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Preface

Spectral analysis considers the problem of determining the spectral content (i.e., the distribution
of power over frequency) of a time series from a finite set of measurements, by means of either
nonparametric or parametric techniques. The history of spectral analysis as an established disci-
pline started more than a century ago with the work by Schuster on detecting cyclic behavior in
time series. An interesting historical perspective on the developments in this field can be found
in [Marple 1987]. This reference notes that the word “spectrum” was apparently introduced by
Newton in relation to his studies of the decomposition of white light into a band of light colors,
when passed through a glass prism (as illustrated on the front cover). This word appears to be a
variant of the Latin word “specter” which means “ghostly apparition”. The contemporary English
word that has the same meaning as the original Latin word is “spectre”. Despite these roots of
the word “spectrum”, we hope the student will be a “vivid presence” in the course that has just
started!

This text, which is a revised and expanded version of Introduction to Spectral Analysis
(Prentice Hall, 1997), is designed to be used with a first course in spectral analysis that would
typically be offered to senior undergraduate or first-year graduate students. The book should also
be useful for self-study, as it is largely self-contained. The text is concise by design, so that it
gets to the main points quickly and should hence be appealing to those who would like a fast
appraisal on the classical and modern approaches of spectral analysis.

In order to keep the book as concise as possible without sacrificing the rigor of presentation
or skipping over essential aspects, we do not cover some advanced topics of spectral estimation
in the main part of the text. However, several advanced topics are considered in the complements
that appear at the end of each chapter, and also in the appendices. For an introductory course,
the reader can skip the complements and refer to results in the appendices without having to
understand their derivation in detail.

xv



xvi Preface

For the more advanced reader, we have included three appendices and a number of comple-
ment sections in each chapter. The appendices provide a summary of the main techniques and
results in linear algebra, statistical accuracy bounds, and model order selection, respectively. The
complements present a broad range of advanced topics in spectral analysis. Many of these are
current or recent research topics in the spectral analysis literature.

At the end of each chapter, we have included both analytical exercises and computer prob-
lems. The analytical exercises are, more or less, ordered from least to most difficult; this ordering
also approximately follows the chronological presentation of material in the chapters. The more
difficult exercises explore advanced topics in spectral analysis and provide results that are not
available in the main text. Answers to selected exercises are found in Appendix D. The computer
problems are designed to illustrate the main points of the text and to provide the reader with
first-hand information on the behavior and performance of the various spectral analysis tech-
niques considered. The computer exercises also illustrate the relative performance of the methods
and explore other topics—such as statistical accuracy, resolution properties, and the like—that
are not developed analytically in the book. We have used MATLAB1 to minimize the program-
ming chore and to encourage the reader to “play” with other examples. We provide a set of
MATLAB functions for data generation and spectral estimation that form a basis for a compre-
hensive set of spectral-estimation tools; these functions are available at the text website,
www.prenhall.com/stoica.

Supplementary material may also be obtained from the text website. We have prepared a set
of overhead transparencies that can be used as a teaching aid for a spectral analysis course. We
believe that these transparencies are useful not only to course instructors but also to other readers,
because they summarize the principal methods and results in the text. For readers who study the
topic on their own, it should be a useful exercise to refer to the main points addressed in the
transparencies after completing the reading of each chapter.

As we mentioned earlier, this text is a revised and expanded version of Introduction to
Spectral Analysis (Prentice Hall, 1997). We have maintained the conciseness and accessibility
of the main text; the revision has focused primarily on expanding the complements, appendices,
and bibliography. Specifically, we have expanded Appendix B to include a detailed discussion of
Cramér–Rao bounds for direction-of-arrival estimation. We have added Appendix C, which covers
model order selection, and have added new computer exercises on order selection. We have more
than doubled the number of complements from the previous book, to 32, most of which present
recent results in spectral analysis. We have also expanded the bibliography to include new topics,
along with recent results on more established topics.

