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1. INTRODUCTION
The development of concurrent systems is greatly helped by the use of precise and
formal models of the system. There are many different formalisms for concurrent sys-
tems, often in specialised versions for particular application areas. For each formalism,
tool support is necessary for constructing and reasoning about models of non-trivial
systems. This paper describes such tool support for a generic semantic framework for
process calculi with mobility. Thus, instead of developing a separate tool for each sep-
arate process calculus, we develop one single generic tool for a whole family of process
calculi.

Psi-calculi [Bengtson et al. 2011] is a parametric semantic framework based on the
pi-calculus [Milner et al. 1992a], adding the possibility to tailor the data language and
logic for each application. The framework provides a variety of features, such as lexi-
cally scoped local names for resources, communication channels as data, both unicast
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and broadcast communication [Borgström et al. 2011], and both first- and higher-order
communication [Parrow et al. 2013].

Many of the different extensions of the pi-calculus, including the spi-calculus [Abadi
and Gordon 1997], the fusion calculus [Wischik and Gardner 2005], the concurrent
constraint pi-calculus [Buscemi and Montanari 2007], and the polyadic synchronisa-
tion pi-calculus [Carbone and Maffeis 2003], can be directly represented as instances
of the psi-calculi framework. A major advantage is that all meta-theoretical results,
including algebraic laws and congruence properties of bisimilarity, apply to any valid
instantiation of the framework. Additionally, most of these results have been proved
with certainty, using the Nominal Isabelle theorem prover [Urban and Tasson 2005].
These features of psi-calculi save a lot of effort for anyone using it — psi-calculi is a
reusable framework.

This paper describes the Psi-Calculi Workbench (PWB), a generic tool for imple-
menting psi-calculus instances, and for analysing processes in the resulting instances.
While there are several other tools, specialised for particular process calculi and par-
ticular application areas, our tool is generic and reusable. It has a wider scope than
previous works, and also allows experimentation with new process calculi with a rel-
atively low effort. Like psi-calculi, our tool is parametric: it provides functionality for
bisimulation equivalence checking and symbolic simulation (or execution) of processes
in any psi instance, and a base library for implementing new psi-calculi instances.
PWB thus has two types of users: the user analysing systems in an existing instance
of the framework, and the instance implementor.

We illustrate both uses of the tool in three steps: In Section 2 we introduce the frame-
work of psi-calculi semiformally, relating an instance corresponding to the pi-calculus
and showing symbolic simulation of agents. After describing the design of PWB and
how to implement an instance in Section 3, we show how to add data and computation
in Section 4 by modelling the traditional alternating bit protocol for reliable communi-
cation. In Section 5 we model a data aggregation protocol for wireless sensor networks,
incorporating specialised data structures and logics, and both unicast and broadcast
communication. Section 6 extends the previous example with a dynamic topology.

In Section 7 we describe the symbolic semantics implemented in PWB. The sym-
bolic operational semantics of Section 7.1 simplifies previous symbolic semantics for
psi-calculi [Johansson et al. 2012], and adds rules for wireless (synchronous and unre-
liable) broadcast [Borgström et al. 2011]. To our knowledge, this is the first symbolic
semantics for lexically scoped broadcast communication.

In Section 8 we discuss related work. An abridged version of this article was pub-
lished as [Borgström et al. 2013].

2. INTRODUCING PSI-CALCULI
In this section we introduce the psi-calculi parametric semantic framework semi-
formally, and defer some precise definitions and the operational semantics to Section 7.
For a more extensive treatment of psi-calculi, including motivations of the requisites
and examples of other instances see [Bengtson et al. 2011; Borgström et al. 2011; Jo-
hansson et al. 2012; Johansson et al. 2010]. We show more complex examples in Sec-
tions 4, 5 and 6.

A psi-calculus instance is specified by three data types: the (data) terms T, ranged
over by M,N , the conditions C, ranged over by ', and the assertions A, ranged over
by  . The terms, conditions and assertions can be any sets where the elements may
contain names (from the set N of names) and name permutations are admitted (so-
called nominal sets [Pitts 2003]). In particular, every element X has a finite set of free
names n(X) ✓ N , and we write a#X for a 62 n(X).
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Terms are used both as communication channels, and for the data sent and received
in communication. They can be structured, and so permit standard constructs as lists
and sets, numbers and booleans, as well as more advanced structures. Assertions are
used to model “facts” about terms and relations between them, for instance by giv-
ing values to variables or by constraining their values. The minimal assertion is the
unit, written 1, and assertions are composed by the ⌦ operator. Conditions are used to
perform tests on terms. Their outcome depends on the current assertion environment,
through an entailment relation ( entails ', written  ` ') which is also part of the
psi instance specification.

In the Pi instance, corresponding to the polyadic pi-calculus, terms are simply names
a, b, c . . . and the conditions are equality tests on names. (Name equality is used in
the match construct [a = b]P , which behaves as P if a = b holds.) In the pi-calculus
there are no assertions, but the psi-calculi framework requires at least the trivial unit
assertion. Later examples will show how assertions can be exploited for modelling
advanced features.

Given the psi-calculus parameters T,C,A, the agents, ranged over by P,Q, . . ., are of
the following forms:

M ˜N .P Output prefix
M(x̃) . P Input prefix
M ! ˜N .P Broadcast output prefix
M? (x̃) . P Broadcast input prefix
case '1 : P1 [] · · · [] '

n

: P
n

Case
(⌫a)P Restriction
P | Q Parallel
!P Replication
(| |) Assertion
Ah ˜Mi Invocation

We write fM for the tuple M1, . . .Mn

. The output and input prefixes denote polyadic
(unicast) output and input, while the broadcast prefixes denote (synchronous) broad-
cast output and input, which is unreliable (as in wireless systems) in the sense that
transmissions might not be received. The case construct can act as any P

i

such that
the corresponding condition '

i

is true; the other cases are discarded. Restriction binds
a in P and input prefixes bind x̃ in the suffix; we identify alpha-equivalent agents. The
Invocation form invokes a process A, defined by the form A(ỹ)(P ; the behaviour is
that of P{ ˜M/ỹ}.

In the Pi instance, the output and input prefixes are the usual a x̃ . P and a(x̃) . P ;
the match construct [a = b]P corresponds to case a = b : P . If we have a condition
true which is always true, we can model nondeterministic choice (traditionally written
P +Q) as case true : P [] true : Q.

The semantics for psi-calculi is defined by a labelled transition relation written
 ⇤ P

↵�! P 0, meaning that in environment  agent P can do an action ↵ to be-
come P 0. In the pi-calculus instance, the environment  is always the trivial 1, but in
general it represents the assertions of the environment, including parallel agents.

The semantics is defined only for well-formed agents. An occurrence of a subterm in
an agent is guarded if it is a proper subterm of a prefix form. An agent is well-formed
if in M(ex).P and M? (ex).P it holds that ex is a sequence without duplicates, that in
case '1 : P1 [] · · · [] '

n

: P
n

the agents P
i

have no unguarded assertions, and that in a
replication !P the agent P has no unguarded assertions or broadcast input prefixes.
For process definitions a similar requirement as for replication applies.
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The actions are input M (x̃) denoting the reception of data bound to x̃ over the chan-
nel denoted by M , output M (⌫x̃) ˜N denoting the sending of ˜N over M and additionally
opening the scopes of the names x̃, the corresponding broadcast actions M?(x̃) and
M ! (⌫x̃) ˜N , and the silent action ⌧ which is the result of communication between an
input and an output. When ex is empty, we often omit (⌫ex) and (ex).

The connectivity predicates used for communication are also defined by the instanti-
ation. The conditions include the channel equivalence predicate M

.$ N which is used
to define which terms denote the same unicast channel, and the broadcast connectiv-
ity predicates M

.
� K and K

.
� M for sending and receiving on broadcast channels: a

term M can be used to send a broadcast message on the channel K only if M
.
� K in

the current assertion environment, and similar for broadcast reception (see Section 5
for an example).

As an example, the Pi agent

b c.Q | b(a).case a = b : a(z).R

has transitions labelled bc, b (x) for all names x, and ⌧ . The input prefix can generate
infinitely many input actions (here one for each x). To avoid this infinite branching, we
use a symbolic semantics in the tool (see Section 7.1), where the actual values are ab-
stracted by variables. Instead each transition has a transition constraint, which must
be satisfied for the corresponding non-symbolic transitions to be possible. Formally
these transitions are written P

↵�!
C

P 0 where C is a transition constraint.
The input transitions of the agent above can be represented by a single transition in

the symbolic semantics. For simplicity we show the first two transitions of the input
prefix subagent:

P = b(a) . case a = b : a(z).R
w (a)������!

{|1`b .$w|}
case a = b : a(z).R

v (z)�������������!
{|1`a .$v|}^{|1`a=b|}

R

where w and v are fresh (see Section 7 for the formal semantics). The constraint of the
first transition intuitively says that the channel w is equivalent to b (there may not
always be such a w!); for the second transition a similar constraint appears in addition
to the condition of the case construct.

We can use the PWB to simulate the transitions of P . The tool uses an ASCII repre-
sentation of agents, where non-alphanumeric terms and conditions must be in double
quotes, ⌫ is written new, output objects are written between angular brackets and the
overline in outputs is written by a preceding single quote. For example, b f(a, c) . (⌫x)Q
is written ’b<”f(a,c)”>.(new x)Q.

The first transition of the agent P above:

��|gna ( a)|��>

Source :
b ( a ) . case ”a = b” : a ( x ) . R<>

Constraint :
{ | ”b = gna” | }

Solution :
( [ gna := b ] , 1)

Derivative :
case ”a = b” : a ( x ) . R<>

When printing the constraint, the trivial 1 ` is elided. The “gna” here represents a
fresh name, corresponding to w above: the subject of the symbolic input action.
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The derivative case ”a = b” : a(x).R does not have a non-symbolic transition since a is
not the same name as b, but the symbolic semantics does have a transition under the
constraint that a=b.

��|gnb ( x)|��>

Source :
case ”a = b” : a ( x ) . R<>

Constraint :
{ | ”a = gnb” | } ^ { | ”a = b” | }

Solution :
( [ b := a , gnb := a ] , 1)

Derivative :
R<>

The constraint {| ”a = b” |} can be solved by substituting a for b, as stated by the
Solution line above. The solution is generated by a constraint solver module in the
PWB, which for the pi-calculus instance performs name unification (see Section 3.2),
similar to earlier tools for pi-related calculi (e.g. MWB). After applying the solution to
the agent, there is a corresponding non-symbolic transition.

In addition to symbolic execution, the PWB also includes a symbolic checker that
computes a minimal sufficient constraint for one agent to be (bi)similar to another,
plus a witnessing relation. The two agents are non-symbolically related after applying
a solution to the constraint (if there is one).

3. IMPLEMENTATION
The Psi-Calculi Workbench (PWB) is implemented in the Standard ML programming
language and compiles under the Poly/ML compiler [PolyML 2013] version 5.4. PWB is
open source and freely available online from [Gutkovas and Borgström 2013].

PWB is a modular implementation of psi-calculi, and can be viewed both as a mod-
elling tool and as a library for building tools for particular instances of psi-calculi.
Used as a modelling tool, the user interacts with a command interpreter that provides
commands for process definitions (manually or from files), manipulation of the process
environment, stepping through symbolic (strong and weak) transitions of a process,
and symbolic bisimilarity checking (strong and weak). Examples of such use are given
in sections 4 and 5. Below we describe the implementation of PWB and the modules
which need to be provided when creating an instance of psi-calculi.

3.1. Psi-Calculus instantiation
PWB implements a number of helper libraries for the instance implementor. We show
the architecture of PWB in Figure 1. In this figure, dependencies between components
go from right to left: each component may depend only on components that are above
it or to its left. All components build on the supporting library that provides the ba-
sic data structures and core algorithms for psi-calculi. The instance implementor pro-
vides definitions for the parameters of an instance, constraint solvers, and parsing and
pretty-printing code. These user-implemented components are then called by the dif-
ferent algorithms implemented by the tool and by the command interpreter. Not all
components are required to be implemented: for instance, the bisimulation constraint
solver is only needed for bisimilarity checking.

The parameters of an instance consist of the types name, term, condition and assertion,
and three classes of functions: those defining the logics, the substitutions, and the
connectivity. As an example of the types, here are the declarations for the pi-calculus
instance mentioned in Section 2. All SML code presented is written by the instance
implementor.
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Fig. 1: Psi-Calculi Workbench Architecture

type term = name
datatype condit ion = Eq of term ⇤ term | T
datatype assert ion = Unit

We need three functions to define the logic of the instance: entailment (entails, or
`) that describes which conditions are true given an assertion, a composition operator
(compose, or ⌦) that composes two assertions, and a unit assertion (unit, or 1). We
require that assertion composition forms a commutative monoid (modulo entailment),
and that all functions are equivariant, meaning that they treat all names equally. The
bisimulation algorithm and the weak symbolic semantics also require weakening to
hold, meaning that  ` ' implies  ⌦  0 ` ' for all  0.
val enta i l s : assert ion ⇤ condit ion �> bool

val compose : assert ion ⇤ assert ion �> assert ion
val unit : assert ion

We also need equivariant substitution functions, substituting terms for names in
each of term, condition and assertion.
type subst = (name ⇤ term ) l i s t

val substT : subst �> term �> term
val substC : subst �> condit ion �> condit ion
val substA : subst �> assert ion �> assert ion

Finally, we have three equivariant functions that describe the connectivity of
the calculus: chaneq (for unicast connectivity), brTransmit and brReceive (for broad-
cast). Typically, these functions are simple injections into the conditions type (e.g.,
fun chaneq (M,N) = ChanEq (M,N) where ChanEq is a data constructor of condition) leav-
ing the definition of connectivity to either the entailment relation or the constraint
solver.

Channel equivalence chaneq is required to be commutative and transitive (for ev-
ery  ). brTransmit is broadcast output connectivity

.
� and brReceive is broadcast input

connectivity
.
�; these functions are exemplified in Section 5. If  entails M

.
� K or  

entails K
.
� M , then we require all names that occur in K to also occur in M .

val chaneq : term ⇤ term �> condit ion
val brTransmit : term ⇤ term �> condit ion
val brReceive : term ⇤ term �> condit ion

All of the functions above are further required to commute with substitution, in the
sense that f(X�) = f(X)�.

