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1. The computational framework Stochastic reaction-transport modeling

Local physics + transport mechanism
= Event-based mesoscopic & stochastic computational framework

Like PDEs, but better!

Figure: Primal mesh (thin), dual mesh
(blue). The state is the # of agents
(eg. molecules) in each dual voxel.

Local physics within each voxel, connected

through transport mechanisms

(eg. diffusion).
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1. The computational framework Stochastic reaction-transport modeling

“Local physics” first...
Well-stirred kinetics

Example: Bimolecular reaction X + Y → Z . Or infection spread
S + I → 2I . Or...

-When counting individual species/agents, a continuous-time Markov chain
is the most immediate model of the physics in the zoomed in situation.
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1. The computational framework Stochastic reaction-transport modeling

...“transport physics” next
Space-discrete, time-continuous model of moving particle

Example: Brownian motion.

(micro) → (stoch) The stochastic model is simpler but random (error:
microscale effects in a statistical sense only).

(stoch) → (meso) Discrete space approximation (error: finite h > 0).
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1. The computational framework A reminder: why?

Why stochastic? Why discrete? Why space?

SE ’06 “The situation is clearly different when biological systems
inside living cells are considered. [—] It is intuitively clear
that under such circumstances the inherent stochasticity of
the system plays a vital role”

SE & others ’09 “Intrinsic noise in biochemical networks can have a large
impact [—] The extremely complex ... microscopic behavior
paired with the fact that the copy number is a small
nonnegative integer make a discrete, stochastic description
of the system necessary”

SE & others ’15 “...spatial stochastic models based on a Markov process
formalism are popular due to their high level of biological
realism compared to [PDEs], with only a moderate increase
in computational complexity...”

-And a great many similar remarks have been made by several many
others...! (everybody “knows”)
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1. The computational framework A reminder: why?

The main message
Just to rub it in...

Terms & conditions. Want to use these models when either one of

I stochasticity

I nonlinearities

I species discreteness

I spatial inhomogeneities

make a big, or at least an interesting difference. Hence the physical model
itself is sensitive to perturbations in anyone of these.

Designing/understanding computational models: either we do

I An analysis by analogy/fingerspitzengefühl...

I Or, using the Lax principle: if the numerical physics ≈ the wanted
“true” physics (consistency), then the numerical solution → the true
solution (convergence) IFF the numerical physics is stable
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2. Analysis

Notation
Local physics

-State X ∈ ZD
+, counting the number of each of D

species/agents/compartments.

-Events/reactions are transitions between these states,

X
wr (X )−−−→ X − Nr , N ∈ ZD×R (stoichiometric matrix)

with propensity wr : ZD
+ → R+, r = 1...R.

-Poisson representation

X (t) = X (0)−
∑
r

NrΠr

(∫ t

0
wr (X (s)) ds

)
,

each Πr a unit-rate Poisson process.
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2. Analysis

Notation (cont)
Mesoscopic spatial kinetics

Total volume Ω subdivided into small enough computational cells Ωj such
that the local physics is an accurate model.

I The state of the system is now an array X with D × K elements; D
species Xij , i = 1, . . . ,D, counted separately in K cells, j = 1, . . . ,K .

I This state is changed by local physics events (vertically in X) and by
transport into adjacent cells (horizontally in X).
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2. Analysis

Local physics
(eg. reactions)

Same model in K cells, j = 1, . . . ,K ,

Xij(t) = Xij(0)−
∑
r

NriΠrj

(∫ t

0
wrj(X·,j(s)) ds

)
,

for i = 1, . . . ,D species.
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2. Analysis

Transport mechanism
(eg. diffusion)

Linear model (convection/diffusion, but also crowding): transport from
one cell Ωj to another cell Ωk according to

Xij
qijkXij−−−→ Xik ,

where qijk is non-zero only for connected cells.

Xij(t) =Xij(0)−
∑
k

Π′ijk

(∫ t

0
qijkXij(s) ds

)
+
∑
k

Π′ikj

(∫ t

0
qikjXik(s) ds

)
.
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2. Analysis

Stochastic reaction-transport framework
“RDME”

Combining reactions with transport events we arrive at

Xij(t) =Xij(0)−
∑
r

NriΠrj

(∫ t

0
wrj(X·,j(s)) ds

)
−
∑
k

Π′ijk

(∫ t

0
qijkXij(s) ds

)
+
∑
k

Π′ikj

(∫ t

0
qikjXik(s) ds

)
.

