SPECTRAL ANALYSIS OF SIGNALS

Petre Stoica and Randolph Moses
Contents

1 Basic Concepts .. 1
 1.1 Introduction .. 1
 1.2 Energy Spectral Density of Deterministic Signals 3
 1.3 Power Spectral Density of Random Signals 4
 1.3.1 First Definition of Power Spectral Density 6
 1.3.2 Second Definition of Power Spectral Density 7
 1.4 Properties of Power Spectral Densities 8
 1.5 The Spectral Estimation Problem 12
 1.6 Complements ... 12
 1.6.1 Coherency Spectrum 12
 1.7 Exercises .. 14

2 Nonparametric Methods .. 22
 2.1 Introduction ... 22
 2.2 Periodogram and Correlogram Methods 22
 2.2.1 Periodogram ... 22
 2.2.2 Correlogram ... 23
 2.3 Periodogram Computation via FFT 25
 2.3.1 Radix–2 FFT ... 26
 2.3.2 Zero Padding .. 27
 2.4 Properties of the Periodogram Method 28
 2.4.1 Bias Analysis of the Periodogram 28
 2.4.2 Variance Analysis of the Periodogram 32
 2.5 The Blackman–Tukey Method 37
 2.5.1 The Blackman–Tukey Spectral Estimate 37
 2.5.2 Nonnegativeness of the Blackman–Tukey Spectral Estimate . 39
 2.6 Window Design Considerations 39
 2.6.1 Time–Bandwidth Product and Resolution–Variance Trade-offs in Window Design 40
 2.6.2 Some Common Lag Windows 41
 2.6.3 Window Design Example 45
 2.6.4 Temporal Windows and Lag Windows 47
 2.7 Other Refined Periodogram Methods 48
 2.7.1 Bartlett Method ... 49
 2.7.2 Welch Method .. 50
 2.7.3 Daniell Method .. 52
 2.8 Complements ... 55
 2.8.1 Sample Covariance Computation via FFT 55
 2.8.2 FFT–Based Computation of Windowed Blackman–Tukey Periodograms 57
 2.8.3 Data and Frequency Dependent Temporal Windows: The Apodization Approach 59
2.8.4 Estimation of Cross-Spectra and Coherency Spectra 64
2.8.5 More Time-Bandwidth Product Results 66
2.9 Exercises .. 71

3 Parametric Methods for Rational Spectra 86
3.1 Introduction .. 86
3.2 Signals with Rational Spectra 87
3.3 Covariance Structure of ARMA Processes 88
3.4 AR Signals .. 90
 3.4.1 Yule–Walker Method 90
 3.4.2 Least Squares Method 91
3.5 Order–Recursive Solutions to the Yule–Walker Equations ... 94
 3.5.1 Levinson–Durbin Algorithm 96
 3.5.2 Delsarte–Genin Algorithm 97
3.6 MA Signals .. 101
3.7 ARMA Signals ... 103
 3.7.1 Modified Yule–Walker Method 103
 3.7.2 Two-Stage Least Squares Method 106
3.8 Multivariate ARMA Signals 109
 3.8.1 ARMA State–Space Equations 109
 3.8.2 Subspace Parameter Estimation — Theoretical Aspects . 113
 3.8.3 Subspace Parameter Estimation — Implementation Aspects . 115
3.9 Complements ... 117
 3.9.1 The Partial Autocorrelation Sequence 117
 3.9.2 Some Properties of Covariance Extensions 118
 3.9.3 The Burg Method for AR Parameter Estimation 119
 3.9.4 The Gohberg–Semencul Formula 122
 3.9.5 MA Parameter Estimation in Polynomial Time 125
3.10 Exercises .. 129

4 Parametric Methods for Line Spectra 144
4.1 Introduction ... 144
4.2 Models of Sinusoidal Signals in Noise 148
 4.2.1 Nonlinear Regression Model 148
 4.2.2 ARMA Model ... 149
 4.2.3 Covariance Matrix Model 149
4.3 Nonlinear Least Squares Method 151
4.4 High-Order Yule–Walker Method 155
4.5 Pisarenko and MUSIC Methods 159
4.6 Min–Norm Method .. 164
4.7 ESPRIT Method .. 166
4.8 Forward–Backward Approach 168
4.9 Complements ... 170
 4.9.1 Mean Square Convergence of Sample Covariances for Line
 Spectral Processes .. 170
 4.9.2 The Carathéodory Parameterization of a Covariance Matrix . 172
4.9.3 Using the Unwindowed Periodogram for Sine Wave Detection in White Noise .. 174
4.9.4 NLS Frequency Estimation for a Sinusoidal Signal with Time-Varying Amplitude 177
4.9.5 Monotonically Descending Techniques for Function Minimization .. 179
4.9.6 Frequency-selective ESPRIT-based Method .. 185
4.9.7 A Useful Result for Two-Dimensional (2D) Sinusoidal Signals .. 193
4.10 Exercises ... 198

5 Filter Bank Methods ... 207

5.1 Introduction .. 207
5.2 Filter Bank Interpretation of the Periodogram ... 210
5.3 Refined Filter Bank Method ... 212
5.3.1 Slepian Baseband Filters ... 213
5.3.2 RFB Method for High-Resolution Spectral Analysis .. 216
5.3.3 RFB Method for Statistically Stable Spectral Analysis 218
5.4 Capon Method ... 222
5.4.1 Derivation of the Capon Method ... 222
5.4.2 Relationship between Capon and AR Methods .. 228
5.5 Filter Bank Reinterpretation of the Periodogram ... 231
5.6 Complements ... 235
5.6.1 Another Relationship between the Capon and AR Methods 235
5.6.2 Multiwindow Interpretation of Daniell and Blackman–Tukey Periodograms ...Reader.Bib //sm2
5.6.3 Capon Method for Exponentially Damped Sinusoidal Signals 241
5.6.4 Amplitude and Phase Estimation Method (APES) ... 244
5.6.5 Amplitude and Phase Estimation Method for Gapped Data (GAPES) 247
5.6.6 Extensions of Filter Bank Approaches to Two-Dimensional Signals 251
5.7 Exercises ... 257

6 Spatial Methods ... 263

6.1 Introduction ... 263
6.2 Array Model ... 265
6.2.1 The Modulation–Transmission–Demodulation Process .. 266
6.2.2 Derivation of the Model Equation ... 268
6.3 Nonparametric Methods ... 273
6.3.1 Beamforming ... 276
6.3.2 Capon Method ... 279
6.4 Parametric Methods .. 281
6.4.1 Nonlinear Least Squares Method ... 281
6.4.2 Yule–Walker Method ... 283
6.4.3 Pisarenko and MUSIC Methods ... 284
6.4.4 Min–Norm Method .. 285
6.4.5 ESPRIT Method ... 285
6.5 Complements .. 286
 6.5.1 On the Minimum Norm Constraint 286
 6.5.2 NLS Direction-of-Arrival Estimation for a Constant-Modulus
 Signal .. 288
 6.5.3 Capon Method: Further Insights and Derivations 290
 6.5.4 Capon Method for Uncertain Direction Vectors 294
 6.5.5 Capon Method with Noise Gain Constraint 298
 6.5.6 Spatial Amplitude and Phase Estimation (APES) 305
 6.5.7 The CLEAN Algorithm 312
 6.5.8 Unstructured and Persymmetric ML Estimates of the Covari-
 ance Matrix ... 317
6.6 Exercises ... 319

APPENDICES

A Linear Algebra and Matrix Analysis Tools 328
 A.1 Introduction ... 328
 A.2 Range Space, Null Space, and Matrix Rank 328
 A.3 Eigenvalue Decomposition 330
 A.3.1 General Matrices 331
 A.3.2 Hermitian Matrices 333
 A.4 Singular Value Decomposition and Projection Operators.
 ... 336
 A.5 Positive (Semi)Definite Matrices 341
 A.6 Matrices with Special Structure 345
 A.7 Matrix Inversion Lemmas 347
 A.8 Systems of Linear Equations 347
 A.8.1 Consistent Systems 347
 A.8.2 Inconsistent Systems 350
 A.9 Quadratic Minimization 353

B Cramér–Rao Bound Tools 355
 B.1 Introduction ... 355
 B.2 The CRB for General Distributions 358
 B.3 The CRB for Gaussian Distributions 359
 B.4 The CRB for Line Spectra 364
 B.5 The CRB for Rational Spectra 365
 B.6 The CRB for Spatial Spectra 367

C Model Order Selection Tools 377
 C.1 Introduction ... 377
 C.2 Maximum Likelihood Parameter Estimation 378
 C.3 Useful Mathematical Preliminaries and Outlook 381
 C.3.1 Maximum A Posteriori (MAP) Selection Rule 382
 C.3.2 Kullback-Leibler Information 384
 C.3.3 Outlook: Theoretical and Practical Perspectives 385
 C.4 Direct Kullback-Leibler (KL) Approach: No-Name Rule 386
C.5 Cross-Validatory KL Approach: The AIC Rule 387
C.7 Bayesian Approach: The BIC Rule 392
C.8 Summary and the Multimodel Approach 395
C.8.1 Summary . 395
C.8.2 The Multimodel Approach . 397

D Answers to Selected Exercises 399

Bibliography 401

References Grouped by Subject 413

Index 420
List of Exercises

CHAPTER 1
1.1 Scaling of the Frequency Axis
1.2 Time–Frequency Distributions
1.3 Two Useful Z–Transform Properties
1.4 A Simple ACS Example
1.5 Alternative Proof that $|r(k)| \leq r(0)$
1.6 A Double Summation Formula
1.7 Is a Truncated Autocovariance Sequence (ACS) a Valid ACS?
1.8 When Is a Sequence an Autocovariance Sequence?
1.9 Spectral Density of the Sum of Two Correlated Signals
1.10 Least Squares Spectral Approximation
1.11 Linear Filtering and the Cross–Spectrum
C1.12 Computer Generation of Autocovariance Sequences
C1.13 DTFT Computations using Two–Sided Sequences
C1.14 Relationship between the PSD and the Eigenvalues of the ACS Matrix

CHAPTER 2
2.1 Covariance Estimation for Signals with Unknown Means
2.2 Covariance Estimation for Signals with Unknown Means (cont’d)
2.3 Unbiased ACS Estimates may lead to Negative Spectral Estimates
2.4 Variance of Estimated ACS
2.5 Another Proof of the Equality $\hat{\phi}_P(\omega) = \hat{\phi}_C(\omega)$
2.6 A Compact Expression for the Sample ACS
2.7 Yet Another Proof of the Equality $\hat{\phi}_P(\omega) = \hat{\phi}_C(\omega)$
2.8 Linear Transformation Interpretation of the DFT
2.9 For White Noise the Periodogram is an Unbiased PSD Estimator
2.10 Shrinking the Periodogram
2.11 Asymptotic Maximum Likelihood Estimation of $\phi(\omega)$ from $\hat{\phi}_P(\omega)$
2.12 Plotting the Spectral Estimates in dB
2.13 Finite–Sample Variance/Covariance Analysis of the Periodogram
2.14 Data–Weighted ACS Estimate Interpretation of Bartlett and Welch Methods
2.15 Approximate Formula for Bandwidth Calculation
2.16 A Further Look at the Time–Bandwidth Product
2.17 Bias Considerations in Blackman–Tukey Window Design
2.18 A Property of the Bartlett Window
C2.19 Zero Padding Effects on Periodogram Estimators
C2.20 Resolution and Leakage Properties of the Periodogram
C2.21 Bias and Variance Properties of the Periodogram Spectral Estimate
C2.22 Refined Methods: Variance–Resolution Tradeoff
C2.23 Periodogram–Based Estimators applied to Measured Data
CHAPTER 3
3.1 The Minimum Phase Property
3.2 Generating the ACS from ARMA Parameters
3.3 Relationship between AR Modeling and Forward Linear Prediction
3.4 Relationship between AR Modeling and Backward Linear Prediction
3.5 Prediction Filters and Smoothing Filters
3.6 Relationship between Minimum Prediction Error and Spectral Flatness
3.7 Diagonalization of the Covariance Matrix
3.8 Stability of Yule–Walker AR Models
3.9 Three Equivalent Representations for AR Processes
3.10 An Alternative Proof of the Stability Property of Reflection Coefficients
3.11 Recurrence Properties of Reflection Coefficient Sequence for an MA Model
3.12 Asymptotic Variance of the ARMA Spectral Estimator
3.13 Filtering Interpretation of Numerator Estimators in ARMA Estimation
3.14 An Alternative Expression for ARMA Power Spectral Density
3.15 Padé Approximation
3.16 (Non)Uniqueness of Fully Parameterized ARMA Equations
C3.17 Comparison of AR, ARMA and Periodogram Methods for ARMA Signals
C3.18 AR and ARMA Estimators for Line Spectral Estimation
C3.19 Model Order Selection for AR and ARMA Processes
C3.20 AR and ARMA Estimators applied to Measured Data

CHAPTER 4
4.1 Speed Measurement by a Doppler Radar as a Frequency Determination Problem
4.2 ACS of Sinusoids with Random Amplitudes or Nonuniform Phases
4.3 A Nonergodic Sinusoidal Signal
4.4 AR Model–Based Frequency Estimation
4.5 An ARMA Model–Based Derivation of the Pisarenko Method
4.6 Frequency Estimation when Some Frequencies are Known
4.7 A Combined HOYW-ESPRIT Method for the MA Noise Case
4.8 Chebyshev Inequality and the Convergence of Sample Covariances
4.9 More about the Forward–Backward Approach
4.10 ESPRIT and Min–Norm Under the Same Umbrella
4.11 Yet Another Relationship between ESPRIT and Min–Norm
C4.12 Resolution Properties of Subspace Methods for Estimation of Line Spectra
C4.13 Model Order Selection for Sinusoidal Signals
C4.14 Line Spectral Methods applied to Measured Data

CHAPTER 5
5.1 Multiwindow Interpretation of Bartlett and Welch Methods
5.2 An Alternative Statistically Stable RFB Estimate
5.3 Another Derivation of the Capon FIR Filter
5.4 The Capon Filter is a Matched Filter
5.5 Computation of the Capon Spectrum
5.6 A Relationship between the Capon Method and MUSIC (Pseudo)Spectra
5.7 A Capon–like Implementation of MUSIC
5.8 Capon Estimate of the Parameters of a Single Sine Wave
5.9 An Alternative Derivation of the Relationship between the Capon and AR Methods
C5.10 Slepian Window Sequences
C5.11 Resolution of Refined Filter Bank Methods
C5.12 The Statistically Stable RFB Power Spectral Estimator
C5.13 The Capon Method

CHAPTER 6
6.1 Source Localization using a Sensor in Motion
6.2 Beamforming Resolution for Uniform Linear Arrays
6.3 Beamforming Resolution for Arbitrary Arrays
6.4 Beamforming Resolution for L-Shaped Arrays
6.5 Relationship between Beamwidth and Array Element Locations
6.6 Isotropic Arrays
6.7 Grating Lobes
6.8 Beamspace Processing
6.9 Beamspace Processing (cont’d)
6.10 Beamforming and MUSIC under the Same Umbrella
6.11 Subspace Fitting Interpretation of MUSIC
6.12 Subspace Fitting Interpretation of MUSIC (cont’d.)
6.13 Subspace Fitting Interpretation of MUSIC (cont’d.)
6.14 Modified MUSIC for Coherent Signals
C6.15 Comparison of Spatial Spectral Estimators
C6.16 Performance of Spatial Spectral Estimators for Coherent Source Signals
C6.17 Spatial Spectral Estimators applied to Measured Data
Preface

Spectral analysis considers the problem of determining the spectral content (i.e., the distribution of power over frequency) of a time series from a finite set of measurements, by means of either nonparametric or parametric techniques. The history of spectral analysis as an established discipline started more than a century ago with the work by Schuster on detecting cyclic behavior in time series. An interesting historical perspective on the developments in this field can be found in [Marple 1987]. This reference notes that the word “spectrum” was apparently introduced by Newton in relation to his studies of the decomposition of white light into a band of light colors, when passed through a glass prism (as illustrated on the front cover). This word appears to be a variant of the Latin word “specter” which means “ghostly apparition”. The contemporary English word that has the same meaning as the original Latin word is “spectre”. Despite these roots of the word “spectrum”, we hope the student will be a “vivid presence” in the course that has just started!

This text, which is a revised and expanded version of Introduction to Spectral Analysis (Prentice Hall, 1997), is designed to be used with a first course in spectral analysis that would typically be offered to senior undergraduate or first–year graduate students. The book should also be useful for self-study, as it is largely self-contained. The text is concise by design, so that it gets to the main points quickly and should hence be appealing to those who would like a fast appraisal on the classical and modern approaches of spectral analysis.

In order to keep the book as concise as possible without sacrificing the rigor of presentation or skipping over essential aspects, we do not cover some advanced topics of spectral estimation in the main part of the text. However, several advanced topics are considered in the complements that appear at the end of each chapter, and also in the appendices. For an introductory course, the reader can skip the complements and refer to results in the appendices without having to understand in detail their derivation.

For the more advanced reader, we have included three appendices and a number of complement sections in each chapter. The appendices provide a summary of the main techniques and results in linear algebra, statistical accuracy bounds, and model order selection, respectively. The complements present a broad range of advanced topics in spectral analysis. Many of these are current or recent research topics in the spectral analysis literature.

At the end of each chapter we have included both analytical exercises and computer problems. The analytical exercises are more–or–less ordered from least to most difficult; this ordering also approximately follows the chronological presentation of material in the chapters. The more difficult exercises explore advanced topics in spectral analysis and provide results which are not available in the main text. Answers to selected exercises are found in Appendix D. The computer problems are designed to illustrate the main points of the text and to provide the reader with first–hand information on the behavior and performance of the various spectral analysis techniques considered. The computer exercises also illustrate the relative
performance of the methods and explore other topics such as statistical accuracy, resolution properties, and the like, that are not analytically developed in the book. We have used MATLAB1 to minimize the programming chore and to encourage the reader to “play” with other examples. We provide a set of MATLAB functions for data generation and spectral estimation that form a basis for a comprehensive set of spectral estimation tools; these functions are available at the text web site \texttt{www.prenhall.com/stoica}.