The user also needs to implement parsers for each of the data types, that are called
by the parser for process terms.
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3.2. Symbolic execution
PWB provides symbolic execution of processes by the sstep command. This is a useful
tool to explore the properties of a process, or indeed the model itself. Here values input
by the process are represented by variables, and constraints are collected along the
derivation of a transition. The constraints show under which conditions transitions are
possible, deferring instantiation of variables as long as possible. Both strong and weak
(ignoring ⌧ -transitions) symbolic semantics are available (presented in Section 7).

In psi-calculi, parallel contexts that contain an assertion, such as (|x = 3|), can en-
able additional transitions. Therefore, a solution (�, ) to a constraint consists of a
substitution � (representing earlier inputs) and an assertion  (representing the par-
allel context). Intuitively, every solution (�, ) solves true, there is no solution to false,
every solution to both C and C 0 is a solution to C^C 0, and the solutions to (⌫ã){| 0 ` '|}
are the pairs (�, ) where  ⌦  0� ` '� and the names in ã do not occur in  ,�.

The instance implementor may provide a constraint solver for the transition con-
straints. The solver should return either a string describing the unsatisfiability of a
constraint, or a solution consisting of a substitution and assertion. Since transition
constraints are simply a conjunction of atomic constraints, a simple unification-based
solver often suffices. The type of the solver is the following:

val solve : constraint �> ( string , (name ⇤ term ) l i s t ⇤ assert ion ) e i ther

As an example, the solver for the pi-calculus instance of Section 2 performs unifica-
tion, implemented by the transition relation below. The nodes in the transition system
are either a pair (C,�), or the failed state ?.

(⌫ã){|1 ` T |} ^ C,� ! C,�
(⌫ã){|1 ` a = a|} ^ C,� ! C,�
(⌫ã){|1 ` a = b|} ^ C,� ! ? if a 6= b ^ (a 2 ã _ b 2 ã)
(⌫ã){|1 ` a = b|} ^ C,� ! C[b := a],�[b := a] otherwise

3.3. Symbolic (bi)simulation
PWB can also be used to check simulation relations on processes. As an example, the
command P ˜ Q attempts to construct a bisimulation relation relating agents P and
Q. To this end, we implement a symbolic bisimulation algorithm based on [Johansson
et al. 2012] (with some corrections and optimisations). This algorithm takes two pro-
cesses and yields a constraint in an extended constraint language; the two processes
are bisimilar under all solutions to the constraint. A simple variation of the algorithm
is used for simulation checking.

The language for bisimulation constraints additionally includes conjunction, dis-
junction and implication, as well as constraints for term equality {|M = N |}, freshness
{|a#X|} (with the intuition “a is not free in X”), and static implication. In order to
simplify the development of a constraint solver for this richer language, PWB contains
an SMT solver library with suitable helper functions. Unless the assertion language
is trivial (only the unit assertion), most of the additional effort in extending a solver
for transition constraints to one for bisimulation constraints lies in properly treating
static implication constraints.

4. THE ALTERNATING BIT PROTOCOL
In this section, we describe the modelling in PWB of the classical Alternating Bit Pro-
tocol. We demonstrate that the PWB allows to define a tailor-made process calculus for
a particular problem or problem domain. We also give an example of symbolic weak
transition generation in PWB.
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Sender

DataChan

Receiver

ResponseChan

Fig. 2: Alternating Bit Protocol scheme

4.1. Introduction to the Alternating Bit Protocol
The Alternating Bit Protocol (ABP) [Bartlett et al. 1969] is a simple network protocol
for reliable data transmission through lossy channels. Reliable here means that all
data fragments are received exactly once and in the right order at the receiver. Con-
sider a sender Sender, a receiver Receiver and two communication channels between
them: DataChan, over which data fragments are sent, and ResponseChan, over which
acknowledgements are sent. We show this situation in Figure 2: the arrows denote the
direction of the data being transmitted. ABP assumes reliable error detection, but no
error correction.

To ensure that Receiver receives every fragment despite lossy communication chan-
nels, Sender repeatedly sends the same fragment until it receives a corresponding ac-
knowledgment, at which point the sender starts transmitting the next fragment. Since
the receiver should not accept the same fragment twice, a protocol is needed for dis-
tinguishing between packets. In ABP, each data packet has a one-bit flag attached to
it. The flag 0 is attached to the first packet sent; the acknowledgment of the receiver
for this packet will also have flag bit 0. When Sender receives an acknowledgment with
flag 0, it knows that Receiver has correctly received the fragment, and Sender will then
start sending the next packet with flag bit 1, and so on. Thus, sequences of sent or
received packages resp. acknowledgments with the same flag bit all refer to the same
data fragment.

4.2. A Psi-calculus Instance for ABP
To define a psi-calculus instance where ABP can be expressed, we start with the data
terms. Since the behaviour of the protocol does not depend on the data being transmit-
ted, we simply represent each fragment as a name. However, the protocol itself needs
some data values and structures.

In the set of terms we include the channels DataChan and ResponseChan, and the
value ERR to signify that an error has been detected. We also have 0 and 1 bits and a
negation operation ⇠· on them with the expected equalities ⇠0 = 1 and ⇠1 = 0.

Our account of ABP is untyped, so these term constructors yield terms which are not
intended to be part of the model, such as ⇠ERR. Such spurious terms yield the invalid
value ?. In summary, we define the data terms T as follows:

Notation SML PWB
Val , {ERR, 0, 1}
T , Val [ {?} [N

[ {⇠M : M 2 T}

datatype term
= Error | Zero |One |Bottom
| Name of name |Neg of term

M ::= ERR | 0 | 1 | |
| Name | ˜M

Here and in subsequent displays, the column Notation is the mathematical notation,
SML is the code written by the instance implementor, and PWB is the ASCII syntax
used in the tool by the user of the instance.
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Next we define the conditions. In the protocol, we need to compare the sender’s or
receiver’s bit with a transmitted bit, and to see whether an error occurred while trans-
mitting data. To do this, we use equality = on values.

We add a condition True which always holds, and a False condition that never holds.
Lastly, we include a channel equivalence condition for unicast communication (ABP
does not use broadcast, so we let the broadcast connectivity predicates yield False).

Notation SML PWB

C , {True,False}
[ {M = N : M,N 2 T}
[ {M .$ N : M,N 2 T}

datatype condit ion
= CTrue | CFalse
| Equal of term ⇤ term
| ChEq of term ⇤ term

' ::= True | False
| M = M
| M <�> M

We do not need assertions to model the ABP, so we let A = {Unit} as in Section 2.
As the last step we define the substitution functions on terms and conditions. They

are standard capture avoiding substitutions, followed by normalisation with respect
to a term rewriting system given below. We use rewriting after substitutions in order
to accurately detect loops of ⌧ -transitions when computing weak transitions. This also
significantly simplifies the constraint solver, since the normal forms are simpler to
handle than arbitrary terms.

Below, we give the rewrite system for terms for reduction context R ::= []|⇠R. It
evaluates the ⇠· operator, cancels out double negation of variables, and identifies the
spurious terms. In particular, the term ⇠⇠ERR is spurious, and is rewritten to ?.

⇠ERR ! ?
⇠? ! ?

⇠0 ! 1

⇠1 ! 0

⇠⇠x ! x if x 2 N

The following is the term rewriting system for the conditions. Equalities involving
spurious terms ? are rewritten to False. Note that we only consider equality conditions
where the constituent terms are already in normal form; this suffices since the substi-
tution function on conditions is defined in terms of substitution function on terms.

⇠x = ⇠y ! x = y
⇠x = x ! False
x = ⇠x ! False

M = N ! True if M = N and {M,N} ✓ Val [N
M = N ! False if M 6= N and {M,N} ✓ Val
M = N ! False if ? 2 {M,N}

Finally, we need to define entailment. For conditions in normal form we define

Unit ` a
.$ b iff a = b Unit ` M = N iff M = N Unit ` True,

and otherwise we let Unit ` ' iff '!+ '0 6! and Unit ` '0

4.3. Constraint Solver for ABP Transition Constraints
The ABP constraint solver is a standard unification algorithm defined as a transition
system. The design is greatly simplified by the fact that the conditions in the con-
straints are in normal form.

The following is the unification transition system. The first two rules are trivial.
The rules concerning the channel equivalence .$ condition are the classic unification
on names as seen in the pi-calculus solver. The last rules concern the equality condition
=. Because the terms are in the normal form, we know that one of the sides is a name,
and thus we do elimination, or swapping in order to allow elimination. Below, ã#X
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denotes that names ã don’t occur freely in X; we omit 1 ` in front of every condition.
(⌫ã){|True|} ^ C,� ! C,�
(⌫ã){|False|} ^ C,� ! ?
(⌫ã){|a .$ b|} ^ C,� ! C,� if a = b and a, b 2 N
(⌫ã){|a .$ b|} ^ C,� ! C[b := a],�[b := a] if ã#a, b and a 6= b
(⌫ã){|a .$ b|} ^ C,� ! ? otherwise
(⌫ã){|a = M |} ^ C,� ! C[a := M ],�[a := M ] if ã#a,M and a 2 N
(⌫ã){|M = N |} ^ C,� ! (⌫ã){|N = M |} ^ C,� otherwise

4.4. The ABP as a Process
Here we present the process modelling the ABP in the ABP psi-calculus instance de-
fined above. We give the definition in PWB syntax, which is used by the user of the psi
instance.

We model the components Sender and Receiver of ABP shown in Figure 2 as psi-
calculus processes. The behaviour of components DataChan and ResponseChan are cap-
tured implicitly in our model. For composing the system, components have input and
output channels inp and out, respectively. The Receiver and Sender each have one addi-
tional channel for output o resp. input i to the application that uses the protocol.

The sender is modelled as follows: first it inputs data on input channel i and then
recursively outputs the data together with the current bit b on the channel out. Then
the sender receives the acknowledgment bit on input channel inp: if it matches b, the
sender flips b and returns to waiting for data, otherwise (if the bit did not match or
an error occurred) the sender attempts to send the data and b until it receives an
acknowledgment with flag b.
Sender ( i , inp , out , b ) <= i ( data ) . SenderSend<i , inp , out , data , b>;

SenderSend ( i , inp , out , data , b ) <= ’ out<data , b>. inp ( ackBit ) .
case ”b = ackBit ” : Sender<i , inp , out , ” ˜ b ”>

[ ] ”b = ˜ ackBit ” : SenderSend<i , inp , out , data , b>
[ ] ”ERR = ackBit ” : SenderSend<i , inp , out , data , b> ;

The receiver works in a dual fashion.
Receiver ( o , inp , out , b ) <= inp ( data , b i t ) .

case ”b = b i t ” : ’ o<data > . ’ out<b>.Receiver<o , inp , out , ” ˜ b ”>
[ ] ”b = ˜ b i t ” : ’ out<” ˜ b i t ”> . Receiver<o , inp , out , b>
[ ] ”ERR = bi t ” : ’ out<” ˜ b ”> . Receiver<o , inp , out , b> ;

An error might occur at any time on each of the channels. This kind of unreliable
process is modelled implicitly by treating names (representing bits) as variables. Since
transmitted names are variables the constraint solver may enable any case clause in
either Sender or Receiver by finding a suitable term to substitute them for.

Hiding the internal channels, the ABP system can be described as follows:
ABP( i , o , sb , rb ) <= (new RcSn , SnRc ) (

Sender<i , RcSn , SnRc , sb> | Receiver<o , SnRc , RcSn , rb >) ;

4.5. A Sample Weak Transition
When studying the ABP, it is interesting to see when the protocol communicates with
the outside system, ignoring ⌧ -transitions. We here show such a “weak” transition,
where the sender receives data and transmits it to the receiver via the data channel.
We use the wsstep command on ABP<i,o,sb,rb> to obtain the following transition, among
others.
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1 ==|gen2 ( data1)|==>

2 Source :
3 ABP<i , o , sb , rb>
4 Constraint :
5 (new RcSn , SnRc ) { | ” i <�> gen2 ” | } ^
6 (new RcSn , SnRc ) { | ”SnRc <�> SnRc” | } ^
7 (new RcSn , SnRc ) { | ”RcSn <�> RcSn” | } ^
8 (new RcSn , SnRc ) { | ” rb = ˜ sb ” | }
9 Solution :

10 ( [ rb := ” ˜ sb ” , gen2 := i ] , 1)
11 Derivative :
12 (new SnRc , RcSn ) (
13 ( case

14 False : Sender<i , RcSn , SnRc , ” ˜ sb ”> [ ]
15 True : SenderSend<i , RcSn , SnRc , data1 , sb> [ ]
16 False : SenderSend<i , RcSn , SnRc , data1 , sb>
17 ) |
18 ( Receiver<o , SnRc , RcSn , rb>)
19 )

After the transition, the sender (lines 13-16) is in a state where it has received an
acknowledgment bit which does not match its own bit (constraint on line 8) reducing
the condition ”b = ˜ackBit” (at this state it is ”sb = ˜rb”) of SenderSend to true (on line 15).

This transition is among the seven transitions produced by PWB. Since there is al-
ways a possibility that both sender and receiver will detect an error ERR, there are
infinitely many weak transitions following a cycle between them. The occurrence of
such cycles are detected (modulo alpha-equivalence) by the wsstep command. Since the
terms occurring in agents are in normal form, wsstep terminates on ABP.

We have shown the development of a tailor-made psi-calculus instance in PWB. (The
full code listing is available online [Gutkovas and Borgström 2013].) Doing so, we have
expressed bits and bit operations directly, and we have shown that it is possible and
useful to use computation in the substitution functions, which departs from traditional
calculi. We have also shown the symbolic simulation of a weak transition, which is
useful for applications.

5. DATA COLLECTION IN A WIRELESS SENSOR NETWORK
In this example we study a data collection protocol for wireless sensor networks
(WSNs) by modelling it in a custom psi-calculus that we implement in PWB.

A wireless sensor network consists of numerous sensor nodes that sense environ-
mental data. A special node, called the sink, is used to collect data from the network.
Collection often uses multi-hop communication, building a routing tree rooted at the
sink [Madden et al. 2002]. As wireless communication is unreliable, different trees
may be built in each protocol run.

We present a simple algorithm to build a routing tree: the sink starts the tree build-
ing by broadcasting a special init message containing its identifier Sink . When a node
n first receives an init message, it sets its parent parent

n

to the sender of the message,
and broadcasts a new init message containing its own identifier to continue building
the next level of the tree. After the building of a tree is complete, each node sends a
data message containing its data to its parent. Moreover, each node forwards received
data messages to its parent, ensuring that it eventually reaches the sink.

