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Basic Concepts

1.1 INTRODUCTION

The essence of the spectral estimation problem is captured by the following informal formulation.

From a finite record of a stationary data sequence, estimate how the total power
is distributed over frequency.

(1.1.1)

Spectral analysis finds applications in many diverse fields. In vibration monitoring, the spectral
content of measured signals gives information on the wear and other characteristics of mechanical
parts under study. In economics, meteorology, astronomy, and several other fields, the spectral
analysis may reveal “hidden periodicities” in the studied data, which are to be associated with
cyclic behavior or recurring processes. In speech analysis, spectral models of voice signals are
useful in better understanding the speech production process and—in addition—can be used for
both speech synthesis (or compression) and speech recognition. In radar and sonar systems, the
spectral contents of the received signals provide information on the location of the sources (or
targets) situated in the field of view. In medicine, spectral analysis of various signals measured
from a patient, such as electrocardiogram (ECG) or electroencephalogram (EEG) signals, can
provide useful material for diagnosis. In seismology, the spectral analysis of the signals recorded
prior to and during a seismic event (such as a volcano eruption or an earthquake) gives useful
information on the ground movement associated with such events and could help in predicting
them. Seismic spectral estimation is also used to predict subsurface geologic structure in gas and
oil exploration. In control systems, there is a resurging interest in spectral analysis methods as a
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2 Chapter 1 Basic Concepts

means of characterizing the dynamical behavior of a given system and ultimately synthesizing a
controller for that system. The previous and other applications of spectral analysis are reviewed
in [Kay 1988; Marple 1987; Bloomfield 1976; Bracewell 1986; Haykin 1991; Haykin
1995; Hayes III 1996; Koopmans 1974; Priestley 1981; Percival and Walden 1993; Porat
1994; Scharf 1991; Therrien 1992; Proakis, Rader, Ling, and Nikias 1992]. The textbook
[Marple 1987] also contains a well-written historical perspective on spectral estimation, which
is worth reading. Many of the classical articles on spectral analysis, both application-driven and
theoretical, are reprinted in [Childers 1978; Kesler 1986]; these excellent collections of reprints
are well worth consulting.

There are two broad approaches to spectral analysis. One of these derives its basic idea
directly from definition (1.1.1): The studied signal is applied to a bandpass filter with a narrow
bandwidth, which is swept through the frequency band of interest, and the filter output power
divided by the filter bandwidth is used as a measure of the spectral content of the input to the
filter. This is essentially what the classical (or nonparametric) methods of spectral analysis do.
These methods are described in Chapters 2 and 5 of this text. (The fact that the methods of
Chapter 2 can be given the filter-bank interpretation is made clear in Chapter 5.) The second
approach to spectral estimation, called the parametric approach, is to postulate a model for the
data, which provides a means of parameterizing the spectrum, and to thereby reduce the spectral
estimation problem to that of estimating the parameters in the assumed model. The parametric
approach to spectral analysis is treated in Chapters 3, 4, and 6. Parametric methods offer more
accurate spectral estimates than the nonparametric ones in the cases where the data indeed satisfy
the model assumed by the former methods. However, in the more likely case that the data do
not satisfy the assumed models, the nonparametric methods sometimes outperform the parametric
ones, because of the sensitivity of the latter to model misspecifications. This observation has
motivated renewed interest in the nonparametric approach to spectral estimation.

Many real-world signals can be characterized as being random (from the observer’s view-
point). Briefly speaking, this means that the variation of such a signal outside the observed interval
cannot be determined exactly, but can only be specified in statistical terms of averages. In this text,
we will be concerned with estimating the spectral characteristics of random signals. In spite of this
fact, we find it useful to start the discussion by considering the spectral analysis of deterministic
signals (as we do in Section 1.2). Throughout this work, we consider discrete-index signals (or
data sequences). Such signals are most commonly obtained by the temporal or spatial sampling
of a continuous (in time or space) signal. The main motivation for focusing on discrete signals
lies in the fact that spectral analysis is most often performed by a digital computer or by digital
circuitry. Chapters 2 to 5 of this text deal with discrete-time signals; Chapter 6 considers the case
of discrete-space data sequences.

In the interest of notational simplicity, the discrete-time variable t , as used in this text, is
assumed to be measured in units of sampling interval. A similar convention is adopted for spatial
signals, whenever the sampling is uniform. Accordingly, the units of frequency are cycles per
sampling interval.

The signals dealt with in the text are complex valued. Complex-valued data can appear in
signal processing and spectral estimation applications—for instance, as a result of a “complex
demodulation” process (explained in detail in Chapter 6). It should be noted that the treatment
of complex-valued signals is not always more general or more difficult than the analysis of
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corresponding real-valued signals. A typical example that illustrates this claim is the case of
sinusoidal signals considered in Chapter 4. A real-valued sinusoidal signal, α cos(ωt + ϕ), can
be rewritten as a linear combination of two complex-valued sinusoidal signals, α1ei (ω1t+ϕ1) +
α2ei (ω2t+ϕ2), whose parameters are constrained as follows: α1 = α2 = α/2, ϕ1 = −ϕ2 = ϕ, and
ω1 = −ω2 = ω. Here i = √−1. The fact that we need to consider two constrained complex sine
waves to treat the case of one unconstrained real sine wave shows that the real-valued case of
sinusoidal signals can actually be considered to be more complicated than the complex-valued
case! Fortunately, it appears that the latter case is encountered more frequently in applications,
where often both the in-phase and quadrature components of the studied signal are available. For
more details and explanations on this aspect, see Section 6.2.