Supplementary material may also be obtained from the text web site. We have prepared a set of overhead transparencies which can be used as a teaching aid for a spectral analysis course. We believe that these transparencies are useful not only to course instructors but also to other readers, because they summarize the principal methods and results in the text. For readers who study the topic on their own, it should be a useful exercise to refer to the main points addressed in the transparencies after completing the reading of each chapter.

As we mentioned earlier, this text is a revised and expanded version of \textit{Introduction to Spectral Analysis} (Prentice Hall, 1997). We have maintained the conciseness and accessibility of the main text; the revision has primarily focused on expanding the complements, appendices, and bibliography. Specifically, we have expanded Appendix B to include a detailed discussion of Cramer-Rao bounds for direction-of-arrival estimation. We have added Appendix C, which covers model order selection, and have added new computer exercises on order selection. We have more than doubled the number of complements from the previous book to 32, most of which present recent results in spectral analysis. We have also expanded the bibliography to include new topics along with recent results on more established topics.

The text is organized as follows. Chapter 1 introduces the spectral analysis problem, motivates the definition of power spectral density functions, and reviews some important properties of autocorrelation sequences and spectral density functions. Chapters 2 and 5 consider nonparametric spectral estimation. Chapter 2 presents classical techniques, including the periodogram, the correlogram, and their modified versions to reduce variance. We include an analysis of bias and variance of these techniques, and relate them to one another. Chapter 5 considers the more recent filter bank version of nonparametric techniques, including both data-independent and data-dependent filter design techniques. Chapters 3 and 4 consider parametric techniques; Chapter 3 focuses on continuous spectral models (Autoregressive Moving Average (ARMA) models and their AR and MA special cases), while Chapter 4 focuses on discrete spectral models (sinusoids in noise). We have placed the filter bank methods in Chapter 5, after Chapters 3 and 4, mainly because the Capon estimator has interpretations as both an averaged AR spectral estimator and as a matched filter for line spectral models, and we need the background of Chapters 3 and 4 to develop these interpretations. The data-independent filter bank techniques in Sections 5.1–5.4 can equally well be covered directly following Chapter 2, if desired.

Chapter 6 considers the closely-related problem of spatial spectral estimation in the context of array signal processing. Both nonparametric (beamforming) and

1MATLAB® is a registered trademark of The Mathworks, Inc.
parametric methods are considered, and tied into the temporal spectral estimation techniques considered in Chapters 2, 4 and 5.

The Bibliography contains both modern and classical references (ordered both alphabetically and by subject). We include many historical references as well, for those interested in tracing the early developments of spectral analysis. However, spectral analysis is a topic with contributions from many diverse fields, including electrical and mechanical engineering, astronomy, biomedical spectroscopy, geophysics, mathematical statistics, and econometrics to name a few. As such, any attempt to accurately document the historical development of spectral analysis is doomed to failure. The bibliography reflects our own perspectives, biases, and limitations; while there is no doubt that the list is incomplete, we hope that it gives the reader an appreciation of the breadth and diversity of the spectral analysis field.

The background needed for this text includes a basic knowledge of linear algebra, discrete-time linear systems, and introductory discrete-time stochastic processes (or time series). A basic understanding of estimation theory is helpful, though not required. Appendix A develops most of the needed background results on matrices and linear algebra, Appendix B gives a tutorial introduction to the Cramér-Rao bound, and Appendix C develops the theory of model order selection. We have included concise definitions and descriptions of the required concepts and results where needed. Thus, we have tried to make the text as self-contained as possible.

We are indebted to Jian Li and Lee Potter for adopting a former version of the text in their spectral estimation classes, for their valuable feedback, and for contributing to this book in several other ways. We would like to thank Torsten Söderström for providing the initial stimulus for preparation of lecture notes that led to the book, and Hung-Chih Chiang, Peter Händel, Ari Kangas, Erlendur Karlsson, and Lee Swindlehurst for careful proofreading and comments, and for many ideas on and early drafts of the computer problems. We are grateful to Mats Bengtsson, Tryphon Georgiou, K.V.S. Hari, Andreas Jakobsson, Erchin Serpedin, and Andreas Spanias for comments and suggestions that helped us eliminate some inadvertencies and typographical errors from the previous edition of the book. We also wish to thank Wallace Anderson, Alfred Hero, Ralph Hippenstiel, Louis Scharf, and Douglas Williams, who reviewed a former version of the book and provided us with numerous useful comments and suggestions. It was a pleasure to work with the excellent staff at Prentice Hall, and we are particularly appreciative of Tom Robbins for his professional expertise.

Many of the topics described in this book are outgrowths of our research programs in statistical signal and array processing, and we wish to thank the sponsors of this research: the Swedish Foundation for Strategic Research, the Swedish Research Council, the Swedish Institute, the U.S. Army Research Laboratory, the U.S. Air Force Research Laboratory, and the U.S. Defense Advanced Research Projects Administration.

Finally, we are indebted to Anca and Liz for their continuing support and understanding throughout this project.

Petre Stoica
Uppsala University

Randy Moses
The Ohio State University
Notational Conventions

\(\mathbb{R} \) the set of real numbers
\(\mathbb{C} \) the set of complex numbers
\(\mathcal{N}(A) \) the null space of the matrix \(A \) (p. 328)
\(\mathcal{R}(A) \) the range space of the matrix \(A \) (p. 328)
\(D_n \) the \(n \)th definition in Appendix A or B
\(R_n \) the \(n \)th result in Appendix A
\(\|x\| \) the Euclidean norm of a vector \(x \)
\(* \) convolution operator
\((\cdot)^T \) transpose of a vector or matrix
\((\cdot)^c \) conjugate of a vector or matrix
\((\cdot)^* \) conjugate transpose of a vector or matrix; also used for scalars in lieu of \((\cdot)^c \)
\(A_{ij} \) the \((i, j)\)th element of the matrix \(A \)
\(a_i \) the \(i \)th element of the vector \(a \)
\(\hat{x} \) an estimate of the quantity \(x \)
\(A > 0 \) \((\geq 0)\) \(A \) is positive definite (positive semidefinite) (p. 341)
\(\arg \max_x f(x) \) the value of \(x \) that maximizes \(f(x) \)
\(\arg \min_x f(x) \) the value of \(x \) that minimizes \(f(x) \)
\(\text{cov}\{x, y\} \) the covariance between \(x \) and \(y \)
\(|x| \) the modulus of the (possibly complex) scalar \(x \)
\(|A| \) the determinant of the square matrix \(A \)
\(\text{diag}(a) \) the square diagonal matrix whose diagonal elements are the elements of the vector \(a \)
\(\delta_{k,l} \) Kronecker delta: \(\delta_{k,l} = 1 \) if \(k = l \) and \(\delta_{k,l} = 0 \) otherwise
\(\delta(t-t_0) \) Dirac delta: \(\delta(t-t_0) = 0 \) for \(t \neq t_0; \int_{-\infty}^{\infty} \delta(t-t_0)dt = 1 \)
\(E\{x\} \) the expected value of \(x \) (p. 5)
\(f \) (discrete-time) frequency: \(f = \omega/2\pi \), in cycles per sampling interval (p. 8)
\(\phi(\omega) \) a power spectral density function (p. 6)
\(\text{Im}\{x\} \) the imaginary part of \(x \)
\(\mathcal{O}(x) \) on the order of \(x \) (p. 32)
xviii

\(p(x) \) probability density function
\(\text{Pr}\{A\} \) the probability of event \(A \)
\(r(k) \) an autocovariance sequence (p. 5)
\(\text{Re}\{x\} \) the real part of \(x \)
\(t \) discrete-time index
\(\text{tr}(A) \) the trace of the matrix \(A \) (p. 331)
\(\text{var}\{x\} \) the variance of \(x \)
\(w(k), W(\omega) \) a window sequence and its Fourier transform
\(w_B(k), W_B(\omega) \) the Bartlett (or triangular) window sequence and its Fourier transform (p. 29)
\(w_R(k), W_R(\omega) \) the rectangular (or Dirichlet) window sequence and its Fourier transform (p. 30)
\(\omega \) radian (angular) frequency, in radians/sampling interval (p. 3)
\(z^{-1} \) unit delay operator: \(z^{-1}x(t) = x(t - 1) \) (p. 10)
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>autocovariance sequence (p. 5)</td>
</tr>
<tr>
<td>APES</td>
<td>amplitude and phase estimation (p. 244)</td>
</tr>
<tr>
<td>AR</td>
<td>autoregressive (p. 88)</td>
</tr>
<tr>
<td>ARMA</td>
<td>autoregressive moving-average (p. 88)</td>
</tr>
<tr>
<td>BSP</td>
<td>beamspace processing (p. 323)</td>
</tr>
<tr>
<td>BT</td>
<td>Blackman-Tukey (p. 37)</td>
</tr>
<tr>
<td>CM</td>
<td>Capon method (p. 222)</td>
</tr>
<tr>
<td>CCM</td>
<td>constrained Capon method (p. 300)</td>
</tr>
<tr>
<td>CRB</td>
<td>Cramér-Rao bound (p. 355)</td>
</tr>
<tr>
<td>DFT</td>
<td>discrete Fourier transform (p. 25)</td>
</tr>
<tr>
<td>DGA</td>
<td>Delsarte-Genin algorithm (p. 95)</td>
</tr>
<tr>
<td>DOA</td>
<td>direction of arrival (p. 264)</td>
</tr>
<tr>
<td>DTFT</td>
<td>discrete-time Fourier transform (p. 3)</td>
</tr>
<tr>
<td>ESP</td>
<td>elementspace processing (p. 323)</td>
</tr>
<tr>
<td>ESPRIT</td>
<td>estimation of signal parameters by rotational invariance techniques (p. 166)</td>
</tr>
<tr>
<td>EVD</td>
<td>eigenvalue decomposition (p. 330)</td>
</tr>
<tr>
<td>FB</td>
<td>forward-backward (p. 168)</td>
</tr>
<tr>
<td>FBA</td>
<td>filter bank approach (p. 208)</td>
</tr>
<tr>
<td>FFT</td>
<td>fast Fourier transform (p. 26)</td>
</tr>
<tr>
<td>FIR</td>
<td>finite impulse response (p. 17)</td>
</tr>
<tr>
<td>flop</td>
<td>floating point operation (p. 26)</td>
</tr>
<tr>
<td>GAPES</td>
<td>gapped amplitude and phase estimation (p. 247)</td>
</tr>
<tr>
<td>GS</td>
<td>Gohberg-Semencul (formula) (p. 122)</td>
</tr>
<tr>
<td>HOYW</td>
<td>high-order Yule-Walker (p. 155)</td>
</tr>
<tr>
<td>i.i.d.</td>
<td>independent, identically distributed (p. 317)</td>
</tr>
<tr>
<td>LDA</td>
<td>Levinson–Durbin algorithm (p. 95)</td>
</tr>
<tr>
<td>LS</td>
<td>least squares (p. 350)</td>
</tr>
<tr>
<td>MA</td>
<td>moving-average (p. 88)</td>
</tr>
<tr>
<td>MFD</td>
<td>matrix fraction description (p. 137)</td>
</tr>
<tr>
<td>ML</td>
<td>maximum likelihood (p. 356)</td>
</tr>
<tr>
<td>MLE</td>
<td>maximum likelihood estimate (p. 356)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MSE</td>
<td>mean squared error (p. 28)</td>
</tr>
<tr>
<td>MUSIC</td>
<td>multiple signal classification (or characterization) (p. 159)</td>
</tr>
<tr>
<td>MYW</td>
<td>modified Yule–Walker (p. 96)</td>
</tr>
<tr>
<td>NLS</td>
<td>nonlinear least squares (p. 145)</td>
</tr>
<tr>
<td>PARCOR</td>
<td>partial correlation (p. 96)</td>
</tr>
<tr>
<td>PSD</td>
<td>power spectral density (p. 5)</td>
</tr>
<tr>
<td>RFB</td>
<td>refined filter bank (p. 212)</td>
</tr>
<tr>
<td>QRD</td>
<td>Q-R decomposition (p. 351)</td>
</tr>
<tr>
<td>RCM</td>
<td>robust Capon method (p. 299)</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio (p. 81)</td>
</tr>
<tr>
<td>SVD</td>
<td>singular value decomposition (p. 336)</td>
</tr>
<tr>
<td>TLS</td>
<td>total least squares (p. 352)</td>
</tr>
<tr>
<td>ULA</td>
<td>uniform linear array (p. 271)</td>
</tr>
<tr>
<td>YW</td>
<td>Yule–Walker (p. 90)</td>
</tr>
</tbody>
</table>
CHAPTER 1

Basic Concepts

1.1 INTRODUCTION

The essence of the spectral estimation problem is captured by the following informal formulation.

From a finite record of a stationary data sequence, estimate how the total power is distributed over frequency. (1.1.1)

Spectral analysis finds applications in many diverse fields. In vibration monitoring, the spectral content of measured signals give information on the wear and other characteristics of mechanical parts under study. In economics, meteorology, astronomy and several other fields, the spectral analysis may reveal “hidden periodicities” in the studied data, which are to be associated with cyclic behavior or recurring processes. In speech analysis, spectral models of voice signals are useful in better understanding the speech production process, and — in addition — can be used for both speech synthesis (or compression) and speech recognition. In radar and sonar systems, the spectral contents of the received signals provide information on the location of the sources (or targets) situated in the field of view. In medicine, spectral analysis of various signals measured from a patient, such as electrocardiogram (ECG) or electroencephalogram (EEG) signals, can provide useful material for diagnosis. In seismology, the spectral analysis of the signals recorded prior to and during a seismic event (such as a volcano eruption or an earthquake) gives useful information on the ground movement associated with such events and may help in predicting them. Seismic spectral estimation is also used to predict subsurface geologic structure in gas and oil exploration. In control systems, there is a resurging interest in spectral analysis methods as a means of characterizing the dynamical behavior of a given system, and ultimately synthesizing a controller for that system. The previous and other applications of spectral analysis are reviewed in [Kay 1988; Marple 1987; Bloomfield 1976; Bracewell 1986; Haykin 1991; Haykin 1995; Hayes III 1996; Koopmans 1974; Priestley 1981; Percival and Walden 1993; Porat 1994; Scharf 1991; Therrien 1992; Proakis, Rader, Ling, and Nikias 1992]. The textbook [Marple 1987] also contains a well-written historical perspective on spectral estimation which is worth reading. Many of the classical articles on spectral analysis, both application-driven and theoretical, are reprinted in [Childers 1978; Kesler 1986]; these excellent collections of reprints are well worth consulting.

There are two broad approaches to spectral analysis. One of these derives its basic idea directly from definition (1.1.1): the studied signal is applied to a bandpass filter with a narrow bandwidth, which is swept through the frequency band of
interest, and the filter output power divided by the filter bandwidth is used as a measure of the spectral content of the input to the filter. This is essentially what the classical (or nonparametric) methods of spectral analysis do. These methods are described in Chapters 2 and 5 of this text (the fact that the methods of Chapter 2 can be given the above filter bank interpretation is made clear in Chapter 5). The second approach to spectral estimation, called the parametric approach, is to postulate a model for the data, which provides a means of parameterizing the spectrum, and to thereby reduce the spectral estimation problem to that of estimating the parameters in the assumed model. The parametric approach to spectral analysis is treated in Chapters 3, 4 and 6. Parametric methods may offer more accurate spectral estimates than the nonparametric ones in the cases where the data indeed satisfy the model assumed by the former methods. However, in the more likely case that the data do not satisfy the assumed models, the nonparametric methods may outperform the parametric ones owing to the sensitivity of the latter to model misspecifications. This observation has motivated renewed interest in the nonparametric approach to spectral estimation.

Many real-world signals can be characterized as being random (from the observer's viewpoint). Briefly speaking, this means that the variation of such a signal outside the observed interval cannot be determined exactly but only specified in statistical terms of averages. In this text, we will be concerned with estimating the spectral characteristics of random signals. In spite of this fact, we find it useful to start the discussion by considering the spectral analysis of deterministic signals (which we do in the first section of this chapter). Throughout this work, we consider discrete signals (or data sequences). Such signals are most commonly obtained by the temporal or spatial sampling of a continuous (in time or space) signal. The main motivation for focusing on discrete signals lies in the fact that spectral analysis is most often performed by a digital computer or by digital circuitry. Chapters 2 to 5 of this text deal with discrete-time signals, while Chapter 6 considers the case of discrete-space data sequences.

In the interest of notational simplicity, the discrete-time variable \(t \), as used in this text, is assumed to be measured in units of sampling interval. A similar convention is adopted for spatial signals, whenever the sampling is uniform. Accordingly, the units of frequency are cycles per sampling interval.

The signals dealt with in the text are complex-valued. Complex-valued data may appear in signal processing and spectral estimation applications, for instance, as a result of a "complex demodulation" process (this is explained in detail in Chapter 6). It should be noted that the treatment of complex-valued signals is not always more general or more difficult than the analysis of corresponding real-valued signals. A typical example which illustrates this claim is the case of sinusoidal signals considered in Chapter 4. A real-valued sinusoidal signal, \(\alpha \cos(\omega t + \varphi) \), can be rewritten as a linear combination of two complex-valued sinusoidal signals, \(\alpha_1 e^{i(\omega_1 t + \varphi_1)} + \alpha_2 e^{i(\omega_2 t + \varphi_2)} \), whose parameters are constrained as follows: \(\alpha_1 = \frac{\alpha}{2} \), \(\varphi_1 = -\varphi_2 = \varphi \) and \(\omega_1 = -\omega_2 = \omega \). Here \(i = \sqrt{-1} \). The fact that we need to consider two constrained complex sine waves to treat the case of one unconstrained real sine wave shows that the real-valued case of sinusoidal signals can actually be considered to be more complicated than the complex-valued case! Fortunately, it appears that the latter case is encountered more frequently.
in applications, where often both the *in-phase and quadrature* components of the studied signal are available. (For more details and explanations on this aspect, see Chapter 6’s introductory section.)

1.2 ENERGY SPECTRAL DENSITY OF DETERMINISTIC SIGNALS

Let \(\{ y(t) ; t = 0, \pm 1, \pm 2, \ldots \} \) denote a *deterministic* discrete–time data sequence. Most commonly, \(\{ y(t) \} \) is obtained by sampling a continuous–time signal. For notational convenience, the time index \(t \) is expressed in units of sampling interval; that is, \(y(t) = y_c(t \cdot T_s) \), where \(y_c(\cdot) \) is the continuous time signal and \(T_s \) is the sampling time interval.