5.1. Psi-calculus instance for WSN data collection
We first define and implement a custom Psi-calculus instance suitable for modelling
the tree building and data collection protocol described above. We use structured chan-
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Fig. 3: A simple topology with a sink and two sensor nodes where (a) shows the con-
nectivity and (b)-(c) show some possible routing trees.

nels, of two kinds: broadcast channels init(M) and unicast channels data(M). The
broadcast connectivity between nodes is given by an undirected topology graph. We
first assume a static topology top; the topology in Figure 3(a) would be represented by
top = {(0, 1), (0, 2), (1, 2)} where the sink has id 0. The corresponding psi-calculi param-
eters are defined as follows.

Notation SML PWB

T , {init(M), data(N)

: M,N 2 T} [N [ N
C , {M

.
� N,M

.
� N,

M
.$ N : M,N 2 T}

A , {top}
1 , top

datatype term
= In i t of term |Data of term
| Name of name | Int of int

datatype condit ion
= OutputConn of term⇤term
| InputConn of term⇤term
| ChEq of term⇤term

datatype assert ion = Unit
val unit = Unit

M ::= init (M) | data(M)
| Name | N

' ::= M < M | M > M
| M <�> M

 ::= 1

N ::= [0� 9]

+

Since we consider a static topology, we implement assertions as a unit type. A broad-
cast output prefix with subject init(i) can broadcast on the broadcast channel init(i),
while an input prefix with the same subject can receive from any connected broad-
cast channel as given by the topology. Two unicast prefixes may communicate iff their
subjects are the same name. Thus, we define ` as follows.

 ` init(M)

.
� init(N) iff M = N 2 N

 ` init(M)

.
� init(N) iff M,N 2 N and either (M,N) 2  or (N,M) 2  

 ` data(a)
.$ data(b) iff a = b 2 N

5.2. Constraint Solver for Symbolic Transitions
We describe the implementation of the transition constraint solver. We write ? for
no solution. Transition constraints are conjunctions of conditions. The constraints are
solved in two phases, corresponding to the unicast connectivity constraints and the
broadcast connectivity constraints, respectively. To simplify the solver, we treat all free
names in the processes as distinct (cf. distinctions [Milner et al. 1992b]). For unicast
constraints, the solver thus fails (returning ?) if the constraint is not satisfied.

(⌫ã){|data(a) .$ data(b)|} ^ C ! C if a = b
(⌫ã){|data(a) .$ data(b)|} ^ C ! ? otherwise

The constraint solver then checks for broadcast connectivity in the given topology.
Let O be the output constraints {|init(n)

.
� a|} and I the input constraints {|a

.
� init(n)|}.

We distinguish four different cases:

(1) if I = ; and O = {{|init(n)
.
� a|}}, then the solution is [a := init(n)].
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(2) if I 6= ; and O = {{|init(n)
.
� a|}}, and we have (n,m) 2 top for every constraint

{|a
.
� init(m)|} in I, then the solution is [a := init(n)]. Otherwise the constraint is

unsatisfiable, i.e. ?.
(3) if I 6= ; and O = ;, then the constraint solver finds n such that for every

{|a
.
� init(m)|} 2 I we have (n,m) 2 top. For each such n, [a := init(n)] is a possi-

ble solution.
(4) if I = ; and O = ;, then the broadcast part of the constraint is trivially true.

5.3. Tree building model
Once the instance is implemented, we can define processes modelling the tree building
algorithm in PWB syntax. The sink broadcasts its own channel and then goes into data
collection mode, that is, it listens on its unicast channel repeatedly.
Sink ( nodeId , bsChan ) <=

’ ” i n i t ( nodeId ) ” !<bsChan> .
! ” data ( bsChan ) ” ( x ) ;

A node listens on its broadcast channel for a channel of a parent to which it will
send data to. Then, similarly to the sink, it broadcasts its own unicast channel on
which it expects data to receive in order to forward it to the parent. After completing
the broadcast, it sends its data to the parent and goes into mode of forwarding data.
Node ( nodeId , nodeChan , datum) <=

” i n i t ( nodeId ) ” ? (pChan) .
’ ” i n i t ( nodeId ) ” !<nodeChan> .
’ ” data (pChan) ”<datum> .
NodeForwardData<nodeChan , pChan> ;

NodeForwardData ( nodeChan , pChan) <=

! ” data ( nodeChan ) ” ( x ) . ’ ” data (pChan) ”<x> ;

5.4. Example Strong Transitions
We here study the (symbolic) transition system generated by a small WSN with a sink
and two sensor nodes. Each node has a unique channel for response messages.
System3 ( d1 , d2 ) <=

(new chanS ) Sink<0,chanS> |
(new chan1 ) Node<1, chan1 , d1> |
(new chan2 ) Node<2, chan2 , d2>

We will show a possible transition sequence in PWB, using the topology shown in Fig-
ure 3a. Below, we only consider transitions labelled with broadcast output and unicast
communication actions.

The following initial transition is obtained by executing the symbolic simulator of
PWB on System3<d1,d2>. The resulting system is in configuration where both sensor
nodes have obtained the parent’s channel, in this case the sink’s. The nodes would
then be able to communicate their data to the sink. The unicast channel connectivity
corresponds to the routing tree shown in Figure 3b. It is one of seven possible initial
transitions produced by PWB, of which three represent broadcast reception from the
environment, and the other three situations where not all nodes receive the broadcast
message. The transition label gna!(new bsChan)bsChan, represents the channel with a
fresh name gna. The generated constraint requires {|init(0)

.
� gna|} ^ {|gna

.
� init(1)|} ^

{|gna
.
� init(2)|}, meaning node 0 is output connected to some channel gna which is input

connected to nodes 1 and 2. The constraint solver finds a solution to the constraint,
which substitutes init(0) for gna.
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��|gna ! ( new bsChan ) bsChan|��>
Source :

System3<d1 , d2>
Constraint :

(new chan1 , chan2 , chanS ) { | ” i n i t (0)<gna” | } ^
(new chanS , chan2 , chan1 ) { | ”gna>i n i t ( 1 ) ” | } ^
(new chanS , chan1 , chan2 ) { | ”gna>i n i t ( 2 ) ” | }

Solution :
( [ gna := ” i n i t ( 0 ) ” ] , 1)

Derivative :
( ! ( ” data ( chanS ) ” ( x ) ) ) |

( ( ( new chan1 ) (
’ ” i n i t ( 1 ) ” !<chan1>.

’ ” data ( chanS ) ”<d1>.
NodeForwardData<chan1 , chanS>

) ) |
( ( new chan2 ) (

’ ” i n i t ( 2 ) ” !<chan2>.
’ ” data ( chanS ) ”<d2>.

NodeForwardData<chan2 , chanS>
) ) )

In the derivative the Sink successfully communicated its unicast channel chanS to both
nodes.

From this point the system can evolve in two symmetrical ways: either of the nodes
broadcasts an init message, but since no node in the (closed) system is listening on a
broadcast channel, the message is not received. The following transition is for node 1.
��|gna ! ( new chan1 ) chan1|��>
Source :

The same as the above derivative
Constraint :

(new chan2 , chan1 ) { | ” i n i t (1)<gna” | }
Solution :

( [ gna := ” i n i t ( 1 ) ” ] , 1)
Derivative :

( ! ( ” data ( chanS ) ” ( x ) ) ) |
( ( ’ ” data ( chanS ) ”<d1>.

NodeForwardData<chan1 , chanS>) |
( ( new chan2 ) (

’ ” i n i t ( 2 ) ” !<chan2>.
’ ” data ( chanS ) ”<d2>.

NodeForwardData<chan2 , chanS>
) ) )

The system is now in the state where node 1 can send data to the sink. By following
the analogous transition for node 2, we get the system where both nodes are ready to
communicate the data.
��|gna ! ( new chan2 ) chan2|��>
Source :

The same as the above derivative
Constraint :

(new chan2 ) { | ” i n i t (2)<gna” | }
Solution :

( [ gna := ” i n i t ( 2 ) ” ] , 1)
Derivative :

( ! ( ” data ( chanS ) ” ( x ) ) ) |
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( ( ’ ” data ( chanS ) ”<d1>.
NodeForwardData<chan1 , chanS>) |

( ’ ” data ( chanS ) ”<d2>.
NodeForwardData<chan2 , chanS>))

We have demonstrated the use of advanced features in PWB such as the use of struc-
tured channels with different modes of communication (point-to point vs broadcast).
The broadcast connectivity graph (topology) was formalised as an assertion; this allows
us to potentially extend the model, for instance to dynamic or localised connectivity.
We used the symbolic execution to simulate strong symbolic transitions of the system.
All of this shows the versatility and utility of PWB for use in modelling and studying
WSN algorithms.

6. DYNAMIC TOPOLOGY IN WIRELESS SENSOR NETWORK
We here extend the example of Section 5 with dynamic topology. We first allow adding
edges to the connectivity graph, and then add the dual operation of removing edges.

Let the parameters be as in the example in Section 5 except for the assertions, which
is now a finite set of tuples representing edges in a topology.

Notation SML PWB

A , Pfin(T⇥T)

1 , ;
datatype assert ion

= Top of ( term⇤term ) l i s t

val unit = Top [ ]

 ::= ✏
| (M,N)(, (M,N))

⇤

The entailment relation is left unchanged, and the constraint solver for the unicast
constraints is the same. To enable broadcast connectivity, if the necessary edge is not
present, the solver simply attempts to add it to the solution (as is common in process
calculi models for WSNs [Ghassemi et al. 2008; Godskesen 2010]). For example, the
solution of the constraint of the first transition in Section 5.4 with an empty topology
is ([gna := ” init (0)” ], ” (0,2),(0,1) ”).

In the following we add the ability for agents to also remove edges from the environ-
ment. In the assertions we model edges as binary toggles, so if the same edge occurs
twice this is equivalent to it not appearing at all (i.e., {(M,N)} ⌦ {(M,N)} ' 1). The
parameters are extended by adding conditions corresponding to whether an edge is
present or not, and the assertions are finite multisets.

Notation SML PWB
C , · · · [ {conn(M,N),

disconn(M,N)

: M,N 2 T}
A , T⇥T!finN
1 , ;

datatype condit ion = . . .
| Conn of term⇤term
| Disconn of term⇤term

datatype assert ion
= Top of ( term⇤term ) l i s t

val unit = Top [ ]

' ::= . . . | conn(M,N)
| disconn(M,N)

 ::= ✏
| (M,N)(, (M,N))

⇤

An odd number of edge tuples in the environment denote that the edge is present;
an even number denotes absence. Thus adding a tuple to the environment might add
or remove an edge. We capture this with the following entailment definition

 ` conn(M,N) iff M,N 2 N and | (M,N)|+ | (N,M)| is odd
 ` disconn(M,N) iff M,N 2 N and  6` conn(M,N)

 ` init(M)

.
� init(N) iff conn(M,N)

For the protocol in Section 5 we may reuse the same constraint solver, keeping in
mind that it does not handle the case where a disconn condition guards a broadcast
input. We can also express the alteration of the topology with the following two agents:
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Connect ( a , b ) <=

case ” conn ( a , b ) ” :⇤ tau ⇤ .0
[ ] ” disconn ( a , b ) ” :⇤ tau ⇤ . ( | ” ( a , b ) ” | ) ;

Disconnect ( a , b ) <=

case ” conn ( a , b ) ” :⇤ tau ⇤ . ( | ” ( a , b ) ” | )
[ ] ” disconn ( a , b ) ” :⇤ tau ⇤ .0 ;

The agent Disconnect<1, 2> | (|”(1,2)” |) has two transitions: first (| ” (1,2) ” |)|(| ” (1,2) ” |)
with trivially solvable constraint {|” (1,2) ” |� ”conn(1,2)”|}, and second 0 | (| ” (1,2) ” |)
with the solution ([], ” (1,2) ”). In both transitions, the environment was extended with
an extra tuple (1, 2), effectively removing an edge from the topology. Intuitively, the
agents Connect and Disconnect allow to set and unset bits in a global table.

7. SYMBOLIC SEMANTICS
In this section we describe a symbolic operational semantics for broadcast psi-calculi,
that is sound (Theorem 7.11) and complete (Theorem 7.12) with respect to the concrete
broadcast semantics [Borgström et al. 2011; Borgström et al. 2013]. This semantics is
the one that is implemented in the PWB, and it extends, simplifies, and corrects the
original symbolic semantics [Johansson et al. 2012].

7.1. Symbolic Operational Semantics
As we have seen, transitions in the symbolic operational semantics are of the form
P

↵�!
C

Q, where C is a constraint that needs to be satisfied for the transition to
be enabled. Each PWB instance implements a solver, that computes solutions for the
transition constraints of that instance.

Definition 7.1 (Constraints and Solutions). A solution is a pair (�, ) where � is a
substitution sequence of terms for names, and  is an assertion. The transition con-
straints, ranged over by C,C

t

, and their corresponding solutions sol(C) are defined by:

Constraint Solutions
C,C 0

::= true {(�, ) : � is a subst. sequence ^  2 A}
| false ;
| (⌫a)C {(�, ) : b#�, , C ^ (�, ) 2 sol((a b) · C)}
| {| 0 ` '|} {(�, ) :  0� ⌦  ` '�}
| 9x.C {(�, ) : y#�, , C ^ ([y :=M ]�, ) 2 sol((x y) · C)}
| a 2 n(M) {(�, ) : a 2 n(M�)}
| C ^ C 0

sol(C) \ sol(C 0
)

Above, (a b) · C stands for the simultaneous replacement of a for b and b for a in C
(“swapping”). In (⌫a)C, a is binding into C; and in 9x.C, x is binding into C. We write
9bx.C for (⌫b)9x.(b 2 n(x) ^ C); the only uses of 9 and · 2 n(·) will be in this restricted
form (which is itself only used in rule SBRCLOSE in Table I). We adopt the notation
(�, ) |= C to say that (�, ) 2 sol(C), and write C $ D to say that sol(C) = sol(D).

A transition constraint C defines a set of solutions sol(C), namely those where the
formula becomes true by applying the substitution and adding the assertion. For ex-
ample, the transition constraint {|1 ` x = 3|} has solutions ([x := 3],1) and ([], x = 3),
where [] is the identity substitution.

Restriction distributes over logical conjunction, and logical conjunction has true as
unit and is associative. We thus consider constraints modulo the equations below.

LEMMA 7.2. (⌫a)(C1 ^ C2) $ (⌫a)C1 ^ (⌫a)C2 and C1 ^ (C2 ^ C3) $ (C1 ^ C2) ^ C3

and C ^ true $ C.