The text is organized as follows: Chapter 1 introduces the spectral analysis problem, moti-
vates the definition of power spectral density functions, and reviews some important properties
of autocorrelation sequences and spectral density functions. Chapters 2 and 5 consider nonpara-
metric spectral estimation. Chapter 2 presents classical techniques, including the periodogram,
the correlogram, and their modified versions to reduce variance. We include an analysis of bias
and variance of these techniques and relate them to one another. Chapter 5 considers the more
recent filter-bank version of nonparametric techniques, including both data-independent and data-
dependent filter design techniques. Chapters 3 and 4 consider parametric techniques; Chapter 3

1MATLAB R© is a registered trademark of The Mathworks, Inc.
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focuses on continuous spectral models (Autoregressive Moving Average (ARMA) models and
their AR and MA special cases), while Chapter 4 focuses on discrete spectral models (sinusoids
in noise). We have placed the filter-bank methods in Chapter 5, after Chapters 3 and 4, mainly
because the Capon estimator has interpretations both as an averaged AR spectral estimator and
as a matched filter for line-spectral models, and we need the background of Chapters 3 and 4 to
develop these interpretations. The data-independent filter-bank techniques in Sections 5.1–5.4 can
equally well be covered directly following Chapter 2, if desired.

Chapter 6 considers the closely related problem of spatial spectral estimation in the context of
array signal processing. Both nonparametric (beamforming) and parametric methods are consid-
ered, and both are tied into the temporal spectral estimation techniques considered in Chapters 2,
4, and 5.

The bibliography contains both modern and classical references (ordered both alphabetically
and by subject). We include many historical references as well, for those interested in tracing the
early developments of spectral analysis. However, spectral analysis is a topic with contributions
from many diverse fields, including electrical and mechanical engineering, astronomy, biomedical
spectroscopy, geophysics, mathematical statistics, and econometrics—to name a few. As such,
any attempt to document the historical development of spectral analysis accurately is doomed to
failure. The bibliography reflects our own perspectives, biases, and limitations; there is no doubt
that the list is incomplete, but we hope that it gives the reader an appreciation of the breadth and
diversity of the spectral analysis field.

The background needed for this text includes a basic knowledge of linear algebra, discrete-
time linear systems, and introductory discrete-time stochastic processes (or time series). A basic
understanding of estimation theory is helpful, though not required. Appendix A develops most of
the needed background results on matrices and linear algebra, Appendix B gives a tutorial intro-
duction to the Cramér–Rao bound, and Appendix C develops the theory of model order selection.
We have included concise definitions and descriptions of the required concepts and results where
needed. Thus, we have tried to make the text as self-contained as possible.

We are indebted to Jian Li and Lee Potter for adopting a former version of the text in
their spectral estimation classes, for their valuable feedback, and for contributing to this book in
several other ways. We would like to thank Torsten Söderström, for providing the initial stimulus
for preparation of lecture notes that led to the book, and Hung-Chih Chiang, Peter Händel, Ari
Kangas, Erlendur Karlsson, and Lee Swindlehurst, for careful proofreading and comments and
for many ideas on and early drafts of the computer problems. We are grateful to Mats Bengtsson,
Tryphon Georgiou, K.V.S. Hari, Andreas Jakobsson, Erchin Serpedin, and Andreas Spanias for
comments and suggestions that helped us eliminate some inadvertencies and typographical errors
from the previous edition of the book. We also wish to thank Wallace Anderson, Alfred Hero,
Ralph Hippenstiel, Louis Scharf, and Douglas Williams, who reviewed a former version of the
book and provided us with numerous useful comments and suggestions. It was a pleasure to work
with the excellent staff at Prentice Hall, and we are particularly appreciative of Tom Robbins and
Scott Disanno for their professional expertise.

Many of the topics described in this book are outgrowths of our research programs in statistical
signal and array processing, and we wish to thank the sponsors of this research: the Swedish
Foundation for Strategic Research, the Swedish Research Council, the Swedish Institute, the
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U.S. Army Research Laboratory, the U.S. Air Force Research Laboratory, and the U.S. Defense
Advanced Research Projects Administration.

Finally, we are indebted to Anca and to Liz, Laura, and Daniel for their continuing support
and understanding throughout this project.

