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Parametric Methods for Line
Spectra

4.1 INTRODUCTION

In several applications, particularly in communications, radar, sonar, and geophysical seismology,
the signals dealt with can be described well by the sinusoidal model

y(t) = x(t)+ e(t) ; x(t) =
n∑

k=1

αk ei (ωk t+ϕk ) (4.1.1)

where x(t) denotes the noise-free complex-valued sinusoidal signal; {αk }, {ωk }, {ϕk } are its ampli-
tudes, (angular) frequencies, and initial phases, respectively; and e(t) is an additive observation
noise. The complex-valued form (4.1.1), of course, is not encountered in practice as it stands; prac-
tical signals are real valued. However, as already mentioned in Chapter 1, in many applications
both the in-phase and quadrature components of the studied signal are available. (See Chapter 6
for more details on this aspect.) In the case of a (real-valued) sinusoidal signal, this means that
both the sine and the corresponding cosine components are available. These two components may
be processed by arranging them in a two-dimensional vector signal or a complex-valued signal of
the form of (4.1.1). Since the complex-valued description (4.1.1) of the in-phase and quadrature
components of a sinusoidal signal is the most convenient one from a mathematical standpoint,
we focus on it in this chapter.
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The noise {e(t)} in (4.1.1) is usually assumed to be (complex-valued) circular white noise,
defined in (2.4.19). We also make the white-noise assumption in this chapter. We may argue in the
following way that the white-noise assumption is not particularly restrictive. Let the continuous-
time counterpart of the noise in (4.1.1) be correlated, but assume that the “correlation time” of
the continuous-time noise is less than half of the shortest period of the sine-wave components
in the continuous-time counterpart of x(t) in (4.1.1). If this mild condition is satisfied, then
choosing the sampling period larger than the noise correlation time (yet smaller than half the
shortest sinusoidal signal period, to avoid aliasing) results in a white discrete-time noise sequence
{e(t)}. If the correlation condition above is not satisfied, but we know the shape of the noise
spectrum, we can filter y(t) by a linear whitening filter that makes the noise component at the
filter output white; the sinusoidal components remain sinusoidal with the same frequencies, but
with amplitudes and phases altered in a known way.

If the noise process is not white and has unknown spectral shape, then accurate frequency
estimates can still be found if we estimate the sinusoids, using the nonlinear least squares (NLS)
method in Section 4.3. (See [Stoica and Nehorai 1989b], for example.) Indeed, the properties
of the NLS estimates in the colored-noise and unknown-noise cases are quite similar to those for
the white-noise case, only with the sinusoidal signal amplitudes “adjusted” to give corresponding
local SNRs—the signal-to-noise power ratio at each frequency ωk . This amplitude adjustment
is the same as that realized by the whitening filter approach. It is important to note that these
comments apply only if the NLS method is used. The other estimation methods in this chapter
(e.g., the subspace-based methods) depend on the assumption that the noise is white and can be
affected adversely if the noise is not white (or is not prewhitened).

Concerning the signal in (4.1.1), we assume that ωk ∈ [−π, π ] and that αk > 0. We need to
specify the sign of {αk }; otherwise we are left with a phase ambiguity. More precisely, without the
condition αk > 0 in (4.1.1), both {αk , ωk , ϕk } and {−αk , ωk , ϕk + π} give the same signal {x(t)},
so the parameterization is not unique. As to the initial phases {ϕk } in (4.1.1), one could assume
that they are fixed (nonrandom) constants, which would result in {x(t)} being a deterministic
signal. In most applications, however, {ϕk } are nuisance parameters , and it is more convenient to
assume that they are random variables. Note that, if we try to mimic the conditions of a previous
experiment as much as possible, we will usually be unable to ensure the same initial phases
of the sine waves in the observed sinusoidal signal (this will be particularly true for received
signals). Since there is usually no reason to believe that a specific set of initial phases is more
likely than another one, or that two different initial phases are interrelated, we make the following
assumption:

The initial phases {ϕk } are independent random variables uniformly distributed
on [−π, π ].

(4.1.2)

The covariance function and the PSD of the noisy sinusoidal signal {y(t)} can be calculated
in a straightforward manner under these assumptions. By using (4.1.2), we get

E
{
eiϕp e−iϕj

} = 1 for p = j
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and for p �= j

E
{
eiϕp e−iϕj

} = E
{
eiϕp

}
E
{
e−iϕj

}
=
[

1

2π

∫ π

−π

eiϕdϕ

] [
1

2π

∫ π

−π

e−iϕdϕ

]
= 0

Thus,

E
{
eiϕp e−iϕj

} = δp,j (4.1.3)

Let

xp(t) = αpei (ωp t+ϕp ) (4.1.4)

denote the pth sinusoid in (4.1.1). It follows from (4.1.3) that

E
{

xp(t)x
∗
j (t − k)

}
= α2

peiωp k δp,j (4.1.5)

which, in turn, gives

r(k) = E
{
y(t)y∗(t − k)

} = n∑
p=1

α2
peiωp k + σ 2δk ,0 (4.1.6)

where σ 2 is the variance of e(t). The derivation of the covariance function of y(t) is completed.
The PSD of y(t) is given by the DTFT of {r(k)} in (4.1.6), which is

φ(ω) = 2π
n∑

p=1

α2
pδ(ω − ωp)+ σ 2 (4.1.7)

where δ(ω − ωp) is the Dirac impulse (or Dirac delta “function”) which, by definition, has the
property that ∫ π

−π

F (ω)δ(ω − ωp) dω = F (ωp) (4.1.8)

for any function F (ω) that is continuous at ωp . The expression (4.1.7) for φ(ω) may be verified by
inserting it in the inverse transform formula (1.3.8) and checking that the result is the covariance
function. Doing so, we obtain

1

2π

∫ π

−π


2π

n∑
p=1

α2
pδ(ω − ωp)+ σ 2


 eiω k dω =

n∑
p=1

α2
peiωp k + σ 2δk ,o = r(k) (4.1.9)

which is the desired result.
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The PSD (4.1.7) is depicted in Figure 4.1. It consists of a “floor” of constant level equal to the
noise power σ 2, along with n vertical lines (or impulses) located at the sinusoidal frequencies {ωk }
and having zero support but nonzero areas equal to 2π times the sine wave powers {α2

k }. Owing
to its appearance, as exhibited in Figure 4.1, φ(ω) in (4.1.7) is called a line or discrete spectrum.

It is evident from the previous discussion that a spectral analysis based on the parametric
PSD model (4.1.7) reduces to the problem of estimating the parameters of the signal in (4.1.1). In
most applications, such as those listed at the beginning of this chapter, the parameters of major
interest are the locations of the spectral lines—namely, the sinusoidal frequencies. In the next
sections, we present a number of methods for spectral line analysis. We focus on the problem of
frequency estimation, meaning estimation of {ωk }nk=1 from a set of observations {y(t)}Nt=1. Once
the frequency estimates have been obtained, estimation of the other signal parameters (or PSD
parameters) becomes a simple linear regression problem. More precisely, for given {ωk }, the
observations y(t) can be written as a linear regression function whose coefficients are equal to
the remaining unknowns {αk eiϕk � βk }:

y(t) =
n∑

k=1

βk eiωk t + e(t) (4.1.10)

If desired, {βk } (and hence {αk }, {ϕk }) in (4.1.10) can be obtained by a least-squares method
(as in equation (4.3.8)). Alternatively, one may determine the signal powers {α2

k }—for given
{ωk }—from the sample version of (4.1.6):

r̂(k) =
n∑

p=1

α2
peiωp k + residuals for k ≥ 1 (4.1.11)

where the residuals arise from finite-sample estimation of r(k); this is, once more, a linear
regression with {α2

p} as unknown coefficients. The solution to either linear regression problem is
straightforward and is discussed in Section A.8 of Appendix A.
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Figure 4.1 The PSD of a complex sinusoidal signal in additive white noise.
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The methods for frequency estimation that will be described in the following sections are
sometimes called high-resolution (or, even, superresolution) techniques. This is due to their
ability to resolve spectral lines separated in frequency f = ω/2π by less than 1/N cycles per
sampling interval, which is the resolution limit for the classical periodogram-based methods. All
of the high-resolution methods to be discussed in the following provide consistent estimates of
{ωk } under the assumptions we made. Their consistency will surface in the following discus-
sion in an obvious manner; hence, we do not need to pay special attention to this aspect.
Nor do we discuss in detail other statistical properties of the frequency estimates obtained by
these high-resolution methods, though in Appendix B we review the Cramér–Rao bound and
the best accuracy that can be achieved by such methods. For derivations and discussions of the
statistical properties not addressed in this text, we refer the interested reader to [Stoica, Sö-
derström, and Ti 1989; Stoica and Söderström 1991; Stoica, Moses, Friedlander, and
Söderström 1989; Stoica and Nehorai 1989b]. Let us briefly summarize the conclusions of
these analyses: All the high-resolution methods presented in the following provide very accurate
frequency estimates, with only small differences in their statistical performances. Furthermore,
the computational burdens associated with these methods are rather similar. Hence, selecting one
of the high-resolution methods for frequency estimation is essentially a “matter of taste,” even
though we will identify some advantages of one of these methods, named ESPRIT, over the
others.

We should point out that the comparison in the previous paragraph between the high-resolution
methods and the periodogram-based techniques is unfair, in the sense that periodogram-based
methods do not assume any knowledge about the data, whereas high-resolution methods exploit
an exact description of the studied signal. The additional information assumed allows a parametric
method to offer better resolution than the nonparametric method of the periodogram. On the other
hand, when no two spectral lines in the spectrum are separated by less than 1/N, the unmodified
periodogram turns out to be an excellent frequency estimator which may outperform any of the
high-resolution methods (as we shall see). One may ask why the unmodified periodogram is
preferred over the many windowed or smoothed periodogram techniques to which we paid so
much attention in Chapter 2. The explanation actually follows from the discussion in that chapter.
The unmodified periodogram can be viewed as a Blackman–Tukey “windowed” estimator with a
rectangular window of maximum length equal to 2N+ 1. Of all window sequences, this is exactly
the one which has the narrowest main lobe and, hence, the one that affords the maximum spectral
resolution, a desirable property for high-resolution spectral-line scenarios. It should be noted,
however, that if the sinusoidal components in the signal are not very closely spaced in frequency,
but their amplitudes differ significantly from one another, then a mildly windowed periodogram
(to avoid leakage) might perform better than the unwindowed periodogram. In the unwindowed
periodogram, the weaker sinusoids could be obscured by the leakage from the stronger ones, and
hence they might not be visible in a plot of the estimated spectrum.

In order to simplify the discussion in this chapter, we assume that the number of sinusoidal
components, n , in (4.1.1) is known. When n is unknown, as could well be the case in many
applications, it can be estimated from the available data, in a way, for example, described in
[Fuchs 1988; Kay 1988; Marple 1987; Proakis, Rader, Ling, and Nikias 1992; Söderström
and Stoica 1989] and in Appendix C.
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4.2 MODELS OF SINUSOIDAL SIGNALS IN NOISE

The frequency estimation methods presented in this chapter rely on three different models for the
noisy sinusoidal signal (4.1.1). This section introduces the three models of (4.1.1).

4.2.1 Nonlinear Regression Model

The nonlinear regression model is given by (4.1.1). Note that the {ωk } enter in a nonlinear
fashion in (4.1.1), hence the name “nonlinear regression” given to this type of model for {y(t)}.
The other two models for {y(t)}, to be discussed in the following, are derived from (4.1.1);
they are descriptions of the data that are not as complete as (4.1.1). However, they preserve the
information required to extract the frequencies {ωk } which, as already stated, are the parameters
of major interest. Hence, in some sense, these two models are more appropriate for frequency
estimation; they do not include some of the nuisance parameters that appear in (4.1.1).

4.2.2 ARMA Model

It can readily be verified that

(1− eiωk z−1)xk (t) ≡ 0 (4.2.1)

where z−1 denotes the unit delay (or shift) operator introduced in Chapter 1. Hence, (1− eiωk z−1)

is an annihilating filter for the k th component in x(t). By using this simple observation, we obtain
the homogeneous AR equation for {x(t)}, namely,

A(z )x(t) = 0 (4.2.2)

and the ARMA model for the noisy data {y(t)}—that is,

A(z )y(t) = A(z )e(t)

A(z ) =
n∏

k=1

(1− eiωk z−1)
(4.2.3)

It may be a useful exercise to derive equation (4.2.2) in a different way. The PSD of x(t)
consists of n spectral lines located at {ωk }nk=1. It should then be clear, in view of the relation
(1.4.9) governing the transfer of a PSD through a linear system, that any filter that has zeroes at
frequencies {ωk } is an annihilating filter for x(t). The polynomial A(z ) in (4.2.3) is the simplest
kind of such annihilating filter. This polynomial bears complete information about {ωk }; hence,
the problem of estimating the frequencies can be reduced to that of determining A(z ).

We remark that the ARMA model (4.2.3) has a very special form (for which reason it is
sometimes called a “degenerate” ARMA model). All its poles and zeroes are located exactly on
the unit circle. Furthermore, its AR and MA parts are identical. It might be tempting to cancel the
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common poles and zeroes in (4.2.3). However, such an operation leads to the wrong conclusion
that y(t) = e(t) and, therefore, should be invalid. Let us explain briefly why cancelation in (4.2.3)
is not allowed. The ARMA equation description of a signal y(t) is asymptotically equivalent to the
associated transfer-function description (in the sense that both give the same signal sequence, for
t →∞) if and only if the poles are situated strictly inside the unit circle. If there are poles on the
unit circle, then the equivalence between these two descriptions ceases. In particular, the solution
of an ARMA equation with poles on the unit circle strongly depends on the initial conditions,
whereas the transfer-function description does not impose a dependence on initial values.

4.2.3 Covariance Matrix Model

A notation that will often be used in what follows is

a(ω) � [1 e−iω . . . e−i (m−1)ω]T (m × 1)

A = [a(ω1) . . . a(ωn)] (m × n)
(4.2.4)

In (4.2.4), m is a positive integer not yet specified. The matrix A is a Vandermonde matrix, which
enjoys the following rank property (see Result R24 in Appendix A):

rank(A) = n if m ≥ n and ωk �= ωp for k �= p (4.2.5)

By making use of the previous notation, along with (4.1.1) and (4.1.4), we can write

ỹ(t) �




y(t)
y(t − 1)

...

y(t − m + 1)


 = Ax̃(t)+ ẽ(t)

x̃(t) = [x1(t) . . . xn(t)]T

ẽ(t) = [e(t) . . . e(t − m + 1)]T

(4.2.6)

The following expression for the covariance matrix of ỹ(t) can be readily derived from (4.1.5)
and (4.2.6):

R � E
{
ỹ(t)ỹ∗(t)

} = APA∗ + σ 2I ; P =




α2
1 0

. . .

0 α2
n


 (4.2.7)
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This equation constitutes the covariance matrix model of the data. As we will show later, the
eigenstructure of R contains complete information on the frequencies {ωk }, and this is exactly
where the usefulness of (4.2.7) lies.

From equations (4.2.6) and (4.1.5), we also derive the following result for later use:

� � E






y(t − L− 1)
...

y(t − L−M )


 [y∗(t) . . . y∗(t − L)]




= E
{
AM x̃(t − L− 1)x̃∗(t)A∗L+1

}
= AM PL+1A∗L+1 (L,M ≥ 1)

(4.2.8)

Here AK stands for A in (4.2.4) with m = K , and

PK =




α2
1e−iω1K 0

. . .

0 α2
ne−iωn K




As we explain in detail later, the null space of the matrix � (with L,M ≥ n) gives complete
information on the frequencies {ωk }.

4.3 NONLINEAR LEAST-SQUARES METHOD

An intuitively appealing approach to spectral line analysis, based on the nonlinear regression
model (4.1.1), consists of finding the unknown parameters as the minimizers of the criterion

f (ω, α, ϕ) =
N∑

t=1

∣∣∣∣∣y(t)−
n∑

k=1

αk ei (ωk t+ϕk )

∣∣∣∣∣
2

(4.3.1)

where ω is the vector of frequencies ωk , and similarly for α and ϕ. The sinusoidal model deter-
mined as above has the smallest “sum of squares” distance to the observed data {y(t)}Nt=1. Since
f is a nonlinear function of its arguments {ω, ϕ, α}, the method that obtains parameter estimates
by minimizing (4.3.1) is called the nonlinear least-squares (NLS) method. When the (white) noise
e(t) is Gaussian distributed, the minimization of (4.3.1) can also be interpreted as the method
of maximum likelihood (see Appendices B and C); in that case, minimization of (4.3.1) can be
shown to provide the parameter values most likely to “explain” the observed data sequence. (See
[Söderström and Stoica 1989; Kay 1988; Marple 1987].)
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The criterion in (4.3.1) depends on {αk }, {ϕk }, and {ωk }. However, it can be concentrated
with respect to the nuisance parameters {αk , ϕk }, as explained next. By making use of the
notation,

βk = αk eiϕk (4.3.2)

β = [β1 . . . βn ]T (4.3.3)

Y = [y(1) . . . y(N )]T (4.3.4)

B =




eiω1 . . . eiωn

...
...

eiNω1 . . . eiNωn


 (4.3.5)

we can write the function f in (4.3.1) as

f = (Y − Bβ)∗(Y − Bβ) (4.3.6)

The Vandermonde matrix B in (4.3.5) (which resembles the matrix A defined in (4.2.4)) has full
column rank equal to n under the weak condition that N ≥ n; in this case, (B∗B)−1 exists. By
using this observation, we can put (4.3.6) in the more convenient form:

f = [β − (B∗B)−1B∗Y ]∗[B∗B][β − (B∗B)−1B∗Y ]

+ Y ∗Y − Y ∗B(B∗B)−1B∗Y (4.3.7)

For any choice of ω = [ω1, . . . , ωn ]T in B (which is such that ωk �= ωp for k �= p), we can choose
β to make the first term of f zero; thus, we see that the vectors β and ω that minimize f are
given by

ω̂ = arg maxω[Y ∗B(B∗B)−1B∗Y ]

β̂ = (B∗B)−1B∗Y |ω=ω̂

(4.3.8)

It can be shown that, as N tends to infinity, ω̂ obtained as in the preceding discussion
converges to ω (i.e., ω̂ is a consistent estimate) and, in addition, the estimation errors {ω̂k − ωk }
have the following (asymptotic) covariance matrix:

Cov(ω̂) = 6σ 2

N 3




1/α2
1 0

. . .