1.2 ENERGY SPECTRAL DENSITY OF DETERMINISTIC SIGNALS

Let {y(t); t = 0,±1,±2, . . .} denote a deterministic discrete-time data sequence. Most commonly,
{y(t)} is obtained by sampling a continuous-time signal. For notational convenience, the time
index t is expressed in units of sampling interval—that is, y(t) = yc(t · Ts), where yc(·) is the
continuous time signal and Ts is the sampling time interval.

Assume that {y(t)} has finite energy, which means that

∞∑
t=−∞

|y(t)|2 < ∞ (1.2.1)

Then, under some additional regularity conditions, the sequence {y(t)} possesses a discrete-time
Fourier transform (DTFT) defined as

Y (ω) =
∞∑

t=−∞
y(t)e−iωt (DTFT) (1.2.2)

In this text, we use the symbol Y (ω), in lieu of the more cumbersome Y (eiω), to denote the
DTFT. This notational convention is commented on a bit later, following equation (1.4.6). The
corresponding inverse DTFT is then

y(t) = 1

2π

∫ π

−π
Y (ω)eiωt dω (Inverse DTFT) (1.2.3)

which can be verified by substituting (1.2.3) into (1.2.2). The (angular) frequency ω is measured in
radians per sampling interval. The conversion from ω to the physical frequency variable ω̄ = ω/Ts

[rad/sec] can be done in a straightforward manner, as described in Exercise 1.1.
Let

S (ω) = |Y (ω)|2 (Energy Spectral Density) (1.2.4)
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A straightforward calculation gives

1

2π

∫ π

−π
S (ω)dω = 1

2π

∫ π

−π

∞∑
t=−∞

∞∑
s=−∞

y(t)y∗(s)e−iω(t−s)dω

=
∞∑

t=−∞

∞∑
s=−∞

y(t)y∗(s)
[

1

2π

∫ π

−π
e−iω(t−s)dω

]

=
∞∑

t=−∞
|y(t)|2 (1.2.5)

To obtain the last equality in (1.2.5), we have used the fact that 1
2π

∫ π
−π e−iω(t−s)dω = δt,s (the

Kronecker delta). The symbol (·)∗ will be used in this text to denote the complex conjugate of a
scalar variable or the conjugate transpose of a vector or matrix. Equation (1.2.5) can be restated as

∞∑
t=−∞

|y(t)|2 = 1

2π

∫ π

−π
S (ω)dω (1.2.6)

This equality is called Parseval’s theorem. It shows that S (ω) represents the distribution of
sequence energy as a function of frequency. For this reason, S (ω) is called the energy spectral
density.

The previous interpretation of S (ω) also comes up in the following way: Equation (1.2.3)
represents the sequence {y(t)} as a weighted “sum” (actually, an integral) of orthonormal sequences
{ 1√

2π
eiωt } (ω ∈ [−π, π ]), with weighting 1√

2π
Y (ω). Hence, 1√

2π
|Y (ω)| “measures” the “length”

of the projection of {y(t)} on each of these basis sequences. In loose terms, therefore, 1√
2π

|Y (ω)|
shows how much (or how little) of the sequence {y(t)} can be “explained” by the orthonormal
sequence { 1√

2π
eiωt } for some given value of ω.

Define

ρ(k) =
∞∑

t=−∞
y(t)y∗(t − k) (1.2.7)

It is readily verified that

∞∑
k=−∞

ρ(k)e−iωk =
∞∑

k=−∞

∞∑
t=−∞

y(t)y∗(t − k)e−iωt eiω(t−k)

=
[ ∞∑

t=−∞
y(t)e−iωt

][ ∞∑
s=−∞

y(s)e−iωs

]∗

= S (ω) (1.2.8)

which shows that S (ω) can be obtained as the DTFT of the “autocorrelation” (1.2.7) of the
finite-energy sequence {y(t)}.
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These definitions can be extended in a rather straightforward manner to the case of random
signals treated throughout the remaining text. In fact, the only purpose for discussing the deter-
ministic case in this section was to provide some motivation for the analogous definitions in the
random case. As such, the discussion in this section has been kept brief. More insights into the
meaning and properties of the previous definitions are provided by the detailed treatment of the
random case in the next sections.

1.3 POWER SPECTRAL DENSITY OF RANDOM SIGNALS

Most of the signals encountered in applications are such that their future values cannot be deter-
mined exactly. We thus resort to probabilistic statements about future values. The mathematical
device to describe such a signal is that of a random sequence, which consists of an ensemble
of possible realizations, each of which has some associated probability of occurrence. Of course,
from the whole ensemble of realizations, the experimenter can usually observe only one realization
of the signal, and then it might be thought that the deterministic definitions of the previous section
could be carried over unchanged to the present case. However, this is not possible, because the
realizations of a random signal, viewed as discrete-time sequences, do not have finite energy and
hence do not possess DTFTs. A random signal usually has finite average power and, therefore,
can be characterized by an average power spectral density. For simplicity reasons, in what follows
we will use the name power spectral density (PSD) for that quantity.

The discrete-time signal {y(t); t = 0,±1,±2, . . .} is assumed to be a sequence of random
variables with zero mean:

E {y(t)} = 0 for all t (1.3.1)

Hereafter, E {·} denotes the expectation operator (which averages over the ensemble of realiza-
tions). The autocovariance sequence (ACS) or covariance function of y(t) is defined as

r(k) = E
{
y(t)y∗(t − k)

}
(1.3.2)

and it is assumed to depend only on the lag between the two samples averaged. The two assump-
tions (1.3.1) and (1.3.2) imply that {y(t)} is a second-order stationary sequence. When it is
required to distinguish between the autocovariance sequences of several signals, a lower index
will be used to indicate the signal associated with a given covariance lag, such as ry(k).