-Formulated in already discrete space! The limit when the cell size → 0 is
not straightforward.
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2. Analysis Assumptions and a priori results

Assumptions & a priori : well-stirred case
Local physics first...

Recall: CTMC X (t) ∈ ZD
+ governed by transitions

X
wr (X )−−−→ X − Nr , r = 1...R, N ∈ ZD×R ,

or, to get some ODE-feeling, “X ′(t) = −Nw(X )”.

Norm ‖x‖l := lT x , x ∈ ZD
+, normalized so mini l i = 1.

Assumptions: x , y ∈ ZD
+,

(i) −lTNw(x) ≤ A + α ‖x‖l (“l -outward bound”)

(ii) (−lTN)2w(x)/2 ≤ B + β1 ‖x‖l + β2 ‖x‖2
l (“l -outward absolute bound”)

(iii) |wr (x)− wr (y)| ≤ Lr (P)‖x − y‖, r = 1, . . . ,R, and ‖x‖l ∨ ‖y‖l ≤ P

The “blue assumptions”.
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2. Analysis Assumptions and a priori results

Assumptions & a priori : local physics
Summary of results

With suitable initial data...

I This E[sups∈[0,t] ‖X (s)‖pl ] bounded, any p ≥ 1

I if X (0) = Y (0) almost surely, then E[‖X (t)− Y (t)‖2] = 0

I if α + β2(p − 1) < 0, then E[‖X (t)‖pl ] bounded as t →∞

-In fact, if X (0) = Y (0) almost surely, and if Y (t) is obtained by
δ-perturbing the transition intensities (wr → (1± δ)wr ), then
limδ→0 E[‖X (t)− Y (t)‖2] = 0.

-Actually, if both X and Y are bounded, then E[‖X (t)− Y (t)‖2] = O(δ).
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2. Analysis Assumptions and a priori results

Assumptions & a priori : spatial case

Recall: CTMC X(t) ∈ ZD×K
+ with transitions

X·,k
wrk (X·,k )
−−−−−→ X·,k − Nr , Xij

qijkXij−−−→ Xik ,

k = 1...K , i = 1...D, r = 1...R. To get “PDE-feeling”,

vt = −Nu(v) + Q︸︷︷︸
eg. ≈∇·Σ∇

v.

Assumptions:

I on the mesh, some natural and quite weak assumptions (...)
I reactions, as before, plus

(iv) wrk(x) = Ωkur (Ω−1
k x), “density dependent”
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2. Analysis Assumptions and a priori results

Assumptions & a priori : spatial case
Summary of results

Norm ‖X‖l ,1 ≡
∑K

k=1 ‖X·,k‖l = lTX1.

With suitable initial data...

I only reactions: as before

I pure transport: ‖X(t)‖l ,1 = ‖X(0)‖l ,1, so bounded by initial data

I coupled spatial model: E[sups∈[0,t] ‖X(s)‖pl ,1] bounded, any p ≥ 1

I (strong) continuous dependence on parameters as before
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2. Analysis (Multiscale) variable splitting methods

Application: Multiscale variable splitting
Set-up: ε, h

Consider the separation of scales:

I species are either abundant ∼ ε−1, or appear in low copy numbers
∼ 1 (on a per voxel basis!)

I rate constants are either fast ∼ 1, or slow ε (...)

=⇒ rescaled variable X̄(t) = X̄ij(t) ∼ 1.

Multiscale splitting methods:

“Exact”, Ȳ(t) all Poisson processes driving an abundant species are
replaced with mean drift terms, Π(t) ≈ t

“Numerical”, Ȳ(h)(t) discrete steps h; low copy number variables are first
simulated in [t, t + h) letting abundant species be frozen at
time t, next abundant species are integrated in [t, t + h)
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2. Analysis (Multiscale) variable splitting methods

Scale separation
Details

Scale vector S ∈ RD ,

Xi ,·(t) = Si X̄i ,·(t), Si = 1 or ε−1.

The rates are assumed to obey the scaling laws

qijkx = ε−µi q̄ijkS
−1x ,

ur (x) = ε−νr ūr (S−1x).