0 1/α2
n


 (4.3.9)
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(See [Stoica and Nehorai 1989a; Stoica, Moses, Friedlander, and Söderström 1989].) In
the case of Gaussian noise, the matrix in (4.3.9) can also be shown to equal the Cramér–Rao limit
matrix, which gives a lower bound on the covariance matrix of any unbiased estimator of ω. (See
Appendix B.) Hence, under the Gaussian hypothesis, the NLS method provides the most accurate
(i.e., minimum variance) frequency estimates in a fairly general class of estimators. As a matter
of fact, the variance of {ω̂k } (as given by (4.3.9)) often takes quite small values for reasonably
large sample lengths N and signal-to-noise ratios SNRk = α2

k/σ
2. For example, for N = 300 and

SNRk = 30dB, it follows from (4.3.9) that we may expect frequency estimation errors on the
order of 10−5, which is comparable with the roundoff errors in a 32-bit fixed-point processor.

The NLS method has another advantage that sets it apart from the subspace-based approaches
that are discussed in the remainder of the chapter. The NLS method does not depend critically on
the assumption that the noise process is white. If the noise process is not white, the NLS still gives
consistent frequency estimates. In fact, the asymptotic covariance of the frequency estimates is
diagonal, and var(ω̂k ) = 6/(N 3SNRk ), where SNRk = α2

k/φn(ωk ) (here, φn(ω) is the noise PSD)
is the “local” signal-to-noise ratio of the sinusoid at frequency ωk ; see [Stoica and Nehorai
1989b], for example. Interestingly enough, the NLS method remains the most accurate method
(if the data length is large) even in those cases where the (Gaussian) noise is colored [Stoica
and Nehorai 1989b]. This fact spurred a renewed interest in the NLS approach and in reliable
algorithms for performing the minimization required in (4.3.1); see, for example, [Hwang and
Chen 1993; Ying, Potter, and Moses 1994; Li and Stoica 1996b; Umesh and Tufts 1996]
and Complement 4.9.5.

Unfortunately, the good statistical performance associated with the NLS method of frequency
estimation is difficult to achieve, for the following reason. The function (4.3.8) has a compli-
cated multimodal shape with a very sharp global maximum corresponding to ω̂ [Stoica, Moses,
Friedlander, and Söderström 1989]. Hence, finding ω̂ by a search algorithm requires very
accurate initialization. Initialization procedures that provide fairly accurate approximations of the
maximizer of (4.3.8) have been proposed in [Kumaresan, Scharf, and Shaw 1986], [Bresler
and Macovski 1986], and [Ziskind and Wax 1988]. However, there is no available method
which is guaranteed to provide frequency estimates within the attraction domain of the global
maximum ω̂ of (4.3.8). As a consequence, a search algorithm could fail to converge to ω̂, or
might even diverge.

The kinds of difficulties indicated above, which must be faced when using the NLS method
in applications, limit the practical interest in this approach to frequency estimation. There are,
however, some instances when the NLS approach may be turned into a practical frequency esti-
mation method. Consider, first, the case of a single sinusoid (n = 1). A straightforward calculation
shows that, in such a case, the first equation in (4.3.8) can be rewritten as

ω̂ = arg max
ω

φ̂p(ω) (4.3.10)

where φ̂p(ω) is the periodogram (see (2.2.1))

φ̂p(ω) = 1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣
2

(4.3.11)
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Hence, the NLS estimate of the frequency of a single sine wave buried in observation noise is
given precisely by the highest peak of the unmodified periodogram.

Note that the above result is only approximately true (for N � 1) in the case of real-valued
sinusoidal signals, a fact that lends additional support to the claim made in Chapter 1 that the
analysis of the case of real-valued signals faces additional complications not encountered in
the complex-valued case. Each real-valued sinusoid can be written as a sum of two complex
exponentials, and the treatment of the real case with n = 1 is similar to that of the complex case
with n > 1, presented next.

Next, consider the case of multiple sine waves (n > 1). The key condition that makes it
possible to treat this case in a manner similar to the previous one is that the minimum frequency
separation between the sine waves in the studied signal is larger than the periodogram’s resolution
limit:

�ω = inf
k �=p
|ωk − ωp | > 2π/N (4.3.12)

Since the estimation errors {ω̂k − ωk } from the NLS estimates are of order O(1/N 3/2) (because
cov(ω̂) = O(1/N 3); see (4.3.9)), equation (4.3.12) implies a similar inequality for the NLS
frequency estimates {ω̂k }: �ω̂ > 2π/N. It should then be possible to resolve all n sine waves
in the noisy signal and to obtain reasonable approximations {ω̃k } to {ω̂k } by evaluating the func-
tion in (4.3.8) at the points of a grid corresponding to the sampling of each frequency variable,
as in the FFT:

ωk = 2π

N
j j = 0, . . . ,N − 1 (k = 1, . . . , n) (4.3.13)

Of course, a direct application of such a grid method for the approximate maximization of (4.3.8)
would be computationally burdensome for large values of n or N. However, it can be greatly
simplified, as described next.

The p, k element of the matrix B∗B occurring in (4.3.8), when evaluated at the points of the
grid (4.3.13), is given by

[B∗B]p,k = N for p = k (4.3.14)

and

[B∗B]p,k =
N∑

t=1

ei (ωk−ωp )t = ei (ωk−ωp )
eiN (ωk−ωp ) − 1

ei (ωk−ωp ) − 1

= 0 for p �= k (4.3.15)

which implies that the function to be minimized in (4.3.8) has, in such a case, the following form:

n∑
k=1

1

N

∣∣∣∣∣
N∑

t=1

y(t)e−iωk t

∣∣∣∣∣
2

(4.3.16)
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The previous additive decomposition in n functions of ω1, . . . , ωn (respectively) leads to the
conclusion that {ω̃k } (which, by definition, maximize (4.3.16) at the points of the grid (4.3.13))
are given by the n largest peaks of the periodogram. To show this, let us write the function in
(4.3.16) as

g(ω1, . . . , ωn) =
n∑

k=1

φ̂p(ωk )

where φ̂p(ω) is once again the periodogram. Observe that

∂g(ω1, . . . , ωn)

∂ωk
= φ̂′p(ωk )

and

∂2g(ω1, . . . , ωn)

∂ωk∂ωj
= φ̂′′p (ωk )δk ,j

Hence, the maximum points of (4.3.16) satisfy

φ̂′p(ωk ) = 0 and φ̂′′p (ωk ) < 0 for k = 1, . . . , n

It follows that the set of maximizers of (4.3.16) is given by all possible combinations of n elements
from the periodogram’s peak locations. Now, recall the assumption made that {ωk }, and hence
their estimates {ω̂k }, are distinct. Under this assumption the highest maximum of g(ω1, . . . , ωn)

is given by the locations of the n largest peaks of φ̂p(ω), which is the desired result.
These findings are summarized as follows:

Under the condition (4.3.12), the unmodified periodogram resolves all the n
sine waves present in the noisy signal. Furthermore, the locations {ω̃k } of the n
largest peaks in the periodogram provide O(1/N ) approximations to the NLS
frequency estimates {ω̂k }. In the case of n = 1, we have ω̃1 = ω̂1 exactly.

(4.3.17)

The fact that the differences {ω̃k − ω̂k } are O(1/N ) means, of course, that the computation-
ally convenient estimates {ω̃k } (derived from the periodogram) will generally have an inflated
variance compared to {ω̂k }. However, {ω̃k } can at least be used as initial values in a numerical
implementation of the NLS estimator. In any case, this discussion indicates that, under (4.3.12),
the periodogram performs quite well as a frequency estimator (which actually is the task for which
it was introduced by Schuster more than a century ago!).

In the next sections, we present several “high-resolution” methods for frequency estimation,
which exploit the covariance matrix models. More precisely, all of these methods derive frequency
estimates by exploiting the properties of the eigendecomposition of data covariance matrices and,
in particular, the subspaces associated with those matrices. For this reason, these methods are
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sometimes referred to by the generic name of subspace methods. However, in spite of their
common subspace theme, the methods are quite different, and we will treat them in separate
sections. The main features of these methods can be summarized as follows: (i) Their statistical
performance is close to the ultimate performance corresponding to the NLS method (and given by
the Cramér–Rao lower bound, (4.3.9)); (ii) unlike the NLS method, these methods are not based
on multidimensional search procedures; and (iii) they do not depend on a “resolution condition,”
such as (4.3.12); thus, they could generally have a resolution threshold lower than that of the
periodogram. The chief drawback of these methods, as compared with the NLS method, is that
their performance significantly degrades if the measurement noise in (4.1.1) cannot be assumed
to be white.

4.4 HIGH-ORDER YULE–WALKER METHOD

The high-order Yule–Walker (HOYW) method of frequency estimation can be derived from the
ARMA model of the sinusoidal data, (4.2.3), much as can its counterpart in the rational PSD
case. (See Section 3.7 and [Cadzow 1982; Stoica, Söderström, and Ti 1989; Stoica, Moses,
Söderström, and Li 1991].) Actually, the HOYW method is based on an ARMA model of an
order L higher than the minimal order n , for a reason that will be explained shortly.

If the polynomial A(z ) in (4.2.3) is multiplied by any other polynomial Ā(z ), say of degree
equal to L− n , then we obtain a higher order ARMA representation of our sinusoidal data, given
by

y(t)+ b1y(t − 1)+ . . .+ bLy(t − L) = e(t)+ b1e(t − 1)+ . . .+ bLe(t − L) (4.4.1)

or

B(z )y(t) = B(z )e(t)

where

B(z ) = 1+
L∑

k=1

bk z−k � A(z )Ā(z ) (4.4.2)

Equation (4.4.1) can be rewritten in the following more condensed form (with obvious notation):

[y(t) y(t − 1) . . . y(t − L)]

[
1
b

]
= e(t)+ . . .+ bLe(t − L) (4.4.3)

Premultiplying (4.4.3) by [y∗(t − L− 1) . . . y∗(t − L−M )]T and taking the expectation leads to

�c
[

1
b

]
= 0 (4.4.4)
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where the matrix � is defined in (4.2.8) and M is a positive integer that is yet to be specified. In
order to obtain (4.4.4) as indicated previously, we made use of the fact that E {y∗(t − k)e(t)} = 0
for k > 0.

The similarity of (4.4.4) to the Yule–Walker system of equations encountered in Chapter 3 (see
equation (3.7.1)) is more readily seen if (4.4.4) is rewritten in the following more detailed form:


r(L) . . . r(1)
...

...

r(L+M − 1) . . . r(M )


 b = −




r(L+ 1)
...

r(L+M )


 (4.4.5)

Owing to this analogy, the set of equations (4.4.5) associated with the noisy sinusoidal signal
{y(t)} is said to form a HOYW system.

The HOYW matrix equation (4.4.4) can also be obtained directly from (4.2.8). For any L ≥ n
and any polynomial Ā(z ) (used in the defining equation, (4.4.2), for b), the elements of the vector

AT
L+1

[
1
b

]
(4.4.6)

are equal to zero. Indeed, the k th row of (4.4.6) is

[1 e−iωk . . . e−iLωk ]

[
1
b

]
= 1+

L∑
p=1

bpe−iωk p

= A(ωk )Ā(ωk ) = 0, k = 1, . . . , n (4.4.7)

(since A(ωk ) = 0, cf. (4.2.3)). It follows from (4.2.8) and (4.4.7) that the vector
[

1
b

]
lies in the

null space of �c (see Definition D2 in Appendix A),

�c
[

1
b

]
= 0

which is the desired result, (4.4.4).
The HOYW system of equations just derived can be used for frequency estimation in the

following way: By replacing the unavailable theoretical covariances {r(k)} in (4.4.5) by the sample
covariances {r̂(k)}, we obtain




r̂(L) . . . r̂(1)
...

...

r̂(L+M − 1) . . . r̂(M )


 b̂ � −




r̂(L+ 1)
...

r̂(L+M )


 (4.4.8)

Owing to the estimation errors in {r̂(k)}, the matrix equation (4.4.8) cannot hold exactly in the
general case, for any vector b̂, as is indicated by the use of the “approximate equality” symbol �.
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We can solve (4.4.8) for b̂ in a least-squares sense that is detailed in what follows, then form the
polynomial

1+
L∑

k=1

b̂k z−k (4.4.9)

and, finally (in view of (4.2.3) and (4.4.2)), obtain frequency estimates {ω̂k } as the angular positions
of the n roots of (4.4.9) that are located nearest the unit circle.

It can be expected that increasing the values of M and L results in improved frequency
estimates. Indeed, by increasing M and L we use higher lag covariances in (4.4.8), which could
bear “additional information” on the data at hand. Increasing M and L also has a second, more
subtle, effect that is explained next.

Let � denote the M× L covariance matrix in (4.4.5) and, similarly, let �̂ denote the sample
covariance matrix in (4.4.8). It can be seen from (4.2.8) that

rank(�) = n for M , L ≥ n (4.4.10)

On the other hand, the matrix �̂ has full rank (almost surely)

rank(�̂) = min(M , L) (4.4.11)

owing to the random errors in {r̂(k)}. However, for reasonably large values of N , the matrix �̂

is close to the rank-n matrix �, since the sample covariances {r̂(k)} converge to {r(k)} as N
increases (as is shown in Complement 4.9.1). Hence, we may expect the linear system (4.4.8) to be
ill conditioned from a numerical standpoint. (See the discussion in Section A.8.1 in Appendix A.)
In fact, there is compelling empirical evidence that any LS procedure that estimates b̂ directly
from (4.4.8) has very poor accuracy. In order to overcome the previously described difficulty, we
can make use of the a priori rank information (4.4.10). However, some preparations are required
before we shall be able to do so. Let

�̂ = U�V ∗ � [ U1︸︷︷︸
n

U2︸︷︷︸
M−n

]

[
�1 0
0 �2

] [
V ∗

1
V ∗

2

]}
n}
L−n (4.4.12)

denote the singular value decomposition (SVD) of the matrix �̂. (See Section A.4 in Appendix A;
also [Söderström and Stoica 1989; Van Huffel and Vandewalle 1991] for general discus-
sions on the SVD.) In (4.4.12), U is an M×M unitary matrix, V is an L× L unitary matrix, and
� is an M× L diagonal matrix. �̂ is close to a rank-n matrix, so �2 in (4.4.12) should be close
to zero, which implies that

�̂n � U1�1V ∗
1 (4.4.13)
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should be a good approximation for �̂. In fact, it can be proven that this �̂n is the best (in
the Frobenius-norm sense) rank-n approximation of �̂ (Result R18 in Appendix A). Hence, in
accordance with the rank information (4.4.10), we can use �̂n in (4.4.8) in lieu of �̂. The
so-obtained rank-truncated HOYW system of equations

�̂n b̂ � −




r̂(L+ 1)
...

r̂(L+M )


 (4.4.14)

can be solved in a numerically sound way by using a simple LS procedure. It is readily verified
that

�̂†
n = V1�

−1
1 U ∗

1 (4.4.15)

is the pseudoinverse of �̂n . (See Definition D15 and Result R32.) Hence, the LS solution to
(4.4.14) is given by

b̂ = −V1�
−1
1 U ∗

1




r̂(L+ 1)
...

r̂(L+M )


 (4.4.16)

The additional bonus for using �̂n instead of �̂ in (4.4.8) is an improvement in the statistical
accuracy of the frequency estimates obtained from (4.4.16). This improved accuracy is explained
by the fact that �̂n should be closer to � than �̂ is; the improved covariance matrix estimate
�̂n obtained by exploitation of the rank information (4.4.10), when used in the HOYW system
of equations, should lead to refined frequency estimates.

We remark that a total least-squares (TLS) solution for b̂ can also be obtained from (4.4.8).
(See Definition D17 and Result R33 in Appendix A.) A TLS solution makes sense, because we
have errors in both �̂ and the right-hand-side vector in equation (4.4.8). In fact the TLS-based
estimate of b is often slightly better than the estimate discussed above, which is obtained as the
LS solution to the rank-truncated system of linear equations in (4.4.14).

We next return to the selection of L and M. As M and L increase, the information brought into
the estimation problem under study by the rank condition (4.4.10) is more and more important,
and hence the corresponding increase of accuracy is more and more pronounced. (For instance,
the information that a 10× 10 noisy matrix has rank one in the noise-free case leads to more
relations between the matrix elements, and hence to more “noise cleaning,” than if the matrix
were 2× 2.) In fact, for M = n or L = n , the rank condition is inactive; �̂n = �̂ in such a case.
The previous discussion gives another explanation of why the accuracy of the frequency estimates
obtained from (4.4.16) may be expected to increase with increasing M and L.

The next box summarizes the HOYW frequency estimation method. It should be noted that
the operation in Step 3 of the HOYW method is implicitly based on the assumption that the esti-
mated “signal roots” (i.e., the roots of A(z ) in (4.4.2)) are always closer to the unit circle than the
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estimated “noise roots” (i.e., the roots of Ā(z ) in (4.4.2)). It can be shown that as N →∞, all roots
of Ā(z ) are strictly inside the unit circle; see, for example, Complement 6.5.1 and [Kumaresan
and Tufts 1983]. This property cannot be guaranteed in finite samples, but there is empirical
evidence that it holds quite often. In those rare cases where it fails to hold, the HOYW method
produces spurious (or false) frequency estimates. The risk of producing spurious estimates is the
price paid for the improved accuracy obtained by increasing L. (Note that, for L = n , there is
no “noise root,” and hence no spurious estimate can occur in such a case.) The risk of false
frequency estimation is a problem that is common to all methods that estimate the frequencies
from the roots of a polynomial of degree larger than n , such as the MUSIC and Min–Norm
methods, to be discussed in the next two sections.