The autocovariance sequence r(k) enjoys some simple, but useful, properties:

r(k) = r∗(−k) (1.3.3)

and

r(0) ≥ |r(k)| for all k (1.3.4)
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The equality (1.3.3) directly follows from definition (1.3.2) and the stationarity assumption; (1.3.4)
is a consequence of the fact that the covariance matrix of {y(t)}, defined as follows:

Rm =




r(0) r∗(1) . . . r∗(m − 1)

r(1) r(0)
. . .

...
...

. . .
. . . r∗(1)

r(m − 1) . . . r(1) r(0)




= E







y∗(t − 1)
...
...

y∗(t − m)


 [y(t − 1) . . . y(t − m)]




(1.3.5)

is positive semidefinite for all m . Recall that a Hermitian matrix M is positive semidefinite if
a∗Ma ≥ 0 for every vector a; see Section A.5 for details. Now,

a∗Rm a = a∗E







y∗(t − 1)
...

y∗(t − m)


 [y(t − 1) . . . y(t − m)]




a

= E
{
z ∗(t)z (t)

} = E
{|z (t)|2} ≥ 0 (1.3.6)

where

z (t) = [y(t − 1) . . . y(t − m)]a

so we see that Rm is indeed positive semidefinite for every m . Hence, (1.3.4) follows from the
properties of positive semidefinite matrices. (See Definition D11 in Appendix A and Exercise 1.5.)

1.3.1 First Definition of Power Spectral Density

The PSD is defined as the DTFT of the covariance sequence:

φ(ω) =
∞∑

k=−∞
r(k)e−iωk (Power Spectral Density) (1.3.7)
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Note that the previous definition (1.3.7) of φ(ω) is similar to the definition (1.2.8) in the deter-
ministic case. The inverse transform, which recovers {r(k)} from a given φ(ω), is

r(k) = 1

2π

∫ π

−π
φ(ω)eiωk dω (1.3.8)

We readily verify that

1

2π

∫ π

−π
φ(ω)eiωk dω =

∞∑
p=−∞

r(p)

[
1

2π

∫ π

−π
eiω(k−p)dω

]
= r(k)

which proves that (1.3.8) is the inverse transform for (1.3.7). Note that, to obtain the first equality
described, the order of integration and summation has been inverted. This order inversion is
possible under weak conditions, such as when φ(ω) is square integrable—see Chapter 4 in
[Priestley 1981] for a detailed discussion on this aspect.

From (1.3.8), we obtain

r(0) = 1

2π

∫ π

−π
φ(ω)dω (1.3.9)

Since r(0) = E
{|y(t)|2} measures the (average) power of {y(t)}, the equality (1.3.9) shows that

φ(ω) can indeed be named PSD, as it represents the distribution of the (average) signal power
over frequencies. Put another way, it follows from (1.3.9) that φ(ω)dω/2π is the infinitesimal
power in the band (ω − dω/2, ω + dω/2), and that the total power in the signal is obtained
by integrating these infinitesimal contributions. Additional motivation for calling φ(ω) a PSD
is provided by the second definition of φ(ω), given next, which resembles the usual definition
(1.2.2), (1.2.4) in the deterministic case.

1.3.2 Second Definition of Power Spectral Density

The second definition of φ(ω) is

φ(ω) = lim
N →∞

E


 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣
2

 (1.3.10)

This definition is equivalent to (1.3.7) under the mild assumption that the covariance sequence
{r(k)} decays sufficiently rapidly that

lim
N →∞

1

N

N∑
k=−N

|k ||r(k)| = 0 (1.3.11)
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The equivalence of (1.3.7) and (1.3.10) can be verified as follows:

lim
N →∞

E


 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣
2

 = lim

N →∞
1

N

N∑
t=1

N∑
s=1

E
{
y(t)y∗(s)

}
e−iω(t−s)

= lim
N →∞

1

N

N −1∑
τ=−(N −1)

(N − |τ |)r(τ )e−iωτ

=
∞∑

τ=−∞
r(τ )e−iωτ − lim

N →∞
1

N

N −1∑
τ=−(N −1)

|τ |r(τ )e−iωτ

= φ(ω)

The second equality is proven in Exercise 1.6, and we used (1.3.11) in the last equality.
The second definition just mentioned of φ(ω) resembles the definition (1.2.4) of energy

spectral density in the deterministic case. The main difference between (1.2.4) and (1.3.10) consists
of the appearance of the expectation operator in (1.3.10) and the normalization by 1/N ; the fact
that the “discrete-time” variable in (1.3.10) runs over positive integers only is just for convenience
and does not constitute an essential difference, compared with (1.2.2). In spite of these differences,
the analogy between the deterministic formula (1.2.4) and (1.3.10) provides further motivation for
calling φ(ω) a PSD. The alternative definition (1.3.10) will also be quite useful when discussing
the problem of estimating the PSD by nonparametric techniques in Chapters 2 and 5.

We can see, from either of these definitions, that φ(ω) is a periodic function, with the period
equal to 2π . Hence, φ(ω) is completely described by its variation in the interval

ω ∈ [−π, π ] (radians per sampling interval) (1.3.12)

Alternatively, the PSD can be viewed as a function of the frequency

f = ω

2π
(cycles per sampling interval) (1.3.13)

which, according to (1.3.12), can be considered to take values in the interval

f ∈ [−1/2, 1/2] (1.3.14)

We will generally write the PSD as a function of ω whenever possible, because doing so will
simplify the notation.