The concept of frame of an agent F(P ) is used in the semantics: intuitively it is the
top-level assertions of an agent, including the top-level binders. Frames are of the form
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F ::=  | (⌫ a) where a is bound in (⌫ a) . The frame of a process denotes its contri-
bution to parallel agents. For example, the frame F((⌫a)((| 1|) | M eN . (| 3|) | (| 2|))) is
(⌫a)( 1 ⌦  2). Note that  3 is not included in the frame, since it occurs under a prefix.
In order to define the symbolic operational semantics, we need a way to add the frame
of a parallel process to the current transition constraint.

Definition 7.3 (Adding frames to constraints). We define F ⌦ C as follows:

F ⌦ (⌫a)C = (⌫a)(F ⌦ C) where a#F
(⌫ea) ⌦ {| 0 ` '|} = (⌫ea){| ⌦  0 ` '|} where ea# 0,'

(⌫ea) ⌦ 9x.C = (⌫ea)9x.( ⌦ C) where ea#C and x#ea, 
F ⌦ (C ^D) = (F ⌦ C) ^ (F ⌦D)

F ⌦ C = C otherwise.

For the symbolic semantics to be able to pick out the original channel to be used
to send a message, we require partial injectivity of channel connectivity in its left
argument: we require that for all names a, the function x 7! (x

.$ a) is injective.
A process P is said to be assertion guarded if every occurrence of a (| |) in P is a

subterm of an input or an output. We require that processes are well-formed: P is well-
formed if in every subterm of P of the form case e' :

eQ every Q
i

is assertion guarded,
and in every subterm of P of the form !Q we have that Q is assertion guarded.

We let the subject (or channel) of an action ↵ be subj(x?(ey)) = subj(x(ey)) =

subj(x! (⌫ea) eN) = subj(x (⌫ea) eN) = x and subj(⌧) = ;. We also define the bound names
(i.e., the private names) of a label as bn(x?(ey)) = bn(x(ey)) = ey and bn(x! (⌫ea) eN ) =

bn(x (⌫ea) eN ) = ea and bn(⌧ ) = ;.
The structured symbolic operational semantics preserves well-formedness, and is

defined in Tables I, II and III. We first describe the broadcast rules in Table I. First

consider the SBROUT rule: M eN.P
y! e

N�������!
{|1`M

.
�y|}

P . The solutions to its transition con-

straint are those that enable the subject M of the output prefix to broadcast on the
fresh channel variable y. Similarly, in SBRIN we can receive a broadcast from any
channel x that the subject M of the input prefix can listen to. In SBRMERGE, two in-
puts with the same labels are merged into one. In SBRCOM, a broadcast of P is received
by Q, substituting the message eN for the input variables ey. The names ea are restricted
in P , so they must be fresh for Q. In both SBRMERGE and SBRCOM, each transition
constraint is extended with the frame of the other process. In SBROPEN, the scope of
the new name b that occurs in the message eN is opened; we remember in the transition
constraint that b is fresh. In SBRCLOSE, a broadcast that has reached its lexical scope
turns into an internal ⌧ action. The scoping of the new names ea is reestablished.

The other symbolic rules in Tables II and III are similar to the broadcast rules, with
two exceptions. In the SCASE rule in Table III we add the constraint that '

i

must
hold to the transition constraint. In the SCOM rule in Table II we partially deconstruct
the transition constraints of the input and the output transition, picking out the first
conjunct. We then recombine the remainder of the transition constraints, adding the
constraint that their channels are equivalent (i.e.,  1 ⌦  2 ` M1

.$ M2), yielding Ccom.
Here the partial injectivity of .$ is used to guarantee that M1 is the channel that
originated the transition.

7.2. Comparison with the Original Symbolic Operational Semantics
The symbolic semantics used in this paper differs from the original semantics [Johans-
son et al. 2012] in four significant ways:
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Table I: Symbolic transition rules for broadcast communication. A symmetric version
of SBRCOM is elided. In SBROPEN the expression ⌫ã [ {b} means the sequence ã with
b inserted anywhere.

SBROUT
x# ,M,

e
N,P

M

e
N .P

x! e
N������!

1`M

.

�x

P

SBRIN
x, ey# ,M, P x#ey

M(ey) . P x?(ey)������!
1`x

.

�M

P

SBRMERGE
P

x?(ey)���!
C1

P

0
Q

x?(ey)���!
C2

Q

0

P | Q x?(ey)�����������������!
(F(Q)⌦C1)^(F(P )⌦C2)

P

0 | Q0

SBRCOM
P

x! (⌫ea) e
N������!

C1
P

0
Q

x?(ey)���!
C2

Q

0

P | Q x! (⌫ea) e
N�����������������!

(F(Q)⌦C1)^(F(P )⌦C2)
P

0 | Q0[ey := e
N ]

|ey| = | eN |
ea#Q

SBROPEN
P

y! (⌫ea) e
N������!

C

P

0

(⌫b)P
y! (⌫ea[{b}) e

N���������!
(⌫b)C

P

0

b 2 n( eN)
b#ea, y SBRCLOSE

P

x! (⌫ea) e
N������!

C

P

0

(⌫b)P
⌧����!

9b
x.C

(⌫b)(⌫ea)P 0

Table II: Revised symbolic transition rules for binary communication. The symmetric
version of SCOM is elided. In SCOM, we assume that ec1#y, ec2, 2,M2 and ec2#z, 1,M1

and let Ccom = ((⌫ ec1 ec2){| 1 ⌦  2 ` M1
.$ M2|}) ^ (((⌫ ec2) 2)⌦ C1) ^ (((⌫ ec1) 1)⌦ C2). In

SOPEN the expression ⌫ã [ {b} means the sequence ã with b inserted anywhere.

SOUT
y#M,

e
N,P

M

e
N .P

y

e
N��������!

{|1`M

.$y|}
P

SIN
y#M,P, ex

M(ex) . P
y(ex)

��������!
{|1`M

.$y|}
P

SCOM

P

y (⌫ea) e
N����������������!

(⌫fc1){| 1`M1
.$y|}^C1

P

0

Q

z(ex)����������������!
(⌫fc2){| 2`M2

.$z|}^C2

Q

0

P | Q ⌧���!
Ccom

(⌫ea)(P 0 | Q0[ex := e
N ])

|ex| = | eN |
ea#Q

SOPEN
P

y (⌫ea) e
N������!

C

P

0

(⌫b)P
y (⌫ea[{b}) e

N���������!
(⌫b)C

P

0

b 2 n( eN)
b#ea, y

(1) support for broadcast communication (Table I);
(2) support for polyadic communication (sending of multiple message terms at once);
(3) no dependence on an external assertion environment ( ⇤ below); and
(4) a new SCOM rule, for reasons explained below.

The original version of the communication rule was as follows (omitting its freshness
side conditions). Below, the assertion environment “. . . ⇤ ” collects the assertions of
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Table III: Revised symbolic transition rules common to broadcast and binary commu-
nication. A symmetric version of SPAR is elided.

SCASE
P

i

↵�!
C

P

0

case e' : e
P

↵��������!
C^{|1`'i|}

P

0 subj(↵)#'i SREP
P | !P ↵�!

C

P

0

!P
↵�!
C

P

0

SPAR
P

↵�!
C

P

0

P | Q ↵������!
F(Q)⌦C

P

0 | Q
bn(↵)#Q

↵ = ⌧ _ subj(↵)#Q

SSCOPE
P

↵�!
C

P

0

(⌫b)P
↵����!

(⌫b)C
(⌫b)P 0 b#↵

SINV
P [ex := f

M ]
↵�!
C

P

0

AhM̃i ↵�!
C

P

0
Ahx̃i ( P

|ex| = |fM |

the context of the current process, and can be ignored.

OLD-SCOM

 
Q

⌦  ⇤ P
y (⌫ea) eN���������������!

(⌫ebP ){| 1`M1
.$y|}^C1

P 0

 
P

⌦  ⇤ Q
z(ex)���������������!

(⌫ebQ){| 2`M2
.$z|}^C2

Q0

 ⇤ P | Q ⌧��!
Cold

(⌫ea)(P 0 | Q0
[ex :=

eN ])

|ex| = | eN |
F(P ) = (⌫eb

P

) 
P

F(Q) = (⌫eb
Q

) 
Q

 1 =  2 =  ⌦  

P

⌦  

Q

In order to derive a transition with OLD-SCOM, we need to compute the frames of P
and Q, equate the bound names in the frames with the ones appearing in the transition
constraints such that F(P ) = (⌫eb

P

) 
P

and F(Q) = (⌫eb
Q

) 
Q

, and then check that  1 =

 2 =  ⌦  
P

⌦  
Q

. However, these equalities fail in certain situations where we would
expect them to hold.

Example 7.4. This example shows issues related to restrictions under process con-
structors case and replication (!). We use replication as an example; the issue when
using case is analogous. Consider the process P = !(⌫ b)c b.Q in the pi-calculus in-
stance. In the original semantics, the symbolic output transition of P has the con-
straint (⌫ b){|1 ` c

.$ x|} since the frame of (⌫ b)c b.Q (which is (⌫ b)1) is used in the
derivation. When attempting to derive a communication between P and the process
c(x).R, the side condition F(P ) = (⌫eb

P

) 
P

of OLD-SCOM is impossible to satisfy:
F(P ) = (⌫")1 while the transition constraint of P is (⌫ b){|1 ` c

.$ x|}, and the num-
ber of bound names thus differ.

A similar issue, related to the ordering of restrictions in the frame, applies when an
inactive parallel process has top-level restrictions.

Example 7.5. Let P = (⌫ b)c b.Q | (⌫ a)c(x).R. In the original semantics, the
symbolic output transition of P has the constraint (⌫ a)(⌫ b){|1 ` c

.$ x|} but F(P ) =

(⌫ b)(⌫ a)1 where the order of the bound names is different.

Both these issues could be avoided if the binders of frames were so-called set+
binders [Huffman and Urban 2010] where order does not matter and redundant
binders are ignored. However, such a notion of binders is not available in the ver-
sion of Nominal Isabelle [Urban and Tasson 2005] that is used for the formalization of
psi-calculi [Bengtson and Parrow 2009].
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Table IV: General requirements on substitution
X[x := x] = X

x[x := M ] = M

X[x := M ] = X if x#X

X[x := L][y := M ] = X[y := M ][x := L] if x#y,M and y#L

X[x̃ := T̃ ] = ((ỹ x̃) ·X)[ỹ := T̃ ] if ỹ#X, x̃

Table V: Requirements for specific data types
n(M�) ◆ n(M) \ n(�)

n(M [ã := L̃]) ◆ n(L̃) when n(M) ◆ ã

(M
.

� N)� = M�

.

� N�

(N
.

� M)� = N�

.

� M�

(M
.$ N)� = M�

.$ N�

1� = 1

 ⌦ 1 'N  

 ⌦  

0 'N  

0 ⌦  

 1 ⌦ ( 2 ⌦  3) 'N ( 1 ⌦  2)⌦  3
( ⌦  

0)� 'N  � ⌦  

0
�

 ⌦  1 'N  ⌦  2 when  1 'N  2

Example 7.6. This example show issues related to situations where assertion com-
position is non-commutative. Let the assertions be tuples ea of names, composed using
concatenation ea;eb. Consider the premises of OLD-SCOM: in the original semantics  1

will have a prefix  
Q

; and  2 will have a prefix  
P

; . Since concatenation is non-
commutative, the side condition  1 =  2 =  ⌦  

P

⌦  
Q

of OLD-COM cannot hold if
 
P

and  
Q

are non-empty and n( 
P

) 6= n( 
Q

). This makes it impossible for the two
processes (|a|) | c and (|b|) | c to communicate using OLD-SCOM.

These examples show that the OLD-SCOM rule makes too strong assumptions on the
syntactic form of the constraints of the transitions in its premise. The original symbolic
semantics still corresponds to the concrete semantics [Bengtson et al. 2011] in certain
instances, such as when communicating processes do not contain restrictions and as-
sertion composition satisfies the commutative monoid laws (not only modulo assertion
equivalence). In contrast to OLD-SCOM, rule SCOM in Table II does not make any as-
sumptions about the number of bound names nor on the structure of the assertion,
and the corresponding broadcast rules SBRCOM and SBRMERGE in Table I do not
make any assumptions at all about the form of their constraints.

7.3. Correctness of the Symbolic Operational Semantics
The proofs for the soundness and completeness of the symbolic semantics with respect
to the concrete broadcast semantics [Borgström et al. 2011] mainly follow [Johans-
son et al. 2012]. The main exception is that their counterpart of Lemma 7.10, which
describes the shape of transition constraints, does not hold in all cases, as seen in Ex-
amples 7.4, 7.5 and 7.6. We here instead prove a weaker result by considering asser-
tions and frames modulo redundant restrictions (cf. Example 7.4), restriction ordering
(cf. Example 7.5) and commutative monoid laws for assertion composition (cf. Exam-
ple 7.6).

As to technical preliminaries, we assume the general properties of substitution in
Table IV, and the homomorphism and name preservation laws in Table V. As an ex-
ample, the standard notion of substitution in (nominal) term algebras satisfies all of
these properties. We write  'N  0 iff n( ) = n( 0

) and for all ' it holds that  ` ' iff
 0 ` '. We then assume the equivalences in Table V. As an example, they are satisfied
when assertions are finite sets of equations on terms, with standard substitution.

The main difference to the original proofs is the introduction of an auxiliary rela-
tion on frames (Definition 7.7) in order to accurately describe the shape of transition
constraints (Lemma 7.10) such that they can always be decomposed in the SCOM rule,
unlike the case for OLD-SCOM.
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Definition 7.7 (AC-equivalence). Associative/Commutative equivalence (AC-
equivalence) of assertions is the smallest equivalence relation such that

(1) 1⌦  ⌘AC  ; and
(2)  1 ⌦  2 ⌘AC  2 ⌦  1; and
(3)  1 ⌦ ( 2 ⌦  3) ⌘AC ( 1 ⌦  2)⌦  3; and
(4)  1 ⌘AC  2 =)  ⌦  1 ⌘AC  ⌦  2.

Frames (⌫ea) 1 and (⌫ec) 2 are AC-equivalent, written (⌫ea) 1 ⌘AC (⌫ec) 2, if  1 ⌘AC  2

and {ea} \ n( 1) = {ec} \ n( 2).