The HOYW Frequency Estimation Method

Step 1. Compute the sample covariances {r̂(k)}L+M
k=1 . We may set L � M and select the

values of these integers so that L+M is a fraction of the sample length (such as
N/3). Note that, if L+M is set to a value too close to N , then the higher lag
covariances required in (4.4.8) cannot be estimated in a reliable way.

Step 2. Compute the SVD of �̂, (4.4.12), and compute b̂ by using (4.4.16).
Step 3. Isolate the n roots of the polynomial (4.4.9) that are closest to the unit circle and

obtain the frequency estimates as the angular positions of these roots.

4.5 PISARENKO AND MUSIC METHODS

The MUltiple SIgnal Classification (or MUltiple SIgnal Characterization) (MUSIC) method
[Schmidt 1979; Bienvenu 1979] and Pisarenko’s method [Pisarenko 1973] (a special case
of MUSIC, as is explained next) are derived from the covariance model (4.2.7) with m > n . Let
λ1 ≥ λ2 ≥ . . . ≥ λm denote the eigenvalues of R in (4.2.7), arranged in nonincreasing order, and
let {s1, . . . , sn} be the orthonormal eigenvectors associated with {λ1, . . . , λn}, and {g1, . . . , gm−n}
a set of orthonormal eigenvectors corresponding to {λn+1, . . . , λm}. (See Appendix A.) Since

rank(APA∗) = n (4.5.1)

it follows that APA∗ has n strictly positive eigenvalues, the remaining (m − n) eigenvalues all
being equal to zero. Combining this observation with the fact that (see Result R5 in Appendix A)

λk = λ̃k + σ 2 (k = 1, . . . ,m) (4.5.2)

where {λ̃k }mk=1 are the eigenvalues of APA∗ arranged in nonincreasing order, leads to the following
result: {

λk > σ 2 for k = 1, . . . , n
λk = σ 2 for k = n + 1, . . . ,m

(4.5.3)
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The set of eigenvalues of R can hence be split into two subsets. Next, we show that the eigenvectors
associated with each of these subsets, as introduced previously, possess some interesting properties
that can be used for frequency estimation.

Let

S = [s1, . . . , sn ] (m × n), G = [g1, . . . , gm−n ] (m × (m − n)) (4.5.4)

From (4.2.7) and (4.5.3), we get at once

RG = G




λn+1 0
. . .

0 λm


 = σ 2G = APA∗G + σ 2G (4.5.5)

The first equality in (4.5.5) follows from the definition of G and {λk }mk=n+1, the second equality
follows from (4.5.3), and the third from (4.2.7). The last equality in equation (4.5.5) implies that
APA∗G = 0, or (as the matrix AP has full column rank)

A∗G = 0 (4.5.6)

In other words, the columns {gk } of G belong to the null space of A∗, a fact which is denoted
by gk ∈ N (A∗). Since rank(A) = n , the dimension of N (A∗) is equal to m − n , which is also the
dimension of the range space of G , R(G). It follows from this observation and (4.5.6) that

R(G) = N (A∗) (4.5.7)

In words, (4.5.7) says that the vectors {gk } span both R(G) and N (A∗). Now, by definition,

S ∗G = 0 (4.5.8)

so we also have R(G) = N (S ∗); hence, N (S ∗) = N (A∗). Since R(S ) and R(A) are the orthog-
onal complements to N (S ∗) and N (A∗), it follows that

R(S ) = R(A) (4.5.9)

We can also derive the equality (4.5.9) directly from (4.2.7). Set

�
◦ =




λ1 − σ 2 0
. . .

0 λn − σ 2


 (4.5.10)
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From

RS = S




λ1 0
. . .

0 λn


 = APA∗S + σ 2S (4.5.11)

we obtain

S = A
(

PA∗S�
◦ −1

)
(4.5.12)

which shows that R(S ) ⊂ R(A). However, R(S ) and R(A) have the same dimension (equal
to n); hence, (4.5.9) follows. Owing to (4.5.9) and (4.5.8), the subspaces R(S ) and R(G) are
sometimes called the signal subspace and noise subspace, respectively.

The following key result is obtained from (4.5.6):

The true frequency values {ωk }nk=1 are the only solutions of the equation

a∗(ω)GG∗a(ω) = 0 for any m > n .
(4.5.13)

The fact that {ωk } satisfy this equation follows from (4.5.6). It only remains to prove that
{ωk }nk=1 are the only solutions to (4.5.13). Let ω̃ denote another possible solution, with ω̃ �= ωk

(k = 1, . . . , n). In (4.5.13), GG∗ is the orthogonal projector onto R(G). (See Section A.4.) Hence,
(4.5.13) implies that a(ω̃) is orthogonal to R(G), which means that a(ω̃) ∈ N (G∗). However, the
Vandermonde vector a(ω̃) is linearly independent of {a(ωk )}nk=1. Since n + 1 linearly independent
vectors cannot belong to an n-dimensional subspace, which is N (G∗) in the present case, we
conclude that no other solution ω̃ to (4.5.13) can exist; with this, the proof is finished.

The MUSIC algorithm uses the previous result to derive frequency estimates in the following
steps:

Step 1. Compute the sample covariance matrix

R̂ = 1

N

N∑
t=m

ỹ(t)ỹ∗(t) (4.5.14)

and its eigendecomposition. Let Ŝ and Ĝ denote the matrices defined similarly to S and
G , but made from the eigenvectors {ŝ1, . . . , ŝn} and {ĝ1, . . . , ĝm−n} of R̂.

Step 2a. (Spectral MUSIC) [Schmidt 1979; Bienvenu 1979]. Determine frequency estimates as
the locations of the n highest peaks of the function

1

a∗(ω)ĜĜ∗a(ω)
, ω ∈ [−π, π ] (4.5.15)

(Sometimes (4.5.15) is called a “pseudospectrum,” since it indicates the presence of
sinusoidal components in the studied signal, but it is not a true PSD. This fact may
explain the attribute “spectral” attached to this variant of MUSIC.)



Section 4.5 Pisarenko and MUSIC Methods 169

OR

Step 2b. (Root MUSIC) [Barabell 1983]. Determine frequency estimates as the angular positions
of the n (pairs of reciprocal) roots of the equation

aT (z−1)ĜĜ∗a(z ) = 0 (4.5.16)

which are located nearest the unit circle. In (4.5.16), a(z ) stands for the vector a(ω),
(4.2.4), with eiω replaced by z , so

a(z ) = [1, z−1, . . . , z−(m−1)]T

For m = n + 1 (which is the minimum possible value), the MUSIC algorithm reduces to the
Pisarenko method, which was the earliest proposal for an eigenanalysis-based (or subspace-based)
method of frequency estimation [Pisarenko 1973]:

The Pisarenko method is MUSIC with m = n + 1. (4.5.17)

In the Pisarenko method, the estimated frequencies are computed from (4.5.16). For m = n + 1,
this 2(m − 1)-degree equation can be reduced to the following equation of degree m − 1 = n:

aT (z−1)ĝ1 = 0 (4.5.18)

The Pisarenko frequency estimates are obtained as the angular positions of the roots of (4.5.18).
The Pisarenko method is the simplest version of MUSIC from a computational standpoint. In
addition, unlike MUSIC with m > n + 1, the Pisarenko procedure does not have the problem of
separating the “signal roots” from the “noise roots.” (See the discussion on this point at the end
of Section 4.4.) However, it can be shown that the accuracy of the MUSIC frequency estimates
increases significantly with increasing m . Hence, the price paid for the computational simplicity
of the Pisarenko method could be a relatively poor statistical accuracy.

Regarding the selection of a value for m , this parameter may be chosen as large as possible,
but not too close to N, in order to still allow a reliable estimation of the covariance matrix (for
example, as in (4.5.14)). In some applications, the largest possible value that may be selected for
m may also be limited by computational complexity considerations.

Whenever the tradeoff between statistical accuracy and computational complexity is an impor-
tant issue, the following simple ideas can be valuable.

The finite-sample statistical accuracy of MUSIC frequency estimates may be improved by
modifying the covariance estimator (4.5.14). For instance, R̂ is not Toeplitz, whereas the true
covariance matrix R is. We may correct this situation by replacing the elements in each diag-
onal of R̂ with their average. The so-corrected sample covariance matrix can be shown to be
the best (in the Frobenius-norm sense) Toeplitz approximation of R̂. Another modification of
R̂, with the same purpose of improving the finite-sample statistical accuracy, is described in
Section 4.8.
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The computational complexity of MUSIC, for a given m , can be reduced in various ways.
Quite often, m is such that m − n > n . Then, the computational burdens associated with both
Spectral and Root MUSIC can be reduced by using I − Ŝ Ŝ ∗ in (4.5.15) or (4.5.16) in lieu of ĜĜ∗.
(Note that Ŝ Ŝ ∗ + ĜĜ∗ = I by the very definition of the eigenvector matrices.) The computational
burden of Root MUSIC can be further reduced as explained next. The polynomial in (4.5.16) is
a self-reciprocal (or symmetric) one: its roots appear in reciprocal pairs (ρeiϕ, 1

ρ
eiϕ). On the unit

circle z = eiω, (4.5.16) is nonnegative and, hence, may be interpreted as a PSD. These properties
mentioned imply that (4.5.16) can be factored as

aT (z−1)ĜĜ∗a(z ) = α(z )α∗(1/z ∗) (4.5.19)

where α(z ) is a polynomial of degree (m − 1) with all its zeroes located within or on the unit
circle. We can then find the frequency estimates from the n roots of α(z ) that are closest to the
unit circle. Since there are efficient numerical procedures for spectral factorization, determining
α(z ), as in (4.5.19), and then computing its zeroes is usually computationally more efficient than
finding the (reciprocal) roots of the 2(m − 1)-degree polynomial (4.5.16).

Finally, we address the issue of spurious frequency estimates. As implied by the result (4.5.13),
for N →∞ there is no risk of obtaining false frequency estimates. However, in finite samples,
such a risk always exists. Usually, this risk is quite small but it could become a real problem if m
takes on large values. The key result on which the standard MUSIC algorithm, (4.5.15), is based
can be used to derive a modified MUSIC that does not suffer from the spurious-estimate problem.
In what follows, we explain only the basic ideas leading to the modified MUSIC method, without
going into details of its implementation. (For such details, the interested reader may consult
[Stoica and Sharman 1990].) Let {ck }nk=1 denote the coefficients of the polynomial A(z ) defined
in (4.2.3); that is,

A(z ) = 1+ c1z−1 + . . .+ cnz−n =
n∏

k=1

(1− eiωk z−1) (4.5.20)

Introduce the following matrix made from {ck }:

C ∗ =




1 c1 . . . cn 0
. . .

. . .
. . .

0 1 c1 . . . cn


 , (m − n)× m (4.5.21)

It is readily verified that

C ∗A = 0, (m − n)× n (4.5.22)

where A is defined in (4.2.4). Combining (4.5.9) and (4.5.22) gives

C ∗S = 0, (m − n)× n (4.5.23)



Section 4.6 Min–Norm Method 171

which is the key property here. The matrix equation (4.5.23) can be rewritten in the form

φc = µ (4.5.24)

where the (m − n)n × n matrix φ and the (m − n)n × 1 vector µ are entirely determined from
the elements of S , and where

c = [c1 . . . cn ]T (4.5.25)

By replacing the elements of S in φ and µ by the corresponding entries of Ŝ , we obtain the
sample version of (4.5.24),

φ̂ĉ � µ̂ (4.5.26)

from which an estimate ĉ of c may be obtained by an LS or TLS algorithm; see Section A.8 for
details. The frequency estimates can then be derived from the roots of the estimated polynomial
(4.5.20) corresponding to ĉ. Since this polynomial has a (minimal) degree equal to n , there is no
risk for false frequency estimation.

4.6 MIN–NORM METHOD

MUSIC uses (m − n) linearly independent vectors in R(Ĝ) to obtain the frequency estimates.
Since any vector in R(Ĝ) is (asymptotically) orthogonal to {a(ωk )}nk=1 (cf. (4.5.7)), we may
think of using only one such vector for frequency estimation. By doing so, we might achieve
some computational saving, hopefully without sacrificing too much accuracy.

The Min–Norm method proceeds to estimate the frequencies along these lines [Kumaresan
and Tufts 1983]. Let

[
1
ĝ

]
= the vector in R(Ĝ), with first element equal to one,

that has minimum Euclidean norm.
(4.6.1)

Then, the Min–Norm frequency estimates are determined as

(Spectral Min–Norm). The locations of the n highest peaks in the
pseudospectrum

1∣∣∣∣a∗(ω)[ 1
ĝ

]∣∣∣∣2
(4.6.2)



172 Chapter 4 Parametric Methods for Line Spectra

or, alternatively,

(Root Min–Norm). The angular positions of the n roots of the polynomial

aT (z−1)

[
1
ĝ

]

that are located nearest to the unit circle.

(4.6.3)

It remains to find the vector in (4.6.1) and, in particular, to show that its first element can
always be normalized to 1. We will later comment on the reason behind the specific selection
(4.6.1) of a vector in R(Ĝ). In the following, the Euclidean norm of a vector is denoted by ‖ · ‖.

Partition the matrix Ŝ as

Ŝ =
[
α∗

S̄

] } 1
} m − 1

(4.6.4)

As
[

1
ĝ

]
∈ R(Ĝ), it must satisfy the equation

Ŝ ∗
[

1
ĝ

]
= 0 (4.6.5)

which, by using (4.6.4), can be rewritten as

S̄ ∗ĝ = −α (4.6.6)

The minimum–norm solution to (4.6.6) is given (see Result R31 in Appendix A) by

ĝ = −S̄ (S̄ ∗S̄ )−1α (4.6.7)

assuming that the inverse exists. Note that

I = Ŝ ∗Ŝ = αα∗ + S̄ ∗S̄ (4.6.8)

and also that one eigenvalue of I − αα∗ is equal to 1− ‖α‖2 and the remaining (n − 1) eigen-
values of I − αα∗ are equal to 1; it follows that the inverse in (4.6.7) exists if and only if

‖α‖2 �= 1 (4.6.9)

If this condition is not satisfied, there will be no vector of the form of (4.6.1) in R(Ĝ). We
postpone the study of (4.6.9) until we obtain a final-form expression for ĝ .

Under the condition (4.6.9), a simple calculation shows that

(S̄ ∗S̄ )−1α = (I − αα∗)−1α = α/(1− ‖α‖2) (4.6.10)
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Inserting (4.6.10) in (4.6.7) gives

ĝ = −S̄α/(1− ‖α‖2) (4.6.11)

which expresses ĝ as a function of the elements of Ŝ .
We can also obtain ĝ as a function of the entries in Ĝ . To do so, partition Ĝ as

Ĝ =
[
β∗

Ḡ

]
(4.6.12)

Since Ŝ Ŝ ∗ = I − ĜĜ∗ by the definition of the matrices Ŝ and Ĝ , it follows that

[
‖α‖2 (S̄α)∗

S̄α S̄ S̄ ∗

]
=
[

1− ‖β‖2 −(Ḡβ)∗

−Ḡβ I − ḠḠ∗

]
(4.6.13)

Comparing the blocks in (4.6.13) makes it possible to express ‖α‖2 and S̄α as functions of Ḡ
and β, which leads to the following equivalent expression for ĝ :

ĝ = Ḡβ/‖β‖2 (4.6.14)

If m − n > n , then it is computationally more advantageous to obtain ĝ from (4.6.11); otherwise,
(4.6.14) should be used.

Next, we return to the condition (4.6.9), which is implicitly assumed to hold in the previous
derivations. As already mentioned, this condition is equivalent to rank(S̄ ∗S̄ ) = n which, in turn,
holds if and only if

rank(S̄ ) = n (4.6.15)

Now, it follows from (4.5.9) that any block of S made from more than n consecutive rows
should have rank equal to n . Hence, (4.6.15) must hold at least for N sufficiently large. With this
observation, the derivation of the Min–Norm frequency estimator is complete.

The statistical accuracy of the Min–Norm method is similar to that corresponding to MUSIC.
Hence, Min–Norm achieves MUSIC’s performance at a reduced computational cost. It should
be noted that the selection (4.6.1) of the vector in R(Ĝ), used in the Min–Norm algorithm, is
critical in obtaining frequency estimates with satisfactory statistical accuracy. Other choices of
vectors in R(Ĝ) could give rather poor accuracy. In addition, there is empirical evidence that
the use of the minimum–norm vector in R(Ĝ), as in (4.6.1), can decrease the risk of spurious
frequency estimates, as compared with the use of other vectors in R(Ĝ) or even with MUSIC.
See Complement 6.5.1 for details on this aspect.
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4.7 ESPRIT METHOD

Let

A1 = [Im−1 0]A (m − 1)× n (4.7.1)

and

A2 = [0 Im−1]A (m − 1)× n (4.7.2)

where Im−1 is the identity matrix of dimension (m − 1)× (m − 1) and [Im−1 0] and [0 Im−1]
are (m − 1)× m . It is readily verified that

A2 = A1D (4.7.3)

where

D =




e−iω1 0
. . .

0 e−iωn


 (4.7.4)

D is a unitary matrix, so the transformation in (4.7.3) is a rotation. ESPRIT (Estimation of Signal
Parameters by Rotational Invariance Techniques: [Paulraj, Roy, and Kailath 1986; Roy and
Kailath 1989]; see also [Kung, Arun, and Rao 1983]), relies on the rotational transformation
(4.7.3), as we detail next.