As already mentioned, the discrete-time sequence {y(t)} is most commonly derived by
sampling a continuous-time signal. To avoid aliasing effects that might be incurred by the
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sampling process, the continuous-time signal should be (at least, approximately) bandlimited
in the frequency domain. To ensure this, it may be necessary to lowpass filter the continuous-
time signal before sampling. Let F0 denote the largest (“significant”) frequency component in the
spectrum of the (possibly filtered) continuous signal, and let Fs be the sampling frequency. Then
it follows from the Nyquist sampling theorem (sometimes called the Whittaker–Nyquist–Kotel-
nikov–Shannon sampling theorem) that the continuous-time signal can be exactly reconstructed
from its samples {y(t)}, provided that

Fs > 2F0 (1.3.15)

In particular, no frequency aliasing will occur when (1.3.15) holds. (See, for example, [Oppenheim
and Schafer 1989].) The frequency variable, F , associated with the continuous-time signal is
related to f by the equation

F = f · Fs (1.3.16)

so it follows that the interval of F corresponding to (1.3.14) is

F ∈
[
−Fs

2
,

Fs

2

]
(cycles/sec) (1.3.17)

which is quite natural in view of (1.3.15).

1.4 PROPERTIES OF POWER SPECTRAL DENSITIES

Since φ(ω) is a power density, it should be real valued and nonnegative. That this is indeed the
case is readily seen from definition (1.3.10) of φ(ω). Hence,

φ(ω) ≥ 0 for all ω (1.4.1)

From (1.3.3) and (1.3.7), we obtain

φ(ω) = r(0)+ 2
∞∑

k=1

Re{r(k)e−iωk }

where Re{·} denotes the real part of the bracketed quantity. If y(t), and hence r(k), is real valued,
then it follows that

φ(ω) = r(0)+ 2
∞∑

k=1

r(k) cos(ωk) (1.4.2)
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which shows that φ(ω) is an even function in such a case. In the case of complex-valued signals,
however, φ(ω) is not necessarily symmetric about the ω = 0 axis. Thus,

For real-valued signals:
φ(ω) = φ(−ω), ω ∈ [−π, π ]

For complex-valued signals:
in general φ(ω) �= φ(−ω), ω ∈ [−π, π ]

(1.4.3)

Remark: The reader might wonder why we did not define the ACS as

c(k) = E
{
y(t)y∗(t + k)

}
Comparing with the ACS {r(k)} used in this text, as defined in (1.3.2), we obtain c(k) = r(−k).
Consequently, the PSD associated with {c(k)} is related to the PSD corresponding to {r(k)} (see
(1.3.7)) via

ψ(ω) �
∞∑

k=−∞
c(k)e−iωk =

∞∑
k=−∞

r(k)eiωk = φ(−ω)

It may seem arbitrary as to which definition of the ACS (and corresponding definition of PSD)
we choose. In fact, from a mathematical standpoint we can use either definition of the ACS, but
the ACS definition r(k) is preferred from a practical standpoint, as we now explain.

First, we should stress that the PSD describes the spectral content of the ACS, as seen from
equation (1.3.7). The PSD φ(ω) is sometimes perceived as showing the (infinitesimal) power at
frequency ω in the signal itself, but that is not strictly true. If the PSD represented the power
in the signal itself, then we should have had ψ(ω) = φ(ω), because the signal’s spectral content
should not depend on the ACS definition. However, as shown earlier, in the general complex
case, ψ(ω) = φ(−ω) �= φ(ω), which means that the signal power interpretation of the PSD is not
(always) correct. Indeed, the PSD φ(ω) “measures” the power at frequency ω in the signal’s ACS.

On the other hand, our motivation for considering spectral analysis is to characterize the
average power at frequency ω in the signal, as given by the second definition of the PSD in
equation (1.3.10). If c(k) is used as the ACS, its corresponding second definition of the PSD is

ψ(ω) = lim
N →∞

E


 1

N

∣∣∣∣∣
N∑

t=1

y(t)e+iωt

∣∣∣∣∣
2



which is the average power of y(t) at frequency −ω. Clearly, the second PSD definition corre-
sponding to r(k) aligns with this average-power motivation, whereas the one for c(k) does not;
it is for this reason that we use the definition r(k) for the ACS. �
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e(t) y(t)

fe(v)
fy(v) � �H(v)�2 fe(v)

H(z)

Figure 1.1 Relationship between the PSDs of the input and output of a linear system.

Next, we present a useful result that concerns the transfer of PSD through an asymptotically
stable linear system. Let

H (z ) =
∞∑

k=−∞
hk z −k (1.4.4)

denote an asymptotically stable linear time-invariant system. The symbol z−1 denotes the unit
delay operator defined by z−1y(t) = y(t − 1). Also, let e(t) be the stationary input to the system
and y(t) the corresponding output, as shown in Figure 1.1.Then {y(t)} and {e(t)} are related via
the convolution sum

y(t) = H (z )e(t) =
∞∑

k=−∞
hk e(t − k) (1.4.5)

The transfer function of this filter is

H (ω) =
∞∑

k=−∞
hk e−iωk (1.4.6)

Throughout the text, we will follow the convention of writing H (z ) for the convolution operator
of a linear system and its corresponding Z-transform and writing H (ω) for its transfer function.
We obtain the transfer function H (ω) from H (z ) by the substitution z = eiω:

H (ω) = H (z )
∣∣
z=eiω

We recognize the slight abuse of notation in writing H (ω) instead of H (eiω) and in using z as
both an operator and a complex variable, but we prefer the simplicity of notation it affords.