Assume that \(\{ y(t) \} \) has *finite energy*, which means that

\[
\sum_{t=-\infty}^{\infty} |y(t)|^2 < \infty \tag{1.2.1}
\]

Then, under some additional regularity conditions, the sequence \(\{ y(t) \} \) possesses a *discrete–time Fourier transform* (DTFT) defined as

\[
Y(\omega) = \sum_{t=-\infty}^{\infty} y(t)e^{-i\omega t} \quad \text{(DTFT)} \tag{1.2.2}
\]

In this text we use the symbol \(Y(\omega) \), in lieu of the more cumbersome \(Y(e^{i\omega}) \), to denote the DTFT. This notational convention is commented on a bit later, following equation (1.4.6). The corresponding inverse DTFT is then

\[
y(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y(\omega)e^{i\omega t} d\omega \quad \text{(Inverse DTFT)} \tag{1.2.3}
\]

which can be verified by substituting (1.2.3) into (1.2.2). The (angular) *frequency* \(\omega \) is measured in radians per sampling interval. The conversion from \(\omega \) to the *physical frequency variable* \(\hat{\omega} = \omega / T_s \) [rad/sec] can be done in a straightforward manner, as described in Exercise 1.1.

Let

\[
S(\omega) = |Y(\omega)|^2 \quad \text{(Energy Spectral Density)} \tag{1.2.4}
\]

A straightforward calculation gives

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{t=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} y(t)y^*(s)e^{-i\omega(t-s)} d\omega
\]

\[
= \sum_{t=-\infty}^{\infty} \sum_{s=-\infty}^{\infty} y(t)y^*(s) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i\omega(t-s)} d\omega \right]
\]

\[
= \sum_{t=-\infty}^{\infty} |y(t)|^2 \tag{1.2.5}
\]
To obtain the last equality in (1.2.5) we have used the fact that
\[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i\omega(t-s)} d\omega = \delta_{t,s} \] (the Kronecker delta). The symbol \((\cdot)^*\) will be used in this text to denote the complex conjugate of a scalar variable or the conjugate transpose of a vector or matrix. Equation (1.2.5) can be restated as

\[
\sum_{t=-\infty}^{\infty} |y(t)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) d\omega
\] (1.2.6)

This equality is called Parseval’s theorem. It shows that \(S(\omega)\) represents the distribution of sequence energy as a function of frequency. For this reason, \(S(\omega)\) is called the energy spectral density.

The previous interpretation of \(S(\omega)\) also comes up in the following way. Equation (1.2.3) represents the sequence \(\{y(t)\}\) as a weighted “sum” (actually, an integral) of orthonormal sequences \(\{\frac{1}{\sqrt{2\pi}} e^{i\omega t}\}\) \((\omega \in [-\pi, \pi])\), with weighting \(\frac{1}{\sqrt{2\pi}} Y(\omega)\). Hence, \(\frac{1}{\sqrt{2\pi}} |Y(\omega)|\) “measures” the “length” of the projection of \(\{y(t)\}\) on each of these basis sequences. In loose terms, therefore, \(\frac{1}{\sqrt{2\pi}} |Y(\omega)|\) shows how much (or how little) of the sequence \(\{y(t)\}\) can be “explained” by the orthonormal sequence \(\{\frac{1}{\sqrt{2\pi}} e^{i\omega t}\}\) for some given value of \(\omega\).

Define

\[\rho(k) = \sum_{t=-\infty}^{\infty} y(t)y^*(t-k) \] (1.2.7)

It is readily verified that

\[
\sum_{k=-\infty}^{\infty} \rho(k) e^{-i\omega k} = \sum_{k=-\infty}^{\infty} \sum_{t=-\infty}^{\infty} y(t)y^*(t-k)e^{-i\omega t} e^{i\omega(t-k)}
\]

\[
= \left[\sum_{t=-\infty}^{\infty} y(t)e^{-i\omega t} \right] \left[\sum_{s=-\infty}^{\infty} y(s)e^{-i\omega s} \right]^* = S(\omega)
\] (1.2.8)

which shows that \(S(\omega)\) can be obtained as the DTFT of the “autocorrelation” (1.2.7) of the finite–energy sequence \(\{y(t)\}\).

The above definitions can be extended in a rather straightforward manner to the case of random signals treated throughout the remaining text. In fact, the only purpose for discussing the deterministic case in this section was to provide some motivation for the analogous definitions in the random case. As such, the discussion in this section has been kept brief. More insights into the meaning and properties of the previous definitions are provided by the detailed treatment of the random case in the following sections.

1.3 POWER SPECTRAL DENSITY OF RANDOM SIGNALS

Most of the signals encountered in applications are such that their variation in the future cannot be known exactly. It is only possible to make probabilistic statements about that variation. The mathematical device to describe such a signal is that
of a random sequence which consists of an ensemble of possible realizations, each of which has some associated probability of occurrence. Of course, from the whole ensemble of realizations, the experimenter can usually observe only one realization of the signal, and then it might be thought that the deterministic definitions of the previous section could be carried over unchanged to the present case. However, this is not possible because the realizations of a random signal, viewed as discrete–time sequences, do not have finite energy, and hence do not possess DTFTs. A random signal usually has finite average power and, therefore, can be characterized by an average power spectral density. For simplicity reasons, in what follows we will use the name power spectral density (PSD) for that quantity.

The discrete–time signal \(\{y(t); t = 0, \pm 1, \pm 2, \ldots \} \) is assumed to be a sequence of random variables with zero mean:

\[
E\{y(t)\} = 0 \quad \text{for all } t \quad (1.3.1)
\]

Hereafter, \(E \{ \cdot \} \) denotes the expectation operator (which averages over the ensemble of realizations). The autocovariance sequence (ACS) or covariance function of \(y(t) \) is defined as

\[
r(k) = E\{y(t)y^*(t - k)\} \quad (1.3.2)
\]

and it is assumed to depend only on the lag between the two samples averaged. The two assumptions (1.3.1) and (1.3.2) imply that \(\{y(t)\} \) is a second–order stationary sequence. When it is required to distinguish between the autocovariance sequences of several signals, a lower index will be used to indicate the signal associated with a given covariance lag, such as \(r_y(k) \).

The autocovariance sequence \(r(k) \) enjoys some simple but useful properties:

\[
r(k) = r^*(-k) \quad (1.3.3)
\]

and

\[
r(0) \geq |r(k)| \quad \text{for all } k \quad (1.3.4)
\]

The equality (1.3.3) directly follows from definition (1.3.2) and the stationarity assumption, while (1.3.4) is a consequence of the fact that the covariance matrix of \(\{y(t)\} \), defined as follows

\[
R_m = \begin{bmatrix}
 r(0) & r^*(1) & \ldots & r^*(m-1) \\
 r(1) & r(0) & \ddots & \vdots \\
 \vdots & \ddots & \ddots & r^*(1) \\
 r(m-1) & \ldots & r(1) & r(0)
\end{bmatrix}
\]

is

\[
= E \begin{bmatrix}
 y^*(t-1) \\
 \vdots \\
 [y(t-1) \ldots y(t-m)] \\
 y^*(t-m)
\end{bmatrix} \quad (1.3.5)
\]
is positive semidefinite for all \(m \). Recall that a Hermitian matrix \(M \) is positive semidefinite if \(a^* M a \geq 0 \) for every vector \(a \) (see Section A.5 for details). Since

\[
a^* R_m a = a^* E \begin{bmatrix} y^*(t-1) \\ \vdots \\ y^*(t-m) \end{bmatrix} [y(t-1) \ldots y(t-m)] a
\]

\[
= E \{ z^*(t)z(t) \} = E \{ |z(t)|^2 \} \geq 0
\]

where

\[
z(t) = [y(t-1) \ldots y(t-m)]a
\]

we see that \(R_m \) is indeed positive semidefinite for every \(m \). Hence, (1.3.4) follows from the properties of positive semidefinite matrices (see Definition D11 in Appendix A and Exercise 1.5).

1.3.1 First Definition of Power Spectral Density

The PSD is defined as the DTFT of the covariance sequence:

\[
\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k)e^{-i\omega k} \quad \text{(Power Spectral Density)}
\]

(1.3.7)

Note that the previous definition (1.3.7) of \(\phi(\omega) \) is similar to the definition (1.2.8) in the deterministic case. The inverse transform, which recovers \(\{r(k)\} \) from given \(\phi(\omega) \), is

\[
r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega)e^{i\omega k} d\omega
\]

(1.3.8)

We readily verify that

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega)e^{i\omega k} d\omega = \sum_{p=-\infty}^{\infty} r(p) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\omega(k-p)} d\omega \right] = r(k)
\]

which proves that (1.3.8) is the inverse transform for (1.3.7). Note that to obtain the first equality above, the order of integration and summation has been inverted, which is possible under weak conditions (such as under the requirement that \(\phi(\omega) \) is square integrable; see Chapter 4 in [Priestley 1981] for a detailed discussion on this aspect).

From (1.3.8), we obtain

\[
r(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) d\omega
\]

(1.3.9)

Since \(r(0) = E \{ |y(t)|^2 \} \) measures the (average) power of \(\{y(t)\} \), the equality (1.3.9) shows that \(\phi(\omega) \) can indeed be named PSD, as it represents the distribution of the
(average) signal power over frequencies. Put another way, it follows from (1.3.9) that \(\phi(\omega)d\omega/2\pi \) is the infinitesimal power in the band \((\omega - d\omega/2, \omega + d\omega/2) \), and the total power in the signal is obtained by integrating these infinitesimal contributions. Additional motivation for calling \(\phi(\omega) \) a PSD is provided by the second definition of \(\phi(\omega) \), given next, which resembles the usual definition (1.2.2), (1.2.4) in the deterministic case.

1.3.2 Second Definition of Power Spectral Density

The second definition of \(\phi(\omega) \) is:

\[
\phi(\omega) = \lim_{N \to \infty} E \left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i\omega t} \right|^2 \right\} \tag{1.3.10}
\]

This definition is equivalent to (1.3.7) under the mild assumption that the covariance sequence \(\{r(k)\} \) decays sufficiently rapidly, so that

\[
\lim_{N \to \infty} \frac{1}{N} \sum_{k=-N}^{N} |k||r(k)| = 0 \tag{1.3.11}
\]

The equivalence of (1.3.7) and (1.3.10) can be verified as follows:

\[
\lim_{N \to \infty} E \left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i\omega t} \right|^2 \right\} = \lim_{N \to \infty} \frac{1}{N} \sum_{t=1}^{N} \sum_{s=1}^{N} E \{y(t)y^*(s)\} e^{-i\omega(t-s)}
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \sum_{\tau=-(N-1)}^{N-1} (N - |\tau|)r(\tau)e^{-i\omega\tau}
\]

\[
= \sum_{\tau=-\infty}^{\infty} r(\tau)e^{-i\omega\tau} - \lim_{N \to \infty} \frac{1}{N} \sum_{\tau=-N}^{N-1} |\tau|r(\tau)e^{-i\omega\tau}
\]

The second equality is proven in Exercise 1.6, and we used (1.3.11) in the last equality.

The above definition of \(\phi(\omega) \) resembles the definition (1.2.4) of energy spectral density in the deterministic case. The main difference between (1.2.4) and (1.3.10) consists of the appearance of the expectation operator in (1.3.10) and the normalization by \(1/N \); the fact that the “discrete-time” variable in (1.3.10) runs over positive integers only is just for convenience and does not constitute an essential difference, compared to (1.2.2). In spite of these differences, the analogy between the deterministic formula (1.2.4) and (1.3.10) provides further motivation for calling \(\phi(\omega) \) a PSD. The alternative definition (1.3.10) will also be quite useful when discussing the problem of estimating the PSD by nonparametric techniques in Chapters 2 and 5.
8 Chapter 1 Basic Concepts

We can see from either of these definitions that \(\phi(\omega) \) is a periodic function, with the period equal to \(2\pi \). Hence, \(\phi(\omega) \) is completely described by its variation in the interval

\[
\omega \in [-\pi, \pi] \quad \text{(radians per sampling interval)}
\] (1.3.12)

Alternatively, the PSD can be viewed as a function of the frequency

\[
f = \frac{\omega}{2\pi} \quad \text{(cycles per sampling interval)}
\] (1.3.13)

which, according to (1.3.12), can be considered to take values in the interval

\[
f \in [-1/2, 1/2]
\] (1.3.14)

We will generally write the PSD as a function of \(\omega \) whenever possible, since this will simplify the notation.

As already mentioned, the discrete-time sequence \(\{y(t)\} \) is most commonly derived by sampling a continuous-time signal. To avoid aliasing effects which might be incurred by the sampling process, the continuous-time signal should be (at least, approximately) bandlimited in the frequency domain. To ensure this, it may be necessary to low-pass filter the continuous-time signal before sampling. Let \(F_0 \) denote the largest (“significant”) frequency component in the spectrum of the (possibly filtered) continuous signal, and let \(F_s \) be the sampling frequency. Then it follows from Shannon’s sampling theorem that the continuous-time signal can be “exactly” reconstructed from its samples \(\{y(t)\} \), provided that

\[
F_s \geq 2F_0
\] (1.3.15)

In particular, “no” frequency aliasing will occur when (1.3.15) holds (see, e.g., [Oppenheim and Schafer 1989]). Since the frequency variable, \(F \), associated with the continuous-time signal, is related to \(f \) by the equation

\[
F = f : F_s
\] (1.3.16)

it follows that the interval of \(F \) corresponding to (1.3.14) is

\[
F \in \left[-\frac{F_s}{2}, \frac{F_s}{2}\right] \quad \text{(cycles/sec)}
\] (1.3.17)

which is quite natural in view of (1.3.15).

1.4 PROPERTIES OF POWER SPECTRAL DENSITIES

Since \(\phi(\omega) \) is a power density, it should be real-valued and nonnegative. That this is indeed the case is readily seen from definition (1.3.10) of \(\phi(\omega) \). Hence,

\[
\phi(\omega) \geq 0 \quad \text{for all } \omega
\] (1.4.1)
From (1.3.3) and (1.3.7), we obtain

$$\phi(\omega) = r(0) + 2 \sum_{k=1}^{\infty} \text{Re}\{r(k)e^{-i\omega k}\}$$

where \(\text{Re}\{\cdot\}\) denotes the real part of the bracketed quantity. If \(y(t)\), and hence \(r(k)\), is real valued then it follows that

$$\phi(\omega) = r(0) + 2 \sum_{k=1}^{\infty} r(k) \cos(\omega k)$$ \hspace{1cm} (1.4.2)

which shows that \(\phi(\omega)\) is an even function in such a case. In the case of complex-valued signals, however, \(\phi(\omega)\) is not necessarily symmetric about the \(\omega = 0\) axis. Thus:

<table>
<thead>
<tr>
<th>For real-valued signals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi(\omega) = \phi(-\omega), \ \omega \in [-\pi, \pi])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For complex-valued signals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>in general (\phi(\omega) \neq \phi(-\omega), \ \omega \in [-\pi, \pi])</td>
</tr>
</tbody>
</table>

Remark: The reader might wonder why we did not define the ACS as

$$c(k) = E\{y(t)y^*(t+k)\}$$

Comparing with the ACS \(\{r(k)\}\) used in this text, as defined in (1.3.2), we obtain

$$c(k) = r(-k).$$

Consequently, the PSD associated with \(\{c(k)\}\) is related to the PSD corresponding to \(\{r(k)\}\) (see (1.3.7)) via:

$$\psi(\omega) \triangleq \sum_{k=-\infty}^{\infty} c(k)e^{-i\omega k} = \sum_{k=-\infty}^{\infty} r(k)e^{i\omega k} = \phi(-\omega)$$

It may seem arbitrary as to which definition of the ACS (and corresponding definition of PSD) we choose. In fact, from a mathematical standpoint we can use either definition of the ACS, but the ACS definition \(r(k)\) is preferred from a practical standpoint as we now explain.

First, we should stress that the PSD describes the spectral content of the ACS, as seen from equation (1.3.7). The PSD \(\phi(\omega)\) is sometimes perceived as showing the (infinitesimal) power at frequency \(\omega\) in the signal itself, but that is not strictly true. If the PSD represented the power in the signal itself, then we should have had \(\psi(\omega) = \phi(\omega)\) because the signal’s spectral content should not depend on the ACS definition. However, as shown above, in the general complex case \(\psi(\omega) = \phi(-\omega) \neq \phi(\omega)\), which means that the signal power interpretation of the PSD is not (always) correct. Indeed, the PSD \(\phi(\omega)\) “measures” the power at frequency \(\omega\) in the signal’s ACS.
Chapter 1 Basic Concepts

\[e(t) \xrightarrow{\phi_x(\omega)} H(z) \xrightarrow{\phi_y(\omega)} y(t) \]

\[\phi_y(\omega) = |H(\omega)|^2 \phi_e(\omega) \]

Figure 1.1. Relationship between the PSDs of the input and output of a linear system.

On the other hand, our motivation for considering spectral analysis is to characterize the **average power** at frequency \(\omega \) in the signal, as given by the second definition of the PSD in equation (1.3.10). If \(c(k) \) is used as the ACS, its corresponding second definition of the PSD is

\[
\psi(\omega) = \lim_{N \to \infty} E \left\{ \frac{1}{N} \sum_{t=1}^{N} y(t)e^{+i\omega t} \right\}^2
\]

which is the average power of \(y(t) \) at frequency \(-\omega \). Clearly, the second PSD definition corresponding to \(r(k) \) aligns with this average power motivation, while the one for \(c(k) \) does not; it is for this reason that we use the definition \(r(k) \) for the ACS.

