset \stackrel{\boldsymbol{k_{C}}}{\underset{\mu_{C}C}{\overset{\boldsymbol{c}}{\rightleftharpoons}}} C, \quad P \xrightarrow{\mu_{P}P} \emptyset,$$

hence E is now under *control* through the signal s(t) (*"open-loop control"*).

-Basic idea: under evolutionary pressure we can expect an important chemical network inside a cell to be nearly optimal.

18 / 25

Optimal control of rates (cont) Notion of optimality

Maximize

$$\mathcal{M}[P] := \mathbf{E}\Big[\int_0^T \varphi(P_t) \, dt\Big],$$

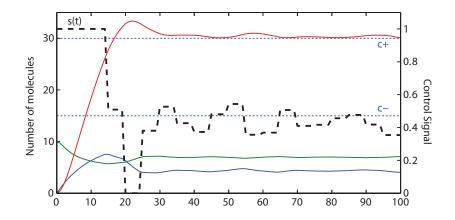
with a nonlinear payoff function $\varphi(P)$,

$$\begin{array}{lll} \varphi(P) &=& 0, & P \leq c_{-} \\ \varphi(P) &=& \tau(P - c_{-}), & c_{-} < P \leq C_{+} \\ \varphi(P) &=& \tau(C_{+} - c_{-}), & C_{+} < P \end{array} \right\}$$

Constraints on the production signal s

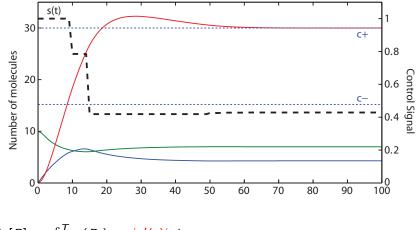
$$\max_{t \in [0, T]} s(t) \leq S_{\infty} \\ \int_0^T s(t) \, dt \leq S_1$$

Results



-Results from non-spatial deterministic ODE, solved by the Nelder-Mead simplex method.

Results with penalty

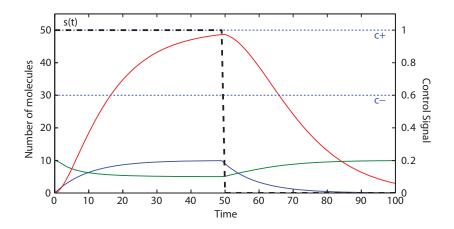


 $\mathcal{M}_2[P] := \int_0^T \varphi(P_t) + \varepsilon |s'(t)| dt$

21 / 25

Results

Boundary case



Stochastic case

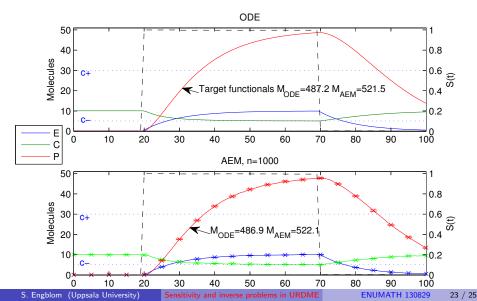
Very little work to bring this particular set-up into the stochastic setting:

- Start with the solution obtained from the ODE-case.
- ► Fix N, the number of trajectories, *outside* the optimization routine (estimating the expectation with an average).
- Increase N after a solution was obtained.

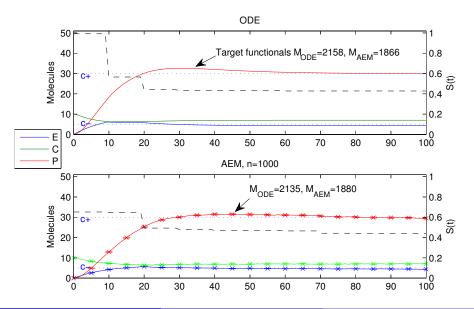
Since we continuously evaluate small modifications to the control strategy, removing noise is crucial (or otherwise N must be very large).

Results: $ODE \rightarrow stochastic$

Boundary case



Results: $ODE \rightarrow$ stochastic



Summary & Conclusions

- (Spatial) Stochastic mesoscopic modeling in chemical kinetics can combine *simplicity* with *accuracy*
- Sensitivity computations and an implementation of an "All Events Method"; example of uses in forward computations as well as in backward/inverse formulations
- Implemented in upcoming new release of free software URDME (www.urdme.org)

Summary & Conclusions

- (Spatial) Stochastic mesoscopic modeling in chemical kinetics can combine *simplicity* with *accuracy*
- Sensitivity computations and an implementation of an "All Events Method"; example of uses in forward computations as well as in backward/inverse formulations
- Implemented in upcoming new release of free software URDME (www.urdme.org)
- Good model problems are a challenge to formulate (ideas are welcome!)...

Thank you for listening!