From (1.4.5) and (1.3.2), we obtain

ry(k) =
∞∑

p=−∞

∞∑
m=−∞

hph∗
m E
{
e(t − p)e∗(t − m − k)

}

=
∞∑

p=−∞

∞∑
m=−∞

hph∗
m re(m + k − p) (1.4.7)
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Inserting (1.4.7) in (1.3.7) gives

φy(ω) =
∞∑

k=−∞

∞∑
p=−∞

∞∑
m=−∞

hph∗
m re(m + k − p)e−iω(k+m−p)eiωm e−iωp

=
[ ∞∑

p=−∞
hpe−iωp

][ ∞∑
m=−∞

h∗
m eiωm

][ ∞∑
τ=−∞

re(τ )e
−iωτ

]

= |H (ω)|2φe(ω) (1.4.8)

From (1.4.8), we get the important formula

φy(ω) = |H (ω)|2φe(ω) (1.4.9)

which will be much used in the next chapters.
Finally, we derive a property that will be of use in Chapter 5. Let the signals y(t) and x(t)

be related by

y(t) = eiω0t x(t) (1.4.10)

for some given ω0. Then, it holds that

φy(ω) = φx (ω − ω0) (1.4.11)

In other words, multiplication of a temporal sequence by eiω0t shifts its spectral density by the
angular frequency ω0. This interpretation motivates calling the process of constructing y(t), as
in (1.4.10), complex (de)modulation. The proof of (1.4.11) is immediate: Equations (1.4.10) and
(1.3.2) imply that

ry(k) = eiω0k rx (k) (1.4.12)

so we obtain

φy(ω) =
∞∑

k=−∞
rx (k)e

−i (ω−ω0)k = φx (ω − ω0) (1.4.13)

which is the desired result.
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1.5 THE SPECTRAL ESTIMATION PROBLEM

The spectral estimation problem can now be stated more formally as follows:

From a finite-length record {y(1), . . . , y(N )} of a second-order stationary
random process, find an estimate φ̂(ω) of its power spectral density φ(ω),
for ω ∈ [−π, π ].

(1.5.1)

It would, of course, be desirable that φ̂(ω) be as close to φ(ω) as possible. As we shall see,
the main limitation on the quality of most PSD estimates is due to the quite small number of data
samples usually available for processing. Note that N will be used throughout this text to denote
the number of points of the available data sequence. In some applications, N is small because the
cost of obtaining large amounts of data is prohibitive. Most commonly, the value of N is limited
by the fact that the signal under study can be considered second-order stationary only over short
observation intervals.

As already mentioned in the introductory part of this chapter, there are two main approaches
to the PSD estimation problem. The nonparametric approach, discussed in Chapters 2 and 5,
proceeds to estimate the PSD by relying essentially only on the basic definitions (1.3.7) and
(1.3.10) and on some properties that follow directly from these definitions. In particular, these
methods do not impose any assumption on the functional form of φ(ω). This is in contrast with
the parametric approach, discussed in Chapters 3, 4, and 6. That approach makes assumptions
on the signal under study, which leads to a parameterized functional form of the PSD, and then
proceeds by estimating the parameters in the PSD model. The parametric approach can thus
be used only when there is enough information about the studied signal to allow formulation
of a model. Otherwise, the nonparametric approach should be used. Interestingly enough, the
nonparametric methods are close competitors to the parametric ones, even when the model form
assumed by the latter is a reasonable description of reality.

1.6 COMPLEMENTS

1.6.1 Coherence Spectrum

Let

Cyu(ω) = φyu(ω)

[φyy (ω)φuu(ω)]1/2 (1.6.1)

denote the so-called complex coherence of the stationary signals y(t) and u(t). In the previous
definition, φyu(ω) is the cross-spectrum of the two signals, defined as the DTFT of the cross-
correlation sequence ryu(k) = E {y(t)u∗(t − k)}, and φyy (ω) and φuu(ω) are their respective PSDs.
(We implicitly assume in (1.6.1) that φyy (ω) and φuu(ω) are strictly positive for all ω.) Also, let

ε(t) = y(t)−
∞∑

k=−∞
hk u(t − k) (1.6.2)
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denote the residues of the least-squares problem in Exercise 1.11. Hence, {hk } in equation (1.6.2)
satisfies

∞∑
k=−∞

hk e−iωk � H (ω) = φyu(ω)/φuu(ω).

In what follows, we will show that

E
{|ε(t)|2} = 1

2π

∫ π

−π
(1 − |Cyu(ω)|2)φyy (ω) dω (1.6.3)

where |Cyu (ω)| is the so-called coherence spectrum. We will deduce from (1.6.3) that the coherence
spectrum shows the extent to which y(t) and u(t) are linearly related to one another, hence
providing a motivation for the name given to |Cyu(ω)|. We will also show that |Cyu(ω)| ≤ 1,
with equality, for all ω values, if and only if y(t) and u(t) are related as in equation (1.6.2) with
ε(t) ≡ 0 (in the mean-square sense). Finally, we will show that |Cyu (ω)| is invariant to linear
filtering of u(t) and y(t) (possibly by different filters); that is, if ũ = g ∗ u and ỹ = f ∗ y , where
f and g are linear filters and ∗ denotes convolution, then |Cỹũ(ω)| = |Cyu (ω)|.

Let x(t) =∑∞
k=−∞ hk u(t − k). It can be shown that u(t − k) and ε(t) are uncorrelated with

one another for all k . (The reader is required to verify this claim; see also Exercise 1.11). Hence,
x(t) and ε(t) are also uncorrelated with each other. Now,

y(t) = ε(t)+ x(t), (1.6.4)

so it follows that

φyy (ω) = φεε(ω)+ φxx (ω) (1.6.5)

By using the fact that φxx (ω) = |H (ω)|2φuu(ω), we can write

E
{|ε(t)|2} = 1

2π

∫ π

−π
φεε(ω) dω

= 1

2π

∫ π

−π

[
1 − |H (ω)|2 φuu(ω)

φyy(ω)

]
φyy (ω) dω

= 1

2π

∫ π

−π

[
1 − |φyu(ω)|2

φuu(ω)φyy (ω)

]
φyy (ω) dω

= 1

2π

∫ π

−π

[
1 − |Cyu (ω)|2

]
φyy (ω) dω

which is (1.6.3).
Since the left-hand side in (1.6.3) is nonnegative and the PSD function φyy(ω) is arbitrary,

we must have |Cyu(ω)| ≤ 1 for all ω. It can also be seen from (1.6.3) that the closer |Cyu (ω)|
is to 1, the smaller is the residual variance. In particular, if |Cyu(ω)| ≡ 1, then ε(t) ≡ 0 (in the
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mean-square sense) and hence y(t) and u(t) must be linearly related, as in (1.7.11). The previous
interpretation leads to calling Cyu(ω) the correlation coefficient in the frequency domain.