Next, we present a useful result which concerns the **transfer of PSD through an asymptotically stable linear system**. Let

\[
H(z) = \sum_{k=-\infty}^{\infty} h_k z^{-k}
\]

denote an asymptotically stable linear time-invariant system. The symbol \(z^{-1} \) denotes the unit delay operator defined by \(z^{-1}y(t) = y(t-1) \). Also, let \(e(t) \) be the stationary input to the system and \(y(t) \) the corresponding output, as shown in Figure 1.1. Then \(\{y(t)\} \) and \(\{e(t)\} \) are related via the convolution sum

\[
y(t) = H(z)e(t) = \sum_{k=-\infty}^{\infty} h_k e(t-k)
\]

The transfer function of this filter is

\[
H(\omega) = \sum_{k=-\infty}^{\infty} h_k e^{-i\omega k}
\]

Throughout the text, we will follow the convention of writing \(H(z) \) for the convolution operator of a linear system and its corresponding Z-transform, and \(H(\omega) \)
for its transfer function. We obtain the transfer function $H(\omega)$ from $H(z)$ by the substitution $z = e^{i\omega}$.

$$H(\omega) = H(z) \bigg|_{z = e^{i\omega}}$$

While we recognize the slight abuse of notation in writing $H(\omega)$ instead of $H(e^{i\omega})$ and in using z as both an operator and a complex variable, we prefer the simplicity of notation it affords.

From (1.4.5), we obtain

$$r_y(k) = \sum_{p=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} h_p h_m^* E \{ e(t-p)e^*(t-m-k) \}$$

$$= \sum_{p=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} h_p h_m^* r_e(m+k-p) \quad (1.4.7)$$

Inserting (1.4.7) in (1.3.7) gives

$$\phi_y(\omega) = \sum_{k=-\infty}^{\infty} \sum_{p=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} h_p h_m^* r_e(m+k-p)e^{-i\omega(k+m-p)} e^{i\omega m} e^{-i\omega p}$$

$$= \left[\sum_{p=-\infty}^{\infty} h_p e^{-i\omega p} \right] \left[\sum_{m=-\infty}^{\infty} h_m^* e^{i\omega m} \right] \left[\sum_{r=-\infty}^{\infty} r_e(\tau) e^{-i\omega \tau} \right]$$

$$= |H(\omega)|^2 \phi_e(\omega) \quad (1.4.8)$$

From (1.4.8), we get the following important formula

$$\phi_y(\omega) = |H(\omega)|^2 \phi_e(\omega) \quad (1.4.9)$$

that will be much used in the following chapters.

Finally, we derive a property that will be of use in Chapter 5. Let the signals $y(t)$ and $x(t)$ be related by

$$y(t) = e^{i\omega_0 t} x(t) \quad (1.4.10)$$

for some given ω_0. Then, it holds that

$$\phi_y(\omega) = \phi_x(\omega - \omega_0) \quad (1.4.11)$$

In other words, multiplication by $e^{i\omega_0 t}$ of a temporal sequence shifts its spectral density by the angular frequency ω_0. Owing to this interpretation, the process of constructing $y(t)$ as in (1.4.10) is called complex (de)modulation. The proof of (1.4.11) is immediate: since (1.4.10) implies that

$$r_y(k) = e^{i\omega_0 k} r_x(k) \quad (1.4.12)$$

we obtain

$$\phi_y(\omega) = \sum_{k=-\infty}^{\infty} r_x(k) e^{-i(\omega - \omega_0)k} = \phi_x(\omega - \omega_0) \quad (1.4.13)$$

which is the desired result.
1.5 THE SPECTRAL ESTIMATION PROBLEM

The spectral estimation problem can now be stated more formally as follows.

From a finite-length record \(y(1), \ldots, y(N) \) of a second-order stationary random process, determine an estimate \(\hat{\phi}(\omega) \) of its power spectral density \(\phi(\omega) \), for \(\omega \in [-\pi, \pi] \) (1.5.1)

It would, of course, be desirable that \(\hat{\phi}(\omega) \) is as close to \(\phi(\omega) \) as possible. As we shall see, the main limitation on the quality of most PSD estimates is due to the quite small number of data samples usually available for processing. Note that \(N \) will be used throughout this text to denote the number of points of the available data sequence. In some applications, \(N \) is small since the cost of obtaining large amounts of data is prohibitive. Most commonly, the value of \(N \) is limited by the fact that the signal under study can be considered second-order stationary only over short observation intervals.

As already mentioned in the introductory part of this chapter, there are two main approaches to the PSD estimation problem. The nonparametric approach, discussed in Chapters 2 and 5, proceeds to estimate the PSD by relying essentially only on the basic definitions (1.3.7) and (1.3.10) and on some properties that directly follow from these definitions. In particular, these methods do not make any assumption on the functional form of \(\phi(\omega) \). This is in contrast with the parametric approach, discussed in Chapters 3, 4 and 6. That approach makes assumptions on the signal under study, which lead to a parameterized functional form of the PSD, and then proceeds by estimating the parameters in the PSD model. The parametric approach can thus be used only when there is enough information about the studied signal, that allows formulation of a model. Otherwise the nonparametric approach should be used. Interestingly enough, the nonparametric methods are close competitors to the parametric ones, even when the model form assumed by the latter is a reasonable description of reality.

1.6 COMPLEMENTS

1.6.1 Coherency Spectrum

Let

\[
C_{yu}(\omega) = \frac{\phi_{yu}(\omega)}{[\phi_{yy}(\omega)\phi_{uu}(\omega)]^{1/2}}
\]

(1.6.1)

 denote the so-called complex-coherency of the stationary signals \(y(t) \) and \(u(t) \). In the definition above, \(\phi_{yu}(\omega) \) is the cross-spectrum of the two signals, and \(\phi_{yy}(\omega) \) and \(\phi_{uu}(\omega) \) are their respective PSDs. (We implicitly assume in (1.6.1) that \(\phi_{yy}(\omega) \) and \(\phi_{uu}(\omega) \) are strictly positive for all \(\omega \).) Also, let

\[
\epsilon(t) = y(t) - \sum_{k=\infty}^{\infty} h_k u(t-k)
\]

(1.6.2)
In what follows, we will show that equation (1.6.2) satisfy
\[\sum_{k=-\infty}^{\infty} h_k e^{-i\omega k} \triangleq H(\omega) = \phi_{yu}(\omega)/\phi_{uu}(\omega). \]

In what follows, we will show that
\[E \{ |\epsilon(t)|^2 \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} (1 - |C_{yu}(\omega)|^2) \phi_{yy}(\omega) \, d\omega \]
(1.6.3)

where \(|C_{yu}(\omega)| \) is the so-called coherency spectrum. We will deduce from (1.6.3) that the coherency spectrum shows the extent to which \(y(t) \) and \(u(t) \) are linearly related to one another, hence providing a motivation for the name given to \(|C_{yu}(\omega)| \).

We will also show that \(|C_{yu}(\omega)| \leq 1 \) with equality, for all \(\omega \) values, if and only if \(y(t) \) and \(u(t) \) are related as in equation (1.6.2) with \(\epsilon(t) \equiv 0 \) (in the mean square sense). Finally, we will show that \(|C_{yu}(\omega)| \) is invariant to linear filtering of \(u(t) \) and \(y(t) \) (possibly by different filters); that is, if \(\tilde{u} = g * u \) and \(\tilde{y} = f * y \) where \(f \) and \(g \) are linear filters, then \(|C_{yu}(\omega)| = |C_{y'\tilde{u}u}(\omega)| \).

Let \(x(t) = \sum_{k=-\infty}^{\infty} h_k u(t-k) \). It can be shown that \(u(t-k) \) and \(\epsilon(t) \) are uncorrelated with one another for all \(k \). (The reader is required to verify this claim; see also Exercise 1.11). Hence \(x(t) \) and \(\epsilon(t) \) are also uncorrelated with each other. As
\[y(t) = \epsilon(t) + x(t), \]
(1.6.4)
it then follows that
\[\phi_{yy}(\omega) = \phi_{\epsilon\epsilon}(\omega) + \phi_{xx}(\omega) \]
(1.6.5)

By using the fact that \(\phi_{xx}(\omega) = |H(\omega)|^2 \phi_{uu}(\omega) \), we can write
\[E \{ |\epsilon(t)|^2 \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi_{\epsilon\epsilon}(\omega) \, d\omega \]
\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[1 - |H(\omega)|^2 \phi_{uu}(\omega)/\phi_{yy}(\omega) \right] \phi_{yy}(\omega) \, d\omega \]
\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[1 - \phi_{uu}(\omega)/\phi_{yy}(\omega) \right] \phi_{yy}(\omega) \, d\omega \]
\[= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[1 - |C_{yu}(\omega)|^2 \phi_{yy}(\omega) \right] \phi_{yy}(\omega) \, d\omega \]

which is (1.6.3).

Since the left-hand side in (1.6.3) is nonnegative and the PSD function \(\phi_{yy}(\omega) \) is arbitrary, we must have \(|C_{yu}(\omega)| \leq 1 \) for all \(\omega \). It can also be seen from (1.6.3) that the closer \(|C_{yu}(\omega)| \) is to one, the smaller the residual variance. In particular, if \(|C_{yu}(\omega)| \equiv 1 \) then \(\epsilon(t) \equiv 0 \) (in the mean square sense) and hence \(y(t) \) and \(u(t) \) must be linearly related as in (1.7.11). Owing to the previous interpretation, \(C_{yu}(\omega) \) is sometimes called the correlation coefficient in the frequency domain.
Next, consider the filtered signals

\[\tilde{y}(t) = \sum_{k=-\infty}^{\infty} f_k y(t-k) \]

and

\[\tilde{u}(t) = \sum_{k=-\infty}^{\infty} g_k u(t-k) \]

where the filters \(\{f_k\} \) and \(\{g_k\} \) are assumed to be stable. As

\[r_{\tilde{y}\tilde{u}}(p) \triangleq E\{\tilde{y}(t)\tilde{u}^*(t-p)\} \]

\[= \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f_k g_j^* E\{y(t-k)u^*(t-j-p)\} \]

\[= \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f_k g_j^* r_{yu}(j+p-k), \]

it follows that

\[\phi_{\tilde{y}\tilde{u}}(\omega) = \sum_{p=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \sum_{j=-\infty}^{\infty} f_k e^{-i\omega k} g_j^* e^{i\omega j} r_{yu}(j+p-k)e^{-i\omega(j+p-k)} \]

\[= \left(\sum_{k=-\infty}^{\infty} f_k e^{-i\omega k} \right) \left(\sum_{j=-\infty}^{\infty} g_j e^{i\omega j} \right)^* \left(\sum_{s=-\infty}^{\infty} r_{yu}(s)e^{-i\omega s} \right) \]

\[= \tilde{F}(\omega)G^*(\omega)\phi_{yu}(\omega) \]

Hence

\[|C_{\tilde{y}\tilde{u}}(\omega)| = \frac{|F(\omega)| |G(\omega)| |\phi_{yu}(\omega)|}{|F(\omega)|^{1/2} |G(\omega)|^{1/2}} \]

which is the desired result. Observe that the latter result is similar to the invariance of the modulus of the correlation coefficient in the time domain,

\[\frac{|r_{yu}(k)|}{|r_{yu}(0)r_{uu}(0)|^{1/2}} \]

to a scaling of the two signals: \(\tilde{y}(t) = f \cdot y(t) \) and \(\tilde{u}(t) = g \cdot u(t) \).

1.7 Exercises

Exercise 1.1: Scaling of the Frequency Axis

In this text, the time variable \(t \) has been expressed in units of the sampling interval \(T_s \) (say). Consequently, the frequency is measured in cycles per sampling interval. Assume we want the frequency units to be expressed in radians per second or in Hertz (Hz = cycles per second). Then we have to introduce the scaled frequency variables

\[\tilde{\omega} = \omega/T_s \quad \tilde{\omega} \in [-\pi/T_s, \pi/T_s] \text{ rad/sec} \quad (1.7.1) \]
and \(f = \omega / 2\pi \) (in Hz). It might be thought that the PSD in the new frequency variable is obtained by inserting \(\omega = \omega T_s \) into \(\phi(\omega) \), but this is wrong. Show that the PSD, as expressed in units of power per Hz, is in fact given by:

\[
\tilde{\phi}(\omega) = T_s \phi(\omega T_s) = T_s \sum_{k=-\infty}^{\infty} r(k)e^{-i\omega T_s k}, \quad |\omega| \leq \pi / T_s
\]

(1.7.2)

(See [Marple 1987] for more details on this scaling aspect.)

Exercise 1.2: Time–Frequency Distributions

Let \(y(t) \) denote a discrete–time signal, and let \(Y(\omega) \) be its discrete–time Fourier transform. As explained in Section 1.2, \(Y(\omega) \) shows how the energy in the whole sequence \(\{y(t)\}_{t=-\infty}^{\infty} \) is distributed over frequency.

Assume that we want to determine how the energy of the signal is distributed in time and frequency. If \(D(t, \omega) \) is a function that characterizes the time–frequency distribution, then it should satisfy the so–called marginal properties:

\[
\sum_{t=-\infty}^{\infty} D(t, \omega) = |Y(\omega)|^2
\]

(1.7.3)

and

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} D(t, \omega) d\omega = |y(t)|^2
\]

(1.7.4)

Use intuitive arguments to explain why the previous conditions are desirable properties of a time–frequency distribution. Next, show that the so–called Rihaczek distribution,

\[
D(t, \omega) = y(t)Y^*(\omega)e^{-i\omega t}
\]

(1.7.5)

satisfies conditions (1.7.3) and (1.7.4). (For treatments of the time–frequency distributions, the reader is referred to [Therrien 1992] and [Cohen 1995]).

Exercise 1.3: Two Useful Z–Transform Properties

(a) Let \(h_k \) be an absolutely summable sequence, and let \(H(z) = \sum_{k=-\infty}^{\infty} h_k z^{-k} \) be its Z–transform. Find the Z–transforms of the following two sequences:

(i) \(h_{-k} \)

(ii) \(g_k = \sum_{m=-\infty}^{\infty} h_m h_{m-k} \)

(b) Show that if \(z_i \) is a zero of \(A(z) = 1 + a_1 z^{-1} + \cdots + a_n z^{-n} \), then \(1/z_i^* \) is a zero of \(A^*(1/z_i^*) \) (where \(A^*(1/z_i^*) = [A(1/z_i^*)]^* \)).

Exercise 1.4: A Simple ACS Example

Let \(y(t) \) be the output of a linear system as in Figure 1.1 with filter \(H(z) = (1 + b_1 z^{-1})/(1 + a_1 z^{-1}) \), and whose input is zero mean white noise with variance \(\sigma^2 \) (the ACS of such an input is \(\sigma^2 \delta_{k,0} \)).
16 Chapter 1 Basic Concepts

(a) Find \(r(k) \) and \(\phi(\omega) \) analytically in terms of \(a_1, b_1, \) and \(\sigma^2 \).
(b) Verify that \(r(-k) = r^*(k) \), and that \(|r(k)| \leq r(0) \). Also verify that when \(a_1 \) and \(b_1 \) are real, \(r(k) \) can be written as a function of \(|k| \).

Exercise 1.5: Alternative Proof that \(|r(k)| \leq r(0) \)

We stated in the text that (1.3.4) follows from (1.3.6). Provide a proof of that statement. Also, find an alternative, simple proof of (1.3.4) by using (1.3.8).

Exercise 1.6: A Double Summation Formula

A result often used in the study of discrete-time random signals is the following summation formula:

\[
\sum_{t=1}^{N} \sum_{s=1}^{N} f(t-s) = \sum_{\tau=-N+1}^{N-1} (N-|\tau|)f(\tau)
\]

(1.7.6)

where \(f(\cdot) \) is an arbitrary function. Provide a proof of the above formula.

Exercise 1.7: Is a Truncated Autocovariance Sequence (ACS) a Valid ACS?

Suppose that \(\{r(k)\}_{k=-\infty}^{\infty} \) is a valid ACS; thus, \(\sum_{k=-\infty}^{\infty} r(k)e^{-i\omega k} \geq 0 \) for all \(\omega \). Is it possible that for some integer \(p \) the partial (or truncated) sum

\[
\sum_{k=-p}^{p} r(k)e^{-i\omega k}
\]

is negative for some \(\omega \)? Justify your answer.

Exercise 1.8: When Is a Sequence an Autocovariance Sequence?

We showed in Section 1.3 that if \(\{r(k)\}_{k=-\infty}^{\infty} \) is an ACS, then \(R_m \geq 0 \) for \(m = 0, 1, 2, \ldots \). We also implied that the first definition of the PSD in (1.3.7) satisfies \(\phi(\omega) \geq 0 \) for all \(\omega \); however, we did not prove this by using (1.3.7) solely. Show that

\[
\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k)e^{-i\omega k} \geq 0 \text{ for all } \omega
\]

if and only if

\[
a^* R_m a \geq 0 \text{ for every } m \text{ and for every vector } a
\]

Exercise 1.9: Spectral Density of the Sum of Two Correlated Signals

Let \(y(t) \) be the output to the system shown in Figure 1.2. Assume \(H_1(z) \) and \(H_2(z) \) are linear, asymptotically stable systems. The inputs \(e_1(t) \) and \(e_2(t) \) are each zero mean white noise, with

\[
E \left\{ \begin{bmatrix} e_1(t) \\ e_2(t) \end{bmatrix} \begin{bmatrix} e_1^*(s) & e_2^*(s) \end{bmatrix} \right\} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix} \delta_{t,s}
\]
Section 1.7 Exercises 17

Figure 1.2. The system considered in Exercise 1.9.

(a) Find the PSD of \(y(t) \).

(b) Show that for \(\rho = 0 \), \(\phi_y(\omega) = \phi_{x1}(\omega) + \phi_{x2}(\omega) \).

(c) Show that for \(\rho = \pm 1 \) and \(\sigma_1^2 = \sigma_2^2 = \sigma^2 \), \(\phi_y(\omega) = \sigma^2|H_1(\omega) \pm H_2(\omega)|^2 \).

Exercise 1.10: Least Squares Spectral Approximation

Assume we are given an ACS \(\{r(k)\}_{k=-\infty}^{\infty} \) or, equivalently, a PSD function \(\phi(\omega) \) as in equation (1.3.7). We wish to find a finite–impulse response (FIR) filter as in Figure 1.1, where \(H(\omega) = h_0 + h_1 e^{-i\omega} + \ldots + h_m e^{-im\omega} \), whose input \(e(t) \) is zero mean, unit variance white noise, and such that the output sequence \(y(t) \) has PSD \(\phi_y(\omega) \) “close to” \(\phi(\omega) \). Specifically, we wish to find \(h = [h_0 \ldots h_m]^T \) so that the approximation error

\[
\epsilon = \frac{1}{2\pi} \int_{-\pi}^{\pi} [\phi(\omega) - \phi_y(\omega)]^2 d\omega \quad (1.7.7)
\]

is minimum.

