Mesoscopic Stochastic Modeling: Diffusion Operators, Multiphysics Couplings, and Convergence

Div of Scientific Computing, Dept of Information Technology, Uppsala University
BIRS Workshop, Banff, Alberta, Canada, November 10, 2014

Outline

Session: Mesoscopic Methods and Modeling I

1A. Motivation and notation
Simplicity \& Accuracy
Well-stirred kinetics
Personal observations

1B. Spatial modeling
Unstructured meshes: finite elements vs. volumes Convergence (of diffusion)
2. Multiphysics couplings

Summary

Brownian motion

Example: Particle in a fluid (Einstein 1905, \& others...).

A stochastic model is simpler but depends on randomness.

Chemical reactions

Example: Bimolecular reaction $X+Y \rightarrow Z$.
-What is the probability $P(1 X$ and $1 Y$ reacts in the interval $[0, \Delta t])$?

- $P \propto n_{X}$ ("number of X-molecules")
- $P \propto n_{Y}$
- $P \propto 1 / V$
- $P \propto \Delta t$
$\Longrightarrow P(X+Y \rightarrow Z$ in the interval $[0, \Delta t])=$ const $\cdot n_{X} n_{Y} \Delta t / V$.

Chemical reactions

Example: Bimolecular reaction $X+Y \rightarrow Z$.
-What is the probability $P(1 X$ and $1 Y$ reacts in the interval $[0, \Delta t])$?

```
\begin{tabular}{|llll|}
\hline\(X\) & \(Y\) & & \(X\) \\
& & \(X\) & \\
& \(Y\) & & \\
\(X\) & & & \(Y\) \\
& \(Y\) & & \\
\(X\) & & & \\
\hline
\end{tabular}
```


- $P \propto n_{X}$ ("number of X-molecules")
- $P \propto n_{Y}$
- $P \propto 1 / V$
- $P \propto \Delta t$
$\Longrightarrow P(X+Y \rightarrow Z$ in the interval $[0, \Delta t])=$ const $\cdot n_{X} n_{Y} \Delta t / V$.
Let $\Delta t \rightarrow 0$. Then it so happens that this receipt describes a continuous-time Markov chain.
"Simpler, but random."

Multistability

Figure: Solid: deterministic, dashed: stochastic.

Stochastic resonance

Figure: Solid: deterministic, dashed: stochastic.

Stochastic focusing

Figure: Nonlinear response to twofold signal increase; solid: partially deterministic, dashed: fully stochastic.

Well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the volume, and an energy which is independent on position.
-State $X \in \mathbf{Z}_{+}^{D}$, counting the number of molecules of each of D species. -Reactions are transitions between these states,

$$
X \xrightarrow{w_{r}(X)} X-\mathbb{N}_{r}, \quad \mathbb{N} \in \mathbf{Z}^{D \times R} \text { (stoichiometric matrix) }
$$

where the propensity $w_{r}: \mathbf{Z}_{+}^{D} \rightarrow \mathbf{R}_{+}, r=1 \ldots R$, is the probability of reacting per unit of time.
\Longrightarrow Jump SDE formulation: $d X_{t}=-\mathbb{N} \boldsymbol{\mu}(d t)$

Well-stirred kinetics

Assuming a homogeneous probability of finding a molecule throughout the volume, and an energy which is independent on position.
-State $X \in \mathbf{Z}_{+}^{D}$, counting the number of molecules of each of D species.
-Reactions are transitions between these states,

$$
X \xrightarrow{w_{r}(X)} X-\mathbb{N}_{r}, \quad \mathbb{N} \in \mathbf{Z}^{D \times R} \text { (stoichiometric matrix) }
$$

where the propensity $w_{r}: \mathbf{Z}_{+}^{D} \rightarrow \mathbf{R}_{+}, r=1 \ldots R$, is the probability of reacting per unit of time.
\Longrightarrow Jump SDE formulation: $d X_{t}=-\mathbb{N} \boldsymbol{\mu}(d t)=-\mathbb{N} \boldsymbol{\mu}\left(w\left(X_{t-}\right) ; d t\right)$ such that $E\left[\mu\left(w\left(X_{t-}\right) ; d t\right)\right]=w\left(X_{t-}\right) d t$.

More on notation

Where did the CME go?

Kolmogorov's forward differential system/Master equation, (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40), with $p(x, t):=P(X(t)=x \mid X(0))$.

$$
\begin{aligned}
\frac{\partial p(x, t)}{\partial t} & =\sum_{r=1}^{R} w_{r}\left(x+\mathbb{N}_{r}\right) p\left(x+\mathbb{N}_{r}, t\right)-\sum_{r=1}^{R} w_{r}(x) p(x, t) \\
& =: \mathcal{M} p
\end{aligned}
$$

More on notation

Where did the CME go?