LEMMA 7.8. AC-equivalence is an equivalence relation on frames, and whenever
F1 ⌘AC F2 we also have n(F1) = n(F2) and (⌫a)F1 ⌘AC (⌫a)F2 and G⌦ F1 ⌘AC G⌦ F2.

PROOF. Straightforward from the definitions, using the laws in Table V.

As an example, guarded processes have frames that are AC-equivalent to the unit
frame 1.

LEMMA 7.9. If P is assertion guarded, then F(P ) ⌘AC 1.

PROOF. By induction on P .

The following lemma characterises the shape of the constraints of point-to-point in-
put and output transitions. The first conjunct in the constraint is always a channel
equivalence constraint (between the object M of the original prefix and the transition
object variable y) that must hold under a frame (⌫ec) that is AC-equivalent to that of
the original process P . The lemma is used in the proof of Theorem 7.12 to show that
the precondition on the shape of the transitions in the SCOM rule always holds.

LEMMA 7.10 (FORM OF CONSTRAINT). Let ↵ = y (⌫ea) eN or ↵ = y(ex). If P ↵�!
C

P 0

and y#P then there exist ec, ,M and D such that F(P ) ⌘AC (⌫ec) and y#ec, ,M,D
and C = (⌫ec){| ` M

.$ y|} ^D.

PROOF. By induction on the derivation of P ↵�!
C

P 0. A base case is as follows.

SOUT. In this case the transition is derived by

SOUT

K eN .P
y

e
N�������!

{|1`K .$y|}
P

y#K,

e
N,P

Here ec = ✏,  = 1, M = K, and D = true, where F(K eN .P ) = 1.

The cases that require the use of AC-equivalence are the following.

SCASE. In this case the transition is derived by

SCASE
P
i

↵�!
C

P 0

case e' :

eP ↵�������!
C^{|1`'i|}

P 0 bn(↵)#'
i

By induction we get M,D0, ,ec such that C = (⌫ec){| ` M
.$ y|}^D0 with y#D0 and

F(P
i

) ⌘AC (⌫ec) . Let D = D0^{|1 ` '
i

|}; since y#case e' :

eP we also have that y#D.
By well-formedness, P

i

is guarded, so by Lemma 7.9 F(P
i

) ⌘AC 1. By transitivity
F(P ) = 1 ⌘AC (⌫ec) .
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SPAR. In this case the transition is derived by

SPAR
P

↵�!
C

P 0

P | Q ↵������!
F(Q)⌦C

P 0 | Q
bn(↵)#Q

↵ = ⌧ _ subj(↵)#Q

By induction there are M,D0, ,ec such that C = (⌫ec){| ` M
.$ y|} ^D0 with y#D0

and F(P ) ⌘AC (⌫ec) . Let D = F(Q)⌦D0; since y#P |Q we also have that y#D. By
Lemma 7.8 F(P | Q) ⌘AC ((⌫ec) )⌦ F(Q) ⌘AC F(Q)⌦ (⌫ec) .
SSCOPE. In this case the transition is derived by

SSCOPE
P

↵�!
C

P 0

(⌫b)P
↵����!

(⌫b)C
(⌫b)P 0 b#↵

By induction there exist ec, ,M and D0 such that C = (⌫ec)( ` M
.$ y) ^D0 with

y#M,D and F(P ) ⌘AC (⌫ec) . Let D = (⌫b)D0; a fortiori y#(⌫b)D. By Lemma 7.8
F((⌫b)P ) ⌘AC (⌫b)(⌫ec) .
SOPEN. As SSCOPE.
SREP. In this case the transition is derived by

SREP
P | !P ↵�!

C

P 0

!P
↵�!
C

P 0

By induction there exist ec, ,M and D such that C = (⌫ec)( ` M
.$ y) ^ D

with y#M,D and F(P |!P ) ⌘AC (⌫ec) . By well-formedness, P is guarded, so by
Lemma 7.9 F(P |!P ) ⌘AC 1. By transitivity F(!P ) = 1 ⌘AC (⌫ec) .

We prove soundness and completeness of the symbolic semantics of this pa-
per with respect to a polyadic version of the concrete semantics of broadcast psi-
calculi [Borgström et al. 2011], which we show in Table VI.

The soundness theorem and its proof follow [Johansson et al. 2012], apart from the
weaker preconditions of the SCOM rule (compared to OLD-SCOM), and the new cases
for broadcast actions.

THEOREM 7.11 (SOUNDNESS OF SYMBOLIC TRANSITIONS).
If P ↵�!

C

P 0 and (�, ) |= C and bn(↵)#� then  ⇤ P�
↵���! P 0�.

PROOF. By induction on the inference of P ↵�!
C

P 0.

The proof of the completeness theorem follows [Johansson et al. 2012], apart from
new cases for the broadcast rules. In the CCOM case of the proof, Lemma 7.10 is used
to show that the symbolic transitions obtained from the induction hypothesis are of
the right form to apply rule SCOM.

THEOREM 7.12 (COMPLETENESS OF SYMBOLIC TRANSITIONS).

— If  ⇤ P�
⌧�! P 0 then 9C,Q . P ⌧�!

C

Q, Q� = P 0 and (�, ) |= C.

— If  ⇤ P�
↵�! P 0, ↵ 6= ⌧ , y#P, bn(↵),�, and bn(↵)#�, P then 9C,↵0, Q. P

↵

0
�!
C

Q,
Q� = P 0, subj(↵0

) = y, ↵0�0
= ↵, and (�0, ) |= C where �0

= �[y := subj(↵)].

PROOF. By induction on the inference of  ⇤ P�
↵�! P 0�.
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Table VI: Concrete semantics. Symmetric versions of CBRCOM, CCOM and CPAR are
elided. In rules CBRCOM and CBRMERGE and CCOM we assume that F(P ) = (⌫eb

P

) 
P

and F(Q) = (⌫eb
Q

) 
Q

where eb
P

is fresh for P,eb
Q

, Q and  , and that eb
Q

is fresh for
Q,eb

P

, P and  . In the rule CPAR we assume that F(Q) = (⌫eb
Q

) 
Q

where eb
Q

is fresh
for  , P and ↵. In COPEN and CBROPEN the expression ã [ {b} means the sequence ã
with b inserted anywhere.

CBROUT
 ` M

.

� K

 ⇤ M ! eN .P

K! e
N���! P

CBRIN
 ` K

.

� M |ex| = | eN |

 ⇤ M? (ex) . P K? e
N���! P [ex := e

N ]

CBRMERGE
 

Q

⌦  ⇤ P

K? e
N���! P

0
 

P

⌦  ⇤ Q

K? e
N���! Q

0

 ⇤ P | Q K? e
N���! P

0 | Q0

CBRCOM
 

Q

⌦  ⇤ P

K! (⌫ea) e
N������! P

0
 

P

⌦  ⇤ Q

K? e
N���! Q

0

 ⇤ P | Q K! (⌫ea) e
N������! P

0 | Q0

e
b

P

e
b

Q

#K

ea#Q

CBROPEN
 ⇤ P

K! (⌫ea) e
N������! P

0

 ⇤ (⌫b)P K! (⌫ea[{b}) e
N����������! P

0

b#ea, ,K
b 2 n(N) CBRCLOSE

 ⇤ P

K! (⌫ea) e
N������! P

0

 ⇤ (⌫b)P ⌧�! (⌫b)(⌫ea)P 0

b 2 n(K)
b# 

COUT
 ` M

.$ K

 ⇤ M

e
N .P

K

e
N��! P

CIN
 ` M

.$ K |ex| = | eN |

 ⇤ M(ex) . P K

e
N���! P [ex := e

N ]

CCOM
 ⌦  

P

⌦  

Q

` M

.$ K  

Q

⌦  ⇤ P

M (⌫ea) e
N������! P

0
 

P

⌦  ⇤ Q

K

e
N���! Q

0
x

 ⇤ P | Q ⌧�! (⌫ea)(P 0 | Q0)

e
b

P

#M

e
b

Q

#K

ea#Q

COPEN
 ⇤ P

M (⌫ea)N������! P

0

 ⇤ (⌫b)P M (⌫ea[{b})N���������! P

0

b#ea, ,M
b 2 n(N) CCASE

 ⇤ P

i

↵�! P

0
 ` '

i

 ⇤ case e' : e
P

↵�! P

0

CREP
 ⇤ P | !P ↵�! P

0

 ⇤ !P ↵�! P

0
CPAR

 

Q

⌦  ⇤ P

↵�! P

0

 ⇤ P | Q ↵�! P

0 | Q
bn(↵)#Q

CSCOPE
 ⇤ P

↵�! P

0

 ⇤ (⌫b)P ↵�! (⌫b)P 0
b#↵, CINV

 ⇤ P [ex := f
M ] ↵�! P

0

 ⇤ AhM̃i ↵�! P

0

Ahx̃i ( P

|ex| = |fM |

8. RELATED WORK
Our previous work [Borgström et al. 2011] presented the broadcast extension of psi-
calculi, and a model of a routing protocol for ad-hoc networks. In the present paper we
have given a corresponding symbolic semantics, and several new example models.

The precursors of the PWB are the Concurrency Workbench [Cleaveland et al. 1993]
for CCS, and the Mobility Workbench [Victor and Moller 1994] for pi-calculus. The tool
mCRL2 [Cranen et al. 2013] for ACP allows higher order sorted free algebras and equa-
tional logics. PAT3 [Liu et al. 2011] includes a CSP] [Sun et al. 2009] module where
actions built over types like booleans, integers are extended with C] like programs.
ProVerif [Blanchet 2011] is a verification tool for the applied pi-calculus [Abadi and
Fournet 2001], an extension of the pi-calculus that is specialised for security protocol
verification. The tool is parametric in a term language equipped with equations and
unidirectional rewrite rules, but works in a fixed logic (predicate logic with equality).
ProVerif does not include a symbolic simulator or a general bisimulation checker.
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Our symbolic semantics and bisimulation generation algorithm (slight variations of
our previous work [Johansson et al. 2012]) are to a large extent based on the pioneer-
ing work by Hennessy and Lin [Hennessy and Lin 1995] for value-passing CCS, later
specialised for the pi-calculus by Boreale and De Nicola [Boreale and De Nicola 1996]
and independently by Lin [Lin 1996; Lin 2000].

9. FUTURE WORK
It would be interesting to investigate other notions of bisimulation for wireless com-
munication [Merro 2007], including machine-checked proofs of their meta-theoretical
properties. We have performed initial work [Åman Pohjola et al. 2013] on modelling
discrete time, and are considering extensions to other quantitative aspects of wireless
networks, including probabilities, distance, and energy.
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A. CORRECTNESS PROOFS FOR THE SYMBOLIC SEMANTICS
A.1. Correctness Proofs for the Symbolic Operational Semantics
The proofs for the soundness and completeness of the symbolic semantics with respect
to the concrete broadcast semantics [Borgström et al. 2011] mainly follow [Johansson
et al. 2012].

We begin by enumerating the additional axioms for substitution.

AXIOM 1. n(M�) ◆ n(M) \ n(�).

AXIOM 2. n(( ⌦  0
)�) = n( � ⌦  0�).

AXIOM 3. ( ⌦  0
)� '  � ⌦  0�.

AXIOM 4. 1� = 1.

We then present a number of lemmas used in the proofs.

LEMMA A.1 (WEAKENING). (�, ) |= C =) 8 0
: (�, ⌦  0

) |= C

PROOF. By induction over the structure of C.

true Trivial since all solutions satisfies true.
false Trivial since false has no solutions.

{| 00 ` '|} We have that (�, ) |= {| 00 ` '|}, so  00� ⌦  ` '�. Let  0 be any assertion. By
weakening  00� ⌦  ⌦  0 ` '�, or in other words (�, ⇥  0

) |= {| 00 ` '|}.
M = N Trivial.

a#X Trivial.
a 2 n(M) Trivial.

9x.C Here there exists y#�, such that (�[y :=M ], ) |= (x y).C. By induction (�[y :=

M ], ⌦  0
) |= (x y).C. By equivariance of ` we may assume that b# 0, so by defini-

tion (�, ⌦  0
) |= 9x.C.

(⌫a)C We have that (�, ) |= (⌫a)C. By Definition 7.1 this means that 9b.b#�, , C such
that (�, ) |= (a b)C. By equivariance of ` we may assume that b# 0. By induction
(�, ⌦  0

) |= (a b)C, so by definition (�, ⇥  0
) |= (⌫a)C.

C ^ C 0 By induction (�, ⌦  0
) |= C and (�, ⌦  0

) |= C 0, thus (�, ⌦  0
) |= C ^ C 0.

C _ C 0 By induction (�, ⌦  0
) |= C or (�, ⌦  0

) |= C 0, thus (�, ⌦  0
) |= C _ C 0.

C ) C 0 We have that (�, ) |= C ) C 0, i.e. 8 00.(�, ⌦  00
) |= C implies (�, ⌦  00

) |= C 0.
We must check that (�, ⌦  0

) |= C ) C 0, i.e. 8 000.(�, ⌦  0 ⌦  000
) |= C implies

(�, ⌦ 0⌦ 000
) |= C 0, which holds since 8 00.(�, ⌦ 00

) |= C implies (�, ⌦ 00
) |= C 0,

and in particular it holds for any  00
=  0 ⌦  000

LEMMA A.2 (OPENING). If a#�, then (�, ) |= (⌫a)C iff (�, ) |= C.

c� 2014 ACM 1539-9087/2014/00-ART99999 $15.00
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PROOF. Immediate from the definition of solutions for (⌫a)C.

LEMMA A.3 (CHANNEL SUBSTITUTION). When (�, ) |= (⌫eb){| 0 ` M
.$ N |} ^ C

and y#�, ,eb, 0,M,N,C and eb#�, then (� · [y := M�], ) |= (⌫eb){| 0 ` N
.$ y|} ^ C.

PROOF. By expanding the definitions involved, using the freshness assumptions
and the partial invertibility of .$.

AXIOM 5.  ⌘AC  0
=) n( ) = n( 0

).

LEMMA A.4.  ⌘AC  0
=)  � '  0� and n( �) = n( 0�).

PROOF. By induction on the derivation of  ⌘AC  0, using the symmetry, transitiv-
ity and reflexivity of ' at the symmetry, transitivity and reflexivity cases, Axiom 3 at
the base cases and the induction case, and Axiom 4 at the unit case.

LEMMA A.5. If  � '  0� and n( �) = n( 0�), then (�, ) |= C iff (�, 0
) |= C.

PROOF. Straightforward from the definition of |=.