The scaled rates {q̄ijk , ūr (·)} are understood to be O(1) with respect to ε.
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2. Analysis (Multiscale) variable splitting methods

Scale separation
Existence

If the following scaled assumptions hold,

− lTS−1Nu(x) ≤ A + α
∥∥S−1x

∥∥
l (1)

(−lTS−1N)2u(x)/2 ≤ B + β1

∥∥S−1x
∥∥

l + β2

∥∥S−1x
∥∥2

l (2)

|ūr (x)− ūr (y)| ≤ Lr (P)‖x − y‖, r = 1 . . .R, and ‖x‖l ∨ ‖y‖l ≤ P (3)

for {l ,A, α,B, β1, β2, L} all independent of ε.

Then in an O(1) interval of time, with O(1) initial data,
E[sups∈[0,t]

∥∥X̄(s)
∥∥p

l ,1] is also O(1).
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2. Analysis (Multiscale) variable splitting methods

Scale separation
Existence (cont)

1. Replace (2) with(
−lT1 N(1)

)2
u(x)/2 ≤ B + β1

∥∥S−1x
∥∥

l + β2

∥∥S−1x
∥∥2

l

(l -outward absolute bound for stochastic part only)

=⇒ Then Ȳ(t) is also O(1).

2. Additionally replace (1) with

max
(
−lT1 N(1)u(x),−lT2 εN(2)u(x)

)
≤ A + α

∥∥S−1x
∥∥

l

(l -outward bound for deterministic/stochastic parts individually)

=⇒ Then Ȳ(h)(t) is also O(1).
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2. Analysis (Multiscale) variable splitting methods

Multiscale split
Terms & conditions

Species in low numbers i ∈ G1, in large numbers i ∈ G2. Put

R(G1) := {r ; transition r affects a species i ∈ G1}

(and same for R(G2)).

Define also

u := min
r∈R(G1)

−νr ∧ min
i∈G1

−µi (‘worst’ ε-scaling of transition affecting G1)

v := 1 + min
r∈R(G2)

−νr ∧ min
i∈G2

−µi (‘worst’ ε-scaling of transition affecting G2 plus 1)
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2. Analysis (Multiscale) variable splitting methods

Errors
Convergence results

Under the (Assumptions) above, then

I E[‖Ȳ(t)− X̄(t)‖2] = O(ε1+v + ε1/2+v/2+u)

I Bounded/unbounded case: almost the same result...

Under the (Assumptions) above, then if the processes are bounded,

I E[‖Ȳ(h)(t)− Ȳ(t)‖2] = O
(
h(ε2u + εu+v )

)
+ O

(
h2ε2v

)
I Unbounded case: only convergence as h→ 0 remains...
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2. Analysis (Multiscale) variable splitting methods

Example: catalytic process
“Stress test” of theory

(A,C) ∼ ε−1, (B,D) ∼ 1, diffusionA,C ∼ ε, diffusionB,D ∼ 1.

A + B
kAB−−→ C + B A

εdaA−−−⇀↽−−−
ba

∅

C + D
kCD−−→ A + D B

dbAB−−−⇀↽−−−
bb

∅

B + B
kbB(B−1)−−−−−−⇀↽−−−−−−

kdD
D

ǫ
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h
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∝ h
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3. Applications Multiscale neuronal model

Application: multiscale neuronal model
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3. Applications Multiscale neuronal model

Bottom level
Ion channel gating

Gating process: sodium channels.
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3. Applications Multiscale neuronal model

Bottom level
Ion channel gating

The gating process of ion channels can be mesoscopically described as

N0

3αm(Vm)N0



βm(Vm)N1

N1

2αm(Vm)N1



2βm(Vm)N2

N2

αm(Vm)N2



3βm(Vm)N3

N3,

again a continuous-time Markov chain. Output: N3, the number of open
gates.

For efficient model coupling we freeze the voltage dependency for a short
time-step τ (“split-step” or “1st order Strang split”):

X (t + τ) = X (t)− NΠ

(∫ t+τ

t
w(X (s),Vm(t)) ds

)
.

S. Engblom (Uppsala University) Stabiliy & Convergence in spatial stochastic kinetics 160620 26 / 37



3. Applications Multiscale neuronal model

Middle level
Membrane dynamics

Cable equation circuit.
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3. Applications Multiscale neuronal model

Middle level
Membrane dynamics
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I Morphological
information extracted
using the Trees toolbox

I System of
current-balance and
cable equations is solved
for each time step τ
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3. Applications Multiscale neuronal model

Top level
Maxwell’s equations, potential form

Electric field intensity E in terms of the electric scalar potential V ,

E = −∇V .