(a) Show that \(\epsilon \) is a quartic (fourth–order) function of \(h \), and thus no simple closed–form solution \(h \) exists to minimize (1.7.7).

(b) We attempt to reparameterize the minimization problem as follows. We note that \(r_y(k) \equiv 0 \) for \(|k| > m \); thus,

\[
\phi_y(\omega) = \sum_{k=-m}^{m} r_y(k) e^{-i\omega k} \quad (1.7.8)
\]

Equation (1.7.8) and the fact that \(r_y(-k) = r_y^*(k) \) mean that \(\phi_y(\omega) \) is a function of \(g = [r_y(0) \ldots r_y(m)]^T \). Show that the minimization problem in (1.7.7) is quadratic in \(g \); it thus admits a closed–form solution. Show that the vector \(g \) that minimizes \(\epsilon \) in equation (1.7.7) gives

\[
r_y(k) = \begin{cases}
 r(k), & |k| \leq m \\
 0, & \text{otherwise}
\end{cases} \quad (1.7.9)
\]
Chapter 1 Basic Concepts

(c) Can you identify any problems with the “solution” (1.7.9)?

Exercise 1.11: Linear Filtering and the Cross–Spectrum

For two stationary signals \(y(t)\) and \(u(t)\), with (cross)covariance sequence \(r_{yu}(k) = E\{y(t)u^*(t-k)\}\), the cross–spectrum is defined as:

\[
\phi_{yu}(\omega) = \sum_{k=-\infty}^{\infty} r_{yu}(k)e^{-i\omega k}
\] (1.7.10)

Let \(y(t)\) be the output of a linear filter with input \(u(t)\),

\[
y(t) = \sum_{k=-\infty}^{\infty} h_k u(t-k) \quad (1.7.11)
\]

Show that the input PSD, \(\phi_{uu}(\omega)\), the filter transfer function

\[
H(\omega) = \sum_{k=-\infty}^{\infty} h_k e^{-i\omega k}
\]

and \(\phi_{yu}(\omega)\) are related through the so–called Wiener–Hopf equation:

\[
\phi_{yu}(\omega) = H(\omega)\phi_{uu}(\omega) \quad (1.7.12)
\]

Next, consider the following least squares (LS) problem,

\[
\min_{\{h_k\}} E \left\{ \left| y(t) - \sum_{k=-\infty}^{\infty} h_k u(t-k) \right|^2 \right\} \quad (1.7.13)
\]

where now \(y(t)\) and \(u(t)\) are no longer necessarily related through equation (1.7.11). Show that the filter minimizing the above LS criterion is still given by the Wiener–Hopf equation, by minimizing the expectation in (1.7.13) with respect to the real and imaginary parts of \(h_k\) (assume that \(\phi_{uu}(\omega) > 0\) for all \(\omega\)).

COMPUTER EXERCISES

Exercise C1.12: Computer Generation of Autocovariance Sequences

Autocovariance sequences are two–sided sequences. In this exercise we develop computer techniques for generating two–sided ACSs.

Let \(y(t)\) be the output of the linear system in Figure 1.1 with filter \(H(z) = (1 + b_1 z^{-1})/(1 + a_1 z^{-1})\), and whose input is zero mean white noise with variance \(\sigma^2\).
Section 1.7 Exercises

(a) Find \(r(k) \) analytically in terms of \(a_1, b_1, \) and \(\sigma^2 \) (see also Exercise 1.4).
(b) Plot \(r(k) \) for \(-20 \leq k \leq 20 \) and for various values of \(a_1 \) and \(b_1 \). Notice that the tails of \(r(k) \) decay at a rate dictated by \(|a_1|\).
(c) When \(a_1 \approx b_1 \) and \(\sigma^2 = 1 \), then \(r(k) \approx \delta_{k,0} \). Verify this for \(a_1 = -0.95, b_1 = -0.9 \), and for \(a_1 = -0.75, b_1 = -0.7 \).

A quick way to generate (approximately) \(r(k) \) on the computer is to use the fact that

\[
H(z) = \frac{1 + b_1 z^{-1} + \cdots + b_m z^{-m}}{1 + a_1 z^{-1} + \cdots + a_n z^{-n}}.
\]

Write a MATLAB function genacs.m whose inputs are \(M, \sigma^2, a \) and \(b \), where \(a \) and \(b \) are the vectors of denominator and numerator coefficients, respectively, and whose output is a vector of ACS coefficients from 0 to \(M \). Your function should make use of the MATLAB function filter to generate \(h_k \) for \(k = 0, \ldots, M \) and \(\text{conv} \) to compute \(r(k) = \sigma^2 h(k) * h^*(-k) \) using the truncated impulse response sequence.

(e) Test your function using \(\sigma^2 = 1, a_1 = -0.9 \) and \(b_1 = 0.8 \). Try \(M = 20 \) and \(M = 150 \); why is the result more accurate for larger \(M \)? Suggest a “rule of thumb” about a good choice of \(M \) in relation to the poles of the filter.

Exercise C1.13: DTFT Computations using Two-Sided Sequences

In this exercise we consider the DTFT of two-sided sequences (including autocovariance sequences), and in doing so illustrate some basic properties of autocovariance sequences.

(a) We first consider how to use the DTFT to determine \(\phi(\omega) \) from \(r(k) \) on a computer. We are given an ACS:

\[
r(k) = \begin{cases} \frac{M-|k|}{M}, & |k| \leq M \\ 0, & \text{otherwise} \end{cases} \quad (1.7.14)
\]

Generate \(r(k) \) for \(M = 10 \). Now, in MATLAB form a vector \(x \) of length \(L = 256 \) as:

\[
x = [r(0), r(1), \ldots, r(M), 0, \ldots, 0, r(-M), \ldots, r(-1)]
\]

Verify that \(x \text{fft}(x) \) gives \(\phi(\omega_k) \) for \(\omega_k = 2\pi k/L \). (Note that the elements of \(x \) should be nonnegative and real.). Explain why this particular choice of \(x \) is needed, citing appropriate circular shift and zero padding properties of the DTFT.
Chapter 1 Basic Concepts

Note that \(x_f \) often contains a very small imaginary part due to computer roundoff error; replacing \(x_f \) by \(\text{real}(x_f) \) truncates this imaginary component and leads to more expected results when plotting.

A word of caution — do not truncate the imaginary part unless you are sure it is negligible; the command \(z_f=\text{real}(\text{fft}(z)) \) when \(z = [r(-M), \ldots, r(-1), r(0), r(1), \ldots, r(M), 0 \ldots, 0] \)
gives erroneous “spectral” values; try it and explain why it does not work.

(b) Alternatively, since we can readily derive the analytical expression for \(\phi(\omega) \), we can instead work backwards. Form a vector

\[
y_f = [\phi(0), \phi(2\pi/L), \phi(4\pi/L), \ldots, \phi((L-1)2\pi/L)]
\]

and find \(y=\text{ifft}(y_f) \). Verify that \(y \) closely approximates the ACS.

(c) Consider the ACS \(r(k) \) in Exercise C1.12; let \(a_1 = -0.9 \) and \(b_1 = 0 \), and set \(\sigma^2 = 1 \). Form a vector \(x \) as above, with \(M = 10 \), and find \(x_f \). Why is \(x_f \) not a good approximation of \(\phi(\omega(k)) \) in this case? Repeat the experiment for \(M = 127 \) and \(L = 256 \); is the approximation better for this case? Why?

We can again work backwards from the analytical expression for \(\phi(\omega) \). Form a vector

\[
y_f = [\phi(0), \phi(2\pi/L), \phi(4\pi/L), \ldots, \phi((L-1)2\pi/L)]
\]

and find \(y=\text{ifft}(y_f) \). Verify that \(y \) closely approximates the ACS for large \(L \) (say, \(L = 256 \)), but poorly approximates the ACS for small \(L \) (say, \(L = 20 \)). By citing properties of inverse DTFTs of infinite, two-sided sequences, explain how the elements of \(y \) relate to the ACS \(r(k) \), and why the approximation is poor for small \(L \). Based on this explanation, give a “rule of thumb” on the choice of \(L \) for good approximations of the ACS.

(d) We have seen above that the \texttt{fft} command results in spectral estimates from 0 to \(2\pi \) instead of the more common range of \(-\pi \) to \(\pi \). The \texttt{MATLAB} command \texttt{ffts} \texttt{ift} \texttt{shift} can be used to exchange the first and second halves of the \texttt{fft} output to correspond to a frequency range of \(-\pi \) to \(\pi \). Similarly, \texttt{ffts} \texttt{ift} \texttt{shift} can be used on the output of the \texttt{ifft} operation to “center” the zero lag of an ACS. Experiment with \texttt{ffts} \texttt{ift} \texttt{shift} to achieve both of these results. What frequency vector \(w \) is needed so that the command \texttt{plot}(\(w, \text{ffts} \texttt{ift} \texttt{shift}(\texttt{fft}(x)) \)) gives the spectral values at the proper frequencies? Similarly, what time vector \(t \) is needed to get a proper plot of the ACS with \texttt{stem}(\(t, \text{ffts} \texttt{ift} \texttt{shift}(\texttt{fft}(x)) \))? Do the results depend on whether the vectors are even or odd in length?

Exercise C1.14: Relationship between the PSD and the Eigenvalues of the ACS Matrix

An interesting property of the ACS matrix \(R \) in equation (1.3.5) is that for large dimensions \(m \), its eigenvalues are close to the values of the PSD \(\phi(\omega(k)) \) for \(\omega(k) = 2\pi k/m, k = 0, 1, \ldots, m-1 \) (see, e.g., [GRAY 1972]). We verify this property here.

Consider the ACS in Exercise C1.12, with the values \(a_1 = -0.9, b_1 = 0.8, \) and \(\sigma^2 = 1 \).
(a) Compute a vector \(\phi \) which contains the values of \(\phi(\omega_k) \) for \(\omega_k = 2\pi k/m \), with \(m = 256 \) and \(k = 0, 1, \ldots, m - 1 \). Plot a histogram of these values with \texttt{hist(\phi)}). Also useful is the cumulative distribution of the values of \(\phi \) (plotted on a logarithmic scale), which can be found with the command \texttt{semilogy((1/m:1/m:1), sort(\phi))}.

(b) Compute the eigenvalues of \(R \) in equation (1.3.5) for various values of \(m \). Plot the histogram of the eigenvalues, and their cumulative distribution. Verify that as \(m \) increases, the cumulative distribution of the eigenvalues approaches the cumulative distribution of the \(\phi(\omega) \) values. Similarly, the histograms also approach the histogram for \(\phi(\omega) \), but it is easier to see this result using cumulative distributions than using histograms.
CHAPTER 2

Nonparametric Methods

2.1 INTRODUCTION

The nonparametric methods of spectral estimation rely entirely on the definitions (1.3.7) and (1.3.10) of PSD to provide spectral estimates. These methods constitute the “classical means” for PSD estimation [Jenkins and Watts 1968]. The present chapter reviews the main nonparametric methods, their properties and the Fast Fourier Transform (FFT) algorithm for their implementation. A related discussion is to be found in Chapter 5, where the nonparametric approach to PSD estimation is given a filter bank interpretation.

We first introduce two common spectral estimators, the periodogram and the correlogram, derived directly from (1.3.10) and (1.3.7), respectively. These methods are then shown to be equivalent under weak conditions. The periodogram and correlogram methods provide reasonably high resolution for sufficiently long data lengths, but are poor spectral estimators because their variance is high and does not decrease with increasing data length. (In Chapter 5 we provide an interpretation of the periodogram and correlogram methods as a power estimate based on a single sample of a filtered version of the signal under study; it is thus not surprising that the periodogram or correlogram variance is large).

The high variance of the periodogram and correlogram methods motivates the development of modified methods that have lower variance, at a cost of reduced resolution. Several modified methods have been introduced, and we present some of the most popular ones. We show them all to be more–or–less equivalent in their properties and performance for large data lengths.

2.2 PERIODOGRAM AND CORRELOGRAM METHODS

2.2.1 Periodogram

The periodogram method relies on the definition (1.3.10) of the PSD. Neglecting the expectation and the limit operation in (1.3.10), which cannot be performed when the only available information on the signal consists of the samples \(\{y(t)\}_{t=1}^{N} \), we get

\[
\hat{\phi}_{p}(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i\omega t} \right|^{2} \quad \text{(Periodogram)}
\]

(2.2.1)

One of the first uses of the periodogram spectral estimator, (2.2.1), has been in determining possible “hidden periodicities” in time series, which may be seen as a motivation for the name of this method [Schuster 1900].
2.2.2 Correlogram

The correlation-based definition (1.3.7) of the PSD leads to the correlogram spectral estimator [Blackman and Tukey 1959]:

\[
\hat{\phi}_c(\omega) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k)e^{-i\omega k} \quad \text{(Correlogram)}
\]

(2.2.2)

where \(\hat{r}(k)\) denotes an estimate of the covariance lag \(r(k)\), obtained from the available sample \(\{y(1),\ldots,y(N)\}\). When no assumption is made on the signal under study, except for the stationarity assumption, there are two standard ways to obtain the sample covariances required in (2.2.2):

\[
\hat{r}(k) = \frac{1}{N-k} \sum_{t=k+1}^{N} y(t)y^*(t-k), \quad 0 \leq k \leq N - 1 \quad (2.2.3)
\]

and

\[
\hat{r}(k) = \frac{1}{N} \sum_{t=k+1}^{N} y(t)y^*(t-k) \quad 0 \leq k \leq N - 1 \quad (2.2.4)
\]

The sample covariances for negative lags are then constructed using the property (1.3.3) of the covariance function:

\[
\hat{r}(-k) = \hat{r}^*(k), \quad k = 0, \ldots, N - 1 \quad (2.2.5)
\]

The estimator (2.2.3) is called the standard unbiased ACS estimate, and (2.2.4) is called the standard biased ACS estimate. The biased ACS estimate is most commonly used, for the following reasons:

- For most stationary signals, the covariance function decays rather rapidly, so that \(r(k)\) is quite small for large lags \(k\). Comparing the definitions (2.2.3) and (2.2.4), it can be seen that \(\hat{r}(k)\) in (2.2.4) will be small for large \(k\) (provided \(N\) is reasonably large), whereas \(\hat{r}(k)\) in (2.2.3) may take large and erratic values for large \(k\), as it is obtained by averaging only a few products in such a case (in particular, only one product for \(k = N - 1\)). This observation implies that (2.2.4) is likely to be a more accurate estimator of \(r(k)\), than (2.2.3), for medium and large values of \(k\) (compared to \(N\)). For small values of \(k\), the two estimators in (2.2.3) and (2.2.4) can be expected to behave in a similar manner.

- The sequence \(\{\hat{r}(k), k = 0, \pm 1, \pm 2, \ldots\}\) obtained with (2.2.4) is guaranteed to be positive semidefinite (as it should, see equation (1.3.5) and the related discussion), while this is not the case for (2.2.3). This fact is especially important for PSD estimation, since a sample covariance sequence that is not positive definite, when inserted in (2.2.2), may lead to negative spectral estimates, and this is undesirable in most applications.
Chapter 2 Nonparametric Methods

When the sample covariances (2.2.4) are inserted in (2.2.2), it can be shown that the so-obtained spectral estimate is identical to (2.2.1). In other words, we have the following result.

\[
\hat{\phi}_c(\omega) \text{ evaluated using the standard biased ACS estimates}\nonumber \
\text{coincides with } \hat{\phi}_p(\omega)
\] (2.2.6)

A simple proof of (2.2.6) runs as follows. Consider the signal

\[
x(t) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} y(k)e(t-k) \tag{2.2.7}
\]

where \{y(k)\} are considered to be fixed (nonrandom) constants and \(e(t)\) is a white noise of unit variance: \(E\{e(t)e^*(s)\} = \delta_{ts}\) (\(= 1\) if \(t = s\); and \(= 0\) otherwise). Hence \(x(t)\) is the output of a filter with the following transfer function:

\[
Y(\omega) = \frac{1}{\sqrt{N}} \sum_{k=1}^{N} y(k)e^{-i\omega k}
\]

Since the PSD of the input to the filter is given by \(\phi_x(\omega) = 1\), it follows from (1.4.5) that

\[
\hat{\phi}_x(\omega) = |Y(\omega)|^2 = \hat{\phi}_p(\omega) \tag{2.2.8}
\]

On the other hand, a straightforward calculation gives (for \(k \geq 0\)):

\[
r_x(k) = E\{x(t)x^*(t-k)\} \\
= \frac{1}{N} \sum_{p=1}^{N} \sum_{s=1}^{N} y(p)y^*(s)E\{e(t-p)e^*(t-k-s)\} \\
= \frac{1}{N} \sum_{p=1}^{N} \sum_{s=1}^{N} y(p)y^*(s)\delta_{p,k+s} = \frac{1}{N} \sum_{p=k+1}^{N} y(p)y^*(p-k) \\
= \begin{cases} \hat{r}(k) \text{ given by (2.2.4)}, & k = 0, \ldots, N-1 \\
0, & k \geq N \tag{2.2.9}
\end{cases}
\]

Inserting (2.2.9) in the definition (1.3.7) of PSD, the following alternative expression for \(\phi_x(\omega)\) is obtained:

\[
\phi_x(\omega) = \sum_{k=-\infty}^{N-1} \hat{r}(k)e^{-i\omega k} = \hat{\phi}_c(\omega) \tag{2.2.10}
\]

Comparing (2.2.8) and (2.2.10) concludes the proof of the claim (2.2.6).

The equivalence of the periodogram and correlogram spectral estimators can be used to derive their properties simultaneously. These two methods are shown in Section 2.4 to provide poor estimates of the PSD. There are two reasons for this, and both can be explained intuitively using \(\hat{\phi}_c(\omega)\).
Section 2.3 Periodogram Computation via FFT

- The estimation errors in $\hat{r}(k)$ are on the order of $1/\sqrt{N}$ for large N (see Exercise 2.4), at least for $|k|$ not too close to N. Because $\hat{c}_c(\omega) = \hat{p}_c(\omega)$ is a sum that involves $(2N-1)$ such covariance estimates, the difference between the true and estimated spectra will be a sum of “many small” errors. Hence there is no guarantee that the total error will die out as N increases. The spectrum estimation error is even larger than what is suggested by the above discussion, because errors in $\{\hat{r}(k)\}$, for $|k|$ close to N, are typically of an order larger than $1/\sqrt{N}$. The consequence is that the variance of $\hat{c}_c(\omega)$ does not go to zero as N increases.