Kolmogorov's forward differential system/Master equation, (Kolmogorov '31, Nordsieck/Lamb/Uhlenbeck '40), with $p(x, t):=P(X(t)=x \mid X(0))$.

$$
\begin{aligned}
\frac{\partial p(x, t)}{\partial t} & =\sum_{r=1}^{R} w_{r}\left(x+\mathbb{N}_{r}\right) p\left(x+\mathbb{N}_{r}, t\right)-\sum_{r=1}^{R} w_{r}(x) p(x, t) \\
& =: \mathcal{M} p
\end{aligned}
$$

Jump SDE, competing counting measures:

$$
d X_{t}=-\mathbb{N} \boldsymbol{\mu}\left(w\left(X_{t-}\right) ; d t\right) \quad(\text { "First reaction method" })
$$

or, via a thinning of a single marked counting process,

$$
d X_{t}=-\mathbb{N} \int_{I} \underbrace{\hat{w}\left(X_{t-;} z\right)}_{\text {indicator functions }} \mu(d t \times d z) \quad \text { ("Direct method") }
$$

Some personal observations

Mesoscopic Methods and Modeling
-By now, many methods, many acronyms, a few good ideas, various trade-offs, combined modeling...

- Who is the customer?
- What exactly are the customer's demands?
- accuracy vs. speed trade-off
- actual point of use

Some personal observations

Mesoscopic Methods and Modeling
-By now, many methods, many acronyms, a few good ideas, various trade-offs, combined modeling...

- Who is the customer?
- What exactly are the customer's demands?
- accuracy vs. speed trade-off
- actual point of use
-Sometimes the customer is another researcher (my only experience so far)
- results of simulations will be reported in a paper
- well characterized accuracy is highly desirable (eg. backward analysis: method solves exactly a certain perturbed problem)
- heuristics/unknown accuracy acceptable iff very serious speed-ups

Mesoscopic spatial kinetics

-The conditions for well-stirred kinetics are often violated, particularly so for reactions taking place inside living cells.
-Not well-stirred in the whole volume, but if the domain Ω is subdivided into smaller computational cells Ω_{j} such that their individual volume $\left|\Omega_{j}\right|$ is small, then diffusion suffices to make each cell well-stirred.

Figure: Primal mesh (solid), dual mesh (dashed). The nodal dofs are the \# of molecules in each dual cell.

Mesoscopic spatial kinetics (cont)

- The state of the system is now an array \mathbb{X} with $D \times K$ elements; D chemically active species $\mathbb{X}_{i j}, i=1, \ldots, D$, counted separately in K cells, $j=1, \ldots, K$.
- This state is changed by chemical reactions occurring between the molecules in the same cell (vertically in \mathbb{X}) and by diffusion/transport where molecules move to adjacent cells (horizontally in \mathbb{X}).

Reactions

By assumption, each cell is well-stirred and consequently the jump SDE is valid as a description of reactions,

$$
d \mathbb{X}_{t}=-\mathbb{N} \boldsymbol{\mu}(d t)
$$

where $\boldsymbol{\mu}$ is now R-by- K; $E\left[\mu_{r j}\right] d t^{-1}=$ propensity of the r th reaction in the j th cell.

Diffusion

A natural model of diffusion from one cell Ω_{k} to another cell Ω_{j} is

$$
\mathbb{X}_{i k} \xrightarrow{q_{k j} \mathbb{X}_{i k}} \mathbb{X}_{i j}
$$

where $q_{k j}$ is non-zero only for connected cells.
-Ideally, $q_{k j}$ should be taken as the inverse of the mean first exit time for a single molecule of species i from cell Ω_{k} to $\Omega_{j} . \Longrightarrow q_{k j} \propto \sigma^{2} / h^{2}$, where $\sigma^{2} / 2$ is the macroscopic diffusion, h the local length.

Diffusion

A natural model of diffusion from one cell Ω_{k} to another cell Ω_{j} is

$$
\mathbb{X}_{i k} \xrightarrow{q_{k j} \mathbb{X}_{i k}} \mathbb{X}_{i j},
$$

where $q_{k j}$ is non-zero only for connected cells.
-Ideally, $q_{k j}$ should be taken as the inverse of the mean first exit time for a single molecule of species i from cell Ω_{k} to $\Omega_{j} . \Longrightarrow q_{k j} \propto \sigma^{2} / h^{2}$, where $\sigma^{2} / 2$ is the macroscopic diffusion, h the local length.