Trans-membrane current Im is scaled with the compartement surface area
and coupled as a current source,

−∇ ·
(
σ∇V + ε0εr

∂

∂t
∇V

)
=

1

Ωc
Im,

with conductivity σ and permittivity ε. The time dependent potential V is
solved via finite element methods.

S. Engblom (Uppsala University) Stabiliy & Convergence in spatial stochastic kinetics 160620 29 / 37



3. Applications Multiscale neuronal model

Sample simulation
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3. Applications National-scale epidemics

Application: national-scale epidemics

I Modeling the spread of verotoxinogenic E. coli O157:H7 (VTEC
O157:H7) in the Swedish cattle population

I Important zoonotic pathogen (animal → humans) of great public
health interest, causing enteroheamorrhagic colitis (EHEC) in humans
(∼500 cases anually in Sweden).

I In Germany during the summer 2011, a particularly aggressive variant
emerged, with 3,816 reported cases and 54 deceased.

I Infected animals show no signs of the disease!

I Cattle is a main reservoir of the bacteria, ongoing research to better
understand the epidemiology of VTEC O157:H7 in the cattle
population

I Mixed event-based approach:
I Data-driven simulation using all registred cattle events 2005-2013
I Stochastic simulation of within-herd dynamics (i.e. mesoscopic)
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3. Applications National-scale epidemics

Data-driven

REPORTER WHERE ABATTOIR DATE EVENT ANIMALID BIRTHDATE

83466 83958 0 2009-10-01 2 SE0834660433 1997-04-04
83958 83466 0 2009-10-01 1 SE0834660433 1997-04-04
83958 83829 0 2012-03-15 2 SE0834660433 1997-04-04
83829 83958 0 2012-03-15 1 SE0834660433 1997-04-04
83829 83958 0 2012-03-15 4 SE0834660433 1997-04-04
54234 83829 0 2012-04-11 1 SE0834660433 1997-04-04
83829 54234 0 2012-04-11 2 SE0834660433 1997-04-04
83829 83958 0 2012-04-11 5 SE0834660433 1997-04-04

Total: 18 649 921 reports and 37 221 holdings

Events

I Exit (n=1 438 506)

I Enter (n=3 479 000)

I Internal transfer (n=6 593 921)

I External transfer (n=732 292)
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3. Applications National-scale epidemics

Events
(Population UK:Sweden is ∼ 10:1, area ∼ 5:9)
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3. Applications National-scale epidemics

Epidemic model
“Locally well-stirred” (SISE )

Model states: Susceptible, Infected, in i = 1, . . . ,∼40,000 holdings and in
3 age categories j ∈ {calves, youngstock , adults}.

State transitions at node i in the jth age category,

Rate Iij → Sij = γj Iij(t)

Rate Sij → Iij = υjSij(t)ϕi (t)

Environmental infectious pressure

dϕi

dt
=

α
∑

j Iij(t)∑
j Sij(t) + Iij(t)

− β(t)ϕi (t) + ε

Finding #1: β = β(t) required in the Swedish climate.

Finding #2: finite-time extinction for ε = 0, contrary to the corresponding
ODE-model.
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Epidemic model
“Locally well-stirred” (SISE )

Model states: Susceptible, Infected, in i = 1, . . . ,∼40,000 holdings and in
3 age categories j ∈ {calves, youngstock , adults}.

State transitions at node i in the jth age category,

Rate Iij → Sij = γj Iij(t)

Rate Sij → Iij = υjSij(t)ϕi (t)

Environmental infectious pressure

dϕi

dt
=

α
∑

j Iij(t)∑
j Sij(t) + Iij(t)

− β(t)ϕi (t) + ε

Finding #1: β = β(t) required in the Swedish climate.

Finding #2: finite-time extinction for ε = 0, contrary to the corresponding
ODE-model.
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3. Applications National-scale epidemics

Sample simulation
Connected through ∼9 years of actual transport data
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Summary

Summary

I Mesoscopic stochastic reaction-transport, event-based
computational framework: fairly intuitive modeling & coupling

I Terms & conditions. If used when required: accurately capturing a
stochastic nonlinear phenomenon is a very hard constraint for
method’s development!

I The Lax principle =⇒ Well-posedness, stability, consistency,
convergence

I Analysis of simple numerical methods

I Multiscale neuronal application solved in URDME (GitHub): proof of
concept for coupling different types of models

I Epidemiological national-scale model solved in SimInf (GitHub):
data-driven simulation, some findings when attempting to fit
parameters to data
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Summary

Thanks

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention!
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