Data-driven Epidemiological Simulations:
Verotoxigenic \(E. \ coli \) O157

Stefan Engblom

Div of Scientific Computing, Dept of Information Technology, Uppsala University, Sweden

Mathematical Biology for Understanding Emerging Infectious Diseases at the
Human-Animal-Environment Interface: a “One Health” Approach

Banff, Alberta, Canada, November 20–25, 2016
Case: national-scale epidemics

- Ongoing research to better understand the spread of verotoxigenic *E. coli* O157:H7 (VTEC O157:H7) in the Swedish cattle population.
- Zoonotic pathogen causing enterohemorrhagic colitis (EHEC) in humans (≈500 cases annually in Sweden, cost per case ≈$2600).
Case: national-scale epidemics

- Ongoing research to better understand the spread of verotoxinogenic *E. coli* O157:H7 (VTEC O157:H7) in the Swedish cattle population.
- Zoonotic pathogen causing enteroheamorrhagic colitis (EHEC) in humans (∼500 cases annually in Sweden, cost per case ∼$2600).
- “Understand” means to determine the dominating mechanisms in the dynamics, evaluate the effect of counter measures, investigate “what ifs”...

- Substantial amount of data available:
 - individual-level cattle data from 2005 and onwards (“events”)
 - geographical and meteorological data
 - longitudinal studies of farms
Event data
by European Union law

<table>
<thead>
<tr>
<th>REPORTER</th>
<th>WHERE</th>
<th>ABATTOIR</th>
<th>DATE</th>
<th>EVENT</th>
<th>ANIMALID</th>
<th>BIRTHDATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>83466</td>
<td>83958</td>
<td>0</td>
<td>2009-10-01</td>
<td>2</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83958</td>
<td>83466</td>
<td>0</td>
<td>2009-10-01</td>
<td>1</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83958</td>
<td>83829</td>
<td>0</td>
<td>2012-03-15</td>
<td>2</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>83958</td>
<td>0</td>
<td>2012-03-15</td>
<td>1</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>83958</td>
<td>0</td>
<td>2012-03-15</td>
<td>4</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>54234</td>
<td>83829</td>
<td>0</td>
<td>2012-04-11</td>
<td>1</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>54234</td>
<td>0</td>
<td>2012-04-11</td>
<td>2</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
<tr>
<td>83829</td>
<td>83958</td>
<td>0</td>
<td>2012-04-11</td>
<td>5</td>
<td>SE0834660433</td>
<td>1997-04-04</td>
</tr>
</tbody>
</table>

Total: 18,649,921 reports and 37,221 holdings

Events

- Exit (death, n=1,438,506)
- Enter (birth, n=3,479,000)
- Internal transfer (ageing, n=6,593,921)
- External transfer (transport between holdings, n=732,292)
Event data

Area Sweden: Alberta is 2:3, population 2:1
Meterological data
by SMHI

Day: 001

1) Spring: β₁
2) Summer: β₂
3) Fall: β₃
4) Winter: β₄
Forming a model

a priori thoughts

The dynamics/epidemics is quite likely stochastic, nonlinear, spatially inhomogeneous...

Designing/understanding computational models: either we do

- “mosaic approach” relying on fingerspitzengefühl...
- or, *a single* continuous-time mathematical model, a framework
Local model

“SIS_E”

Model states: **Susceptible**, **Infected**

State transitions

\[
I \longrightarrow S \text{ at rate } \propto I(t) \\
S \longrightarrow I \text{ at rate } \propto S(t)\varphi(t)
\]

80% of the holdings consist of <100 individuals. A suitable model for (S, I) is therefore a *continuous-time Markov chain*.
Local model

“SIS_E”

Model states: Susceptible, Infected

State transitions

\[I \rightarrow S \text{ at rate } \propto I(t) \]
\[S \rightarrow I \text{ at rate } \propto S(t)\varphi(t) \]

80% of the holdings consist of <100 individuals. A suitable model for (S, I) is therefore a *continuous-time Markov chain*.

Environmental infectious pressure (plain ODE)

\[
\frac{d\varphi}{dt} = \frac{I(t)}{S(t) + I(t)} - \beta(t)\varphi(t) + (...)
\]
Global model

Stochastic reaction-transport framework

Put $X_t^{(i)} = [S_{ij}, I_{ij}, \varphi_i]^T$ for $j \in \{\text{calves, young stock, adults}\}$ and $i = 1, \ldots, \sim 40,000$ holdings.

\[
dX_t^{(i)} = \underbrace{S\mu^{(i)}(dt)}_{\text{local SIS}_E\text{-model+local events}} - \sum_{j \in C(i)} \mathcal{C}\nu^{(i,j)}(dt) + \sum_{j; i \in C(j)} \mathcal{C}\nu^{(j,i)}(dt).
\]

Data now goes into all these forward operators.