Petre Stoica
Uppsala University

Randy Moses
The Ohio State University



Notational Conventions

R the set of real numbers

C the set of complex numbers

N (A) the null space of the matrix A (p. 343)

R(A) the range space of the matrix A (p. 342)

Dn the nth definition in Appendix A or B

Rn the nth result in Appendix A

‖x‖ the Euclidean norm of a vector x

∗ convolution operator

(·)T transpose of a vector or matrix

(·)c conjugate of a vector or matrix

(·)∗ conjugate transpose of a vector or matrix;
also used for scalars in lieu of (·)c

Aij the (i , j )th element of the matrix A

ai the i th element of the vector a

x̂ an estimate of the quantity x

A > 0 (≥ 0) A is positive definite (positive semidefinite) (p. 357)

arg max
x

f (x) the value of x that maximizes f (x)

arg min
x

f (x) the value of x that minimizes f (x)
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xx Notational Conventions

cov{x , y} the covariance between x and y

|x | the modulus of the (possibly complex) scalar x

|A| the determinant of the square matrix A

diag(a) the square diagonal matrix whose diagonal elements are the elements of
the vector a

δk ,l Kronecker delta: δk ,l = 1 if k = l ; δk ,l = 0 otherwise

δ(t − t0) Dirac delta: δ(t − t0) = 0 for t �= t0;
∫ ∞
−∞ δ(t − t0)dt = 1

E {x} the expected value of x (p. 5)

f (discrete-time) frequency: f = ω/2π , in cycles per sampling
interval (p. 8)

φ(ω) a power spectral density function (p. 6)

Im{x} the imaginary part of x

O(x) on the order of x (p. 35)

p(x) probability density function

Pr{A} the probability of event A

r(k) an autocovariance sequence (p. 5)

Re{x} the real part of x

t discrete-time index

tr(A) the trace of the matrix A (p. 346)

var{x} the variance of x

w(k), W (ω) a window sequence and its Fourier transform

wB (k), WB (ω) the Bartlett (or triangular) window sequence and its Fourier
transform (p. 31)

wR(k), WR(ω) the rectangular (or Dirichlet) window sequence and its Fourier
transform (p. 32)

ω radian (angular) frequency, in radians per sampling interval (p. 3)

z −1 unit delay operator: z −1x(t) = x(t − 1) (p. 11)



Abbreviations

ACS autocovariance sequence (p. 5)

APES amplitude and phase estimation (p. 256)

AR autoregressive (p. 92)

ARMA autoregressive moving-average (p. 92)

BSP beamspace processing (p. 337)

BT Blackman–Tukey (p. 39)

CM Capon method (p. 232)

CCM constrained Capon method (p. 313)

CRB Cramér–Rao bound (p. 373)

DFT discrete Fourier transform (p. 27)

DGA Delsarte–Genin algorithm (p. 99)

DOA direction of arrival (p. 276)

DTFT discrete-time Fourier transform (p. 3)

ESP elementspace processing (p. 337)

ESPRIT estimation of signal parameters by rotational invariance
techniques (p. 174)

EVD eigenvalue decomposition (p. 345)

FB forward–backward (p. 176)

FBA filter-bank approach (p. 219)

xxi



xxii Abbreviations

FFT fast Fourier transform (p. 27)

FIR finite impulse response (p. 18)

flop floating-point operation (p. 27)

GAPES gapped amplitude and phase estimation (p. 259)

GS Gohberg–Semencul (formula) (p. 128)

HOYW high-order Yule–Walker (p. 162)

i.i.d. independent, identically distributed (p. 331)

LDA Levinson–Durbin algorithm (p. 99)

LS least squares (p. 367)

MA moving average (p. 92)

MFD matrix fraction description (p. 143)

ML maximum likelihood (p. 375)

MLE maximum likelihood estimate (p. 375)

MSE mean squared error (p. 30)

MUSIC multiple signal classification (or characterization) (p. 166)

MYW modified Yule–Walker (p. 101)

NLS nonlinear least squares (p. 151)

PARCOR partial correlation (p. 101)

PSD power spectral density (p. 5)

RFB refined filter bank (p. 222)

QRD Q–R decomposition (p. 368)

RCM robust Capon method (p. 312)

SNR signal-to-noise ratio (p. 85)

SVD singular value decomposition (p. 351)

TLS total least squares (p. 369)

ULA uniform linear array (p. 283)

YW Yule–Walker (p. 94)