Similarly to (4.7.1) and (4.7.2), define

S1 = [Im−1 0]S (4.7.5)

S2 = [0 Im−1]S (4.7.6)

From (4.5.12), we have that

S = AC (4.7.7)

where C is the n × n nonsingular matrix given by

C = PA∗S�
◦ −1 (4.7.8)

(Observe that both S and A in (4.7.7) have full column rank, and hence, C must be nonsingular;
see Result R2 in Appendix A.) The foregoing explicit expression for C actually has no relevance
to the present discussion. It is only (4.7.7) and the fact that C is nonsingular that count.

By using (4.7.1)–(4.7.3) and (4.7.7), we can write

S2 = A2C = A1DC = S1C−1DC = S1φ (4.7.9)



Section 4.8 Forward–Backward Approach 175

where

φ � C−1DC (4.7.10)

The Vandermonde structure of A, implies that the matrices A1 and A2 have full column rank (equal
to n). In view of (4.7.7), S1 and S2 must also have full column rank. It then follows from (4.7.9)
that the matrix φ is given uniquely by

φ = (S ∗1 S1)
−1S ∗1 S2 (4.7.11)

This formula expresses φ as a function of some quantities that can be estimated from the available
sample. The importance of being able to estimate φ stems from the fact that φ and D have the
same eigenvalues. (This can be seen from equation (4.7.10), which is a similarity transformation
relating φ and D , along with Result R6 in Appendix A.)

ESPRIT uses the previous observations to compute frequency estimates as described here:

ESPRIT estimates the frequencies {ωk }nk=1 as −arg(ν̂k ), where {ν̂k }nk=1 are the
eigenvalues of the following (consistent) estimate of the matrix φ:

φ̂ = (Ŝ ∗1 Ŝ1)
−1Ŝ ∗1 Ŝ2

(4.7.12)

It should be noted that this estimate of φ is implicitly obtained by solving the linear system
of equations

Ŝ1φ̂ � Ŝ2 (4.7.13)

by an LS method. It has been empirically observed that better finite-sample accuracy might be
achieved if (4.7.13) is solved for φ̂ by a Total LS method. (See Section A.8 and [Van Huffel
and Vandewalle 1991] for discussions on the TLS approach.)

The statistical accuracy of ESPRIT is similar to that of the previously described methods:
HOYW, MUSIC, and Min–Norm. In fact, in most cases, ESPRIT may provide slightly more
accurate frequency estimates than do the other methods mentioned, yet at similar computational
cost. In addition, unlike these other methods, ESPRIT has no problem with separating the “signal
roots” from the “noise roots,” as can be seen from (4.7.12). Note that this property is shared by the
modified MUSIC method (discussed in Section 4.5); however, in many cases, ESPRIT outperforms
modified MUSIC in terms of statistical accuracy. All these considerations recommend ESPRIT
as the first choice in a frequency estimation application.

4.8 FORWARD–BACKWARD APPROACH

The previously described eigenanalysis-based methods (MUSIC, Min–Norm, and ESPRIT) derive
their frequency estimates from the eigenvectors of the sample covariance matrix R̂, (4.5.14), which



176 Chapter 4 Parametric Methods for Line Spectra

is restated here for easy reference:

R̂ = 1

N

N∑
t=m




y(t)
...

y(t − m + 1)


 [y∗(t) . . . y∗(t − m + 1)] (4.8.1)

R̂ is recognized to be the matrix that appears in the least-squares (LS) estimation of the coefficients
{αk } of an mth-order forward linear predictor of y∗(t + 1):

ŷ∗(t + 1) = α1y∗(t)+ . . .+ αmy∗(t − m + 1) (4.8.2)

For this reason, the methods that obtain frequency estimates from R̂ are named forward (F)
approaches.

Extensive numerical experience with the aforementioned methods has shown that the corre-
sponding frequency-estimation accuracy can be enhanced by using, in lieu of R̂, the modified
sample covariance matrix

R̃ = 1

2
(R̂ + J R̂T J ) (4.8.3)

where

J =

 0 1

. .
.

1 0


 (4.8.4)

is the so-called “exchange” (or “reversal ”) matrix. The second term in (4.8.3) has the following
detailed form:

J R̂T J = 1

N

N∑
t=m




y∗(t − m + 1)
...

y∗(t)


 [y(t − m + 1) . . . y(t)] (4.8.5)

The matrix (4.8.5) is the one that appears in the LS estimate of the coefficients of an mth-order
backward linear predictor of y(t − m):

ŷ(t − m) = µ1y(t − m + 1)+ . . .+ µm y(t) (4.8.6)

This observation, along with the previous remark made about R̂, suggests the name forward–
backward (FB) approaches for methods that obtain frequency estimates from R̃ in (4.8.3).
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The (i , j ) element of R̃ is given by

R̃i ,j = 1

2N

N∑
t=m

[y(t − i )y∗(t − j )+ y∗(t − m + 1+ i )y(t − m + 1+ j )]

� T1 + T2 (i , j = 0, . . . ,m − 1) (4.8.7)

Assume that i ≤ j (the other case i ≥ j can be similarly treated). Let r̂(j − i ) denote the usual
sample covariance:

r̂(j − i ) = 1

N

N∑
t=(j−i )+1

y(t)y∗(t − (j − i )) (4.8.8)

A straightforward calculation shows that the two terms T1 and T2 in (4.8.7) can be written as

T1 = 1

2N

N−i∑
p=m−i

y(p)y∗(p − (j − i )) = 1

2
r̂(j − i )+O(1/N ) (4.8.9)

and

T2 = 1

2N

N−m+j+1∑
p=j+1

y(p)y∗(p − (j − i )) = 1

2
r̂(j − i )+O(1/N ) (4.8.10)

where O(1/N ) denotes a term that tends to zero as 1/N when N increases (it is here assumed that
m � N ). It follows from (4.8.7)–(4.8.10) that, for large N, the difference between R̃i ,j or R̂i ,j and
the sample covariance lag r̂(j − i ) is “small.” Hence, the frequency estimation methods based on
R̂ or R̃ (or on [r̂(j − i )]) may be expected to have similar performances in large samples.

In summary, it follows from the previous discussion that the empirically observed performance
superiority of the forward–backward approach over the forward-only approach should only be
manifest in samples with relatively small lengths. As such, this superiority cannot easily be
established by theoretical means. Let us then argue heuristically.

First, note that the transformation J (.)T J is such that the following equalities hold:

(R̂)i ,j = (J R̂J )m−i ,m−j = (J R̂T J )m−j ,m−i (4.8.11)

and

(R̂)m−j ,m−i = (J R̂T J )i ,j (4.8.12)

This implies that the (i , j ) and (m − j ,m − i ) elements of R̃ are both given by

R̃i ,j = R̃m−j ,m−i = 1

2
(R̂i ,j + R̂m−j ,m−i ) (4.8.13)
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Equations (4.8.11)–(4.8.12) imply that R̃ is invariant to the transformation J (.)T J :

J R̃T J = R̃ (4.8.14)

Such a matrix is said to be persymmetric (or centrosymmetric). In order to see the reason for
this name, note that R̃ is Hermitian (symmetric in the real-valued case) with respect to its main
diagonal; in addition, R̃ is symmetric about its main antidiagonal. Indeed, the equal elements
R̃i ,j and R̃m−j ,m−i of R̃ belong to the same diagonal as i − j = (m − j )− (m − i ). They are
also symmetrically placed with respect to the main antidiagonal; R̃i ,j lies on antidiagonal (i + j ),
R̃m−j ,m−i on the [2m − (j + i )]th one, and the main antidiagonal is the mth one (and m = [(i +
j )+ 2m − (i + j )]/2).

The theoretical (and unknown) covariance matrix R is Toeplitz and hence persymmetric.
Since R̃ is persymmetric like R, whereas R̂ is not, we may expect R̃ to be a better estimate of
R than R̂. In turn, this means that the frequency estimates derived from R̃ are likely to be more
accurate than those obtained from R̂.

The impact of enforcing the persymmetric property can be seen by examining, say, the (1, 1)
and (m,m) elements of R̂ and R̃. Both the (1, 1) and (m,m) elements of R̂ are estimates of r(0);
however, the (1, 1) element does not use the first (m − 1) lag products |y(1)|2, . . . , |y(m − 1)|2,
and the (m,m) element does not use the last (m − 1) lag products |y(N − m + 2)|2, . . . , |y(N )|2.
If N � m , the omission of these lag products is negligible; for small N, however, this omission
can be significant. On the other hand, all lag products of y(t) are used to form the (1, 1) and
(m,m) elements of R̃, and, in general, the (i , j ) element of R̃ uses more lag products of y(t) than
does the corresponding element of R̂. (For more details on the FB approach, we refer the reader
to, e.g., [Rao and Hari 1993; Pillai 1989]; see also Complement 6.5.8.)

Finally, the reader might wonder why we do not replace R̂ by a Toeplitz estimate, obtained
(for example) by averaging the elements along each diagonal of R̂. This Toeplitz estimate would
at first seem to be a better approximation of R than either R̂ or R̃. The reason why we do not
“Toeplitz-ize” R̂ or R̃ is that, for finite N and infinite signal-to-noise ratio (σ 2 → 0), the use of
either R̂ or R̃ gives exact frequency estimates, whereas the Toeplitz-averaged approximation of R
does not. As σ 2 → 0, both R̂ and R̃ have rank n , but the Toeplitz-averaged approximation of R
has full rank in general.

4.9 COMPLEMENTS

4.9.1 Mean-Square Convergence of Sample Covariances for Line
Spectral Processes

In this complement, we prove that

lim
N→∞

r̂(k) = r(k) (in the mean-square sense) (4.9.1)
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(i.e., limN→∞ E
{|r̂(k)− r(k)|2} = 0). The above result has already been referred to in

Section 4.4, in the discussion on the rank properties of �̂ and �. It is also the basic result
from which the consistency of all covariance-based frequency estimators discussed in this chapter
can be readily concluded. Note that a signal {y(t)} satisfying (4.9.1) is said to be second-order
ergodic. (See [Söderström and Stoica 1989; Brockwell and Davis 1991] for a more detailed
discussion of the ergodicity property.)

A straightforward calculation gives

r̂(k) = 1

N

N∑
t=k+1

[x(t)+ e(t)][x∗(t − k)+ e∗(t − k)]

= 1

N

N∑
t=k+1

[x(t)x∗(t − k)+ x(t)e∗(t − k)+ e(t)x∗(t − k)

+ e(t)e∗(t − k)] � T1 + T2 + T3 + T4 (4.9.2)

The limit of T1 is found as follows. First note that

lim
N→∞

E
{|T1 − rx (k)|2

} = lim
N→∞

{
1

N 2

N∑
t=k+1

N∑
s=k+1

E
{
x(t)x∗(t − k)x∗(s)x(s − k)

}

−
(

2

N

N∑
t=k+1

|rx (k)|2
)
+ |rx (k)|2

}

= lim
N→∞

{
1

N 2

N∑
t=k+1

N∑
s=k+1

E
{
x(t)x∗(t − k)x∗(s)x(s − k)

}}

−|rx (k)|2

Now,

E
{
x(t)x∗(t − k)x∗(s)x(s − k)

} = n∑
p=1

n∑
j=1

n∑
l=1

n∑
m=1

apaj al amei (ωp−ωj )t ei (ωm−ωl )s

· ei (ωj−ωm )k E
{
eiϕp e−iϕj eiϕm e−iϕl

}
=

n∑
p=1

n∑
j=1

n∑
l=1

n∑
m=1

apaj al amei (ωp−ωj )t ei (ωm−ωl )s

· ei (ωj−ωm )k (δp,j δm,l + δp,l δm,j − δp,j δm,l δp,m
)
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where the last equality follows from the assumed independence of the initial phases {ϕk }. Combin-
ing the results of the above two calculations yields

lim
N→∞

E
{|T1 − rx (k)|2

} = lim
N→∞

1

N 2

N∑
t=k+1

N∑
s=k+1




n∑
p=1

n∑
m=1

a2
p a2

m ei (ωp−ωm )k

+
n∑

p=1

n∑
m=1

a2
p a2

mei (ωp−ωm )(t−s) −
n∑

p=1

a4
p


− |rx (k)|2

=
n∑

p=1

n∑
m=1
m �=p

a2
p a2

m lim
N→∞

1

N 2

N∑
τ=−N

(N − |τ |)ei (ωp−ωm )τ

= 0 (4.9.3)

It follows that T1 converges to r(k) (in the mean-square sense) as N tends to infinity.
The limits of T2 and T3 are equal to zero, as shown next for T2; the proof for T3 is similar.

Using the fact that {x(t)} and {e(t)} are, by assumption, independent random signals, we get

E
{|T2|2

} = 1

N 2

N∑
t=k+1

N∑
s=k+1

E
{
x(t)e∗(t − k)x∗(s)e(s − k)

}

= σ 2

N 2

N∑
t=k+1

N∑
s=k+1

E
{
x(t)x∗(s)

}
δt,s

= σ 2

N 2

N∑
t=k+1

E
{|x(t)|2} = (N − k)σ 2

N 2
E
{|x(t)|2} (4.9.4)

which tends to zero as N →∞. Hence, T2 (and, similarly, T3) converges to zero in the mean-
square sense.

The last term, T4, in (4.9.2), converges to σ 2δk ,0 by the “law of large numbers” (as shown
in [Söderström and Stoica 1989; Brockwell and Davis 1991]). In fact, it is readily verified,
at least under the Gaussian hypothesis, that

E
{|T4 − σ 2δk ,0|2

} = 1

N 2

N∑
t=k+1

N∑
s=k+1

E
{
e(t)e∗(t − k)e∗(s)e(s − k)

}

− σ 2δk ,0

{
1

N

N∑
t=k+1

E
{
e(t)e∗(t − k)+ e∗(t)e(t − k)

}}

+ σ 4δk ,0
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= 1

N 2

N∑
t=k+1

N∑
s=k+1

[σ 4δk ,0 + σ 4δt,s ]

− 2σ 4δk ,0
1

N

N∑
t=k+1

(δk ,0)+ σ 4δk ,0

→ σ 4δk ,0 − 2σ 4δk ,0 + σ 4δk ,0 = 0 (4.9.5)

Hence, T4 converges to σ 2δk ,0 in the mean-square sense if e(t) is Gaussian. It can be shown
by using the law of large numbers that T4 → σ 2δk ,0 in the mean-square sense even if e(t) is
non-Gaussian, as long as the fourth-order moment of e(t) is finite.

Next, observe that since, for example, E {|T2|2} and E {|T3|2} converge to zero, then E {T2T ∗3 }
also converges to zero (as N →∞); this is so because

∣∣∣E {
T2T ∗3

} ∣∣∣ ≤ [
E
{|T2|2

}
E
{|T3|2

} ]1/2

With this observation, the proof of (4.9.1) is complete.

4.9.2 The Carathéodory Parameterization of a Covariance Matrix

The covariance matrix model in (4.2.7) is more general than it might appear at first sight. We show
that for any given covariance matrix R = {r(i − j )}mi ,j=1, there exist n ≤ m , σ 2 and {ωk , αk }nk=1
such that R can be written as in (4.2.7). Equation (4.2.7), associated with an arbitrary given
covariance matrix R, is named the Carathéodory parameterization of R.

Let σ 2 denote the minimum eigenvalue of R. Because σ 2 is not necessarily unique, let n̄
denote its multiplicity and set n = m − n̄ . Define

� = R − σ 2I

The matrix � is positive semidefinite and Toeplitz and, hence, must be the covariance matrix
associated with a stationary signal, say y(t):

� = E






y(t)
...

y(t − m + 1)


 [y∗(t) . . . y∗(t − m + 1)]




By definition,

rank(�) = n (4.9.6)

which implies that there must exist a linear combination between {y(t), . . . , y(t − n)} for all t .
Moreover, both y(t) and y(t − n) must appear with nonzero coefficients in that linear combination
(otherwise either {y(t) . . . y(t − n + 1)} or {y(t − 1) . . . y(t − n)} would be linearly related, and
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rank(�) would be less than n , which would contradict (4.9.6)). Hence, y(t) obeys the homogeneous
AR equation

B(z )y(t) = 0 (4.9.7)

where z−1 is the unit delay operator, and

B(z ) = 1+ b1z−1 + · · · + bnz−n

with bn �= 0. Let φ(ω) denote the PSD of y(t). Then we have the following equivalences:

B(z )y(t) = 0 ⇐⇒
∫ π

−π

|B(ω)|2 φ(ω) dω = 0

⇐⇒ |B(ω)|2 φ(ω) = 0

⇐⇒ {If φ(ω) > 0 then B(ω) = 0}
⇐⇒ {φ(ω) > 0 for at most n values of ω}

Furthermore,

{y(t), . . . y(t − n + 1) are linearly independent}
⇐⇒ {

E
{|g0y(t)+ . . .+ gn−1y(t − n + 1)|2} > 0 for every [g0 . . . gn−1]T �= 0

}
⇐⇒

{∫ π

−π
|G(ω)|2 φ(ω) dω > 0 for every G(z ) =∑n−1

k=0 gk z−k �= 0
}

⇐⇒ {φ(ω) > 0 for at least n distinct values of ω}

It follows from these two results that φ(ω) > 0 for exactly n distinct values of ω. Furthermore,
the values of ω for which φ(ω) > 0 are given by the n roots of the equation B(ω) = 0. A signal
y(t) with such a PSD consists of a sum of n sinusoidal components with an m × m covariance
matrix given by

� = APA∗ (4.9.8)

(cf. (4.2.7)). In (4.9.8), the frequencies {ωk }nk=1 are defined as previously indicated and can be
found from � by using any of the subspace-based frequency-estimation methods in this chapter.
Once {ωk } are available, {α2

i } can be determined from �. (Show that.) By combining the additive
decomposition R = � + σ 2I and (4.9.8), we obtain (4.2.7). With this observation, the derivation
of the Carathéodory parameterization is complete.