Next, consider the filtered signals

ỹ(t) =
∞∑

k=−∞
fk y(t − k)

and

ũ(t) =
∞∑

k=−∞
gk u(t − k)

where the filters {fk } and {gk } are assumed to be stable. As

rỹũ(p) � E
{
ỹ(t)ũ∗(t − p)

}
=

∞∑
k=−∞

∞∑
j=−∞

fk g∗
j E
{
y(t − k)u∗(t − j − p)

}

=
∞∑

k=−∞

∞∑
j=−∞

fk g∗
j ryu(j + p − k),

it follows that

φỹ ũ(ω) =
∞∑

p=−∞

∞∑
k=−∞

∞∑
j=−∞

fk e−iωk g∗
j eiωj ryu(j + p − k)e−iω(j+p−k)

=
( ∞∑

k=−∞
fk e−iωk

) 
 ∞∑

j=−∞
gj e

−iωj




∗ ( ∞∑
s=−∞

ryu(s)e
−iωs

)

= F (ω)G∗(ω)φyu(ω)

Hence,

|Cỹũ(ω)| = |F (ω)| |G(ω)| |φyu(ω)|
|F (ω)|φ1/2

yy (ω)|G(ω)|φ1/2
uu (ω)

= |Cyu(ω)|

which is the desired result. Observe that the latter result is similar to the invariance of the modulus
of the correlation coefficient in the time domain,

|ryu(k)|
[ryy (0)ruu(0)]1/2

to a scaling of the two signals: ỹ(t) = f · y(t) and ũ(t) = g · u(t).
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1.7 EXERCISES

Exercise 1.1: Scaling of the Frequency Axis
In this text, the time variable t has been expressed in units of the sampling interval Ts (say).
Consequently, the frequency is measured in cycles per sampling interval. Assume we want the
frequency units to be expressed in radians per second or in Hertz (Hz = cycles per second). Then
we have to introduce the scaled frequency variables

ω̄ = ω/Ts ω̄ ∈ [−π/Ts , π/Ts ] rad/sec (1.7.1)

and f̄ = ω̄/2π (in Hz). It might be thought that the PSD in the new frequency variable is obtained
by inserting ω = ω̄Ts into φ(ω), but this is wrong. Show that the PSD, as expressed in units of
power per Hz, is in fact given by

φ̄(ω̄) = Tsφ(ω̄Ts) � Ts

∞∑
k=−∞

r(k)e−i ω̄Ts k , |ω̄| ≤ π/Ts (1.7.2)

(See [Marple 1987] for more details on this scaling aspect.)

Exercise 1.2: Time–Frequency Distributions
Let y(t) denote a discrete-time signal, and let Y (ω) be its discrete-time Fourier transform. As
explained in Section 1.2, Y (ω) shows how the energy in the whole sequence {y(t)}∞t=−∞ is
distributed over frequency.

Assume that we want to characterize how the energy of the signal is distributed in time
and frequency. If D(t, ω) is a function that characterizes the time–frequency distribution, then it
should satisfy the so-called marginal properties:

∞∑
t=−∞

D(t, ω) = |Y (ω)|2 (1.7.3)

and

1

2π

∫ π

−π
D(t, ω)dω = |y(t)|2 (1.7.4)

Use intuitive arguments to explain why the previous conditions are desirable properties of a
time–frequency distribution. Next, show that the so-called Rihaczek distribution,

D(t, ω) = y(t)Y ∗(ω)e−iωt (1.7.5)

satisfies conditions (1.7.3) and (1.7.4). (For treatments of the time–frequency distributions, the
reader is referred to [Therrien 1992] and [Cohen 1995].)
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Exercise 1.3: Two Useful Z-Transform Properties

(a) Let hk be an absolutely summable sequence, and let H (z ) =∑∞
k=−∞ hk z −k be its

Z-transform. Find the Z-transforms of the following two sequences:
(i) h−k

(ii) gk =∑∞
m=−∞ hmh∗

m−k .
(b) Show that, if zi is a zero of A(z ) = 1 + a1z −1 + · · · + anz −n , then (1/z ∗

i ) is a zero of
A∗(1/z ∗) (where A∗(1/z ∗) = [A(1/z ∗)]∗).

Exercise 1.4: A Simple ACS Example
Let y(t) be the output of a linear system, as in Figure 1.1, with filter H (z ) = (1 + b1z −1)/(1 +
a1z −1) whose input is zero-mean white noise with variance σ 2. (The ACS of such an input is
σ 2δk ,0.)

(a) Find r(k) and φ(ω) analytically in terms of a1, b1, and σ 2.
(b) Verify that r(−k) = r∗(k) and that |r(k)| ≤ r(0). Also verify that, when a1 and b1 are

real, r(k) can be written as a function of |k |.

Exercise 1.5: Alternative Proof that |r(k)| ≤ r(0)

We stated in the text that (1.3.4) follows from (1.3.6). Provide a proof of that statement. Also,
find an alternative, simple proof of (1.3.4) by using (1.3.8).

Exercise 1.6: A Double Summation Formula
A result often used in the study of discrete-time random signals is the summation formula

N∑
t=1

N∑
s=1

f (t − s) =
N −1∑

τ=−N +1

(N − |τ |)f (τ ) (1.7.6)

where f (·) is an arbitrary function. Provide a proof of this formula.