The above general framework is implemented in SimInf (GitHub).
Numerical split-step method

Set-up

Local physics first, then global;

\[
\tilde{X}_{n+1}^{(i)} = X_n^{(i)} + \int_{t_n}^{t_{n+1}} S\mu^{(i)}(\tilde{X}(i)(s); \, ds),
\]

\[
X_{n+1}^{(i)} = \tilde{X}_{n+1}^{(i)} - \int_{t_n}^{t_{n+1}} \sum_{j \in C(i)} C\nu^{(i,j)}(X(i)(s); \, ds)
+ \int_{t_n}^{t_{n+1}} \sum_{j; \, i \in C(j)} C\nu^{(j,i)}(X(i)(s); \, ds)
\]

Assume (certain assumptions). Then

- \(\mathbb{E}[\sup_{t_n \in [0, t]} \|X_n\|_l^p]\) bounded, any \(p \geq 1\) (stability)
- \(\mathbb{E}[\|X_n - X(t_n)\|^2] = O(h), \, h = \max_n (t_{n+1} - t_n)\) (convergence)
Parallel implementation
Dependency-aware scheduling via task-based framework

6 core task execution trace; red tasks are dependent steps (requiring thread synchronization).
Sample simulation

~9 years of actual data

(\sim 10^8\text{ data base events plus }\sim 10^9\text{ infectious events during 9 years simulated in 15s on a desktop})
Feasibility of parameter estimation

Synthetic data ("inverse crime")

Setup: determine $\hat{k} = \arg\min_k G(k)$,

$$G(k)^2 = M^{-1} \sum_{i=1}^{M} \| \mathcal{F} \circ X_{\text{simulated}}^{(i)}(k) - \mathcal{F} \circ X_{\text{input}}(k^*) \|^2,$$

\mathcal{F} a "summary statistics" / "measurement filter" (…)

Using $M \in \{10, 20, 40\}$ simulations for G and $N = 20$ iterations of an optimization routine:

<table>
<thead>
<tr>
<th>M</th>
<th>Residual</th>
<th>12 cores</th>
<th>32 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.174</td>
<td>46.6 min</td>
<td>30.2 min</td>
</tr>
<tr>
<td>20</td>
<td>0.090</td>
<td>94.2 min</td>
<td>61.5 min</td>
</tr>
<tr>
<td>40</td>
<td>0.036</td>
<td>189.3 min</td>
<td>123.7 min</td>
</tr>
</tbody>
</table>
Parameter estimation

Real data

126 holdings sampled regularly during 38 months; ~ 17 swipe samples per group of 3 animals. Probability(test positive| n individuals infected), $n \in \{0, 1, 2, 3\}$ estimated via detailed studies \textit{a priori}.
3. Results

Parameter estimation

Real data, but after testing the equivalent synthetic situation first!

Setup: determine $\hat{k} = \arg\min_k G(k)$,

$$G(k)^2 = M^{-1} \sum_{i=1}^{M} \| \mathcal{F} \circ \mathbf{X}_{\text{simulated}}^{(i)}(k) - \mathcal{F}_{\text{measured}}^{*} \|^2,$$

\mathcal{F} is now the probabilistic map from state \mathbf{X} to sample $\{0, 1\}$.
3. Results

Outcome

- On the one hand, “an answer”, a parametrized model
- More importantly, and usually from mistakes/misfits: a better understanding of the dynamics, of the interplay between parameters, an efficient procedure to find optimal models among suggestions...

"The purpose of computing is insight, not numbers." (R. Hamming)
3. Results

Outcome

- On the one hand, “an answer”, a parametrized model
- More importantly, and usually from mistakes/misfits: a better understanding of the dynamics, of the interplay between parameters, an efficient procedure to find optimal models among suggestions...

Finding #1: decay $\beta = \beta(t)$ required in the Swedish climate.
Finding #2: a mathematical analysis reveals a finite-time extinction in the stochastic model, contrary to a corresponding deterministic model.

“The purpose of computing is insight, not numbers.” (R. Hamming)
Case of national-scale computational modeling in Epidemics, incorporating large amounts of data (data bases, internet)

Consistent modeling in continuous-time (*here*: Markov chain, ODE); clear what is the intended mathematical “truth”, what is a numerical error, errors due to uncertainties in parameters, data errors...

Efficient simulation, numerical method designed in order to expose parallelism (∼10^8 data base events plus ∼10^9 infectious events during 9 years simulated in 15s on a desktop)

Parametrization of a national-scale model solved in SimInf (GitHub), interesting findings when attempting to fit parameters to data

Ongoing: modeling of ASF in the wild boar-domestic pigs population (so freely moving animals), modeling of AMR *on top* of our VTEC animal-model
Thanks!

Programs, Papers, and Preprints are available from my web-page.
Thank you for the attention!