It is interesting to note that the sinusoids-in-noise signal that “realizes” a given covari-
ance sequence {r(0), . . . , r(m)} also provides a positive definite extension of that sequence.
More precisely, the covariance lags {r(m + 1), r(m + 2), . . .} derived from the sinusoidal signal
equation, when appended to {r(0), . . . , r(m)}, provide a positive definite covariance sequence of
infinite length. The AR covariance realization (see Complement 3.9.2) is the other well-known
method for obtaining a positive definite extension of a given covariance sequence of finite length.
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4.9.3 Using the Unwindowed Periodogram for Sine Wave Detection
in White Noise

As shown in Section 4.3, the unwindowed periodogram is an accurate frequency estimation
method whenever the minimum frequency separation is larger than 1/N. A simple intuitive expla-
nation as to why the unwindowed periodogram is a better frequency estimator than the windowed
periodogram(s) follows. The principal effect of a window is to remove the tails of the sample
covariance sequence from the periodogram formula; this is appropriate for signals whose covari-
ance sequence “rapidly” goes to zero, but inappropriate for sinusoidal signals, whose covariance
sequence never dies out. (For sinusoidal signals, the use of a window is expected to introduce
a significant bias in the estimated spectrum.) Note, however, that, if the data contains sinusoidal
components with significantly different amplitudes, then it could be advisable to use a (mildly)
windowed periodogram. This will induce bias in the frequency estimates, but, on the other hand,
will reduce the leakage and hence make it possible to detect the low-amplitude components.

When using the (unwindowed) periodogram for frequency estimation, an important problem
is to infer whether any of the many peaks of the erratic periodogram plot can really be associated
with the existence of a sinusoidal component in the data. In order to be more precise, consider
the following two hypotheses:

H0: The data consists of (complex circular Gaussian) white noise only (with unknown variance
σ 2).

H1: The data consists of a sum of sinusoidal components and noise.

Deciding between H0 and H1 constitutes the so-called (signal) detection problem. A solution
to the detection problem can be obtained as follows: From the calculations leading to the result
(2.4.21), one can see that the normalized periodogram values in (4.9.15) are independent random
variables (under H0). It remains to derive their distribution. Let

εr (ω) =
√

2

σ
√

N

N∑
t=1

Re[e(t)e−iωt ]

εi (ω) =
√

2

σ
√

N

N∑
t=1

Im[e(t)e−iωt ]

With this notation, and under the null hypothesis H0,

2φ̂p(ω)/σ
2 = ε2

r (ω)+ ε2
i (ω) (4.9.9)

For any two complex scalars, z1 and z2, we have

Re(z1) Im(z2) = z1 + z ∗1
2

z2 − z ∗2
2i

= 1

2
Im (z1z2 + z ∗1 z2) (4.9.10)
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and, similarly,

Re(z1)Re(z2) = 1

2
Re(z1z2 + z ∗1 z2) (4.9.11)

Im(z1) Im(z2) = 1

2
Re(−z1z2 + z ∗1 z2) (4.9.12)

By making use of (4.9.10)–(4.9.12), we can write

E {εr (ω)εi (ω)} = 1

σ 2N
Im

{
N∑

t=1

N∑
s=1

E
{
e(t)e(s)e−iω(t+s) + e∗(t)e(s)eiω(t−s)}}

= Im{1} = 0

E
{
ε2

r (ω)
} = 1

σ 2N
Re

{
N∑

t=1

N∑
s=1

E
{
e(t)e(s)e−iω(t+s) + e∗(t)e(s)eiω(t−s)}}

= Re{1} = 1 (4.9.13)

E
{
ε2

i (ω)
} = 1

σ 2N
Re

{
N∑

t=1

N∑
s=1

E
{−e(t)e(s)e−iω(t+s) + e∗(t)e(s)eiω(t−s)}}

= Re{1} = 1 (4.9.14)

In addition, note that the random variables εr (ω) and εi (ω) are zero-mean Gaussian distributed,
because they are linear transformations of the Gaussian white-noise sequence. Then, it follows
that, under H0,

The random variables

{2φ̂p(ωk )/σ
2}Nk=1,

with mink �=j |ωk − ωj | ≥ 2π/N, are asymptotically independent and χ2

distributed with 2 degrees of freedom.

(4.9.15)

(See, e.g., [Priestley 1981] and [Söderström and Stoica 1989] for the definition and properties
of the χ2 distribution.) It is worth noting that, if {ωk } are equal to the Fourier frequencies
{2πk/N }N−1

k=0 , then the previous distributional result is exactly valid (i.e., it holds in samples of
finite length; see, for example, equation (2.4.26)). However, this observation is not as important
as it might at first seem, because σ 2 in (4.9.15) is unknown. When the noise power in (4.9.15) is
replaced by a consistent estimate σ̂ 2, the normalized periodogram values so obtained,

{2φ̂p(ωk )/σ̂
2} (4.9.16)
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are χ2(2) distributed only asymptotically (for N � 1). A consistent estimate of σ 2 can be obtained
as follows: From (4.9.9), (4.9.13), and (4.9.14) we have that, under H0,

E
{
φ̂p(ωk )

}
= σ 2 for k = 1, 2, . . . ,N

Since {φ̂p(ωk )}Nk=1 are independent random variables, a consistent estimate of σ 2 is given by

σ̂ 2 = 1

N

N∑
k=1

φ̂p (ωk )

Inserting this expression for σ̂ 2 into (4.9.16) leads to the following “test statistic”:

µk = 2N φ̂p(ωk )

N∑
k=1

φ̂p(ωk )

In accordance with the (asymptotic) χ2 distribution of {µk }, we have (for any given c ≥ 0; see,
for example, [Priestley 1981])

Pr(µk ≤ c) =
∫ c

0

1

2
e−x/2 dx = 1− e−c/2. (4.9.17)

Let

µ = max
k

[µk ]

Using (4.9.17) (and the fact that {µk } are independent random variables) we find that (for any
c ≥ 0)

Pr(µ > c) = 1− Pr(µ ≤ c)

= 1− Pr(µk ≤ c for all k)

= 1− (1− e−c/2)N (under H0)

This result can be used to set a bound on µ that, under H0, holds with a (high) preassigned
probability, say 1− α. More precisely, let α be given (e.g., α = 0.05), and solve for c from the
equation

(1− e−c/2)N = 1− α
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Then

• If µ ≤ c, accept H0 with an unknown risk. (That risk depends on the signal-
to-noise ratio (SNR). The lower the SNR, the larger the risk of accepting
H0 when it does not hold.)

• If µ > c, reject H0 with a risk equal to α.

It should be noted that, whenever H0 is rejected by the above test, what we can really infer is
that the periodogram peak in question is significant enough to make the existence of a sinusoidal
component in the studied data highly probable. However, the previous test does not tell us the
number of sinusoidal components in the data. In order to determine that number, the test should be
continued by looking at the second-highest peak in the periodogram. For a test of the significance
of the second-highest value of the periodogram, and so on, we refer to [Priestley 1981].

Finally, we note that, in addition to the test presented in this complement, there are several
other tests to decide between the hypotheses H0 and H1; see [Priestley 1997] for a review.

4.9.4 NLS Frequency Estimation for a Sinusoidal Signal
with Time-Varying Amplitude

Consider the sinusoidal data model in (4.1.1) for the case of a single component (n = 1), but with
a time-varying amplitude

y(t) = α(t)ei (ωt+ϕ) + e(t), t = 1, . . . ,N (4.9.18)

where α(t) ∈ R is an arbitrary unknown envelope modulating the sinusoidal signal. The NLS
estimates of α(t), ω, and ϕ are obtained by minimizing the criterion

f =
N∑

t=1

∣∣y(t)− α(t)ei (ωt+ϕ)
∣∣2

(cf. (4.3.1)). In this complement, we show that this seemingly complicated minimization problem
has, in fact, a simple solution. We also discuss briefly an FFT-based algorithm for computing
that solution. The reader interested in more details on the topic of this complement can consult
[Besson and Stoica 1999; Stoica, Besson, and Gershman 2001] and references therein.

A straightforward calculation shows that

f =
N∑

t=1

{∣∣∣y(t)∣∣∣2 + [
α(t)− Re

(
e−i (ωt+ϕ)y(t)

)]2 − [
Re

(
e−i (ωt+ϕ)y(t)

)]2
}

(4.9.19)

The minimization of (4.9.19) with respect to α(t) is immediate:

α̂(t) = Re
(

e−i (ω̂t+ϕ̂)y(t)
)

(4.9.20)
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Note that the NLS estimates ω̂ and ϕ̂ are yet to be determined. Inserting (4.9.20) into (4.9.19)
shows that the NLS estimates of ϕ and ω are obtained by maximizing the function

g = 2
N∑

t=1

[
Re

(
e−i (ωt+ϕ)y(t)

)]2

where the factor 2 has been introduced for the sake of convenience. For any complex number c
we have

[Re(c)]2 = 1

4

(
c + c∗

)2 = 1

2

[|c|2 + Re
(
c2)]

It follows that

g =
N∑

t=1

{|y(t)|2 + Re
[
e−2i (ωt+ϕ)y2(t)

]}

= constant+
∣∣∣∣∣

N∑
t=1

y2(t)e−i2ωt

∣∣∣∣∣ · cos

[
arg

(
N∑

t=1

y2(t)e−i2ωt

)
− 2ϕ

]
(4.9.21)

Clearly, the maximizing ϕ is given by

ϕ̂ = 1

2
arg

(
N∑

t=1

y2(t)e−i2ω̂t

)

with the NLS estimate of ω given by

ω̂ = arg max
ω

∣∣∣∣∣
N∑

t=1

y2(t)e−i2ωt

∣∣∣∣∣ (4.9.22)

It is important to note that the maximization in (4.9.22) should be conducted over [0, π ]
instead of over [0, 2π ]; indeed, the function in (4.9.22) is periodic with a period equal to π . The
restriction of ω to [0, π ] is not a peculiar feature of the NLS approach; rather, it is a consequence
of the generality of the problem considered in this complement. This is easily seen by making
the substitution ω→ ω + π in (4.9.18), which yields

y(t) = α̃(t)ei (ωt+ϕ) + e(t), t = 1, . . . ,N

where α̃(t) = (−1)tα(t) is another valid (i.e., real-valued) envelope. This simple calculation
confirms the fact that ω is uniquely identifiable only in the interval [0, π ]. In applications, the
frequency can be made to belong to [0, π ] by using a sufficiently small sampling period.
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The previous estimate of ω should be contrasted with the NLS estimate of ω in the constant-
amplitude case (see (4.3.11), (4.3.17)):

ω̂ = arg max
ω

∣∣∣∣∣
N∑

t=1

y(t)e−iωt

∣∣∣∣∣ (for α(t) = constant) (4.9.23)

There is a striking similarity between (4.9.22) and (4.9.23); the only difference between these
equations is the squaring of the terms in (4.9.22). As a consequence, we can apply the FFT to
the squared data sequence {y2(t)} to obtain the ω̂ in (4.9.22).

The reader perhaps wonders whether there is an intuitive reason for the occurrence of the
squared data in (4.9.22). A possible way to explain this occurrence goes as follows: Assume
that α(t) has zero average value. Then the DFT of {α(t)}, denoted A(ω̄), takes on small values
(theoretically zero) at ω̄ = 0. But the DFT of α(t)eiωt is A(ω̄ − ω), so it follows that the modulus
of this DFT has a valley instead of a peak at ω̄ = ω; hence, the standard periodogram (see
(4.9.23)) should not be used to estimate ω. On the other hand, α2(t) always has a nonzero
average value (or DC component); hence, the modulus of the DFT of α2(t)ei2ωt will typically
have a peak at ω̄ = 2ω. This observation provides an heuristic reason for the squaring operation
in (4.9.22).

4.9.5 Monotonically Descending Techniques for Function Minimization

As was explained in Section 4.3, minimizing the NLS criterion with respect to the unknown
frequencies is made rather difficult by existence of possibly many local minima and by the
sharpness of the global minimum. In this complement (based on [Stoica and Selén 2004a]), we
will discuss a number of methods that can be used to solve such a minimization problem. Our
discussion is quite general and applies to many other functions, not to just the NLS criterion that
is used as an illustrating example in what follows.

We will denote the function to be minimized by f (θ), where θ is a vector. Sometimes we will
write this function as f (x , y) where [x T , yT ]T = θ . The algorithms for minimizing f (θ) discussed
in this complement are iterative. We let θ i denote the value taken by θ at the i th iteration (and
similarly for x and y). The common feature of the algorithms included in this complement is that
they all monotonically decrease the function at each iteration:

f (θ i+1) ≤ f (θ i ) for i = 0, 1, 2, . . . (4.9.24)

Hereafter, θ0 denotes the initial value (or estimate) of θ used by the minimization algorithm in
question. Clearly, (4.9.24) is an appealing property, which is the main reason for the interest in
the algorithms discussed here. However, we should note that usually (4.9.24) can do no more than
guarantee the convergence to a local minimum of f (θ). The goodness of the initial estimate θ0 will
often determine whether the algorithm will converge to the global minimum. In fact, for some of
the algorithms to be discussed, not even the convergence to a local minimum is guaranteed. For
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example, the EM algorithm (discussed later in this complement) can converge to saddle points or
local maxima. (See, for example, [McLachlan and Krishnan 1997].) However, such a behavior
is rare in applications, provided that some regularity conditions are satisfied.

Cyclic Minimizer

To describe the main idea of this type of algorithm in its simplest form, let us partition θ into
two subvectors:

θ =
[

x
y

]

Then the generic iteration of a cyclic algorithm for minimizing f (x , y) will have the following
form:

y0 = given

For i = 1, 2, . . . compute:

x i = arg min
x

f (x , yi−1)

yi = arg min
y

f (x i , y)

(4.9.25)

Note that (4.9.25) alternates (or cycles) between the minimization of f (x , y) with respect to x
for given y and the minimization of f (x , y) with respect to y for given x ; hence, the name
“cyclic” given to this type of algorithm. An obvious modification of (4.9.25) allows us to start
with x 0, if so desired. It is readily verified that the cyclic minimizer (4.9.25) possesses the property
(4.9.24)—that is,

f (x i , yi ) ≤ f (x i , yi−1) ≤ f (x i−1, yi−1)

where the first inequality follows from the definition of yi and the second from the definition
of x i .

The partitioning of θ into subvectors is usually done in such a way that the minimization
operations in (4.9.25) (or at least one of them) are “easy” (in any case, easier than the mini-
mization of f jointly with respect to x and y). Quite often, to achieve this desired property, we
need to partition θ into more than two subvectors. The extension of (4.9.25) to such a case is
straightforward and will not be discussed here. However, there is one point about this extension
that we would like to make briefly: whenever θ is partitioned into three or more subvectors, we
can choose the way in which the various minimization subproblems are iterated. For instance, if
θ = [x T , yT , z T ]T then we may iterate the minimization steps with respect to x and with respect
to y a number of times (with z being fixed), before reestimating z , and so forth.
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With reference to the NLS problem in Section 4.3, we can apply the preceding ideas to the
following natural partitioning of the parameter vector:

θ =



γ1

γ2
...

γn


 , γk =


ωk

ϕk

αk


 (4.9.26)

The main virtue of this partitioning of θ is that the problem of minimizing the NLS criterion
with respect to γk , for given {γj } (j = 1, . . . , n; j �= k ), can be solved via the FFT (see (4.3.10),
(4.3.11)). Furthermore, the cyclic minimizer corresponding to (4.9.26) can be initialized, with
γ2 = · · · = γn = 0, in which case the γ1 minimizing the NLS criterion is obtained from the
highest peak of the periodogram (which should give a reasonably accurate estimate of γ1), and
so on.

An elaborated cyclic algorithm, called RELAX, for the minimization of the NLS criterion
based on the preceding ideas (see (4.9.26)), was proposed in [Li and Stoica 1996b]. Note that
cyclic minimizers are sometimes called relaxation algorithms, which provide a motivation for the
name given to the algorithm in [Li and Stoica 1996b].

Majorization Technique

The main idea of this type of iterative technique for minimizing a given function f (θ) is quite
simple. (See, for example, [Heiser 1995] and the references therein.) Assume that, at the i th
iteration, we can find a function gi (θ) (the subindex i indicates the dependence of this function
on θ i ) that possesses the following three properties:

gi (θ
i ) = f (θ i ) (4.9.27)

gi (θ) ≥ f (θ) (4.9.28)

and

the minimization of gi (θ) with respect to θ is “easy” (or, in any case, easier
than the minimization of f (θ)).

(4.9.29)

Owing to (4.9.28), gi (θ) is called a majorizing function for f (θ) at the i th iteration. In the
majorization technique, the parameter vector at iteration (i + 1) is obtained from the minimization
of gi (θ):

θ i+1 = arg min
θ

gi (θ) (4.9.30)

The key property (4.9.24) is satisfied for (4.9.30), since

f (θ i ) = gi (θ
i ) ≥ gi (θ

i+1) ≥ f (θ i+1) (4.9.31)
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The first inequality in (4.9.31) follows from the definition of θ i+1 in (4.9.30), the second from
(4.9.28). Note that, in fact, from (4.9.31), we get

f (θ i )− f (θ i+1) ≥ gi (θ
i )− gi (θ

i+1) ≥ 0

which shows not only that f (θ) is monotonically decreased at each iteration but also that the
decrease in f (θ) is not smaller than the corresponding decrease of the majorizing function gi (θ).

Note that any parameter vector θ i+1 that gives a smaller value of gi (θ) than does gi (θ
i )

will satisfy (4.9.31). Consequently, whenever the minimum point of gi (θ) (see (4.9.30)) cannot
be derived in closed form, we can think of computing θ i+1 by, for example, performing a few
iterations with a gradient-based algorithm initialized at θ i and using a line search (to guarantee that
gi (θ

i+1) ≤ gi (θ
i )). A similar observation could be made on the cyclic minimizer in (4.9.25) when

the minimization of either f (x , yi−1) or f (x i , y) cannot be done in closed form. The modification
of either (4.9.30) or (4.9.25) in this way usually simplifies the computational effort of each
iteration, but could slow down the convergence speed of the algorithm by increasing the number
of iterations needed to achieve convergence.