Exercise 1.7: Is a Truncated Autocovariance Sequence (ACS) a Valid ACS?
Suppose that {r(k)}∞k=−∞ is a valid ACS; thus,

∑∞
k=−∞ r(k)e−iωk ≥ 0 for all ω. Is it possible

that, for some integer p, the partial (or truncated) sum

p∑
k=−p

r(k)e−iωk

is negative for some ω? Justify your answer.
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Exercise 1.8: When Is a Sequence an Autocovariance Sequence?
We showed in Section 1.3 that, if {r(k)}∞k=−∞ is an ACS, then Rm ≥ 0 for m = 0, 1, 2, . . .. We
also implied that the first definition of the PSD in (1.3.7) satisfies φ(ω) ≥ 0 for all ω; however,
we did not prove this by using (1.3.7) solely. Show that

φ(ω) =
∞∑

k=−∞
r(k)e−iωk ≥ 0 for all ω

if and only if

a∗Rm a ≥ 0 for every m and for every vector a

Exercise 1.9: Spectral Density of the Sum of Two Correlated Signals
Let y(t) be the output to the system shown in Figure 1.2. Assume H1(z ) and H2(z ) are linear,
asymptotically stable systems. The inputs e1(t) and e2(t) are each zero-mean white noise, with

E

{[
e1(t)
e2(t)

] [
e∗

1 (s) e∗
2 (s)

]} =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]
δt,s

(a) Find the PSD of y(t).
(b) Show that, for ρ = 0, φy (ω) = φx1(ω)+ φx2(ω).
(c) Show that, for ρ = ±1 and σ 2

1 = σ 2
2 = σ 2, φy(ω) = σ 2|H1(ω)± H2(ω)|2.

Exercise 1.10: Least-Squares Spectral Approximation
Assume we are given an ACS {r(k)}∞k=−∞ or, equivalently, a PSD function φ(ω), as in equa-
tion (1.3.7). We wish to find a finite-impulse response (FIR) filter, as in Figure 1.1, where H (ω) =
h0 + h1e−iω + . . .+ hm e−imω, whose input e(t) is zero-mean unit-variance white noise and such

e1(t)

e2(t)

y(t)

H1(z)
x1(t)

x2(t)
H2(z)

�

Figure 1.2 The system considered in Exercise 1.9.
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that the output sequence y(t) has PSD φy (ω) “close to” φ(ω). Specifically, we wish to find
h = [h0 . . . hm ]T so that the approximation error

ε = 1

2π

∫ π

−π
[φ(ω)− φy(ω)]

2 dω (1.7.7)

is minimum.

(a) Show that ε is a quartic (fourth-order) function of h and that thus no simple closed-form
solution h exists to minimize (1.7.7).

(b) We attempt to reparameterize the minimization problem as follows: We note that
ry(k) ≡ 0 for |k | > m; thus,

φy(ω) =
m∑

k=−m

ry(k)e
−iωk (1.7.8)

Equation (1.7.8), and the fact that ry(−k) = r∗
y (k), mean that φy(ω) is a function of g =

[ry(0) . . . ry(m)]T . Show that the minimization problem in (1.7.7) is quadratic in g ; it thus
admits a closed-form solution. Show that the vector g that minimizes ε in equation (1.7.7)
gives

ry(k) =
{

r(k), |k | ≤ m

0, otherwise
(1.7.9)

(c) Can you identify any problems with the “solution” (1.7.9)?

Exercise 1.11: Linear Filtering and the Cross-Spectrum
For two stationary signals y(t) and u(t), with cross-covariance sequence ryu(k) = E {y(t)
u∗(t − k)}, the cross-spectrum is defined as

φyu(ω) =
∞∑

k=−∞
ryu(k)e

−iωk (1.7.10)

Let y(t) be the output of a linear filter with input u(t),

y(t) =
∞∑

k=−∞
hk u(t − k) (1.7.11)

Show that the input PSD, φuu(ω), the filter transfer function

H (ω) =
∞∑

k=−∞
hk e−iωk
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and φyu(ω) are related through the so-called Wiener–Hopf equation:

φyu(ω) = H (ω)φuu(ω) (1.7.12)

Next, consider the least-squares (LS) problem

min
{hk }

E



∣∣∣∣∣y(t)−

∞∑
k=−∞

hk u(t − k)

∣∣∣∣∣
2

 (1.7.13)

where now y(t) and u(t) are no longer necessarily related through equation (1.7.11). Show that
the filter minimizing the preceding LS criterion is still given by the Wiener–Hopf equation, by
minimizing the expectation in (1.7.13) with respect to the real and imaginary parts of hk . (Assume
that φuu(ω) > 0 for all ω.)

COMPUTER EXERCISES

Exercise C1.12: Computer Generation of Autocovariance Sequences
Autocovariance sequences are two-sided sequences. In this exercise, we develop computer tech-
niques for generating two-sided ACSs.

Let y(t) be the output of the linear system in Figure 1.1, with filter H (z ) = (1 + b1z −1)/(1 +
a1z −1), whose input is zero-mean white noise with variance σ 2.