LEMMA A.6. If ec#� then

(1) F(P ) = (⌫ec) =) 9 0 . F(P�) = (⌫ec) 0 and  0 '  � and n( 0
) = n( �).

(2) F(P�) = (⌫ec) 0
=) 9 . F(P ) = (⌫ec) and  0 '  � and n( 0

) = n( �).

PROOF. By induction on the derivation of F(P ) (resp F(P�)), using Axiom 3 at the
parallel induction case and Axiom 4 at the trivial base cases.

LEMMA A.7. If ea#C,�, 0 then (�, 0
) |= ((⌫ea) )⌦ C iff (�, 0 ⌦  �) |= C.

PROOF. By induction on C. The interesting case is C = (⌫ec){| 00 ` '|} where (�, 0
) |=

((⌫ea) )⌦ C ()  0 ⌦  � ⌦  00� ` '� () (�, 0 ⌦  �) |= C using Axiom 3.

LEMMA A.8. If F ⌘AC G and (�, ) |= F ⌦ C then (�, ) |= G⌦ C.

PROOF. By Lemma A.4 and Lemma A.7.
The following key lemma characterises the shape of the constraints of point-to-point

input and output transitions. The first conjunct in the constraint is always a channel
equivalence constraint (between the object M of the original prefix and the transition
object variable y) that must hold under a frame (⌫ec) that is AC-equivalent to that
of the original process P . The lemma is used in the proof of Theorem 7.11, to show
that the frames of the transition constrints correspond to the frames of the originating
processes, in the SCOM case. It is also used in the proof of Theorem 7.12, to show that
the precondition on the shape of the transitions in the SCOM rule always holds.

LEMMA A.9 (LEMMA 7.10). Let ↵ = y (⌫ea) eN or ↵ = y(ex). If P
↵�!
C

P 0 and y#P

then there exist ec, ,M and D such that F(P ) ⌘AC (⌫ec) and y#ec, ,M,D and C =

(⌫ec){| ` M
.$ y|} ^D.

PROOF. By induction on the derivation of P ↵�!
C

P 0.

Case SIN. In this case the transition is derived like
SIN

K(ex) . P
y(ex)

�������!
{|1`K .$y|}

P

y#K,P, ex

Here ec = ✏,  = 1, M = K, and D = true, where F(K(ex) . P ) = 1.
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Case SOUT. In this case the transition is derived like

SOUT

M eN .P
y

e
N�������!

{|1`M .$y|}
P

y#M,

e
N,P

Here ec = ✏,  = 1, M = M , and D = true, where F(M eN .P ) = 1.

Case SCASE. In this case the transition is derived like

SCASE
P
i

↵�!
C

P 0

case e' :

eP ↵�������!
C^{|1`'i|}

P 0 bn(↵)#'
i

By induction we get M,D0, ,ec such that C = (⌫ec){| ` M
.$ y|}^D0 with y#D0 and

F(P
i

) ⌘AC (⌫ec) . Let D = D0^{|1 ` '
i

|}; since y#case e' :

eP we also have that y#D.
By well-formedness, P

i

is guarded, so by Lemma 7.9 F(P
i

) ⌘AC 1. By transitivity
F(P ) = 1 ⌘AC (⌫ec) .
Case SPAR. In this case the transition is derived like

SPAR
P

↵�!
C

P 0

P | Q ↵������!
F(Q)⌦C

P 0 | Q
bn(↵)#Q

↵ = ⌧ _ subj(↵)#Q

By induction there are M,D0, ,ec such that C = (⌫ec){| ` M
.$ y|} ^D0 with y#D0

and F(P ) ⌘AC (⌫ec) . Let D = F(Q)⌦D0; since y#P |Q we also have that y#D. By
Lemma 7.8 F(P | Q) ⌘AC ((⌫ec) )⌦ F(Q) ⌘AC F(Q)⌦ (⌫ec) .
Case SSCOPE. In this case the transition is derived like

SSCOPE
P

↵�!
C

P 0

(⌫b)P
↵����!

(⌫b)C
(⌫b)P 0 b#↵

By induction there exist ec, ,M and D0 such that C = (⌫ec)( ` M
.$ y) ^D0 with

y#M,D and F(P ) ⌘AC (⌫ec) . Let D = (⌫b)D0; a fortiori y#(⌫b)D. By Lemma 7.8
F((⌫b)P ) ⌘AC (⌫b)(⌫ec) .
Case SOPEN. As SSCOPE.
Case SREP. In this case the transition is derived like

SREP
P | !P ↵�!

C

P 0

!P
↵�!
C

P 0

By induction there exist ec, ,M and D such that C = (⌫ec)( ` M
.$ y) ^ D

with y#M,D and F(P |!P ) ⌘AC (⌫ec) . By well-formedness, P is guarded, so by
Lemma 7.9 F(P |!P ) ⌘AC 1. By transitivity F(!P ) = 1 ⌘AC (⌫ec) .

LEMMA A.10 (CHANGE SUBJECT). Let B be any finite set of names. If ↵ = y (⌫ea) eN
(resp. ↵ = y(ex))

and P
↵������������!

(⌫eb){| `M .$y|}^C

P 0 then 9z such that z# ,eb, P,B,C and P
↵

0
������������!
(⌫eb){| `M .$z|}^C

P 0

with ↵0
= z (⌫ea) eN (resp. ↵0

= z(ex)).
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PROOF. By induction on the derivation of the transition. The set of names B is
necessary to be able to use the induction hypothesis in some of the induction cases.

LEMMA A.11. If P ↵�!
C

P 0 and a#P, bn(↵) then a#P 0.

PROOF. The proof is by induction on the derivation of the transition.

Case SIN. In this case the transition is derived like
SIN

M(ex) . P
y(ex)

�������!
{|1`M .$y|}

P

y# ,M, P, ex

We know that a#M(ex) . P, ex. Then also a#P .
Case SOUT. In this case the transition is derived like

SOUT

M eN .P
y

e
N�������!

{|1`M .$y|}
P

y# ,M,

e
N,P

We know that a#M eN .P . Then also a#P .
Case SCASE. In this case the transition is derived like

SCASE
P
i

↵�!
C

P 0

case e' :

eP ↵�������!
C^{|1`'i|}

P 0 bn(↵)#'
i

We know that a#case e' :

eP , bn(↵). Then also a#P
i

. By induction we get that a#P 0.
Case SCOM. In this case the transition is derived like

SCOM

P
y (⌫ea) eN�����!

CP

P 0 Q
z(ex)���!
CQ

Q0

P | Q ⌧�!
C

(⌫ea)(P 0 | Q0
[ex :=

eN ])

ea#Q,

y#z

We know that a#P | Q. Let p ✓ ea ⇥ (p · ea) be a permutation such that a#p · ea. By

↵-conversion we write the transition from P as P
y (⌫p·ea)]p· eN�������!

p·CP

p · P 0. By induction

we get that a#p ·P 0. Let q ✓ {ex}⇥ (q · {ex}) be a permutation such that a, p · ea#q · ex.
By ↵-conversion we write the transition from Q as Q

z(fq·x)����!
q·CQ

q ·Q0. By induction we

get that a#q ·Q0 and that p ·ea#q ·Q0. Since a#P, p ·ea we also have that a#p · eN . This
means that a#(q ·Q0

)[q · ex := p · eN ] by one of the requirements on substitution. All
together we get that a#(⌫p ·ea)(p ·P 0 | (q ·Q0

)[q · ex := p · eN ]). By the substitution law
for ↵-conversion we get that a#(⌫p·ea)(p ·P 0 | Q0

[ex := p · eN ]). Finally, by ↵-converting
we get that a#(⌫ea)(P 0 | Q0

[ex :=

eN ]).
Case SPAR. In this case the transition is derived like

SPAR
P

↵�!
C

P 0

P | Q ↵������!
F(Q)⌦C

P 0 | Q
bn(↵)#Q

↵ = ⌧ _ subj(↵)#Q

We know that a#P | Q, bn(↵). By induction we get that a#P 0. Then also a#P 0 | Q.
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Case SSCOPE. In this case the transition is derived like

SSCOPE
P

↵�!
C

P 0

(⌫b)P
↵����!

(⌫b)C
(⌫b)P 0 b#↵, 

We know that a#(⌫b)P, bn(↵). Let p = (b c) such that a#c, p · P, p · bn(↵). By equiv-

ariance the premise is rewritten to p ·
✓
p · P p·↵��!

p·C
p · P 0

◆
. By induction we get that

a#p · P 0. Then also a#(⌫p · b)(p · P 0
). By ↵-equivalence we get that a#(⌫b)P 0.

Case SOPEN. In this case the transition is derived like

SOPEN
P

y (⌫ea) eN�����!
C

P 0

(⌫b)P
y (⌫ea[{b}) eN��������!

(⌫b)C
P 0

b 2 n( eN)
b#ea, , y

We know that a#(⌫b)P,ea, b. This gives us that a#P . By induction we get that a#P 0.
Case SREP. In this case the transition is derived like

SREP
P | !P ↵�!

C

P 0

!P
↵�!
C

P 0

We know that a#!P, bn(↵). This gives us that a#P | !P . By induction we get that
a#P 0.
Case SBROUT. Here the transition is derived by

SBROUT
x#M, eN,P

M eN .P
x! e

N�����!
1`M

.
�x

P

We know that a#P .
Case SBRIN. Here the transition is derived by

SBRIN
x, ey# ,M, P x 6= ey

M(ey) . P x?(ey)�����!
1`x

.
�M

P

We know that a#M(ey) . P, ey. This gives us that a#P .
Case SBRMERGE. Here the transition is derived by

SBRMERGE

P
x?(ey)���!
CP

P 0 Q
x?(ey)���!
CQ

Q0

P | Q x?(ey)����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 0 | Q0

By induction a#P 0, Q0, so a#P 0 | Q0.
Case SBRCOM. Here the transition is derived by

SBRCOM

P
x (⌫ea) eN�����!

CP

P 0 Q
x?(ey)���!
CQ

Q0

P | Q x (⌫ea) eN����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 0 | Q0
[ey :=

eN ]

ea#Q

By induction a#P 0, Q0. Here n(

eN) ✓ n(P )[{ea}, so since a#P,ea we have a# eN . Thus
a#P 0 | Q0

[ey :=

eN ].

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.



App–6 Johannes Borgstr

¨

om et al.

Case SBRCLOSE. Here the transition is derived by

SBRCLOSE
P

x! (⌫ea) eN�����!
C

P 0

(⌫b)P
⌧����!

9b
x.C

(⌫b)(⌫ea)P 0

Assume that a#b. By induction a#P 0, so a#(⌫b)(⌫ea)P 0.
LEMMA A.12.

F((⌫a)P ) = (⌫eb(⌫a)P ) (⌫a)P =) 9eb
P

, 
P

such that
F(P ) = (⌫eb

P

) 
P

^ eb(⌫a)P = aeb
P

^  (⌫a)P =  
P

PROOF. Just use the definitions involved.
LEMMA A.13.

F(P | Q) = (⌫eb
P | Q) P | Q =) 9eb

P

,eb
Q

, 
P

, 
Q

such that
F(P ) = (⌫eb

P

) 
P

^ F(Q) = (⌫eb
Q

) 
Q

^ eb
P | Q =

eb
P

eb
Q

^  
P | Q =  

P

⌦  
Q

PROOF. Just use the definitions involved.
LEMMA A.14 (CHANGE FRAME).

If  ⇤ P
↵�! P 0,  '  0, and n( ) = n( 0

), then  0 ⇤ P
↵�! P 0.

PROOF. By induction on the derivation of the transition.
LEMMA A.15 (NAMES ARE FRESH IN THE CONSTRAINT).

If P ↵�!
C

P 0 with ↵ = y(ex) or ↵ = y?(ex), and ex, z#P, y then ex, z#C.

PROOF. By induction on the derivation of the transition.
Case SIN. In this case the transition is derived like

SIN
M(ex) . P ↵�������!

{|1`M .$y|}
P

y#M,P, ex

We know that ex, z#y,M(ex) . P , so ex, z#{|1 ` M
.$ y|}.

Case SCASE. In this case the transition is derived like

SCASE
P
i

↵�!
C

P 0

case e' :

eP ↵�������!
C^{|1`'i|}

P 0

By induction we get that ex, z#C. From ex, z#'
i

we get that ex, z#{|1 ` '
i

|}.
Case SPAR. In this case the transition is derived like

SPAR
P

↵�!
C

P 0

P | Q ↵������!
F(Q)⌦C

P 0 | Q
ex#Q

y#Q

By induction ex, z#C, and since ex, z#Q we also have ex, z#F(Q). By equivariance of
⌦ we get ex, z#F(Q)⌦ C.
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Case SSCOPE. In this case the transition is derived like

SSCOPE
P

↵�!
C

P 0

(⌫b)P
↵����!

(⌫b)C
(⌫b)P 0 b#↵, 

We may assume that b#z. By induction we get that ex, z#C, so a fortiori ex, z#(⌫b)C.
Case SREP. In this case the transition is derived like

SREP
P | !P ↵�!

C

P 0

!P
↵�!
C

P 0

The desired result follows directly from induction.
Case SBRIN. Here the transition is derived by

SBRIN
ex, y# ,M, P y#ex

M(ex) . P
y?(ex)

�����!
1`y

.
�M

P

We know that ex, z#y,M(ex) . P , so ex, z#{|1 ` y
.
� M |}.

Case SBRMERGE. Here the transition is derived by

SBRMERGE

P
y?(ex)
���!
CP

P 0 Q
y?(ex)
���!
CQ

Q0

P | Q
y?(ex)

����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 0 | Q0

By induction ex, z#C
P

, C
Q

. By assumption ex, z#P,Q, so ex, z#F(P ),F(Q). By equiv-
ariance of ⌦ and ^ we then get ex, z#F(Q)⌦ C

P

^ F(P )⌦ C
Q

.

LEMMA A.16 (CONGRUENCE OF CONSTRAINT EQUIVALENCE).
If 8�, .(�, ) |= C , (�, ) |= D then 8�, .(�, ) |= (⌫a)C , (�, ) |= (⌫a)D.

PROOF. Adding a restriction of a to a constraint amounts to removing the solutions
involving a from the set of all solutions. In this case we remove the same solutions
from both C and D, so the resulting sets of all substitutions will still be equal.

LEMMA A.17. 8�, .(�, ) |= (⌫a)(⌫b)C , (�, ) |= (⌫b)(⌫a)C

PROOF. Both (⌫a)(⌫b) and (⌫b)(⌫a) remove the same set of solutions from C.