An interesting question regarding the two algorithms discussed so far is whether we could
obtain the cyclic minimizer by using the majorization principle on a certain majorizing function. In
general, it appears difficult or impossible to do so; nor can the majorization technique be obtained
as a special case of a cyclic minimizer. Hence, these two iterative minimization techniques appear
to have “independent lives.”

To draw more parallels between the cyclic minimizer and the majorization technique, we
remark on the fact that, in the former, the user has to choose the partitioning of θ that makes
the minimization in, for example, (4.9.25) “easy,” whereas in the latter a function gi (θ) has to
be found that is not only “easy” to minimize but also possesses the essential property (4.9.28).
Fortunately for the majorization approach, finding such functions gi (θ) is not as hard as it might at
first seem. In what follows, we will develop a method for constructing a function gi (θ) possessing
the desired properties (4.9.27) and (4.9.28) for a general class of functions f (θ) (including the
NLS criterion) that are commonly encountered in parameter estimation applications.

EM Algorithm

The NLS criterion (see (4.3.1)),

f (θ) =
N∑

t=1

∣∣∣∣∣y(t)−
n∑

k=1

αk ei (ωk t+ϕk )

∣∣∣∣∣
2

(4.9.32)

where θ is defined in (4.9.26), is obtained from the data equation (4.1.1) in which the noise
{e(t)} is assumed to be circular and white with mean zero and variance σ 2. Let us also assume
that {e(t)} is Gaussian distributed; then the probability density function of the data vector y =
[y(1), . . . , y(N )]T , for given θ , is

p(y, θ) = 1

(πσ 2)N
e
− f (θ)

σ2 (4.9.33)
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where f (θ) is as defined in (4.9.32). The method of maximum likelihood (ML) obtains an estimate
of θ by maximizing (4.9.33) (see (B.1.7) in Appendix B) or, equivalently, by minimizing the
so-called negative log-likelihood function:

− ln p(y, θ) = constant+ N ln σ 2 + f (θ)

σ 2
(4.9.34)

Minimizing (4.9.34) with respect to θ is equivalent to minimizing (4.9.32), which shows that
the NLS method is identical to the ML method under the assumption that {e(t)} is Gaussian white
noise.

The ML is without a doubt the most widely studied method of parameter estimation. In what
follows, we assume that this is the method used for parameter estimation and hence that the
function we want to minimize with respect to θ is the negative log-likelihood:

f (θ) = − ln p(y, θ) (4.9.35)

Our main goal in this subsection is to show how to construct a majorizing function for the
estimation criterion in (4.9.35) and how the use of the corresponding majorization technique
leads to the expectation-maximization (EM) algorithm introduced in [Dempster, Laird, and
Rubin 1977]. See also [McLachlan and Krishnan 1997] and [Moon 1996] for more recent
and detailed accounts on the EM algorithm.

A notation that will be frequently used concerns the expectation with respect to the distribution
of a certain random vector—say z —which we will denote by Ez {·}. When the distribution
concerned is conditioned on another random vector—say y —we will use the notation Ez |y {·}. If
we also want to stress the dependence of the distribution (with respect to which the expectation
is taken) on a certain parameter vector θ , then we write Ez |y,θ {·}.

The main result that we will use in the following is Jensen’s inequality. It asserts that, for
any concave function h(x), where x is a random vector, the following inequality holds:

E {h(x)} ≤ h (E {x}) (4.9.36)

The proof of (4.9.36) is simple. Let d(x) denote the plane tangent to h(x) at the point E {x}. Then

E {h(x)} ≤ E {d(x)} = d(E {x}) = h(E {x}) (4.9.37)

which proves (4.9.36). The inequality in (4.9.37) follows from the concavity of h(x), the first
equality follows from the fact that d(x) is a linear function of x , and the second equality from
the fact that d(x) is tangent (and hence equal) to h(x) at the point E {x}.

Remark: We note in passing that, despite its simplicity, Jensen’s inequality is a powerful analysis
tool. As a simple illustration of this fact, consider a scalar random variable x with a discrete
probability distribution:

Pr{x = xk } = pk , k = 1, . . . ,M
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Then, using (4.9.36) and the fact that the logarithm is a concave function, we obtain (assuming
xk > 0)

E {ln(x)} =
M∑

k=1

pk ln(xk ) ≤ ln [E {x}] = ln

[
M∑

k=1

pk xk

]

or, equivalently,

M∑
k=1

pk xk ≥
M∏

k=1

x pk
k (for xk > 0 and

M∑
k=1

pk = 1) (4.9.38)

For pk = 1/M, (4.9.38) reduces to the well-known inequality between the arithmetic and geometric
means—that is,

1

M

M∑
k=1

xk ≥
(

M∏
k=1

xk

)1/M

which is so easily obtained in the present framework. �

After these preparations, we turn our attention to the main question of finding a majorizing
function for (4.9.35). Let z be a random vector whose probability density function conditioned
on y is completely determined by θ , and let

gi (θ) = f (θ i )− Ez |y,θ i

{
ln

[
p(y, z , θ)

p(y, z , θ i )

]}
(4.9.39)

Clearly gi (θ) satisfies

gi (θ
i ) = f (θ i ) (4.9.40)

Furthermore, it follows from Jensen’s inequality (4.9.36), the concavity of the function ln(·), and
Bayes’ rule for conditional probabilities that

gi (θ) ≥ f (θ i )− ln

[
Ez |y,θ i

{
p(y, z , θ)

p(y, z , θ i )

}]

= f (θ i )− ln

[
Ez |y,θ i

{
p(y, z , θ)

p(z |y, θ i )p(y, θ i )

}]

= f (θ i )− ln

[
1

p(y, θ i )

∫
p(y, z , θ) dz︸ ︷︷ ︸

p(y,θ)

]

= f (θ i )− ln

[
p(y, θ)

p(y, θ i )

]
= f (θ i )+ [

f (θ)− f (θ i )
] = f (θ) (4.9.41)
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which shows that the function gi (θ) in (4.9.39) also satisfies the key majorization condition
(4.9.28). Usually, z is called the unobserved data (to distinguish it from the observed data vector
y), and the combination (z , y) is called the complete data, while y is called the incomplete data.

It follows from (4.9.40) and (4.9.41), along with the discussion in the previous subsec-
tion about the majorization approach, that the following algorithm will monotonically reduce the
negative log-likelihood function at each iteration:

The Expectation–Maximization (EM) Algorithm

θ0 = given

For i = 0, 1, 2, . . .:

Expectation step: Evaluate Ez |y,θ i {ln p(y, z , θ)} � gi (θ)

Maximization step: Compute θ i+1 = arg max
θ

gi (θ)

(4.9.42)

This is the EM algorithm in a nutshell.
An important aspect of the EM algorithm, which must be considered in every application,

is the choice of the unobserved data vector z . This choice should be done such that the maxi-
mization step of (4.9.42) is “easy” or, in any case, much easier than the maximization of the
likelihood function. In general, doing so is not an easy task. In addition, the evaluation of the
conditional expectation in (4.9.42) might also be rather challenging. Somewhat paradoxically,
these difficulties associated with the EM algorithm have perhaps been a cause for its considerable
popularity. Indeed, the detailed derivation of the EM algorithm for a particular application is a
more challenging research problem (and hence more appealing to many researchers) than, for
instance, the derivation of a cyclic minimizer (which also possesses the key property (4.9.24) of
the EM algorithm).

4.9.6 Frequency-Selective ESPRIT-Based Method

In several applications of spectral analysis, the user is interested only in the components lying in
a small frequency band of the spectrum. A frequency-selective method deals precisely with this
kind of spectral analysis: It estimates the parameters of only those sinusoidal components in the
data that lie in a prespecified band of the spectrum, with as little interference as possible from
the out-of-band components, and in a computationally efficient way. To be more specific, let us
consider the sinusoidal data model in (4.1.1):

y(t) =
n̄∑

k=1

βk eiωk t + e(t); βk = αk eiϕk , t = 0, . . . ,N − 1 (4.9.43)

In some applications (see, e.g., [McKelvey and Viberg 2001; Stoica, Sandgren, Selén,
Vanhamme, and Van Huffel 2003] and the references therein), it would be computationally too
intensive to estimate the parameters of all components in (4.9.43). For instance, this is the case
when n̄ takes on values close to N or when n̄ � N but we have many sets of data to process.
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In such applications, because of computational and other reasons (see points (i) and (ii) below
for details), we focus on only those components of (4.9.43) that are of direct interest to us. Let
us assume that the components of interest lie in a prespecified frequency band composed of the
following Fourier frequencies: {

2π

N
k1,

2π

N
k2, . . . ,

2π

N
kM

}
(4.9.44)

where {k1, . . . , kM } are M given (typically consecutive) integers. We assume that the number of
components of (4.9.43) lying in (4.9.44), which we denote by

n ≤ n̄ (4.9.45)

is given. If n is a priori unknown, then it could be estimated from the data by the methods
described in Appendix C.

Our problem is to estimate the parameters of the n components of (4.9.43) that lie in the
frequency band in (4.9.44). Furthermore, we want to find a solution to this frequency-selective
estimation problem that has the following properties:

(i) It is computationally efficient. In particular, the computational complexity of such a solution
should be comparable with that of a standard ESPRIT method for a sinusoidal model with
n components.

(ii) It is statistically accurate. To be more specific about this aspect, we will split the discussion
into two parts. From a theoretical standpoint, estimating n < n̄ components of (4.9.43) (in
the presence of the remaining components and noise) cannot produce more accurate esti-
mates than estimating all n̄ components. However, for a good frequency-selective method,
the degradation of theoretical statistical accuracy should not be significant. On the other
hand, from a practical standpoint, a sound frequency-selective method could give better
performance than a non-frequency-selective counterpart that deals with all n̄ components
of (4.9.43). This is so because some components of (4.9.43) that do not belong to (4.9.44)
might not be well-described by a sinusoidal model; consequently, treating such compo-
nents as interference and eliminating them from the model could improve the estimation
accuracy of the components of interest.

In this complement, following [McKelvey and Viberg 2001] and [Stoica, Sandgren,
Selén, Vanhamme, and Van Huffel 2003], we present a frequency-selective ESPRIT-based
(FRES-ESPRIT) method that possesses the previous two desirable features. The following notation
will be used frequently in what follows:

wk = ei 2π
N k k = 0, 1, . . . ,N − 1 (4.9.46)

uk = [wk , . . . ,w m
k ]T (4.9.47)

vk = [1,wk , . . . ,w N−1
k ]T (4.9.48)

y = [y(0), . . . , y(N − 1)]T (4.9.49)
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Yk = v∗k y k = 0, 1, . . . ,N − 1 (4.9.50)

e = [e(0), . . . , e(N − 1)]T (4.9.51)

Ek = v∗k e k = 0, 1, . . . ,N − 1 (4.9.52)

a(ωk ) =
[
eiωk , . . . , eimωk

]T
(4.9.53)

b(ωk ) =
[
1, eiωk , . . . , ei (N−1)ωk

]T
(4.9.54)

Hereafter, m is a user parameter whose choice will be discussed later on. Note that {Yk } is the
FFT of the data.

First, we show that the following key equation involving the FFT sequence {Yk } holds true:

uk Yk = [a(ω1), . . . , a(ωn̄)]



β1v

∗
k b(ω1)
...

βn̄v
∗
k b(ωn̄)


+ �uk + uk Ek (4.9.55)

Here � is an m × m matrix defined in equation (4.9.61). (It will become clear shortly that the
definition of � has no importance for what follows; hence, it is not repeated here.)

To prove (4.9.55), we first write the data vector y as

y =
n̄∑

 =1

β b(ω )+ e (4.9.56)

Next, we note that (for p = 1, . . . ,m)

w p
k

[
v∗k b(ω)

] = N−1∑
t=0

e
i
(
ω− 2π

N k
)

t
ei 2π

N kp

= eiω p
N−1∑
t=0

e
i
(
ω− 2π

N k
)
(t−p)

= eiω p [v∗k b(ω)
]+ eiω p


p−1∑

t=0

eiω(t−p)e−i 2π
N k(t−p)

−
N+p−1∑

t=N

eiω(t−p)e−i 2π
N k(t−p)




= eiω p [v∗k b(ω)
]+ eiω p

p∑
 =1

[
e−iω ei 2π

N k − eiω(N− )ei 2π
N k 

]

= eiω p [v∗k b(ω)
]+ p∑

 =1

eiω(p− )
(
1− eiωN )w  

k (4.9.57)
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Let (for p = 1, . . . ,m)

γ ∗p (ω) =
(
1− eiωN ) [eiω(p−1), eiω(p−2), . . . , eiω, 1, 0, . . . , 0

]
(1× m) (4.9.58)

Using (4.9.58), we can rewrite (4.9.57) in the following more compact form (for p = 1, . . . ,m):

w p
k

[
v∗k b(ω)

] = eiωp [v∗k b(ω)
]+ γ ∗p (ω)uk (4.9.59)

or, equivalently,

uk
[
v∗k b(ω)

] = a(ω)
[
v∗k b(ω)

]+


γ ∗1 (ω)

...

γ ∗m(ω)


 uk (4.9.60)

From (4.9.56) and (4.9.60), it follows that

uk Yk =
n̄∑

 =1

β uk
[
v∗k b(ω )

]+ uk Ek

= [a(ω1), . . . , a(ωn̄)]



β1v

∗
k b(ω1)
...

βn̄v
∗
k b(ωn̄)


+




n̄∑
 =1

β 



γ ∗1 (ω )

...

γ ∗m(ω )




 uk + uk Ek (4.9.61)

which proves (4.9.55).
Next, we let {ωk }nk=1 denote the frequencies of interest (i.e., those frequencies of (4.9.43)

that lie in (4.9.44)). To separate the terms in (4.9.55) corresponding to the components of interest
from those associated with the nuisance components, we use the notation

A = [a(ω1), . . . , a(ωn)] (4.9.62)

xk =



β1v

∗
k b(ω1)
...

βnv
∗
k b(ωn)


 (4.9.63)

for the components of interest, and similarly Ã and x̃k for the other components. Finally, to
write the equation (4.9.55) for k = k1, . . . , kM in a compact matrix form, we need the additional
notation

Y = [
uk1 Yk1 , . . . , ukM YkM

]
, (m ×M ) (4.9.64)

E = [
uk1 Ek1 , . . . , ukM EkM

]
, (m ×M ) (4.9.65)

U = [
uk1 , . . . , ukM

]
, (m ×M ) (4.9.66)

X = [
xk1 , . . . , xkM

]
, (n ×M ) (4.9.67)
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and similarly for X̃ . Using this notation, we can write (4.9.55) (for k = k1, . . . , kM ) as follows:

Y = AX + �U + ÃX̃ + E (4.9.68)

Next, we assume that

M ≥ n + m (4.9.69)

which can be satisfied by choosing the user parameter m appropriately. Under (4.9.69) (in fact
only M ≥ m is required for this part), the orthogonal projection matrix onto the null space of U
is given by (see Appendix A)

!⊥
U = I − U ∗ (UU ∗)−1

U (4.9.70)

We will eliminate the second term in (4.9.68) by postmultiplying (4.9.68) with !⊥
U . However,

before doing so, we make the following observations about the third and fourth terms in (4.9.68):

(a) The elements of the noise term E in (4.9.68) are much smaller than the elements of AX .
In effect, it can be shown that Ek = O

(
N 1/2

)
(stochastically), whereas the order of the

elements of X is typically O (N ).
(b) Assuming that the out-of-band components are not much stronger than the components of

interest, and that the frequencies of the former are not too close to the interval of interest
in (4.9.44), the elements of X̃ are also much smaller than the elements of X .

(c) To understand what happens in the case that the assumption made in (b) does not hold, let
us consider a generic out-of-band component (ω, β). The part of y corresponding to this
component can be written as βb(ω). Hence, the corresponding part in uk Yk is given by
βuk

[
v∗k b(ω)

]
; consequently, the part of Y due to this generic component is

βU



v∗k1

b(ω) 0
. . .

0 v∗kM
b(ω)


 (4.9.71)

Even if ω is relatively close to the band of interest, (4.9.44), we may expect that v∗k b(ω)
does not vary significantly for k ∈ [k1, kM ] (in other words, the “spectral tail” of the out-
of-band component could well have a small dynamic range in the interval of interest). As
a consequence, the matrix in (4.9.71) will be approximately proportional to U and hence it
will be attenuated via the postmultiplication of it by !⊥

U (see below). A similar argument
shows that the noise term in (4.9.68) is also attenuated by postmultiplying (4.9.68) with
!⊥

U .

It follows from the previous discussion and (4.9.68) that

Y !⊥
U � AX!⊥

U (4.9.72)
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This equation resembles equation (4.7.7), on which the standard ESPRIT method is based,
provided that

rank
(
X!⊥

U

) = n (4.9.73)

(similarly to rank(C ) = n for (4.7.7)). In the following, we prove that (4.9.73) holds under (4.9.69)
and the regularity condition that eiNωk �= 1 (for k = 1, . . . , n).

To prove (4.9.73), we first note that rank
(
!⊥

U

) = M − m , which implies that M ≥ m + n
(i.e., (4.9.69)) is a necessary condition for (4.9.73) to hold.