(a) Find r(k) analytically in terms of a1, b1, and σ 2. (See also Exercise 1.4.)
(b) Plot r(k) for −20 ≤ k ≤ 20 and for various values of a1 and b1. Notice that the tails of

r(k) decay at a rate dictated by |a1|.
(c) When a1 � b1 and σ 2 = 1, then r(k) � δk ,0. Verify this for a1 = −0.95, b1 = −0.9, and

for a1 = −0.75, b1 = −0.7.
(d) A quick way to generate (approximately) r(k) on the computer is to use the fact that

r(k) = σ 2h(k) ∗ h∗(−k), where h(k) is the impulse response of the filter in Figure 1.1
(see equation (1.4.7)) and ∗ denotes convolution. Consider the case where

H (z ) = 1 + b1z −1 + · · · + bmz −m

1 + a1z −1 + · · · + anz −n

Write a MATLAB function genacs.m whose inputs are M, σ 2, a , and b, where a and b
are the vectors of denominator and numerator coefficients, respectively, and whose output is
a vector of ACS coefficients from 0 to M. Your function should make use of the MATLAB
functions filter (to generate {hk }M

k=0) and conv (to compute r(k) = σ 2h(k) ∗ h∗(−k)
by using the truncated impulse response sequence).
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(e) Test your function, using σ 2 = 1, a1 = −0.9, and b1 = 0.8. Try M = 20 and M = 150;
why is the result more accurate for larger M ? Suggest a “rule of thumb” about a good
choice of M in relation to the poles of the filter.

This method is a “quick and simple” way to compute an approximation to the ACS, but it is
sometimes not very accurate because the impulse response is truncated. Methods for computing
the exact ACS from σ 2, a , and b are discussed in Exercise 3.2 and also in [Kinkel, Perl, Scharf,
and Stubberud 1979; Demeure and Mullis 1989].

Exercise C1.13: DTFT Computations Using Two-Sided Sequences
In this exercise, we consider the DTFT of two-sided sequences (including autocovariance sequen-
ces); in doing so, we illustrate some basic properties of autocovariance sequences.

(a) We first consider how to use the DTFT to determine φ(ω) from r(k) on a computer. We
are given an ACS:

r(k) =



M − |k |
M

, |k | ≤ M

0, otherwise
(1.7.14)

Generate r(k) for M = 10. Form, in MATLAB, a vector x of length L = 256 as

x = [r(0), r(1), . . . , r(M ), 0 . . . , 0, r(−M ), . . . , r(−1)]

Verify that xf=fft(x) gives φ(ωk ) for ωk = 2πk/L. (Note that the elements of xf
should be nonnegative and real.) Explain why this particular choice of x is needed, citing
appropriate circular shift and zero-padding properties of the DTFT.

Note that xf often contains a very small imaginary part due to computer roundoff
error; replacing xf by real(xf) truncates this imaginary component and leads to more
expected results when plotting.

A word of caution—do not truncate the imaginary part unless you are sure it is
negligible; the command zf=real(fft(z)) when

z = [r(−M ), . . . , r(−1), r(0), r(1), . . . , r(M ), 0 . . . , 0]

gives erroneous “spectral” values; try it and explain why it does not work.
(b) Alternatively, since we can readily derive the analytical expression for φ(ω), we can instead

work backwards. Form a vector

yf = [φ(0), φ(2π/L), φ(4π/L), . . . , φ((L − 1)2π/L)]

and find y=ifft(yf). Verify that y closely approximates the ACS.
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(c) Consider the ACS r(k) in Exercise C1.12; let a1 = −0.9 and b1 = 0, and set σ 2 = 1. Form
a vector x as before, with M = 10, and find xf. Why is xf not a good approximation of
φ(ωk ) in this case? Repeat the experiment for M = 127 and L = 256; is the approximation
better for this case? Why?

We can again work backwards from the analytical expression for φ(ω). Form a vector

yf = [φ(0), φ(2π/L), φ(4π/L), . . . , φ((L − 1)2π/L)]

and find y=ifft(yf). Verify that y closely approximates the ACS for large L (say,
L = 256), but poorly approximates the ACS for small L (say, L = 20). By citing properties
of inverse DTFTs of infinite, two-sided sequences, explain how the elements of y relate to
the ACS r(k) and why the approximation is poor for small L. Based on this explanation,
give a “rule of thumb” for a choice of L that gives a good approximations of the ACS.

(d) We have seen that the fft command results in spectral estimates for ω ∈ [0, 2π) instead
of the more commonly-used range ω ∈ [−π, π). The MATLAB command fftshift
can be used to exchange the first and second halves of the fft output to make it corre-
spond to the frequency range from ω ∈ [−π, π). Similarly, fftshift can be used on
the output of the ifft operation to “center” the zero lag of an ACS. Experiment with
fftshift to achieve both of these results. What frequency vector w is needed so that
the command plot(w, fftshift(fft(x))) gives the spectral values at the proper
frequencies? Similarly, what time vector t is needed to get a proper plot of the ACS with
stem(t,fftshift(ifft(xf)))? Do the results depend on whether the vectors are
even or odd in length?

Exercise C1.14: Relationship between the PSD and the Eigenvalues of the ACS Matrix
An interesting property of the ACS matrix R in equation (1.3.5) is that, for large dimensions m ,
its eigenvalues are close to the values of the PSD φ(ωk ) for ωk = 2πk/m , k = 0, 1, . . . ,m − 1.
(See, for example, [Gray 1972].) We verify this property here:

Consider the ACS in Exercise C1.12, with the values a1 = −0.9, b1 = 0.8, and σ 2 = 1.

(a) Compute a vector phi that contains the values of φ(ωk ) for ωk = 2πk/m , with m = 256
and k = 0, 1, . . . ,m − 1. Plot a histogram of these values with hist(phi). Also useful
is the cumulative distribution of the values of phi (plotted on a logarithmic scale), which
can be found with the command semilogy( (1/m:1/m:1), sort(phi) ).

(b) Compute the eigenvalues of R in equation (1.3.5) for various values of m . Plot the
histogram of the eigenvalues and plot their cumulative distribution. Verify that, as m
increases, the cumulative distribution of the eigenvalues approaches the cumulative distri-
bution of the φ(ω) values. Similarly, the histograms also approach the histogram for φ(ω),
but it is easier to see this result by using cumulative distributions than by using histograms.