- In addition, if $r(k)$ converges slowly to zero, then the periodogram estimates will be biased. Indeed, for lags $|k| \approx N$, $\hat{r}(k)$ will be a poor estimate of $r(k)$ since $\hat{r}(k)$ is the sum of only a few lag products that are divided by N (see equation (2.2.4)). Thus, $\hat{r}(k)$ will be much closer to zero than $r(k)$ is; in fact, $E \{ \hat{r}(k) \} = \{(N-|k|)/N\}r(k)$, and the bias is significant for $|k| \approx N$ if $r(k)$ is not close to zero in this region. If $r(k)$ decays rapidly to zero, the bias will be small and will not contribute significantly to the total error in $\hat{c}_c(\omega)$; however, the nonzero variance discussed above will still be present.

Both the bias and the variance of the periodogram are discussed more quantitatively in Section 2.4.

Another intuitive explanation for the poor statistical accuracy of the periodogram and correlogram methods is given in Chapter 5, where it is shown, roughly speaking, that these methods can be viewed as procedures attempting to estimate the variance of a data sequence from a single sample.

In spite of their poor quality as spectral estimators, the periodogram and correlogram methods form the basis for the improved nonparametric spectral estimation methods, to be discussed later in this chapter. As such, computation of these two basic estimators is relevant to many other nonparametric estimators derived from them. The next section addresses this computational task.

2.3 PERIOGRAM COMPUTATION VIA FFT

In practice it is not possible to evaluate $\hat{p}_p(\omega)$ (or $\hat{c}_c(\omega)$) over a continuum of frequencies. Hence, the frequency variable must be sampled for the purpose of computing $\hat{p}_p(\omega)$. The following frequency sampling scheme is most commonly used:

$$\omega = \frac{2\pi}{N} k, \quad k = 0, \ldots, N - 1$$ \hspace{1cm} (2.3.1)

Define

$$W = e^{-i\frac{2\pi}{N}}$$ \hspace{1cm} (2.3.2)

Then, evaluation of $\hat{p}_p(\omega)$ (or $\hat{c}_c(\omega)$) at the frequency samples in (2.3.1) basically reduces to the computation of the following Discrete Fourier Transform (DFT):

$$Y(k) = \sum_{t=1}^{N} y(t)W^k; \quad k = 0, \ldots, N - 1$$ \hspace{1cm} (2.3.3)
A direct evaluation of (2.3.3) would require about N^2 complex multiplications and additions, which might be a prohibitive burden for large values of N. Any procedure that computes (2.3.3) in less than N^2 flops (1 flop = 1 complex multiplication plus 1 complex addition) is called a Fast Fourier Transform (FFT) algorithm. In recent years, there has been significant interest in developing more and more computationally efficient FFT algorithms. In the following, we review one of the first FFT procedures — the so-called radix-2 FFT — which, while not being the most computationally efficient of all, is easy to program in a computer and yet quite computationally efficient [Cooley and Tukey 1965; Proakis, Rader, Ling, and Nikias 1992].

2.3.1 Radix-2 FFT

Assume that N is a power of 2,

$$N = 2^m$$

(2.3.4)

If this is not the case, then we can resort to zero padding, as described in the next subsection. By splitting the sum in (2.3.3) into two parts, we get

$$Y(k) = \sum_{t=1}^{N/2} y(t)W^{tk} + \sum_{t=N/2+1}^{N} y(t)W^{tk}$$

$$= \sum_{t=1}^{N/2} [y(t) + y(t + N/2)]W^{Nk/2}W^{tk}$$

(2.3.5)

Next, note that

$$W^{Nk/2} = \begin{cases} 1, & \text{for even } k \\ -1, & \text{for odd } k \end{cases}$$

(2.3.6)

Using this simple observation in (2.3.5), we obtain:

For $k = 2p = 0, 2, \ldots$

$$Y(2p) = \sum_{t=1}^{\tilde{N}} [y(t) + y(t + \tilde{N})]W^{tp}$$

(2.3.7)

For $k = 2p + 1 = 1, 3, \ldots$

$$Y(2p + 1) = \sum_{t=1}^{\tilde{N}} [y(t) - y(t + \tilde{N})]W^{tp}$$

(2.3.8)

where $\tilde{N} = N/2$ and $\tilde{W} = W^2 = e^{-i2\pi/\tilde{N}}$.

The above two equations are the core of the radix-2 FFT algorithm. Both of these equations represent DFTs for sequences of length equal to \tilde{N}. Computation of the sequences transformed in (2.3.7) and (2.3.8) requires roughly \tilde{N} flops. Hence,
the computation of an N–point transform has been reduced to the evaluation of two $N/2$–point transforms plus a sequence computation requiring about $N/2$ flops. This reduction process is continued until $N = 1$ (which is made possible by requiring N to be a power of 2).

In order to evaluate the number of flops required by a radix–2 FFT, let c_k denote the computational cost (expressed in flops) of a 2^k–point radix–2 FFT. According to the discussion in the previous paragraph, c_k satisfies the following recursion:

$$c_k = 2^k/2 + 2c_{k-1} = 2^{k-1} + 2c_{k-1}$$

(2.3.9)

with initial condition $c_1 = 1$ (the number of flops required by a 1–point transform). By iterating (2.3.9), we obtain the solution

$$c_k = k2^{k-1} = \frac{1}{2}k2^k$$

(2.3.10)

from which it follows that $c_m = \frac{1}{2}m2^m = \frac{1}{2}N \log_2 N$; thus

An N–point radix–2 FFT requires about $\frac{1}{2}N \log_2 N$ flops

(2.3.11)

As a comparison, the number of complex operations required to carry out an N–point split–radix FFT, which at present appears to be the most practical algorithm for general–purpose computers when N is a power of 2, is about $\frac{1}{3}N \log_2 N$ (see [PROAKIS, RADER, LING, AND NIKIAS 1992]).

2.3.2 Zero Padding

In some applications, N is not a power of 2 and hence the previously described radix–2 FFT algorithm cannot be applied directly to the original data sequence. However, this is easily remedied since we may increase the length of the given sequence by means of zero padding \{y(1), \ldots, y(N), 0, 0, \ldots\} until the length of the so–obtained sequence is, say, L (which is generally chosen as a power of 2).

Zero padding is also useful when the frequency sampling (2.3.1) is considered to be too sparse to provide a good representation of the continuous–frequency estimated spectrum, for example $\hat{\phi}_p(\omega)$. Applying the FFT algorithm to the data sequence padded with zeroes, which gives

$$\hat{\phi}_p(\omega)$$

at frequencies $\omega_k = \frac{2\pi k}{L}$, $0 \leq k \leq L - 1$

may reveal finer details in the spectrum, which were not visible without zero padding.

Since the continuous–frequency spectral estimate, $\hat{\phi}_p(\omega)$, is the same for both the original data sequence and the sequence padded with zeroes, zero padding cannot of course improve the spectral resolution of the periodogram methods. See [OPPENHEIM AND SCHAFER 1989; PORAT 1997] for further discussion.

In a zero-padded data sequence the number of nonzero data points may be considerably smaller than the total number of samples, i.e., $N \ll L$. In such a case a significant time saving can be obtained by pruning the FFT algorithm, which is
done by reducing or eliminating operations on zeroes (see, e.g., [MARKEL 1971]). FFT pruning, along with a decimation in time, can also be used to reduce the computation time when we want to evaluate the FFT only in a narrow region of the frequency domain (see [MARKEL 1971]).

2.4 PROPERTIES OF THE PERIODOGRAM METHOD

The analysis of the statistical properties of \(\hat{\phi}_p(\omega) \) (or \(\hat{c}(\omega) \)) is important in that it shows the poor quality of the periodogram as an estimator of the PSD and, in addition, provides some insight into how we can modify the periodogram so as to obtain better spectral estimators. We split the analysis in two parts: bias analysis and variance analysis (see also [PRIESTLEY 1981]).

The bias and variance of an estimator are two measures often used to characterize its performance. A primary motivation is that the total squared error of the estimate is the sum of the bias squared and the variance. To see this, let \(\hat{a} \) denote any quantity to be estimated, and let \(\hat{\alpha} \) be an estimate of \(a \). Then the mean squared error (MSE) of the estimate is:

\[
\text{MSE} = E \{ |\hat{a} - a|^2 \} = E \{ |\hat{a} - E\{\hat{a}\} + E\{\hat{a}\} - a|^2 \} \\
= E \{ |\hat{a} - E\{\hat{a}\}|^2 \} + |E\{\hat{a}\} - a|^2 \\
+ 2 \text{Re} \{ E\{\hat{a} - E\{\hat{a}\}\} \cdot (E\{\hat{a}\} - a) \} \\
= \text{var}\{\hat{a}\} + |\text{bias}\{\hat{a}\}|^2
\]

(2.4.1)

By separately considering the bias and variance components of the MSE, we gain some additional insight into the source of error and in ways to reduce the error.

2.4.1 Bias Analysis of the Periodogram

By using the result (2.2.6), we obtain

\[
E \{ \hat{\phi}_p(\omega) \} = E \{ \hat{c}(\omega) \} = \sum_{k=-(N-1)}^{N-1} E\{\hat{r}(k)\} e^{-i\omega k}
\]

(2.4.2)

For \(\hat{r}(k) \) defined in (2.2.4)

\[
E\{\hat{r}(k)\} = \left(1 - \frac{k}{N}\right) r(k), \quad k \geq 0
\]

(2.4.3)

and

\[
E\{\hat{r}(-k)\} = E\{\hat{r}^*(k)\} = \left(1 - \frac{k}{N}\right) r(-k), \quad -k \leq 0
\]

(2.4.4)

Hence

\[
E \{ \hat{\phi}_p(\omega) \} = \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) r(k) e^{-i\omega k}
\]

(2.4.5)

Define

\[
w_B(k) = \begin{cases}
1 - \frac{|k|}{N}, & k = 0, \pm 1, \ldots, \pm (N-1) \\
0, & \text{otherwise}
\end{cases}
\]

(2.4.6)
The above sequence is called the triangular window, or the Bartlett window. By using \(w_B(k) \), we can write (2.4.5) as a DTFT:

\[
E \{ \hat{\phi}_p(\omega) \} = \sum_{k=-\infty}^{\infty} [w_B(k)r(k)] e^{-i\omega k} \tag{2.4.7}
\]

The DTFT of the product of two sequences is equal to the convolution of their respective DTFTs. Hence, (2.4.7) leads to

\[
E \{ \hat{\phi}_p(\omega) \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\psi)W_B(\omega - \psi)d\psi \tag{2.4.8}
\]

where \(W_B(\omega) \) is the DTFT of the triangular window. For completeness, we include a direct proof of (2.4.8). Inserting (1.3.8) in (2.4.7), we get

\[
E \{ \hat{\phi}_p(\omega) \} = \sum_{k=-\infty}^{\infty} w_B(k) \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\psi)e^{i\omega k}d\psi \right] e^{-i\omega k} \tag{2.4.9}
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\psi) \left[\sum_{k=-\infty}^{\infty} w_B(k)e^{-ik(\omega - \psi)} \right] d\psi \tag{2.4.10}
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\psi)W_B(\omega - \psi)d\psi \tag{2.4.11}
\]

which is (2.4.8).

We can find an explicit expression for \(W_B(\omega) \) as follows. A straightforward calculation gives

\[
W_B(\omega) = \sum_{k=-(N-1)}^{N-1} \frac{N-|k|}{N} e^{-i\omega k} \tag{2.4.12}
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \sum_{s=1}^{N} e^{-i\omega(t-s)} \frac{1}{N} \left| \sum_{l=1}^{N} e^{i\omega l} \right|^2 \tag{2.4.13}
\]

\[
= \frac{1}{N} \left| \frac{e^{i\omega N} - 1}{e^{i\omega} - 1} \right|^2 = \frac{1}{N} \left| \frac{e^{i\omega N/2} - e^{-i\omega N/2}}{e^{i\omega/2} - e^{-i\omega/2}} \right|^2 \tag{2.4.14}
\]

or, in final form,

\[
W_B(\omega) = \frac{1}{N} \left[\frac{\sin(\omega N/2)}{\sin(\omega/2)} \right]^2 \tag{2.4.15}
\]

\(W_B(\omega) \) is sometimes referred to as the Fejer kernel. As an illustration, \(W_B(\omega) \) is displayed as a function of \(\omega \), for \(N = 25 \), in Figure 2.1.

The convolution formula (2.4.8) is the key equation to understanding the behavior of the mean estimated spectrum \(E\{\hat{\phi}_p(\omega)\} \). In order to facilitate the interpretation of this equation, the reader may think of it as representing a dynamical system with “input” \(\phi(\omega) \), “weighting function” \(W_B(\omega) \) and “output” \(E\{\hat{\phi}_p(\omega)\} \).
Chapter 2 Nonparametric Methods

Figure 2.1. $W_B(\omega)/W_B(0)$, for $N = 25$.

Note that a similar equation would be obtained if the covariance estimator (2.2.3) were used in $\hat{\phi}_c(\omega)$, in lieu of (2.2.4). As in that case $E\{\hat{r}(k)\} = r(k)$, the corresponding $W(\omega)$ function that would appear in (2.4.8) is the DTFT of the rectangular window

$$w_R(k) = \begin{cases} 1, & k = 0, \pm 1, \ldots, \pm (N - 1) \\ 0, & \text{otherwise} \end{cases} \quad (2.4.16)$$

A straightforward calculation gives

$$W_R(\omega) = \sum_{k=-(N-1)}^{(N-1)} e^{-i\omega k} = 2 \text{Re} \left[e^{iN\omega} - 1 \right] - 1$$

$$= 2 \cos \left[\frac{(N-1)\omega}{2} \right] \sin \left[\frac{N\omega}{2} \right] - 1 = \sin \left[\frac{(N - \frac{1}{2})\omega}{2} \right]$$

which is displayed in Figure 2.2 (for $N = 25$; to facilitate comparison with $W_B(\omega)$). $W_R(\omega)$ is sometimes called the Dirichlet kernel.

As can be seen, there are no “essential” differences between $W_R(\omega)$ and $W_B(\omega)$. For conciseness, in the following we focus on the use of the triangular window.

Since we would like $E\{\hat{\phi}_p(\omega)\}$ to be as close to $\phi(\omega)$ as possible, it follows from (2.4.8) that $W_B(\omega)$ should be a close approximation to a Dirac impulse. The half-power (3 dB) width of the main lobe of $W_B(\omega)$ can be shown to be approximately $2\pi/N$ radians (see Exercise 2.15), so in frequency units (with $f = \omega/2\pi$)

$$\text{main lobe width in frequency } f \approx 1/N \quad (2.4.18)$$

(Also, see the calculation of the time–bandwidth product for windows in the next section, which supports (2.4.18).) It follows from (2.4.18) that $W_B(\omega)$ is a poor
approximation of a Dirac impulse for small values of N. In addition, unlike the Dirac delta function, $W_B(\omega)$ has a large number of sidelobes. It follows that the bias of the periodogram spectral estimate can basically be divided into two components. These two components correspond respectively to the nonzero main lobe width and the nonzero sidelobe height of the window function $W_B(\omega)$, as we explain below.

The principal effect of the main lobe of $W_B(\omega)$ is to smear or smooth the estimated spectrum. Assume, for instance, that $\phi(\omega)$ has two peaks separated in frequency f by less than $1/N$. Then these two peaks appear as a single broader peak in $\hat{\phi}_x(\omega)$ since (see (2.4.8)) the “response” of the “system” corresponding to $W_B(\omega)$ to the first peak does not get the time to die out before the “response” to the second peak starts. This kind of effect of the main lobe on the estimated spectrum is called smearing. Owing to smearing, the periodogram–based methods cannot resolve details in the studied spectrum that are separated by less than $1/N$ in cycles per sampling interval. For this reason, $1/N$ is called the spectral resolution limit of the periodogram method.

Remark: The previous comments on resolution give us the occasion to stress that, in spite of the fact that we have seen the PSD as a function of the angular frequency (ω), we generally refer to the resolution in frequency (f) in units of cycles per sampling interval. Of course, the “resolution in angular frequency” is determined from the “resolution in frequency” by the simple relation $\omega = 2\pi f$.

The principal effect of the sidelobes on the estimated spectrum consists of transferring power from the frequency bands that concentrate most of the power in the signal to bands that contain less or no power. This effect is called leakage. For instance, a dominant peak in $\phi(\omega)$ may through convolution with the sidelobes of $W_B(\omega)$ lead to an estimated spectrum that contains power in frequency bands where $\phi(\omega)$ is zero. Note that the smearing effect associated with the main lobe can also be interpreted as a form of leakage from a local peak of $\phi(\omega)$ to neighboring
frequency bands.

It follows from the previous discussion that smearing and leakage are particularly critical for spectra with large amplitude ranges, such as peaky spectra. For smooth spectra, these effects are less important. In particular, we see from (2.4.7) that for white noise (which has a maximally smooth spectrum) the periodogram is an unbiased spectral estimator: $E\{\hat{\phi}_p(\omega)\} = \phi(\omega)$ (see also Exercise 2.9).

The bias of the periodogram estimator, even though it might be severe for spectra with large dynamic ranges when the sample length is small, does not constitute the main limitation of this spectral estimator. In fact, if the bias were the only problem, then by increasing N (assuming this is possible) the bias in $\hat{\phi}_p(\omega)$ would be eliminated. In order to see this, note from (2.4.5), for example, that

$$\lim_{N \to \infty} E\left\{\hat{\phi}_p(\omega)\right\} = \phi(\omega)$$

Hence, the periodogram is an asymptotically unbiased spectral estimator. The main problem of the periodogram method lies in its large variance, as explained next.

2.4.2 Variance Analysis of the Periodogram

The finite-sample variance of $\hat{\phi}_p(\omega)$ can be easily established only in some specific cases, such as in the case of Gaussian white noise. The asymptotic variance of $\hat{\phi}_p(\omega)$, however, can be derived for more general signals. In the following, we present an asymptotic (for $N \gg 1$) analysis of the variance of $\hat{\phi}_p(\omega)$ since it turns out to be sufficient for showing the poor statistical accuracy of the periodogram (for a finite–sample analysis, see Exercise 2.13).