Next we show that (4.9.73) is equivalent to

rank

([
X
U

])
= m + n (4.9.74)

To verify this equivalence, let us decompose X additively as

X = X!U + X!⊥
U = XU ∗ (UU ∗)−1

U + XV ∗V (4.9.75)

where the M × (M − m) matrix V ∗ comprises a unitary basis of N (U ); hence, UV ∗ = 0 and
VV ∗ = I . Now, the matrix in (4.9.74) has the same rank as

[
I −XU ∗ (UU ∗)−1

0 I

] [
X
U

]
=
[

XV ∗V
U

]
(4.9.76)

(we used (4.9.75) to obtain (4.9.76)), which, in turn, has the same rank as

[
XV ∗V

U

] [
V ∗VX ∗ U ∗] = [

XV ∗VX ∗ 0
0 UU ∗

]
(4.9.77)

However, rank(UU ∗) = m . Thus, (4.9.74) holds if and only if

rank(XV ∗VX ∗) = n

As

rank(XV ∗VX ∗) = rank(X!⊥
U X ∗) = rank(X!⊥

U )

the equivalence between (4.9.73) and (4.9.74) is proven.
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It follows from this equivalence and the definition of X and U that we want to prove that

rank






v∗k1

b(ω1) · · · v∗kM
b(ω1)

...
...

v∗k1
b(ωn) · · · v∗kM

b(ωn)

uk1 · · · ukM




︸ ︷︷ ︸
(n+m)×M



= n + m (4.9.78)

Now,

v∗k b(ω) =
N−1∑
t=0

e
i
(
ω− 2π

N k
)

t = 1− e
iN

(
ω− 2π

N k
)

1− e
i
(
ω− 2π

N k
) = 1− eiNω

wk − eiω
wk

so we can rewrite the matrix in (4.9.78) as follows:




1− eiNω1 0
. . .

1− eiNωn

1
. . .

0 1







wk1
wk1

−eiω1
· · · wkM

wkM
−eiω1

...
...

wk1
wk1

−eiωn · · · wkM
wkM

−eiωn

wk1 · · · wkM
...

...

w m
k1

· · · w m
kM




(4.9.79)

Because, by assumption, 1− eiNωk �= 0 (for k = 1, . . . , n), it follows that (4.9.78) holds if
and only if the second matrix in (4.9.79) has full row rank (under (4.9.69)), which holds true if
and only if we cannot find some numbers {ρk }m+n

k=1 (not all zero) such that

ρ1z

z − eiω1
+ · · · + ρn z

z − eiωn
+ ρn+1z + · · · + ρn+m z m

= z

(
ρ1

z − eiω1
+ · · · + ρn

z − eiωn
+ ρn+1 + · · · + ρn+m z m−1

)
(4.9.80)

is equal to zero at z = wk1, . . . , z = wkM . However, (4.9.80) can have at most m + n − 1 zeroes
of this form, and m + n − 1 < M from (4.9.69). With this observation, the proof of (4.9.73) is
concluded.

To make use of (4.9.72) and (4.9.73) in an ESPRIT-like approach, we also assume that

m ≥ n (4.9.81)
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(which is an easily satisfied condition); then it follows from (4.9.72) and (4.9.73) that the effective
rank of the “data” matrix Y !⊥

U is n , and that

Ŝ � AĈ (4.9.82)

where Ĉ is an n × n nonsingular transformation matrix, and

Ŝ = the m × n matrix whose columns are the left singular vectors of Y !⊥
U

associated with the n largest singular values.
(4.9.83)

Equation (4.9.82) is very similar to (4.7.7); hence, it can be used in an ESPRIT-like approach to
estimate the frequencies {ωk }nk=1. After the frequency-estimation step, the amplitudes {βk }nk=1 can
be estimated, for instance, as described in [McKelvey and Viberg 2001; Stoica, Sandgren,
Selén, Vanhamme, and Van Huffel 2003].

An implementation detail that we would like to address, at least briefly, is the choice of m .
We recommend choosing m as the integer part of M /2; that is,

m = !M /2" (4.9.84)

provided that !M /2" ∈ [n,M − n], to satisfy the assumptions in (4.9.69) and (4.9.81). To motivate
this choice of m , we refer to the matrix equation (4.9.72) that lies at the basis of the proposed
estimation approach. Previous experience with ESPRIT, MUSIC, and other, similar approaches
has shown that their accuracy increases as the number of independent equations in (4.9.72) (and
its counterparts) increases. The matrix Y !⊥

U in (4.9.72) is m ×M, and its rank is generically
equal to

min{rank(Y ), rank(!⊥
U )} = min(m,M − m) (4.9.85)

Evidently, this rank determines the aforementioned number of linearly independent equations in
(4.9.72). Hence, for enhanced estimation accuracy, we should maximize (4.9.85) with respect to
m: the solution is clearly given by (4.9.84).

To end this complement, we show that the proposed FRES-ESPRIT method with M = N is
equivalent to the standard ESPRIT method. For M = N , we have that

[b1, . . . , bN ] �




w1 · · · wN

w 2
1 · · · w 2

N
...

...

w N
1 · · · w N

N


 =

[
U

Ū︸︷︷︸
N

] } m

} N − m
(4.9.86)

where U is as defined before (with M = N ) and Ū is defined via (4.9.86). Note that

UU ∗ = NI ; Ū Ū ∗ = NI ; U Ū ∗ = 0; U ∗U + Ū ∗Ū = NI (4.9.87)
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Hence,

!⊥
U = I − 1

N
U ∗U = 1

N
Ū ∗Ū (4.9.88)

Also, note that (for p = 1, . . . ,m)

w p
k Yk =

N−1∑
t=0

y(t)e−i 2π
N k(t−p)

=
p−1∑
t=0

y(t)w p−t
k +

N−1∑
t=p

y(t)w N+p−t
k

= [
y(p − 1), . . . , y(0), 0, . . . , 0

]
wk
...

w m
k


+ [

0, . . . , 0, y(N − 1), . . . , y(p)
]

wk
...

w N
k




� µ∗puk + ψ∗p bk (4.9.89)

where uk and bk are as defined before (see (4.9.47) and (4.9.86)). Consequently, for M = N , the
“data” matrix Y !⊥

U used in the FRES-ESPRIT method can be written as (cf. (4.9.86)–(4.9.89))

[u1Y1, . . . , uN YN ]!⊥
U =





µ∗1
...

µ∗m


 [u1, . . . , uN ]+



ψ∗1
...

ψ∗m


 [b1, . . . , bN ]


 Ū ∗Ū · 1

N

=





µ∗1
...

µ∗m


U +



ψ∗1
...

ψ∗m


[

U
Ū

]
 Ū ∗Ū · 1

N

=



ψ∗1
...

ψ∗m


[

0
Ū

]
=




y(N − m) · · · y(1)
y(N − m + 1) · · · y(2)

...
...

y(N − 1) · · · y(m)


 Ū (4.9.90)

It follows from (4.9.90) that the n principal (or dominant) left singular vectors of Y !⊥
U are

equal to the n principal eigenvectors of the following matrix (obtained by postmultiplying the
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right-hand side of (4.9.90) with its conjugate transpose and using the fact that Ū Ū ∗ = NI from
(4.9.87)): 


y(N − m) · · · y(1)

...
...

y(N − 1) · · · y(m)






y∗(N − m) · · · y∗(N − 1)
...

...

y∗(1) · · · y∗(m)




=
N−m∑
t=1




y(t)
...

y(t + m − 1)


[

y∗(t), . . . , y∗(t + m − 1)
]

(4.9.91)

which is precisely the type of sample covariance matrix used in the standard ESPRIT method.
(Compare with (4.5.14); the difference between (4.9.91) and (4.5.14) is due to some notational
changes made in this complement, such as in the definition of the matrix A.)

4.9.7 A Useful Result for Two-Dimensional (2D) Sinusoidal Signals

For a noise-free 1D sinusoidal signal

y(t) =
n∑

k=1

βk eiωk t , t = 0, 1, 2, . . . (4.9.92)

a data vector of length m can be written as


y(0)
y(1)
...

y(m − 1)


 =




1 · · · 1
eiω1 · · · eiωn

...
...

ei (m−1)ω1 · · · ei (m−1)ωn





β1
...

βn


 � Aβ (4.9.93)

The matrix A just introduced is the complex conjugate of the one in (4.2.4). In this complement,
we prefer to work with the type of A matrix in (4.9.93), to simplify the notation, but note that
the discussion which follows applies without change to the complex conjugate of the above A as
well (or, to its extension to 2D sinusoidal signals).

Let {ck }nk=1 be defined uniquely via the equation

1+ c1z + · · · + cnz n =
n∏

k=1

(
1− ze−iωk

)
(4.9.94)

Then, it can be readily checked (see (4.5.21)) that the matrix

C ∗ =




1 c1 · · · cn 0
. . .

. . .
. . .

0 1 c1 · · · cn


 , (m − n)× m (4.9.95)
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satisfies

C ∗A = 0 (4.9.96)

(To verify (4.9.96), it is enough to observe, from (4.9.94), that 1+ c1eiωk + · · · + cneinωk = 0 for
k = 1, . . . , n .) Furthermore, as rank(C ) = m − n and dim[N (A∗)] = m − n too, it follows from
(4.9.96) that

C is a basis for the null space of A∗, N (A∗) (4.9.97)

The matrix C plays an important role in the derivation and analysis of several frequency estimators.
(See, e.g., Section 4.5, [Bresler and Macovski 1986], and [Stoica and Sharman 1990].)

In this complement, we will extend the result (4.9.97) to 2D sinusoidal signals. The derivation
of a result similar to (4.9.97) for such signals is a rather more difficult problem than in the 1D
case. The solution that we will present was introduced in [Clark and Scharf 1994]. (See
also [Clark, Eldén, and Stoica 1997].) Using the extended result, we can derive parameter
estimation methods for 2D sinusoidal signals in much the same manner as for 1D signals. (See
the cited papers and Section 4.5.)

A noise-free 2D sinusoidal signal is described by the following equation (compare with
(4.9.92)):

y(t, t̄) =
n∑

k=1

βk eiωk t ei ω̄k t̄ , t, t̄ = 0, 1, 2, . . . (4.9.98)

Let

γk = eiωk , λk = ei ω̄k (4.9.99)

Using this notation allows us to write (4.9.98) in the more compact form

y(t, t̄) =
n∑

k=1

βkγ
t
k λ

t̄
k (4.9.100)

Moreover, equation (4.9.100) (unlike (4.9.98)) also covers the case of damped (2D) sinusoidal
signals, for which

γk = eµk+iωk , λk = eµ̄k+i ω̄k (4.9.101)

with {µk , µ̄k } being the damping parameters (µk , µ̄k ≤ 0).
The following notation will be used frequently in this complement:

g∗t =
[
γ t

1 . . . γ t
n

]
(4.9.102)

� =



γ1 0

. . .

0 γn


 (4.9.103)
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� =



λ1 0

. . .

0 λn


 (4.9.104)

β = [
β1 . . . βn

]T
(4.9.105)

AL =




1 . . . 1
λ1 . . . λn
...

...

λL−1
1 . . . λL−1

n


 for L ≥ n (4.9.106)

Using (4.9.102), (4.9.104), and (4.9.105), we can write

y(t, t̄) = g∗t �
t̄β (4.9.107)

Hence, similarly to (4.9.93), we can write the mm̄ × 1 data vector obtained from (4.9.98) for
t = 0, . . . ,m − 1 and t̄ = 0, . . . , m̄ − 1 as




y(0, 0)
...

y(0, m̄ − 1)
. . . . . . . . . . . . . . .

...

. . . . . . . . . . . . . . .

y(m − 1, 0)
...

y(m − 1, m̄ − 1)




=




g∗0�
0

...

g∗0�
m̄−1

. . . . . . . . . .
...

. . . . . . . . . .

g∗m−1�
0

...

g∗m−1�
m̄−1




β � Aβ (4.9.108)

The matrix A just defined,

A =




g∗0�
0

...

g∗0�
m̄−1

. . . . . . . . . .
...

. . . . . . . . . .

g∗m−1�
0

...

g∗m−1�
m̄−1




(mm̄ × n) (4.9.109)
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plays the same role for 2D sinusoidal signals as the matrix A in (4.9.93) does for 1D signals.
Therefore, it is the null space of (4.9.109) that we want to characterize. More precisely, we want
to find a linearly parameterized basis for the null space of the matrix A∗ in (4.9.109), similar to
the basis C for A∗ in (4.9.93). (See (4.9.97).)

Note that, using (4.9.103), we can also write y(t, t̄) as

y(t, t̄) = [
λt̄

1 . . . λt̄
n

]
�tβ (4.9.110)

This means that A can also be written as follows:

A =




Am̄�0

. . . . . . . .
...

. . . . . . . .

Am̄�m−1


 (4.9.111)

Similarly to (4.9.94), let us define the parameters {ck }nk=1 uniquely via the equation

1+ c1z + · · · + cnz n =
n∏

k=1

(
1− z

λk

)
(4.9.112)

Note that there is a one-to-one mapping between {ck } and {λk } (λk �= 0). In particular, we can
obtain {λk } uniquely from {ck }. (See [Stoica and Sharman 1990] for more details on this
aspect in the case of {λk = eiωk }.) Consequently, we can see the introduction of {ck } as a new
parameterization of the problem, which replaces the parameterization via {λk }. Using {ck }, we
build the following matrix, similarly to (4.9.95), assuming m̄ > n:

C ∗ =




1 c1 · · · cn 0
. . .

. . .
. . .

0 1 c1 · · · cn


 , (m̄ − n)× m̄ (4.9.113)

We note (cf. (4.9.96)) that

C ∗Am̄ = 0 (4.9.114)

It follows from (4.9.111) and (4.9.114) that


C ∗ 0
. . .

0 C ∗




︸ ︷︷ ︸
[m(m̄−n)]×mm̄

A = 0 (4.9.115)
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Hence, we have found (mm̄ − mn) vectors of the sought basis for N (A∗). It remains to find
(m − 1)n additional (linearly independent) vectors of this basis (note that dim[N (A∗)] =
mm̄ − n). To find the remaining vectors, we need an approach that is rather different from that
used so far.

Let us assume that

λk �= λp for k �= p (4.9.116)

and let the vector

b∗ = [b1, . . . , bn ]

be defined via the linear (interpolation) equation

b∗An =
[
γ1, . . . , γn

]
(4.9.117)

(with An as defined in (4.9.106)). Under (4.9.116) and for given {λk }, there exists a one-to-one
map between {bk } and {γk }; hence, we can view the use of {bk } as a reparameterization of the
problem. (Note that, if (4.9.116) does not hold, i.e., λk = λp , then, for identifiability reasons, we
must have γk �= γp , and therefore no vector b that satisfies (4.9.117) can exist.) From (4.9.117),
we easily obtain

b∗An�
t = [

γ1, . . . , γn
]
�t = g∗t+1

and hence (see also (4.9.109) and (4.9.111))

b∗




g∗t �0

...

g∗t �n−1


 = b∗An�

t = g∗t+1�
0 (4.9.118)

Next, we assume that

m̄ ≥ 2n − 1 (4.9.119)

which is a weak condition (typically we have m, m̄ � n). Under (4.9.119), we can write (making
use of (4.9.118)): 


b∗ 0

. . .

0 b∗




︸ ︷︷ ︸
B∗




g∗t �0

...

g∗t �m̄−1


−




g∗t+1�
0

...

g∗t+1�
n−1


 = 0 (4.9.120)
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where

B∗ =




b1 b2 . . . bn 0 . . . 0
. . .

. . .
. . .

...

0 b1 b2 . . . bn 0


 (n × m̄)

Note that, indeed, we need m̄ ≥ 2n − 1 to be able to write (4.9.120) (if m̄ > 2n − 1, then the
rightmost m̄ − 2n − 1 columns of B∗ are zeroes). Combining (4.9.115) and (4.9.120) yields the
following matrix, whose rows lie in the left null space of A:




D I
D I 0

. . .
. . .

0 D I
C ∗







m
block rows

(4.9.121)

where

D =
[

C ∗
B∗

]
=




1 c1 · · · cn 0
. . .

. . .
. . .

0 1 c1 · · · cn

b1 . . . bn 0 . . . 0
. . .

. . .
. . .

...

0 b1 . . . bn 0





 m̄ − n


 n

(m̄ × m̄)

I =




0 · · · 0
...

...

0 · · · 0
−1 0 . . . 0

. . .
. . .

...

0 −1 0 . . . 0





 m̄ − n


 n

(m̄ × m̄)

The matrix in (4.9.121) is of dimension [(m − 1)m̄ + (m̄ − n)]× mm̄, that is (mm̄ − n)× mm̄,
and its rank is equal to mm̄ − n (i.e., it has full row rank, as cn �= 0). Consequently, the rows of
(4.9.121) form a linearly parameterized basis for the null space of A. We remind the reader that,
under (4.9.116), there is a one-to-one map between {λk , γk } and the basis parameters {ck , bk }.
(See (4.9.112) and (4.9.117).) Hence, we can think of estimating {ck , bk } in lieu of {λk , γk }, at
least in a first stage, and, when we do so, the linear dependence of (4.9.121) on the unknown
parameters will come in quite handy. As a simple example of such an estimation method based on
(4.9.121), note that the modified MUSIC procedure outlined in Section 4.5 can easily be extended
to the case of 2D signals by making use of (4.9.121).
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Compared with the basis matrix for the 1D case (see (4.9.95)), the null space basis (4.9.121) in
the 2D case is apparently much more complicated. In addition, the given 2D basis result depends
on the condition (4.9.116); if (4.9.116) is even approximately violated (i.e., if there exist λk and
λp with k �= p such that λk � λp), then the mapping {γk } ↔ {bk } could become ill-conditioned
and so cause a deterioration of the estimation accuracy.

Finally, we remark on the fact that, for damped sinusoids, the parameterization via {bk }
and {ck } is parsimonious. However, for undamped sinusoidal signals, the parameterization via
{ωk , ω̄k } contains 2n real-valued unknowns, whereas the one based on {bk , ck } has 4n unknowns,
or 3n unknowns if a certain conjugate symmetry property of {bk } is exploited (see, e.g., [Stoica
and Sharman 1990]); hence, in such a case the use of {bk } and, in particular, {ck } leads to
an overparameterized problem, which might also result in a (slight) accuracy degradation. The
previous criticism of the result (4.9.121) is, however, minor, and, in fact, (4.9.121) is the only
known basis for N (A∗).