A.2. Proof of Soundness Theorem
We prove soundness and completeness of the symbolic semantics of this paper with
respect to the concrete semantics of broadcast psi-calculi [Borgström et al. 2011] (Ta-
ble VI). The soundness theorem and its proof follow [Johansson et al. 2012], apart from
the weaker preconditions of the SCOM rule (compared to OLD-COM), and the new cases
for broadcast actions.

THEOREM A.18 (THEOREM 7.11).
If P ↵�!

C

P 0 and (�, ) |= C and bn(↵)#� then  ⇤ P�
↵���! P 0�.

PROOF. By induction on the inference of P ↵�!
C

P 0.

ACM Transactions on Embedded Computing Systems, Vol. 999, No. 9999, Article 99999, Publication date: Month 2014.



App–8 Johannes Borgstr

¨

om et al.

Case SIN. In this case the inference looks like
SIN

M(ex).P
y(ex)

�������!
{|1`M .$y|}

P

y#M,P, ex

Since ex#� we have that (M(ex).P )� = M�(ex).P� and that (y(ex))� = y�(ex). We then
do the following derivation:

CIN
 ` M�

.$ y�

 ⇤ M�(ex).P� y�(ex)���! P�

Case SOUT. In this case the inference looks like
SOUT

M eN.P
y

e
N�������!

{|1`M .$y|}
P

y#M,

e
N,P

We then have a concrete transition

COUT
 ` M�

.$ y�

 ⇤ (M eN.P )�
(y e

N)�����! P�

Case SCASE. In this case the inference looks like

SCASE
P
i

↵�!
C

P 0

case e' :

eP ↵�������!
C^{|1`'i|}

P 0

Take (�, ) such that (�, ) |= C ^ {|1 ` '
i

|} and bn(↵)#�. We must find a transition
 ⇤ (case e' :

eP )�
↵���! P 0�.

We then have that  ` '
i

� and that (�, ) is also a solution to C. By induction we
get that  ⇤ P

i

�
↵���! P 0�. We can now do the following derivation:

CCASE
 ⇤ P

i

�
↵���! P 0�  ` '

i

�

 ⇤ (case e' :

eP )�
↵���! P 0�

Case SCOM. In this case the inference looks like

SCOM

P
y (⌫ea) eN�����!

C

0
P

P 0 Q
z(ex)���!
C

0
Q

Q0

P | Q ⌧�!
C

(⌫ea)(P 0 | Q0
[ex :=

eN ])

ea#Q

y#z

y, z#e
b

P

, P,

e
b

Q

, Q,

e
N,ea

where C 0
P

= (⌫ec
P

){| 0
P

` M
P

.$ y|} ^ C
P

, C 0
Q

= (⌫ec
Q

){| 0
Q

` M
Q

.$ z|} ^ C
Q

and C =

(⌫ec
P

ec
Q

){| 
P

⌦  
Q

` M
P

.$ M
Q

|} ^ ((⌫ec
Q

) 0
Q

⌦ C
P

) ^ ((⌫ec
Q

) 0
P

⌦ C
Q

).
We assume that y, z#�, 0, C

P

, C
Q

. If that is not the case we can use Lemma A.10
to find subjects for which it is true. We further assume that ea, ex#� (bound names
are fresh). Let F(P ) = (⌫eb

P

) 
P

and F(Q) = (⌫eb
Q

) 
Q

. We assume that that
eb
P

,eb
Q

#(�, ), P,Q,ea.
By Lemma 7.10 F(P ) ⌘AC (⌫ec

P

) 0
P

and F(Q) ⌘AC (⌫ec
Q

) 0
Q

.
We know that (�, ) |= (⌫ec

P

)(⌫ec
Q

){| 0
P

⌦  0
Q

` M
P

.$ M
Q

|} ^ (⌫ec
Q

) 0
Q

⌦ C
P

, so by
Lemma A.17 and Lemma A.2 (�, ) |= (⌫ec

P

){| 0
P

⌦  0
Q

` M
P

.$ M
Q

|} ^  0
Q

⌦ C
P

.
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By Lemma A.8 (�, ) |=  
Q

⌦ ((⌫ec
P

){| 0
P

` M
P

.$ M
Q

|} ^ C
P

). so by Lemma A.7
(�, ⌦  

Q

�) |= (⌫ec
P

){| 0
P

` M
P

.$ M
Q

|} ^ C
P

. By substitutivity (� · [y := M
Q

�], ⌦
 
Q

�) |= C 0
P

, so by induction  ⌦  
Q

� ⇤ P�
(y (⌫ea) eN)�0
�������! P 0�0. By Lemma A.6 we get

that F(Q�) = (⌫eb
Q

) 
Q�

such that  
Q�

'  
Q

� and n( 
Q�

) = n( 
Q

�). By Lemma A.14
 ⌦  

Q�

⇤ P�
(y (⌫ea) eN)�0
�������! Q0�0.

Similarly (� · [z := M
P

�], ⌦  
P

�) |= C 0
Q

, so by induction  ⌦  
P

� ⇤ Q�
(z(ex))�0
�����!

Q0�0. By Lemma A.6 we get that F(P�) = (⌫eb
P

) 
P�

such that  
P�

'  
P

� and
n( 

P�

) = n( 
P

�). By Lemma A.14  ⌦  
P�

⇤ Q�
(z(ex))�0
�����! Q0�0.

Applying Lemma A.2 to (�, ) |=  
Q

⌦((⌫ec
P

){| 0
P

` M
P

.$ M
Q

|}) we get that (�, ) |=
 
Q

⌦ {| 0
P

` M
P

.$ M
Q

|}, By Lemma A.7 we have (�, ⌦  
Q

�) |= {| 0
P

` M
P

.$ M
Q

|},
so by Lemma A.8 we get (�, ⌦  

Q

�) |= {| 
P

` M
P

.$ M
Q

|}. Thus  ⌦  
P

� ⌦  
Q

� `
M

P

�
.$ M

Q

�, so  ⌦  
P�

⌦  
Q�

` M
P

�
.$ M

Q

�.
We then have the following derivation (remember that y and z are fresh for basi-
cally everything but themselves):

CCOM

 ⌦  
Q�

⇤ P�
MQ� (⌫ea)gN���������! P�

 ⌦  
P�

⇤ Q�
MP�(ex)�����! Q0�  ⌦  

P�

⌦  
Q�

` M
P

�
.$ M

Q

�

 ⇤ P� | Q� ⌧�! (⌫ea)(P 0� | Q0�[ex :=

eN�])
ea#Q�

Since ea, ex#� we have that (⌫ea)(P 0� | Q0�[ex :=

eN�]) = (⌫ea)(P 0 | Q0
[ex :=

eN ])�.
Case SPAR. In this case the inference looks like

SPAR
 ⌦  

Q

⇤ P
↵�!
C

P 0

P | Q ↵������!
F(Q)⌦C

P 0 | Q
bn(↵)#Q

↵ = ⌧ _ subj(↵)#Q

We can assume that subj(↵)#P (if not, use Lemma A.10 to find another subject).
Assume that ex#�, P | Q.
Let F(Q) = (⌫eb

Q

) 
Q

with eb
Q

#↵, C, ,�. By Lemma A.7 (�, ⌦ 
Q

�) |= C. By induc-
tion we then get that P ↵�!

C

P 0 has a matching transition  ⌦  
Q

� ⇤ P�
↵���! P 0�.

By Lemma A.6 we get that F(Q�) = (⌫eb
Q

) 
Q�

such that  
Q�

'  
Q

� and n( 
Q�

) =

n( 
Q

�). By Lemma A.14  ⌦ 
Q�

⇤ P�
↵���! P 0�, so we can do the following concrete

inference:

CPAR
 ⌦  

Q�

⇤ P�
↵���! P 0�

 ⇤ P� | Q� ↵���! P 0� | Q�
bn(↵�)#Q�

Case SSCOPE. In this case the inference looks like

SSCOPE
P

↵�!
C

P 0

(⌫a)P
↵����!

(⌫a)C
(⌫a)P 0 a#↵, 

We assume that subj(↵)#(⌫a)P, ex (if not, use Lemma A.10 to find a new subject).
We also assume a#�, (bound names are fresh). By Lemma A.2 we then have that
(�, ) |= C.
By induction we get that P ↵�!

C

P 0 has a corresponding transition  ⇤ P�
↵���! P 0�.

We can then do the following concrete inference:
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CSCOPE
 ⇤ P�

↵���! P 0�

 ⇤ (⌫a)(P�)
↵���! (⌫a)(P 0�)

a#↵�, 

Since a#� we have that (⌫a)(P�) = ((⌫a)P )� and (⌫a)(P 0�) = ((⌫a)P 0
)�.

Case SOPEN. In this case the inference looks like

SOPEN
P

y (⌫ea) eN�����!
C

P 0

(⌫a)P
y (⌫ea[{a}) eN��������!

(⌫a)C
P 0

a 2 n( eN)
a#ea, y

We can assume that y#P,ea, a (if not, use Lemma A.10 to find another subject).
Since (�, ) |= (⌫a)C we also have that (�, ) |= C.

By induction we get that P
y (⌫ea) eN�����!

C

P 0 has a corresponding transition  ⇤

P�
(y (⌫ea) eN)��������! P 0�.

We assume that a#� (bound names are fresh). By Axiom 1 a 2 n(

eN�), so we have
the following concrete inference.

COPEN
 ⇤ P�

(y (⌫ea) eN)��������! P 0�

 ⇤ (⌫a)P�
(y (⌫ea[{a}) eN)�����������! P 0�

a 2 n( eN�)
a#ea, �, y�

Case SREP. In this case the inference looks like

SREP
P | !P ↵�!

C

P 0

!P
↵�!
C

P 0

By induction  ⇤ (P | !P )�
↵���! P 0�, so we can do the following derivation.

CREP
 ⇤ P� | !P� ↵���! P 0�

 ⇤ !P�
↵���! P 0�

Case SBROUT. Here the transition is derived by

SBROUT
x#,M, eN,P

M eN .P
x! e

N�����!
1`M

.
�x

P

We then have the corresponding concrete transition

CBROUT
 ` M�

.
� x�

 ⇤ (M eN.P )�
(x e

N)�����! P�

Case SBRIN. Here the transition is derived by

SBRIN
x, ey# ,M, P x#ey

M(ey) . P x?(ey)�����!
1`x

.
�M

P

Since y#� we have that (M(ey) . P )� = M�(ey) . P� and that (x?(ey))� = x�?(ey). We
then do the following derivation:
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CBRIN
 ` x�

.
� M�

 ⇤ M�(ey).P� x�?(ey)����! P�

Case SBRMERGE. Here the transition is derived by

SBRMERGE

P
x?(ey)���!
CP

P 0 Q
x?(ey)���!
CQ

Q0

P | Q x?(ey)����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 0 | Q0

By induction  ⇤ P�
x�?(ey)����! P 0� and  ⇤ Q�

x�?(ey)����! Q0�. By CBRMERGE

 ⇤ P� | Q� x�?(ey)����! P 0� | Q0�.
Case SBRCOM. Here the transition is derived by

SBRCOM

P
x (⌫ea) eN�����!

CP

P 0 Q
x?(ey)���!
CQ

Q0

P | Q x (⌫ea) eN����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 0 | Q0
[ey :=

eN ]

ea#Q

By induction  ⇤ P�
x� (⌫ea)gN��������! P 0� and  ⇤ Q�

x�?(ey)����! Q0�. By CBRCOM

 ⇤ P� | Q� x� (⌫ea)gN��������! P 0� | Q0
[ey :=

eN ]�.
Case SBRCLOSE. Here the transition is derived by

SBRCLOSE
P

x! (⌫ea) eN�����!
C

P 0

(⌫b)P
⌧����!

9b
x.C

(⌫b)(⌫ea)P 0

By assumption there is K such that b 2 n(K) and (�[x := K], ) |= C. We assume
that b#�. Since x#P,ea we have x#P 0, eN , so by induction  ⇤ P�

K! (⌫ea)gN��������! P 0�.
We then have the following derivation.

CBRCLOSE
 ⇤ P�

K! (⌫ea)gN��������! P 0�

 ⇤ (⌫b)P
⌧�! (⌫b)(⌫ea)P 0�

b 2 n(K)

A.3. Proof of Completeness Theorem
The proof of the completeness theorem follows [Johansson et al. 2012], apart from the
new cases for the broadcast rules, and the updated SCOM rule.

THEOREM A.19 (THEOREM 7.12).

— If  ⇤ P�
⌧�! P 0 then 9C,Q . P ⌧�!

C

Q, Q� = P 0 and (�, ) |= C.

— If  ⇤ P�
↵�! P 0, ↵ 6= ⌧ , y#P, bn(↵),�, and bn(↵)#�, P then 9C,↵0, Q. P

↵

0
�!
C

Q,
Q� = P 0, subj(↵0

) = y, ↵0�0
= ↵, and (�0, ) |= C where �0

= �[y := subj(↵)].

PROOF. By induction on the inference of  ⇤ P�
↵�! P 0�.

Case CIN. In this case the inference looks like

CIN
 ` M 0�

.$ M

 ⇤ (M 0
(ex).P )�

M(ex)���! P�
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We know that y#M 0
(ex) . P, ex,� and that ex#�,M 0

(ex) . P .
We let Q = P , and do the following derivation:

SIN

M 0
(ex).P

y(ex)
�������!
{|1`M 0 .$y|}

P

y#M

0
, P, ex

Since  ` M 0�
.$ M we have that (�[y := M ], ) |= {|1 ` M 0 .$ y|}.

Case COUT. In this case the inference looks like

COUT
 ` M 0�

.$ M

 ⇤ (M 0 eN .P )�
M

g
N����! P�

We know that y#M 0, eN,P . We must find a constraint C such that M 0 eN .P
y

e
N��!
C

P

and (�[y := M ], ) |= C. We let Q = P , eK =

eN , and derive such a transition with

SOUT

M 0 eN .P
y

e
N�������!

{|1`M 0 .$y|}
P

y#M

0
,

e
N,P

Since  ` M 0�
.$ M we have that (�[y := M ], ) |= {|1 ` M 0 .$ y|}.