Assuming that the diffusion constants are the same for all species,

$$
d \mathbb{X}_{t}=\mathbb{E}\left(-\boldsymbol{\nu}^{T}+\boldsymbol{\nu}\right)(d t)
$$

where \mathbb{E} is D-by- K of all 1 's, and ν is K-by- $K ; E\left[\nu_{k j}\right]=q_{k j} \mathbb{X}_{i k} d t$.

The reaction-diffusion jump SDE

 "RDME"Combining reactions with diffusions we arrive at

$$
d \mathbb{X}_{t}=-\mathbb{N} \boldsymbol{\mu}(d t)+\mathbb{E}\left(-\boldsymbol{\nu}^{\top}+\boldsymbol{\nu}\right)(d t)
$$

For example, ("Next Subvolume method")

$$
\begin{aligned}
d \mathbb{X}_{t}= & -\mathbb{N} \int_{I} \hat{w}\left(\mathbb{X}_{t-} ; z\right) \otimes \overline{\boldsymbol{\mu}}(d t \times d z)+ \\
& \mathbb{E} \int_{I}\left(-\hat{v}^{T}+\hat{v}\right)\left(\mathbb{X}_{t-} ; z\right) \otimes \overline{\boldsymbol{\nu}}(d t \times d z)
\end{aligned}
$$

-An approximation, valid when

$$
\rho^{2} \ll h^{2} \ll \sigma^{2} \tau_{\Delta},
$$

ρ the molecular radius, τ_{Δ} average molecular survival time.

Unstructured meshes

-Mean first exit time only known for very simple geometries (e.g. circles).
-How to handle complicated geometries? Attempt to converge in expectation to the macroscopic diffusion equation. A numerical method applied to $u_{t}=\sigma^{2} / 2 \Delta u$ yields the discretized form

$$
\frac{d \mathbf{u}}{d t}=\frac{\sigma^{2}}{2} D \mathbf{u}
$$

-Define $\varphi_{i j}=E\left[\Omega_{j}^{-1} \mathbb{X}_{i j}\right]$. By linearity of the diffusion intensities,

$$
\begin{aligned}
\frac{d \varphi_{i j}}{d t} & =\sum_{k=1}^{K} \frac{\left|\Omega_{k}\right|}{\left|\Omega_{j}\right|} q_{k j} \varphi_{i k}-\left(\sum_{k=1}^{K} q_{j k}\right) \varphi_{i j} \\
\Longleftrightarrow \frac{d \varphi_{i .}^{T}}{d t} & =Q \varphi_{i .}^{T}
\end{aligned}
$$

FEM vs. FVM

An insane summary
Consider the strong formulation $u_{t}=\Delta u$ in Ω,

1. Variational form (Green's theorem): find $u \in V$
s.t. $\left(v, u_{t}\right)=-(\nabla v, \nabla u)$ for
$\forall v \in V$, where
$(f, g) \equiv \int_{\Omega} f g d x$.
2. A FEM is obtained by
approximating
$V \approx V_{h}=\operatorname{span}_{i} \varphi_{i} \subset V$.
3. With $u_{h}=\sum_{i} \mathbf{u}_{i}(t) \varphi_{i}$ we get
$M \mathbf{u}_{t}=-A \mathbf{u} ; M_{i j}=\left(\varphi_{i}, \varphi_{j}\right)$,
$A_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$.

FEM vs. FVM

An insane summary

Consider the strong formulation $u_{t}=\Delta u$ in Ω,

1. Variational form (Green's theorem): find $u \in V$
s.t. $\left(v, u_{t}\right)=-(\nabla v, \nabla u)$ for
$\forall v \in V$, where
$(f, g) \equiv \int_{\Omega} f g d x$.
2. A FEM is obtained by
approximating
$V \approx V_{h}=\operatorname{span}_{i} \varphi_{i} \subset V$.
3. With $u_{h}=\sum_{i} \mathbf{u}_{i}(t) \varphi_{i}$ we get
$M \mathbf{u}_{t}=-A \mathbf{u} ; M_{i j}=\left(\varphi_{i}, \varphi_{j}\right)$,
$A_{i j}=\left(\nabla \varphi_{i}, \nabla \varphi_{j}\right)$.
4. Integrating over the j th finite volume and invoking the divergence theorem we get $\int_{\omega_{j}} u_{t} d x=\int_{\partial \omega_{j}} \mathbf{n} \cdot \nabla u d a$.
5. Approximating ∇ with a difference and defining \mathbf{u}_{j} as a volume average gives
$\left|\omega_{j}\right| d / d t \mathbf{u}_{j}=$
$\sum_{k}\left|\partial \omega_{j k}\right|\left|e_{j k}\right|^{-1}\left(\mathbf{u}_{k}-\mathbf{u}_{j}\right), e_{j k}$ the distance between nodes j and k.