Some preliminary discussion is required. A sequence $\{e(t)\}$ is called complex (or circular) white noise if it satisfies

$$E\left\{e(t)e^*(s)\right\} = \sigma^2 \delta_{t,s}$$

$$E\{e(t)e(s)\} = 0, \quad \text{for all } t \text{ and } s$$

(2.4.19)

Note that $\sigma^2 = E\{|e(t)|^2\}$ is the variance (or power) of $e(t)$. Equation (2.4.19) can be rewritten as

$$E\left\{\text{Re}[e(t)]\text{Re}[e(s)]\right\} = \sigma^2 \delta_{t,s}$$

$$E\left\{\text{Im}[e(t)]\text{Im}[e(s)]\right\} = \sigma^2 \delta_{t,s}$$

$$E\left\{\text{Re}[e(t)]\text{Im}[e(s)]\right\} = 0$$

(2.4.20)

Hence, the real and imaginary parts of a complex/circular white noise are real–valued white noise sequences of identical power equal to $\sigma^2/2$, and uncorrelated with one another. See Appendix B for more details on circular random sequences, such as $\{e(t)\}$ above.

In what follows, we shall also make use of the symbol $O(1/N^\alpha)$, for some $\alpha > 0$, to denote a random variable which is such that the square root of its second–order moment goes to zero at least as fast as $1/N^\alpha$, as N tends to infinity.
First, we establish the asymptotic variance/covariance of $\hat{\phi}_p(\omega)$ in the case of Gaussian complex/circular white noise. The following result holds.

\[
\lim_{N \to \infty} E \left\{ [\hat{\phi}_p(\omega_1) - \phi(\omega_1)][\hat{\phi}_p(\omega_2) - \phi(\omega_2)] \right\} = \begin{cases}
\phi^2(\omega_1), & \omega_1 = \omega_2 \\
0, & \omega_1 \neq \omega_2
\end{cases} \tag{2.4.21}
\]

Note that, for white noise, $\phi(\omega) = \sigma^2$ (for all ω). Since $\lim_{N \to \infty} E \{ \hat{\phi}_p(\omega) \} = \phi(\omega)$ (cf. the analysis in the previous subsection), in order to prove (2.4.21) it suffices to show that

\[
\lim_{N \to \infty} E \left\{ \hat{\phi}_p(\omega_1)\hat{\phi}_p(\omega_2) \right\} = \phi(\omega_1)\phi(\omega_2) + \phi^2(\omega_1)\delta_{\omega_1,\omega_2} \tag{2.4.22}
\]

From (2.2.1), we obtain

\[
E \left\{ \hat{\phi}_p(\omega_1)\hat{\phi}_p(\omega_2) \right\} = \frac{1}{N^2} \sum_{t=1}^{N} \sum_{s=1}^{N} \sum_{p=1}^{N} \sum_{m=1}^{N} E \{ e(t)e^*(s)e(p)e^*(m) \} \frac{e^{-i\omega_1(t-s)}e^{-i\omega_2(p-m)}}{N} \tag{2.4.23}
\]

For general random processes, the evaluation of the expectation in (2.4.23) is relatively complicated. However, the following general result for Gaussian random variables can be used: If a, b, c, and d are jointly Gaussian (complex or real) random variables, then

\[
E \{ abcd \} = E \{ ab \} E \{ cd \} + E \{ ac \} E \{ bd \} + E \{ ad \} E \{ bc \} - 2E \{ a \} E \{ b \} E \{ c \} E \{ d \} \tag{2.4.24}
\]

For a proof of (2.4.24), see, e.g., [JANSEN AND STOICA 1988] and references therein. Thus, if the white noise $e(t)$ is Gaussian as assumed, the fourth-order moment in (2.4.23) is found to be:

\[
E \{ e(t)e^*(s)e(p)e^*(m) \} = [E \{ e(t)e^*(s) \}] [E \{ e(p)e^*(m) \}] + [E \{ e(t)e(p) \}] [E \{ e(s)e(m) \}]^* + [E \{ e(t)e^*(m) \}] [E \{ e^*(s)e(p) \}] = \sigma^4(\delta_{t,s}\delta_{p,m} + \delta_{t,m}\delta_{s,p}) \tag{2.4.25}
\]

Inserting (2.4.25) in (2.4.23) gives

\[
E \left\{ \hat{\phi}_p(\omega_1)\hat{\phi}_p(\omega_2) \right\} = \sigma^4 + \frac{\sigma^4}{N^2} \sum_{t=1}^{N} \sum_{s=1}^{N} e^{-i(\omega_1 - \omega_2)(t-s)} = \sigma^4 + \frac{\sigma^4}{N^2} \sum_{t=1}^{N} e^{i(\omega_1 - \omega_2)t} \left| e^{i(\omega_1 - \omega_2)t} \right|^2 = \sigma^4 + \frac{\sigma^4}{N^2} \left\{ \sin[(\omega_1 - \omega_2)N/2] \right\}^2 \tag{2.4.26}
\]
Chapter 2 Nonparametric Methods

The limit of the second term in (2.4.26) is \(\sigma^4 \) when \(\omega_1 = \omega_2 \) and zero otherwise, and (2.4.22) follows at once.

Remark: Note that in the previous case, it was indeed possible to derive the finite-sample variance of \(\hat{\phi}_p(\omega) \). For colored noise the above derivation becomes more difficult, and a different approach (presented below) is needed. See Exercise 2.13 for yet another approach that applies to general Gaussian signals.

Next, we consider the case of a much more general signal obtained by linearly filtering the Gaussian white noise sequence \(\{e(t)\} \) considered above:

\[
y(t) = \sum_{k=1}^{\infty} h_k e(t - k) \tag{2.4.27}
\]

whose PSD is given by

\[
\phi_y(\omega) = |H(\omega)|^2 \phi_e(\omega) \tag{2.4.28}
\]

(cf. (1.4.9)). Here \(H(\omega) = \sum_{k=1}^{\infty} h_k e^{-i\omega k} \). The following intermediate result, concerned with signals of the above type, appears to have an independent interest. (Below, we omit the index “p” of \(\hat{\phi}_y(\omega) \) in order to simplify the notation.)

For \(N \gg 1 \),

\[
\hat{\phi}_y(\omega) = |H(\omega)|^2 \hat{\phi}_e(\omega) + O(1/\sqrt{N}) \tag{2.4.29}
\]

Hence, the periodograms approximately satisfy an equation of the form of (2.4.28) that is satisfied by the true PSDs.

In order to prove (2.4.29), first observe that

\[
\frac{1}{\sqrt{N}} \sum_{t=1}^{N} y(t)e^{-i\omega t} = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} \sum_{k=1}^{\infty} h_k e(t - k)e^{-i\omega(t-k)}e^{-i\omega k} \\
= \frac{1}{\sqrt{N}} \sum_{k=1}^{\infty} h_k e^{-i\omega k} \sum_{p=1-k}^{N-k} e(p)e^{-i\omega p} \\
= \frac{1}{\sqrt{N}} \sum_{k=1}^{\infty} h_k e^{-i\omega k} \\
\cdot \left[\sum_{p=1}^{N} e(p)e^{-i\omega p} + \sum_{p=1-k}^{0} e(p)e^{-i\omega p} - \sum_{p=N-k+1}^{N} e(p)e^{-i\omega p} \right] \\
\triangleq H(\omega) \left[\frac{1}{\sqrt{N}} \sum_{p=1}^{N} e(p)e^{-i\omega p} \right] + \rho(\omega) \tag{2.4.30}
\]
Section 2.4 Properties of the Periodogram Method

where

\[
\rho(\omega) = \frac{1}{\sqrt{N}} \sum_{k=1}^{\infty} h_k e^{-i\omega k} \left[\sum_{p=1-k}^{0} e(p)e^{-i\omega p} - \sum_{p=N-k+1}^{N} e(p)e^{-i\omega p} \right]
\]

\[
\triangleq \frac{1}{\sqrt{N}} \sum_{k=1}^{\infty} h_k e^{-i\omega k} \varepsilon_k(\omega) \quad (2.4.31)
\]

Next, note that

\[
E \{ \varepsilon_k(\omega) \} = 0,
\]

\[
E \{ \varepsilon_k(\omega)\varepsilon_j(\omega) \} = 0 \text{ for all } k \text{ and } j,
\]

\[
E \{ \varepsilon_k(\omega)\varepsilon_j^*(\omega) \} = 2\sigma^2 \min(k,j)
\]

which imply

\[
E \{ \rho(\omega) \} = 0, \quad E \{ \rho^2(\omega) \} = 0
\]

and

\[
E \{ |\rho(\omega)|^2 \} = \frac{1}{N} \left| \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} h_k e^{-i\omega k} h_j^* e^{i\omega j} E \{ \varepsilon_k(\omega)\varepsilon_j^*(\omega) \} \right|
\]

\[
= \frac{2\sigma^2}{N} \sum_{k=1}^{\infty} \left| h_k \right| \left(\sum_{j=1}^{\infty} |h_j| + \sum_{j=1}^{\infty} |h_j|^2 \right)
\]

\[
\leq \frac{2\sigma^2}{N} \sum_{k=1}^{\infty} |h_k| \left(\sum_{j=1}^{\infty} |h_j| \right)
\]

\[
= \frac{4\sigma^2}{N} \left(\sum_{k=1}^{\infty} |h_k| \right) \left(\sum_{j=1}^{\infty} |h_j| \right)
\]

If \(\sum_{j=1}^{\infty} |h_k| \) is finite (which, for example, is true if \(\{h_k\} \) is exponentially stable; see [SöDERSTRÖM AND STOICA 1989]), we have

\[
E \{ |\rho(\omega)|^2 \} \leq \frac{\text{constant}}{N} \quad (2.4.32)
\]

Now, from (2.4.30) we obtain

\[
\hat{\phi}_p(\omega) = |H(\omega)|^2 \hat{\phi}_e(\omega) + \gamma(\omega)
\]

(2.4.33)

where

\[
\gamma(\omega) = H^*(\omega)E^*(\omega)\rho(\omega) + H(\omega)E(\omega)\rho^*(\omega) + \rho(\omega)\rho^*(\omega)
\]

and where

\[
E(\omega) = \frac{1}{\sqrt{N}} \sum_{t=1}^{N} c(t)e^{-i\omega t}
\]
36 Chapter 2 Nonparametric Methods

Since \(E(\omega) \) and \(\rho(\omega) \) are linear combinations of Gaussian random variables, they are also Gaussian distributed. This means that the fourth-order moment formula (2.4.24) can be used to obtain the second-order moment of \(\gamma(\omega) \). By doing so, and also by using (2.4.32) and the fact that, for example,

\[
|E(\{\rho(\omega)E^*(\omega)\})| \leq \left[E\{|\rho(\omega)|^2\}\right]^{1/2} \left[E\{|E(\omega)|^2\}\right]^{1/2} = \text{constant} \cdot \sqrt{\frac{1}{N}} \cdot \left[E\{|\hat{\phi}_e(\omega)|^2\}\right]^{1/2} = \text{constant} \cdot \sqrt{\frac{1}{N}}
\]

we can verify that \(\gamma(\omega) = \mathcal{O}(1/\sqrt{N}) \), and hence the proof of (2.4.29) is concluded.

The main result of this section is derived by combining (2.4.21) and (2.4.29).

Remark: In the introduction to Chapter 1, we mentioned that the analysis of a complex-valued signal is not always more general than the analysis of the corresponding real-valued signal; we supported this claim by the example of a complex sine wave. Here, we have another instance where the claim is valid. Similarly to the complex sinusoidal signal case, the complex (or circular) white noise does not specialize, in a direct manner, to real white noise. Indeed, if we would let \(e(t) \) in (2.4.19) be real, then the two equations in (2.4.19) would conflict with each other (for \(t = s \)). The real white noise random process is a stationary signal which satisfies

\[
E\{e(t)e(s)\} = \sigma^2 \delta_{t,s}
\]

(2.4.35)

If we try to carry out the proof of (2.4.21) under (2.4.35), then we find that the proof has to be modified. This was expected: both \(\phi(\omega) \) and \(\hat{\phi}_p(\omega) \) are even functions in the real-valued case; hence (2.4.21) should be modified to include the case of both \(\omega_1 = \omega_2 \) and \(\omega_1 = -\omega_2 \).

It follows from (2.4.34) that for a fairly general class of signals, the periodogram values are asymptotically (for \(N \gg 1 \)) uncorrelated random variables whose means and standard deviations are both equal to the corresponding true PSD values. Hence, the periodogram is an inconsistent spectral estimator which continues to fluctuate around the true PSD, with a nonzero variance, even if the length of the processed sample increases without bound. Furthermore, the fact that the periodogram values \(\hat{\phi}_p(\omega) \) are uncorrelated (for large \(N \) values) makes the periodogram exhibit an erratic behavior (similar to that of a white noise realization). These facts constitute the main limitations of the periodogram approach to PSD estimation. In the next sections, we present several modified periodogram-based methods which attempt to cure the aforementioned difficulties of the basic periodogram approach. As we shall see, the “improved methods” decrease the variance of the estimated spectrum at the expense of increasing its bias (and, hence, decreasing the average resolution).
2.5 THE BLACKMAN–TUKEY METHOD

In this section we develop the Blackman–Tukey method [Blackman and Tukey 1959] and compare it to the periodogram. In later sections we consider several other refined periodogram–based methods that, like the Blackman–Tukey (BT) method, seek to reduce the statistical variability of the estimated spectrum; we will compare these methods to one another and to the Blackman–Tukey method.

2.5.1 The Blackman–Tukey Spectral Estimate

As we have seen, the main problem with the periodogram is the high statistical variability of this spectral estimator, even for very large sample lengths. The poor statistical quality of the periodogram PSD estimator has been intuitively explained as arising from both the poor accuracy of $\hat{r}(k)$ in $\hat{\phi}_c(\omega)$ for extreme lags ($|k| \simeq N$) and the large number of (even if small) covariance estimation errors that are cumulatively summed up in $\hat{\phi}_c(\omega)$. Both these effects may be reduced by truncating the sum in the definition formula of $\hat{\phi}_c(\omega)$, (2.2.2). Following this idea leads to the Blackman–Tukey estimator, which is given by

$$
\hat{\phi}_{BT}(\omega) = \sum_{k=-\infty}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}
$$

where \{w(k)\} is an even function (i.e., $w(-k) = w(k)$) which is such that $w(0) = 1$, $w(k) = 0$ for $|k| \geq M$, and $w(k)$ decays smoothly to zero with k, and where $M < N$. Since $w(k)$ in (2.5.1) weights the lags of the sample covariance sequence, it is called a lag window.

If $w(k)$ in (2.5.1) is selected as the rectangular window, then we simply obtain a truncated version of $\hat{\phi}_c(\omega)$. However, we may choose $w(k)$ in many other ways, and this flexibility may be employed to improve the accuracy of the Blackman–Tukey spectral estimator or to emphasize some of its characteristics that are of particular interest in a given application. In the following subsections, we address the principal issues which concern the problem of window selection. However, before doing so we rewrite (2.5.1) in an alternative form that will be used in several places of the discussion that follows.

Let $W(\omega)$ denote the DTFT of $w(k)$,

$$
W(\omega) = \sum_{k=-\infty}^{\infty} w(k)e^{-i\omega k} = \sum_{k=-(M-1)}^{M-1} w(k)e^{-i\omega k}
$$

(2.5.2)
Making use of the DTFT property that led to \((2.4.8)\), we can then write

\[
\hat{\phi}_{BT}(\omega) = \sum_{k=-\infty}^{\infty} w(k)\hat{r}(k)e^{-i\omega k} \\
= \text{DTFT of the product of the sequences} \\
\{\ldots, 0, 0, w(-(M-1)), \ldots, w(M-1), 0, 0, \ldots\} \text{ and} \\
\{\ldots, 0, \hat{r}(-(N-1)), \ldots, \hat{r}(N-1), 0, 0, \ldots\} \\
= \{\text{DTFT}(\hat{r}(k))\} \ast \{\text{DTFT}(w(k))\}
\]

As \(\text{DTFT}\{\ldots, 0, 0, \hat{r}(-(N-1)), \ldots, \hat{r}(N-1), 0, 0, \ldots\} = \hat{\phi}_p(\omega)\), we obtain

\[
\hat{\phi}_{BT}(\omega) = \hat{\phi}_p(\omega) \ast W(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_p(\psi)W(\omega - \psi)d\psi \tag{2.5.3}
\]

This equation is analogous to \((2.4.8)\) and can be interpreted in the same way. Hence, since for most windows in common use \(W(\omega)\) has a dominant, relatively narrow peak at \(\omega = 0\), it follows from \((2.5.3)\) that

\[
\text{The Blackman–Tukey spectral estimator (2.5.1) corresponds to a \textit{"locally" weighted average of the periodogram.}} \tag{2.5.4}
\]

Since the function \(W(\omega)\) in \((2.5.3)\) acts as a window (or weighting) in the frequency domain, it is sometimes called a \textit{spectral window}. As we shall see, several refined periodogram–based spectral estimators discussed in what follows can be given an interpretation similar to that afforded by \((2.5.3)\).

The form \((2.5.3)\) under which the Blackman–Tukey spectral estimator has been put is quite appealing from an intuitive standpoint. The main problem with the periodogram lies in its large variations about the true PSD. The weighted average in \((2.5.3)\), in the neighborhood of the current frequency point \(\omega\), should smooth the periodogram and hence eliminate its large fluctuations.

On the other hand, this smoothing by the spectral window \(W(\omega)\) will also have the undesirable effect of reducing the resolution. We may expect that the smaller the \(M\), the larger the reduction in variance and the lower the resolution. These qualitative arguments may be made exact by a statistical analysis of \(\hat{\phi}_{BT}(\omega)\), similar to that in the previous section. In fact, it is clear from \((2.5.3)\) that the mean and variance of \(\hat{\phi}_{BT}(\omega)\) can be derived from those of \(\hat{\phi}_p(\omega)\). Roughly speaking, the results that can be established by the analysis of \(\hat{\phi}_{BT}(\omega)\), based on \((2.5.3)\), show that the resolution of this spectral estimator is on the order of \(1/M\), whereas its variance is on the order of \(M/N\). The compromise between resolution and variance, which should be considered when choosing the window’s length, is clearly seen from the above considerations. We will look at the tradeoff resolution–variance in more detail in what follows. The next discussion addresses some of the main issues which concern window design.
2.5.2 Nonnegativeness of the Blackman–Tukey Spectral Estimate

Since \(\phi(\omega) \geq 0 \), it is natural to also require that \(\hat{\phi}_{BT}(\omega) \geq 0 \). The lag window can be selected to achieve this desirable property of the estimated spectrum. The following result holds true.