4.10 EXERCISES

Exercise 4.1: Speed Measurement by a Doppler Radar as a Frequency Estimation Problem
Assume that a radar system transmits a sinusoidal signal towards an object. For the sake of
simplicity, further assume that the object moves along a trajectory parallel to the wave propagation
direction, at a constant velocity v. Let αeiωt denote the signal emitted by the radar. Show that
the backscattered signal, measured by the radar system after reflection off the object, is given by

s(t) = βei (ω−ωD )t + e(t) (4.10.1)

where e(t) is measurement noise, ωD is the so-called Doppler frequency,

ωD � 2ωv/c

and

β = µαe−2iωr/c

Here c denotes the speed of wave propagation, r is the object range, and µ is an attenuation
coefficient.

Conclude from (4.10.1) that the problem of speed measurement can be reduced to one of
frequency determination. The latter problem can be solved by using the methods of this chapter.

Exercise 4.2: ACS of Sinusoids with Random Amplitudes or Nonuniform Phases
In some applications, it is not reasonable to assume that the amplitudes of the sinusoidal terms are
fixed or that their phases are uniformly distributed. Examples are fast fading in mobile telecom-
munications (where the amplitudes vary), and sinusoids that have been tracked so that their phase
is random, near zero, but not uniformly distributed. We derive the ACS for such cases.

Let x(t) = αei (ω0t+ϕ), where α and ϕ are statistically independent random variables and ω0

is a constant. Assume that α has mean ᾱ and variance σ 2
α .
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(a) If ϕ is uniformly distributed on [−π, π ], find E {x(t)} and rx (k). Show also that, if α is
constant, the expression for rx (k) reduces to equation (4.1.5).

(b) If ϕ is not uniformly distributed on [−π, π ], express E {x(t)} in terms of the probability
density function p(ϕ). Find sufficient conditions on p(ϕ) such that x(t) is zero mean, find
rx (k) in this case, and give an example of such a p(ϕ).

Exercise 4.3: A Nonergodic Sinusoidal Signal
As shown in Complement 4.9.1, the signal

x(t) = αei (ωt+ϕ)

with α and ω being nonrandom constants and ϕ being uniformly distributed on [0, 2π ], is
second-order ergodic in the sense that the mean and covariances determined from an (infinitely
long) temporal realization of the signal coincide with the mean and covariances obtained from an
ensemble of (infinitely many) realizations. In the present exercise, assume that α and ω are inde-
pendent random variables, with ω being uniformly distributed on [0, 2π ]; the initial-phase variable
ϕ may be arbitrarily distributed (in particular it can be nonrandom). Show that, in such a case,

E
{
x(t)x∗(t − k)

} = {
E
{
α2
}

for k = 0
0 for k �= 0

(4.10.2)

Also, show that the covariances obtained by “temporal averaging” differ from those given, and
hence deduce that the signal is not ergodic. Comment on the behavior of such a signal over the
ensemble of realizations and in each realization, respectively.

Exercise 4.4: AR Model-Based Frequency Estimation
Consider the noisy sinusoidal signal

y(t) = x(t)+ e(t)

where x(t) = αei (ω0t+ϕ) (with α > 0 and ϕ uniformly distributed on [0, 2π ]) and e(t) is white
noise with zero mean and unit variance. An AR model of order n ≥ 1 is fitted to {y(t)} by using
the Yule–Walker or LS method. In the limiting case of an infinitely long data sample, the AR
coefficients are given by the solution to (3.4.4). Show that the PSD, corresponding to the AR
model determined from (3.4.4), has a global peak at ω = ω0. Conclude that AR modeling can be
used in this case to find the sinusoidal frequency, in spite of the fact that {y(t)} does not satisfy
an AR equation of finite order. (In the case of multiple sinusoids, the AR frequency estimates
are biased.) Regarding the estimation of the signal power, however, show that the height of the
global peak of the AR spectrum does not directly provide an “estimate” of α2.

Exercise 4.5: An ARMA Model-Based Derivation of the Pisarenko Method
Let R denote the covariance matrix (4.2.7) with m = n + 1, and let g be the eigenvector of R
associated with its minimum eigenvalue. The Pisarenko method determines the signal frequencies
by exploiting the fact that

a∗(ω)g = 0 for ω = ωk , k = 1, . . . , n (4.10.3)
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(cf. (4.5.13) and (4.5.17)). Derive the property (4.10.3) directly from the ARMA model equation
(4.2.3).

Exercise 4.6: Frequency Estimation when Some Frequencies Are Known
Assume that y(t) is known to have p sinusoidal components at known frequencies {ω̃k }pk=1 (but
with unknown amplitudes and phases), plus n − p other sinusoidal components whose frequencies
are unknown. Develop a modification of the HOYW method to estimate the unknown frequencies
from measurements {y(t)}Nt=1 without estimating the known frequencies.

Exercise 4.7: A Combined HOYW–ESPRIT Method for the MA Noise Case
The HOYW method, presented in Section 4.4 for the white-noise case, is based on the matrix �

in (4.2.8). Let us assume that the noise sequence {e(t)} in (4.1.1) is known to be an MA process
of order m and that m is given. A simple way to handle such a colored noise in the HOYW
method consists of modifying the expression (4.2.8) of � as follows:

�̃ = E






y(t − L− 1− m)
...

y(t − L−M − m)


 [y∗(t), . . . , y∗(t − L)]


 (4.10.4)

Derive an expression for �̃ similar to the one for � in (4.2.8). Furthermore, make use of that
expression in an ESPRIT-like method to estimate the frequencies {ωk }, instead of using it in an
HOYW-like method (as in Section 4.4). Discuss the advantage of this so-called HOYW–ESPRIT
method over the HOYW method based on �̃. Assuming that the noise is white (i.e., m = 0) and
hence that ESPRIT is directly applicable, would you prefer using HOYW–ESPRIT (with m = 0)
in lieu of ESPRIT? Why or why not?

Exercise 4.8: Chebyshev Inequality and the Convergence of Sample Covariances
Let x be a random variable with finite mean µ and variance σ 2. Show that, for any positive
constant c, the so-called Chebyshev inequality holds:

Pr(|x − µ| ≥ cσ) ≤ 1/c2 (4.10.5)

Use (4.10.5) to show that, if a sample covariance lag r̂N (estimated from N data samples) converges
to the true value r in the mean-square sense

lim
N→∞

E
{|r̂N − r |2} = 0 (4.10.6)

then r̂N also converges to r in probability:

lim
N→∞

Pr(|r̂N − r | �= 0) = 0 (4.10.7)

For sinusoidal signals, the mean-square convergence of {r̂N (k)} to {r(k)}, as N →∞, has been
proven in Complement 4.9.1. (In this exercise, we omit the argument k in r̂N (k) and r(k), for
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notational simplicity.) Additionally, discuss the use of (4.10.5) to set bounds (which hold with a
specified probability) on an arbitrary random variable with given mean and variance. Comment
on the conservatism of the bounds obtained from (4.10.5) by comparing them with the bounds
corresponding to a Gaussian random variable.

Exercise 4.9: More about the Forward–Backward Approach
The sample covariance matrix in (4.8.3), used by the forward–backward approach, is often a
better estimate of the theoretical covariance matrix than R̂ is (as argued in Section 4.8). Another
advantage of (4.8.3) is that the forward–backward sample covariance is always numerically better
conditioned than the usual (forward-only) sample covariance matrix R̂. To understand this state-
ment, let R be a Hermitian matrix (not necessarily a Toeplitz one, like the R in (4.2.7)). The
“condition number” of R is defined as

cond(R) = λmax(R)/λmin(R)

where λmax(R) and λmin(R) are the maximum and minimum eigenvalues of R, respectively. The
numerical errors that affect many algebraic operations on R, such as inversion, eigendecomposi-
tion, and so on, are essentially proportional to cond(R). Hence, the smaller cond(R), the better.
(See Appendix A for details on this aspect.)

Next, let U be a unitary matrix (the J in (4.8.3) being a special case of such a matrix).
Observe that the forward–backward covariance in equation (4.8.3) is of the form R + U ∗RT U .
Prove that

cond(R) ≥ cond(R + U ∗RT U ) (4.10.8)

for any unitary matrix U . We note that the result (4.10.8) applies to any Hermitian matrix R and
unitary matrix U , and thus is valid in cases more general than the forward–backward approach
in Section 4.8, in which R is Toeplitz and U = J .

Exercise 4.10: ESPRIT and Min–Norm Under the Same Umbrella
ESPRIT and Min–Norm methods are seemingly quite different from one another; it might well
seem unlikely that there is any strong relationship between them. It is the goal of this exercise
to show that in fact ESPRIT and Min–Norm are quite related closely to each other. We will see
that ESPRIT and Min–Norm are members of a well-defined class of frequency estimates.

Consider the equation

Ŝ ∗2 #̂ = Ŝ ∗1 (4.10.9)

where Ŝ1 and Ŝ2 are as defined in Section 4.7. The (m − 1)× (m − 1) matrix #̂ in (4.10.9) is the
unknown. First, show that the asymptotic counterpart of (4.10.9),

S ∗2 # = S ∗1 (4.10.10)

has the property that any of its solutions # has n eigenvalues equal to {e−iωk }nk=1. This prop-
erty, along with the fact that there is an infinite number of matrices #̂ satisfying (4.10.9) (see
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Section A.8 in Appendix A), implies that (4.10.9) generates a class of frequency estimators with
an infinite number of members.

As a second task, show that ESPRIT and Min–Norm belong to this class of estimators. In
other words, prove that there is a solution of (4.10.9) whose nonzero eigenvalues have exactly
the same arguments as the eigenvalues of the ESPRIT matrix φ̂ in (4.7.12), and also that there is
another solution of (4.10.9) whose eigenvalues are equal to the roots of the Min–Norm polynomial
in (4.6.3). For more details on the topic of this exercise, see [Hua and Sarkar 1990].

Exercise 4.11: Yet Another Relationship between ESPRIT and Min–Norm
Let the vector [ρ̂T , 1]T be defined similarly to the Min–Norm vector [1, ĝT ]T (see (4.6.1)), the
only difference being that now we constrain the last element to be equal to one. Hence, ρ̂ is the
minimum-norm solution to (see (4.6.5))

Ŝ ∗
[
ρ̂

1

]
= 0

Use the Min–Norm vector ρ̂ to build the following matrix

φ̃ = Ŝ ∗
[

0
Im−1

−ρ̂∗

]
Ŝ (n × n)

Prove the somewhat curious fact that φ̃ above is equal to the ESPRIT matrix, φ̂, in (4.7.12).

COMPUTER EXERCISES

Tools for Frequency Estimation:
The text website www.prenhall.com/stoica contains the following MATLAB functions
for use in computing frequency estimates and estimating the number of sinusoidal terms. In the
first four functions, y is the data vector and n is the desired number of frequency estimates. The
remaining variables are described below.

• w=hoyw(y,n,L,M)
The HOYW estimator given in the box on page 166; L and M are the matrix dimensions as
in (4.4.8).

• w=music(y,n,m)
The Root MUSIC estimator given by (4.5.12); m is the dimension of a(ω). This function
also implements the Pisarenko method by setting m = n + 1.

• w=minnorm(y,n,m)
The Root Min–Norm estimator given by (4.6.3); m is the dimension of a(ω).

• w=esprit(y,n,m)
The ESPRIT estimator given by (4.7.12); m is the size of the square matrix R̂ there, and S1

and S2 are chosen as in equations (4.7.5) and (4.7.6).
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• order=sinorder(mvec,sig2,N,nu)
Computes the AIC, AICc, GIC, and BIC model-order selections for sinusoidal parameter
estimation problems. See Appendix C for details on the derivations of these methods. Here,
mvec is a vector of candidate sinusoidal model orders, sig2 is the vector of estimated
residual variances corresponding to the model orders in mvec, N is the length of the
observed data vector, and nu is a parameter in the GIC method. The 4-element output
vector order contains the selected model orders obtained from AIC, AICc, GIC, and BIC,
respectively.

Exercise C4.12: Resolution Properties of Subspace Methods for Estimation of Line Spectra
In this exercise, we test and compare the resolution properties of four subspace methods: Min–
Norm, MUSIC, ESPRIT, and HOYW.

Generate realizations of the sinusoidal signal

y(t) = 10 sin(0.24π t + ϕ1)+ 5 sin(0.26π t + ϕ2)+ e(t), t = 1, . . . ,N

where N = 64, e(t) is Gaussian white noise with variance σ 2, and ϕ1, ϕ2 are independent random
variables each uniformly distributed on [−π, π ].

Generate 50 Monte Carlo realizations of y(t), and present the results from these experiments.
The results of frequency estimation can be presented, comparing the sample means and variances
of the frequency estimates from the various estimators.

(a) Find the exact ACS for y(t). Compute the “true” frequency estimates from the four
methods, for n = 4 and various choices of the order m ≥ 5 (and corresponding choices
of M and L for HOYW). Which method(s) are able to resolve the two sinusoids, and for
what values of m (or M and L)?

(b) Consider now N = 64, and set σ 2 = 0; this corresponds to the case of finite data length
but infinite SNR. Compute frequency estimates for the four techniques again, using n = 4
and various choices of m , M, and L. Which method(s) are reliably able to resolve the
sinusoids? Explain why.

(c) Obtain frequency estimates from the four methods when N = 64 and σ 2 = 1. Use n = 4,
and experiment with different choices of m , M, and L to see the effect on estimation
accuracy (e.g., try m = 5, 8, and 12 for MUSIC, Min–Norm, and ESPRIT, and try L =
M = 4, 8, and 12 for HOYW). Which method(s) give reliable “superresolution” estimation
of the sinusoids? Is it possible to resolve the two sinusoids in the signal? Discuss how the
choices of m , M, and L influence the resolution properties. Which method appears to have
the best resolution?

You may want to experiment further by changing the SNR and the relative amplitudes
of the sinusoids to gain a better understanding of the differences between the methods.

(d) Compare the estimation results with the AR and ARMA results obtained in Exercise C3.18
in Chapter 3. What are the major differences between the techniques? Which method(s)
do you prefer for this problem?
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Exercise C4.13: Model Order Selection for Sinusoidal Signals
In this exercise, we examine four methods for model order selection for sinusoidal signals. As
discussed in Appendix C, several important model order selection rules have the general form
(see (C.8.1)–(C.8.2))

−2 ln pn(y, θ̂
n)+ η(r,N )r (4.10.11)

with different penalty coefficients η(r,N ) for the different methods:

AIC : η(r,N ) = 2

AICc : η(r,N ) = 2
N

N − r − 1
GIC : η(r,N ) = ν (e.g., ν = 4)
BIC : η(r,N ) = ln N

(4.10.12)

Here, N is the length of the observed data vector y and, for sinusoidal signals, r is given (see
Appendix C) by

r = 3n + 1 for AIC, AICc, and GIC

r = 5n + 1 for BIC

where n is the number of sinusoids in the model. The term ln pn(y, θ̂n) is the log-likelihood of
the observed data vector y given the maximum likelihood (ML) estimate of the parameter vector
θ for a model order of n; it is given (cf. (C.2.7)–(C.2.8) in Appendix C) by

−2 ln pn(y, θ̂
n) = N σ̂ 2

n + constant (4.10.13)

where

σ̂ 2
n =

1

N

N∑
t=1

∣∣∣∣∣y(t)−
n∑

k=1

α̂k ei (ω̂k t+ϕ̂k )

∣∣∣∣∣
2

(4.10.14)

The selected model order is the value of n that minimizes (4.10.11). The preceding order selection
rules, although derived for ML estimates of θ , can be used even with approximate ML estimates
of θ , albeit with some loss of performance.

Well-Separated Sinusoids.

(a) Generate 100 realizations of

y(t) = 10 sin[2π f0t + ϕ1]+ 5 sin[2π(f0 +�f )t + ϕ2]+ e(t), t = 1, . . . ,N

for f0 = 0.24, �f = 3/N , and N = 128. Here, e(t) is real-valued white noise with variance
σ 2. For each realization, generate ϕ1 and ϕ2 as random variables uniformly distributed on
[0, 2π ].
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(b) Set σ 2 = 10. For each realization, estimate the frequencies of n = 1, . . . , 10 real-valued
sinusoidal components, by using ESPRIT, and estimate the amplitudes and phases by using
the second equation in (4.3.8), where ω̂ is the vector of ESPRIT frequency estimates. Note
that you will need to use two complex exponentials to model each real-valued sinusoid,
so the number of frequencies to estimate with ESPRIT will be 2, 4, . . . , 20; however, the
frequency estimates will be in symmetric pairs. Use m = 40 as the covariance matrix size
in ESPRIT.

(c) Find the model orders that minimize AIC, AICc, GIC (with ν = 4), and BIC. For each
of the four order-selection methods, plot a histogram of the selected orders for the 100
realizations. Comment on their relative performance.

(d) Repeat the preceding experiment, using σ 2 = 1 and σ 2 = 0.1, and comment on the perfor-
mance of the order selection methods as a function of SNR.

Closely Spaced Sinusoids. Generate 100 realizations of y(t) as in previous case, but this
time using �f = 0.5/N . Repeat the preceding experiments. In addition, compare the relative
performance of the order selection methods for well-separated versus closely spaced sinusoidal
signals.

Exercise C4.14: Line Spectral Methods Applied to Measured Data
Apply the Min–Norm, MUSIC, ESPRIT, and HOYW frequency estimators to the data in the
files sunspotdata.mat and lynxdata.mat (using both the original lynx data and the
logarithmically transformed data, as in Exercise C2.23). These files can be obtained from the text
website www.prenhall.com/stoica. Try to answer the following questions:

(a) Is the sinusoidal model appropriate for the data sets under study?
(b) Suggest how to choose the number of sinusoids in the model. (See Exercise C4.13.)
(c) What periodicities can you find in the two data sets?

Compare the results you obtain here to the AR(MA) and nonparametric spectral estimation results
you obtained in Exercises C2.23 and C3.20.