Weak convergence

Key observation: by linearity, the diffusion CTMC on the unstructured grid has an expected value which coincides with the exact solution to the deterministic numerical method.

FEM convergence

$M \mathbf{u}_{t}=-A \mathbf{u}$ or $\mathbf{u}_{t}=-M^{-1} A \mathbf{u} \approx-\tilde{M}^{-1} A \mathbf{u}=: D \mathbf{u}$.

1) Converges in $L^{2},\left\|u_{h}-u\right\|=O\left(h^{2}\right)$ as $h \rightarrow 0$, under very mild assumptions on the mesh.
2) Under stringent conditions on the mesh, the maximum principle holds.

These conditions are needed to ensure that

$$
D_{j k} \geq 0, D_{j j}<0, \sum_{k=1}^{K} D_{j k}=0
$$

FVM convergence

$\left|\omega_{j}\right| d / d t \mathbf{u}_{j}=\sum_{k}\left|\partial \omega_{j k}\right|\left|e_{j k}\right|^{-1}\left(\mathbf{u}_{k}-\mathbf{u}_{j}\right)$

1) The maximum principle always holds.
2) If the mesh is a Delaunay triangulation, the method converges as $\left\|u_{h}-u\right\|=O\left(h^{2}\right)$. Unfortunately (in 3D) such meshes have a very poor quality except for very simple geometries. Then the " C " in $O\left(h^{2}\right)$ is very large.

On balance...

-With a (very) good mesh both methods converge as $h \rightarrow 0$ and satisfy the maximum principle. With an "average" mesh, (truncated) FEM seems to have an accuracy edge to FVM.
-Importantly, truncated FEM is amenable to backward analysis: the solution satisfies exactly a perturbed equation $u_{t}=\nabla \cdot\left(\tilde{\sigma}^{2}(x) / 2 \times \nabla u\right)$ where $\tilde{\sigma}$ can be explicitly obtained, and where $\|\tilde{\sigma}-\sigma\|$ is small and localized.
-Key challenges: (i) convergence in distribution - retrieving the correct Brownian motion, (ii) convergence with reactions, (iii) getting to grip of when it actually matters...

Application: multiscale neuronal model

Joint work with Pavol Bauer and Emil Berwald.

Bottom level

lon channel gating

Figure: Gating process: sodium channels.

Bottom level

lon channel gating

The gating process of ion channels can be mesoscopically described as
again a continuous-time Markov chain. Output: N_{3}, the number of open gates.
For efficient model coupling we freeze the voltage dependency for a short time-step τ ("Euler method/1st order Strang split"):

$$
X_{t+\tau}=X_{t}-\int_{t}^{t+\tau} \mathbb{N} \boldsymbol{\mu}\left(V_{m}(t), w\left(X_{s-}\right) ; d s\right)
$$

Middle level

Membrane dynamics

Figure: Cable equation circuit.

Middle level

Membrane dynamics

$$
\begin{array}{lll}
{ }^{5}{ }^{60} &
\end{array}
$$

- Morphological information extracted using the Trees toolbox
- System of current-balance and cable equations is solved for each time step τ

Top level

Maxwell's equations, potential form

Electric field intensity \mathbf{E} in terms of the electric scalar potential V,

$$
\mathbf{E}=-\nabla V
$$

Trans-membrane current I_{m} is scaled with the compartement surface area and coupled as a current source,

$$
-\nabla \cdot\left(\sigma \nabla V+\varepsilon_{0} \varepsilon_{r} \frac{\partial}{\partial t} \nabla V\right)=\frac{1}{\Omega_{c}} I_{m}
$$

with conductivity σ and permittivity ε. Finally, the time dependent potential V is solved via finite element methods.

Top level

Geometry coupling

- Bottom and middle level: compartments (cylindrical volumes)
- Coupling with PDE requires a mesh
- Approximation with curves much more efficient than volumetric elements

Coupled solution

Summary

- Simplicity and Accuracy: Who is the customer?
- Accurately capturing a stochastic nonlinear phenomenon is a very hard constraint for method's development!
- Spatially inhomogeneous case, consistency with macroscopic equations, FEM vs. FV
- The numerical method's convergence to the macroscopic equation implies weak convergence of the corresponding stochastic model, backward analysis
- Sample multiscale neuronal application solved in URDME (www.urdme.org): coupling different types of models

In case somebody asks: more on notation

Compare with ODEs...

For states $x \in \mathbf{R}^{D}$; either one may consider

$$
\frac{\partial}{\partial t} p(t, x)=-\Delta \cdot(f(x) p(t, x))
$$

or,

$$
x^{\prime}(t)=f(x)
$$

-In method's development and modeling, " $f \rightarrow f_{h}$ ", one almost exclusively deals with the latter representation.