Case CCASE. In this case the inference looks like

CCASE
 ⇤ P

i

�
↵�! P 0  ` '

i

�

 ⇤ (case e' :

eP )�
↵�! P 0

↵ = ⌧ . By induction we know that  ⇤ P
i

�
⌧�! P 0 has a matching transition

P
i

⌧�!
C

Q such that (�, ) |= C and Q� = P 0. We also have that (�, ) |=
{|1 ` '

i

|}. Together this gives us that (�, ) |= C ^ {|1 ` '
i

|}.
↵ 6= ⌧ . Since y#case e' :

eP we have in particular that y#'
i

, P
i

. By induction
we know that  ⇤ P

i

�
↵�! P 0 has a matching transition P

i

↵

0
�!
C

Q such that
(�0, ) |= C and Q� = P 0. Since  ` '

i

� we have that (�, ) |= {|1 ` '
i

|}, and
since y#'

i

we also have that (�0, ) |= {|1 ` '
i

|}. Together this gives us that
(�0, ) |= C ^ {|1 ` '

i

|}.
We can then do the following derivation:

SCASE
P
i

↵s�!
C

Q

case e' :

eP ↵s�������!
C^{|1`'i|}

Q

Case CCOM. The interesting case is the CCOM case, where the inference looks like

CCOM

 ⌦  
P�

⌦  
Q�

` M
.$ K

 ⌦  
Q�

⇤ P�
M (⌫ea)gN�������! P 0�  ⌦  

P�

⇤ Q�
K(ex)���! Q0�

 ⇤ (P | Q)�
⌧�! (⌫ea)(P 0 | Q0

[ex :=

eN ])�
ea#Q�

Here F(P�) = (⌫eb
P�

) 
P�

and F(Q�) = (⌫eb
Q�

) 
Q�

. We know that
eb
P�

# , P�, Q�,eb
Q�

and eb
Q�

# , P�, Q�,eb
P�

, P . We assume that ea#P,eb
Q�

,� and
ex#eb

P�

. Let y, z# . . . . By Lemma A.11 we also have that eb
Q�

#P 0�. By Lemma A.6
we get F(P ) = (⌫eb

P�

) 
P

with  
P

� '  
P�

and F(Q) = (⌫eb
Q�

) 
Q

with  
Q

� '  
Q�

.
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By induction, P y (⌫ea)fN 0
������!

CP

P 0 such that eN =

eN 0� and (�[y := M ], ⌦  
Q�

) |= C
P

.

By Lemma 7.10 C
P

= ((⌫ec
P

)( 0
P

` M
P

.$ y) ^ C 0
P

with (⌫ec
P

) 0
P

⌘AC (⌫eb
P

) 
P

.
In the same way, by induction Q

z(ex)���!
CQ

Q0 such that (�[z := K], ⌦  
P�

) |= C
Q

.

By Lemma 7.10 C
Q

= ((⌫ec
Q

)( 0
Q

` M
Q

.$ z) ^ C 0
Q

with (⌫ec
Q

) 0
Q

⌘AC (⌫eb
Q

) 
Q

.
We can then do the following inference:

SCOM

P
y (⌫ea)fN 0

���������������!
(⌫ecP ){| 0

P`MP
.$y|}^C

0
P

P 0 Q
z(ex)���������������!

(⌫ecQ){| 0
Q`MQ

.$z|}^C

0
Q

Q0

P | Q ⌧�!
C

(⌫ea)(P 0 | Q0
[ex :=

eN 0
])

ea#Q

where C = (⌫ec
P

ec
Q

){| 0
P

⌦  0
Q

` M
P

.$ M
Q

|} ^ ((⌫ec
Q

) 0
Q

⌦ C 0
P

) ^ ((⌫ec
P

) 0
P

⌦ C 0
Q

). It
remains to show that (�, ) |= C. We consider each conjunct in turn.
By Lemma A.8 (�[z := K], ⌦  

P�

|= (⌫eb
Q

)( 
Q

` M
Q

.$ z) and (�[y := M ], ⌦
 
Q�

) |= (⌫eb
P

)( 
P

` M
P

.$ y). Thus  ⌦  
P�

⌦  
Q

� ` M
Q

�
.$ K and  ⌦  

Q�

⌦  
P

� `
M

P

�
.$ M . By AC of entailment of .$ and ⌦ modulo '  ⌦  

P

� ⌦  
Q

� ` M
P

�
.$

M
Q

�. By Lemma A.4  ⌦ 0
P

�⌦ 0
Q

� ` M
P

�
.$ M

Q

�, so (�, ) |=  0
P

�⌦ 0
Q

` M
P

�
.$

M
Q

�. By Lemma A.2 (�, ) |= ((⌫ec
P

ec
Q

) 0
P

⌦  0
Q

` M
P

.$ M
Q

), which is the first
conjunct.
By Lemma A.6 (�[y := M ], ⌦  

Q

�) |= C
P

so by Lemma A.7 (�[y := M ], ) |=
F(Q) ⌦ C 0

P

. Since y#Q,C 0
P

we have (�, ) |= F(Q) ⌦ C 0
P

. By Lemma A.8 (�, ) |=
((⌫ec

Q

) 0
Q

)⌦ C 0
P

.
In the same way, by Lemma A.6 (�[z := K], ⌦  

P

�) |= C
Q

so by Lemma A.7
(�[z := K], ) |= F(P ) ⌦ C 0

Q

, Since z#P,C 0
Q

we have (�, ) |= F(P ) ⌦ C 0
Q

. By
Lemma A.8 (�, ) |= ((⌫ec

P

) 0
P

)⌦ C 0
Q

.

Case CPAR. In this case the inference looks like

CPAR
 ⌦  

Q�

⇤ P�
↵�! P 0�

 ⇤ (P | Q)�
↵�! (P 0 | Q)�

bn(↵)#Q�

where F(Q�) = (⌫eb
Q�

) 
Q�

with eb
Q�

# , �, P�,↵, y. By Lemma A.6 F(Q) =

(⌫eb
Q�

) 
Q

such that  
Q�

'  
Q

� and n( 
Q�

) = n( 
Q

�).
By Lemma A.11 we also have that eb

Q�

#P 0�. Since y#eb
Q�

, Q,� we get that y# 
Q

�.
Together with y#� this gives us that y# 

Q

.
By induction we know that  ⌦  

Q�

⇤ P�
↵�! P 0� has a matching transition

P
↵

0
�!
C

P 0 such that (�0, ⌦  
Q�

) |= C.
We can then do the following symbolic inference:

SPAR
P

↵

0
�!
C

P 0

P | Q ↵

0
������!
F(Q)⌦C

P 0 | Q
ex#Q

y#Q

Lemma A.6 yields that (�0, ⌦  
Q

�) |= C, so by Lemma A.7 (�0, ) |= F(Q)⌦ C.
Case CSCOPE. In this case the transition is

 ⇤ ((⌫a)P )�
↵�! ((⌫a)P 0

)�
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Let b be a sufficiently fresh name, and let p = (a b). By applying the substitution
and using ↵-conversion to avoid capture, this transition is equivalent to

 ⇤ (⌫b)((p · P )�)
↵�! (⌫b)((p · P 0

)�)

This transition is inferred like

CSCOPE
 ⇤ (p · P )�

↵�! (p · P 0
)�

 ⇤ (⌫b)((p · P )�)
↵�! (⌫b)((p · P 0

)�)
b#↵, 

We know that y#(⌫a)P . Since y#(⌫b)(p · P ) and b#y we have that y#p · P .
By induction we have that  ⇤ (p · P )�

↵�! (p · P 0
)� has a matching transition

p · P ↵

0
��!
p·C

p · P 0 such that (�0, ) |= C.

We pick b#�,↵, so b#↵0 by Axiom 1.
We then do the following symbolic inference:

SSCOPE

p · P ↵

0
��!
p·C

p · P 0

(⌫b)(p · P )

↵

0
�����!
(⌫b)p·C

(⌫b)(p · P 0
)

b#↵

Since (�0, ) |= C and b#�, , y, subj(↵) we also have that (�0, ) |= (⌫b)p · C.
By ↵-converting the final transition we get that

(⌫a)(P )

↵

0
����!
(⌫a)C

(⌫a)(P 0
)

Case COPEN. In this case the transition looks like

(⌫a)P�
M (⌫ea[{a})gN�����������! P 0�

Let b be a sufficiently fresh name, and let p = (a b). By applying the substitution
and using ↵-conversion to avoid capture, this transition is equivalent to

(⌫b)((p · P )�)
M (⌫ea[{b}) ^(p· eN)�������������! (p · P 0

)�

This transition is inferred like

COPEN
 ⇤ (p · P )�

M (⌫ea) ^(p· eN)����������! (p · P 0
)�

 ⇤ (⌫b)((p · P )�)
M (⌫ea[{b}) ^(p· eN)�������������! (p · P 0

)�

b 2 n((p · e
N)�)

b#ea, �,M

We know that y#(⌫a)P, x, x#�, (⌫a)P . Since y#(⌫b)(p · P ) and b#y we have that
y#p · P , and similarly we get that x#p · P
By induction we have that  ⇤ (p · P )�

M (⌫ea) ^(p· eN)����������! (p · P 0
)� has a matching

transition p · P y (⌫ea)(̂p· eN)�������!
p·C

p · P 0 such that (�[y := M ], ) |= p · C.

We then infer:

SOPEN

p · P y (⌫ea)]p· eN������!
p·C

p · P 0

(⌫b)(p · P )

y (⌫ea[{b})]p· eN���������!
(⌫b)p·C

p · P 0

b 2 n(p · e
N)

b#ea, y

Since b#�, ,M, y and we have that (�0, ) |= p · C we also have that (�0, ) |=
(⌫b)p · C.
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By ↵-converting the final transition we get:

(⌫a)P
y (⌫ea[{a}) eN��������!

(⌫a)C
P 0

Case CREP. In this case the inference looks like

CREP
 ⇤ P� | !P� ↵�! P 0�

 ⇤ !P�
↵�! P 0�

If ↵ 6= ⌧ :. We have that y#!P, bn(↵), which gives us that y#P, !P, bn(↵).
By induction we get that P | !P ↵

0
�!
C

P 0 and that (�0, ) |= C.
We do the following derivation

SREP
P | !P ↵

0
�!
C

P 0

!P
↵

0
�!
C

P 0

Case CBRIN. Here the transition is derived by

CBRIN
 ` K

.
� M� ex# ,M�, P�

 ⇤ M�(ex) . P� K?(ex)����! P�

We know that y#M(ex) . P, ex,� and assume that ex#�,M .
We let Q = P , and do the following derivation:

SBRIN
ex, y#M,P y#ex

M(ex) . P
y?(ex)

�����!
1`y

.
�M

P

Since  ` K
.
� M� we get (�[y := K], ) |= 1 ` y

.
� M .

Case CBROUT. Here the transition is derived by

CBROUT
 ` M�

.
� K

 ⇤ M�gN� . P�
K! gN�����! P�

We know that y#M eN .P,�. We let Q = P , and do the following derivation:

SBROUT
x#M,N,P

M eN .P
x! e

N�����!
1`M

.
�x

P

Case CBRMERGE. Here the transition is derived by

CBRMERGE
 ⌦  

Q�

⇤ P�
K?(ey)����! P 0  ⌦  

P�

⇤ Q�
K?(ey)����! Q0

 ⇤ P� | Q� K?(ey)����! P 0 | Q0

Here F(P�) = (⌫eb
P�

) 
P�

and F(Q�) = (⌫eb
Q�

) 
Q�

. We know that
eb
P�

# , P�, Q�,eb
Q�

and eb
Q�

# , P�, Q�,eb
P�

, P . We assume that x#eb
P�

.
By induction P

x(ey)���!
CP

P 00 and Q
x(ey)���!
CQ

Q00 such that (�[x := K], ⌦  
Q�

) |= C
P

and

(�[x := K], ⌦  
P�

) |= C
Q

and P 0
= P 00� and Q0

= Q00�.
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We then have the following derivation.

SBRMERGE

P
x?(ey)���!
CP

P 00 Q
x?(ey)���!
CQ

Q00

P | Q x?(ey)����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 00 | Q00

By Lemma A.6 we get F(P ) = (⌫eb
P�

) 
P

with  
P

� '  
P�

and F(Q) = (⌫eb
Q�

) 
Q

with  
Q

� '  
Q�

. By Lemma A.7 (�[x := K], ) |= F(Q) ⌦ C
P

and (�[x := K], ) |=
F(P )⌦ C

Q

.
Case CBRCOM. Here the transition is derived by

CBRCOM

 ⌦  
Q�

⇤ P�
K (⌫ea) eN�����! P 0

 ⌦  
P�

⇤ Q�
K?(ex)����! Q0

 ⇤ P� | Q� y (⌫ea) eN�����! P 0 | Q0
[y := N ]

ea#Q�

Here F(P�) = (⌫eb
P�

) 
P�

and F(Q�) = (⌫eb
Q�

) 
Q�

. We know that
eb
P�

# , P�, Q�,eb
Q�

and eb
Q�

# , P�, Q�,eb
P�

, P . We assume that ex#P,eb
P�

.

By induction P
y (⌫ea)fM�����!

CP

P 00 and Q
y(ex)
���!
CQ

Q00 such that (�[y := K], ⌦  
Q�

) |= C
P

and (�[y := K], ⌦  
P�

) |= C
Q

and P 0
= P 00� and fM� =

eN and Q0
= Q00�.

We then have the following derivation.

SBRCOM

P
y (⌫ea)fM�����!

CP

P 00 Q
y?(ex)
���!
CQ

Q00

P | Q y (⌫ea)fM����������������!
(F(Q)⌦CP )^(F(P )⌦CQ)

P 00 | Q00
[ey :=

eN ]

ea#Q

By Lemma A.6 we get F(P ) = (⌫eb
P�

) 
P

with  
P

� '  
P�

and F(Q) = (⌫eb
Q�

) 
Q

with  
Q

� '  
Q�

. By Lemma A.7 (�[y := K], ) |= F(Q) ⌦ C
P

and (�[y := K], ) |=
F(P )⌦ C

Q

.
Case CBRCLOSE. Here the transition is derived by

CBRCLOSE
 ⇤ P�

K! (⌫ea) eN������! P 0

 ⇤ (⌫b)P�
⌧�! (⌫b)(⌫ea)P 0

b 2 n(K)

By induction P
y! (⌫ea)fM������!

C

P 00 such that fM� =

eN and P 00� = P 0 and (�[y := K], ) |=
C. We then do

SBRCLOSE
P

x! (⌫ea)fM������!
C

P 0

(⌫b)P
⌧����!

9b
x.C

(⌫b)(⌫ea)P 0

where (�, ) |= 9bx.C.
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