If the lag window \(\{w(k)\} \) is positive semidefinite (i.e., \(W(\omega) \geq 0 \)), then the windowed covariance sequence \(\{w(k)\hat{r}(k)\} \) (with \(\hat{r}(k) \) given by (2.2.4)) is positive semidefinite, too; which implies that \(\hat{\phi}_{BT}(\omega) \geq 0 \) for all \(\omega \).

\[
\begin{bmatrix}
 w(0)\hat{r}(0) & \ldots & w(M-1)\hat{r}(M-1) & 0 \\
 \vdots & & \ddots & \vdots \\
 w(-M+1)\hat{r}(-M+1) & & \ldots & w(-M+1)\hat{r}(-M+1) \\
 0 & w(-M+1)\hat{r}(-M+1) & & \ldots & w(0)\hat{r}(0) \\
 w(0) & \ldots & w(M-1) & 0 \\
 \vdots & & \ddots & \vdots \\
 w(-M+1) & & \ldots & w(-M+1) \\
 0 & w(-M+1) & \ldots & w(0)
\end{bmatrix}
\odot
\begin{bmatrix}
 \hat{r}(0) & \ldots & \hat{r}(M-1) & 0 \\
 \vdots & & \ddots & \vdots \\
 \hat{r}(-M+1) & & \ldots & \hat{r}(-M+1) \\
 0 & \hat{r}(-M+1) & \ldots & \hat{r}(0)
\end{bmatrix}
\]

The symbol \(\odot \) denotes the Hadamard matrix product (i.e., element-wise multiplication). By a result in matrix theory, the Hadamard product of two positive semidefinite matrices is also a positive semidefinite matrix (see Result R19 in Appendix A). Thus, the proof of (2.5.5) is concluded.

Another, perhaps simpler, proof of (2.5.5) makes use of (2.5.3) in the following way. Since the sequence \(\{w(k)\} \) is real and symmetric about the point \(k = 0 \), its DTFT \(W(\omega) \) is an even, real-valued function. Furthermore, if \(\{w(k)\} \) is a positive semidefinite sequence then \(W(\omega) \geq 0 \) for all \(\omega \) values (see Exercise 1.8). By (2.5.3), \(W(\omega) \geq 0 \) immediately implies \(\hat{\phi}_{BT}(\omega) \geq 0 \), as \(\hat{\phi}_{p}(\omega) \geq 0 \) by definition.

It should be noted that some lag windows, such as the rectangular window, do not satisfy the assumption made in (2.5.5) and hence their use may lead to estimated spectra that take negative values. The Bartlett window, on the other hand, is positive semidefinite (as can be seen from (2.4.15)).

2.6 WINDOW DESIGN CONSIDERATIONS

The properties of the Blackman–Tukey estimator (and of other refined periodogram methods discussed in the next section) are directly related to the choice of the lag
window. In this section, we discuss several relevant properties of windows that are useful in selecting or designing a window to use in a refined spectral estimation procedure.

2.6.1 Time–Bandwidth Product and Resolution–Variance Tradeoffs in Window Design

Most windows are such that they take only nonnegative values in both time and frequency domains (or, if they also take negative values, these are much smaller than the positive values of the window). In addition, they peak at the origin in both domains. For this type of window, it is possible to define an equivalent time width, \(N_e \), and an equivalent bandwidth, \(\beta_e \), as follows:

\[
N_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} \tag{2.6.1}
\]

and

\[
\beta_e = \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} \tag{2.6.2}
\]

From the definitions of direct and inverse DTFTs, we obtain

\[
W(0) = \sum_{k=-\infty}^{\infty} w(k) = \sum_{k=-(M-1)}^{M-1} w(k) \tag{2.6.3}
\]

and

\[
w(0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega \tag{2.6.4}
\]

Using (2.6.3) and (2.6.4) in (2.6.1) and (2.6.2) gives the following result.

The (equivalent) time–bandwidth product equals unity:

\[
N_e \beta_e = 1 \tag{2.6.5}
\]

As already indicated, the result above applies to window–like signals. Some extended results of the time–bandwidth product type, which apply to more general classes of signals, are presented in Complement 2.8.5.

It is clearly seen from (2.6.5) that a window cannot be both time–limited and band–limited. The more slowly the window decays to zero in one domain, the more concentrated it is in the other domain. The simple result above, (2.6.5), has several other interesting consequences, as explained below.

The equivalent temporal extent (or aperture), \(N_e \), of \(w(k) \) is essentially determined by the window’s length. For example, for a rectangular window we have \(N_e \approx 2M \), whereas for a triangular window \(N_e \approx M \). This observation, together with (2.6.5), implies that the equivalent bandwidth \(\beta_e \) is basically determined by the window’s length. More precisely, \(\beta_e = \mathcal{O}(1/M) \). This fact lends support to a claim made previously that for a window which concentrates most of its energy in its main lobe, the width of that lobe should be on the order of \(1/M \). Since the main lobe’s width sets a limit on the spectral resolution achievable (as explained
Section 2.6 Window Design Considerations

The choice of window’s length should be based on a tradeoff between spectral resolution and statistical variance

(2.6.6)

As a rule of thumb, we should choose $M \leq N/10$ in order to reduce the standard deviation of the estimated spectrum at least three times, compared with the periodogram.

Once M is determined, we cannot decrease simultaneously the energy in the main lobe (to reduce smearing) and the energy in the sidelobes (to reduce leakage). This follows, for example, from (2.6.4) which shows that the area of $W(\omega)$ is fixed once $w(0)$ is fixed (such as $w(0) = 1$). In other words, if we want to decrease the main lobe’s width then we should accept an increase in the sidelobe energy and vice versa. In summary:

The selection of window’s shape should be based on a tradeoff between smearing and leakage effects.

(2.6.7)

The above tradeoff is usually dictated by the specific application at hand. A number of windows have been developed to address this tradeoff. In some sense, each of these windows can be seen as a design at a specific point in the resolution/leakage tradeoff curve. We consider several such windows in the next subsection.

2.6.2 Some Common Lag Windows

In this section, we list some of the most common lag windows and outline their relevant properties. Our purpose is not to provide a detailed derivation or an exhaustive listing of such windows, but rather to provide a quick reference of common windows. More detailed information on these and other windows can be found in [HARRIS 1978; KAY 1988; MARPLE 1987; OPPENHEIM AND SCHAER 1989; PRIESTLEY 1981; PORAT 1997], where many of the closed-form windows have been compiled. Table 2.1 lists some common windows along with some useful properties.

In addition to the fixed window designs in Table 2.1, there are windows that contain a design parameter which may be varied to trade between resolution and sidelobe leakage. Two such common designs are the Chebyshev window and the Kaiser window. The Chebyshev window has the property that the peak level of the sidelobe “ripples” is constant. Thus, unlike most other windows, the sidelobe level does not decrease as ω increases. The Kaiser window is defined by

$$w(k) = \frac{I_0 \left(\gamma \sqrt{1 - [k/(M - 1)]^2} \right)}{I_0(\gamma)}, \quad -(M - 1) \leq k \leq M - 1$$

(2.6.8)

where $I_0(\cdot)$ is the zeroth-order modified Bessel function of the first kind. The parameter γ trades the main lobe width for the sidelobe leakage level; $\gamma = 0$
TABLE 2.1: Some Common Windows and their Properties

The windows satisfy \(w(k) = 0 \) for \(|k| \geq M \), and \(w(k) = w(-k) \); the defining equations below are valid for \(0 \leq k \leq (M - 1) \).

<table>
<thead>
<tr>
<th>Window Name</th>
<th>Defining Equation</th>
<th>Approx. Main Lobe Width (radians)</th>
<th>Sidelobe Level (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>(w(k) = 1)</td>
<td>(2\pi/M)</td>
<td>-13</td>
</tr>
<tr>
<td>Bartlett</td>
<td>(w(k) = \frac{M-k}{M})</td>
<td>(4\pi/M)</td>
<td>-25</td>
</tr>
<tr>
<td>Hanning</td>
<td>(w(k) = 0.5 + 0.5 \cos \left(\frac{k\pi}{M} \right))</td>
<td>(4\pi/M)</td>
<td>-31</td>
</tr>
<tr>
<td>Hamming</td>
<td>(w(k) = 0.54 + 0.46 \cos \left(\frac{k\pi}{M-1} \right))</td>
<td>(4\pi/M)</td>
<td>-41</td>
</tr>
<tr>
<td>Blackman</td>
<td>(w(k) = 0.42 + 0.5 \cos \left(\frac{k\pi}{M-1} \right) + 0.08 \cos \left(\frac{k\pi}{M-1} \right))</td>
<td>(6\pi/M)</td>
<td>-57</td>
</tr>
</tbody>
</table>

Corresponds to a rectangular window, and \(\gamma > 0 \) results in lower sidelobe leakage at the expense of a broader main lobe. The approximate value of \(\gamma \) needed to achieve a peak sidelobe level of \(B \) dB below the peak value is

\[
\gamma \simeq \begin{cases}
0, & B < 21 \\
0.584(B - 21)^{0.4} + 0.0789(B - 21), & 21 \leq B \leq 50 \\
0.11(B - 8.7), & B > 50
\end{cases}
\]

The Kaiser window is an approximation of the optimal window described in the next subsection. It is often chosen over the fixed window designs because it has a lower sidelobe level when \(\gamma \) is selected to have the same main lobe width as the corresponding fixed window (or narrower main lobe width for a given sidelobe level). The optimal window of the next subsection improves on the Kaiser design slightly.

Figure 2.3 shows plots of several windows with \(M = 26 \). The Kaiser window is shown for \(\gamma = 1 \) and \(\gamma = 4 \), and the Chebyshev window is designed to have a \(-40\) dB sidelobe level. Figure 2.4 shows the corresponding normalized window transfer functions \(W(\omega) \). Note the constant sidelobe ripple level of the Chebyshev design.

We remark that except for the Bartlett window, none of the windows we have introduced (including the Chebyshev and Kaiser windows) has nonnegative Fourier transform. On the other hand, it is straightforward to produce such a nonnegative definite window by convolving the window with itself. Recall that the Bartlett window is the convolution of a rectangular window with itself. We will make use of the convolution of windows with themselves in the next two subsections, both for window design and for relating temporal windows to covariance lag windows.
Figure 2.3. Some common window functions (shown for $M = 26$). The Kaiser window uses $\gamma = 1$ and $\gamma = 4$ and the Chebyshev window is designed for a -40 dB sidelobe level.
Chapter 2 Nonparametric Methods

Figure 2.4. The DTFTs of the window functions in Figure 2.3.
Section 2.6 Window Design Considerations

2.6.3 Window Design Example

Assume a situation where it is known that the observed signal consists of a useful weak signal and a strong interference, and that both the useful signal and the interference can be assumed to be narrowband signals which are well separated in frequency. However, there is no a priori quantitative information available on the frequency separation between the desired signal and the interference. It is required to design a lag window for use in a Blackman–Tukey spectral estimation method, with the purpose of detecting and locating in frequency the useful signal.

The main problem in the application outlined above lies in the fact that the (strong) interference may completely mask the (weak) desired signal through leakage. In order to get rid of this problem, the window design should compromise smearing for leakage. Note that the smearing effect is not of main concern in this application, as the useful signal and the interference are well separated in frequency. Hence, smearing cannot affect our ability to detect the desired signal; it will only limit, to some degree, our ability to accurately locate in frequency the signal in question.

We consider a window sequence whose DTFT \(W(\omega) \) is constructed as the squared magnitude of the DTFT of another sequence \(\{v(k)\} \); in this way, we guarantee that the constructed window is positive semidefinite. Mathematically, the above design problem can be formulated as follows. Consider a sequence \(\{v(0), \ldots, v(M-1)\} \), and let

\[
V(\omega) = \sum_{k=0}^{M-1} v(k) e^{-i\omega k} \quad (2.6.9)
\]

The DTFT \(V(\omega) \) can be rewritten in the more compact form

\[
V(\omega) = v^* a(\omega) \quad (2.6.10)
\]

where

\[
v = [v(0) \ldots v(M-1)]^* \quad (2.6.11)
\]

and

\[
a(\omega) = [1 e^{-i\omega} \ldots e^{-i(M-1)\omega}]^T \quad (2.6.12)
\]

Define the spectral window as

\[
W(\omega) = |V(\omega)|^2 \quad (2.6.13)
\]

The corresponding lag window can be obtained from (2.6.13) as follows:

\[
\sum_{k=-(M-1)}^{M-1} w(k) e^{-i\omega k} = \sum_{n=0}^{M-1} \sum_{p=0}^{M-1} v(n)v^*(p)e^{-i\omega(n-p)}
\]

\[
= \sum_{n=0}^{M-1} \sum_{k=n}^{n-(M-1)} v(n)v^*(n-k)e^{-i\omega k}
\]

\[
= \sum_{k=-(M-1)}^{M-1} \left[\sum_{n=0}^{M-1} v(n)v^*(n-k) \right] e^{-i\omega k} \quad (2.6.14)
\]
which gives

\[w(k) = \sum_{n=0}^{M-1} v(n)v^*(n-k) \]

(2.6.15)

The last equality in (2.6.14), and hence the equality (2.6.15), are valid under the convention that \(v(k) = 0 \) for \(k < 0 \) and \(k \geq M \).

As already mentioned, this method of constructing \(\{w(k)\} \) from the convolution of the sequence \(\{v(k)\} \) with itself has the advantage that the so-obtained lag window is always positive semidefinite or, equivalently, the corresponding spectral window satisfies \(W(\omega) \geq 0 \) (which is easily seen from (2.6.13)). Besides this, the design of \(\{w(k)\} \) can be reduced to the selection of \(\{v(k)\} \) which may be more conveniently done, as explained next.

In the present application, the design objective is to reduce the leakage incurred by \(\{w(k)\} \) as much as possible. This objective can be formulated as the problem of minimizing the relative energy in the sidelobes of \(W(\omega) \) or, equivalently, as the problem of maximizing the relative energy in the main lobe of \(W(\omega) \):

\[\max_v \left\{ \frac{\int_{-\beta\pi}^{\beta\pi} W(\omega) d\omega}{\int_{-\pi}^{\pi} W(\omega) d\omega} \right\} \]

(2.6.16)

Here, \(\beta \) is a design parameter which quantifies how much smearing (or, basically equivalent, resolution) we can tradeoff for leakage reduction. The larger the \(\beta \), the more leakage free the optimal window derived from (2.6.16) but also the more diminished the spectral resolution associated with that window.

By writing the criterion in (2.6.16) in the following form

\[\frac{1}{\pi} \int_{-\beta\pi}^{\beta\pi} |V(\omega)|^2 d\omega = \frac{v^* \left[\frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} a(\omega)a^*(\omega) d\omega \right] v}{v^*v} \]

(2.6.17)

(cf. (2.6.10) and Parseval’s theorem, (1.2.6)), the optimization problem (2.6.16) becomes

\[\max_v \frac{v^*\Gamma v}{v^*v} \]

(2.6.18)

where

\[\Gamma = \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} a(\omega)a^*(\omega) d\omega \overset{\Delta}{=} \gamma_{m-n} \]

(2.6.19)

and where

\[\gamma_{m-n} = \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} e^{-i(m-n)\omega} d\omega = \frac{\sin[(m-n)\beta\pi]}{(m-n)\pi} \]

(2.6.20)

(note that \(\gamma_0 = \beta \)). By using the function

\[\text{sinc}(x) \overset{\Delta}{=} \frac{\sin x}{x}, \quad (\text{sinc}(0) = 1) \]

(2.6.21)

we can write (2.6.20) as

\[\gamma_{m-n} = \beta \text{sinc}[(m-n)\beta\pi] \]

(2.6.22)
The solution to the problem (2.6.18) is well known: the maximizing \(v \) is given by the dominant eigenvector of \(\Gamma \), associated with the maximum eigenvalue of this matrix (see Result R13 in Appendix A). To summarize:

The optimal lag window which minimizes the relative energy in the sidelobe interval \([-\pi, -\beta \pi] \cup [\beta \pi, \pi]\) is given by (2.6.15), where \(v \) is the dominant eigenvector of the matrix \(\Gamma \) defined in (2.6.19) and (2.6.22).

\[(2.6.23) \]

Regarding the choice of the design parameter \(\beta \), it is clear that \(\beta \) should be larger than \(1/M \) in order to allow for a significant reduction of leakage. Otherwise, by selecting for example \(\beta \approx 1/M \), we weigh the resolution issue too much in the design problem, with unfavorable consequences for leakage reduction.

Finally, we remark that a problem quite similar to the above one, although derived from different considerations, will be encountered in Chapter 5 (see also [MULLIS AND SCHARF 1991]).

2.6.4 Temporal Windows and Lag Windows

As we have seen previously, the unwindowed periodogram coincides with the unwindowed correlogram. The Blackman–Tukey estimator is a windowed correlogram obtained using a lag window. Similarly, we can define a windowed periodogram

\[
\hat{\phi}_W(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} v(t)y(t)e^{-i\omega t} \right|^2
\]

(2.6.24)

where the weighting sequence \(\{v(t)\} \) may be called a *temporal window*. A temporal window is sometimes called a *taper*. Welch [WELCH 1967] was one of the first researchers who considered windowed periodogram spectral estimators (see Section 2.7.2 for a description of Welch's method), and hence the subscript “\(W \)” attached to \(\hat{\phi}(\omega) \) in (2.6.24). However, while the reason for windowing the correlogram is clearly motivated, the reason for windowing the periodogram is less obvious. In order to motivate (2.6.24), at least partially, write this equation as

\[
\hat{\phi}_W(\omega) = \frac{1}{N} \sum_{t=1}^{N} \sum_{s=1}^{N} v(t)v^*(s)y(t)y^*(s)e^{-i\omega(t-s)}
\]

(2.6.25)

Next, take expectation of both sides of (2.6.25) to obtain

\[
E \left\{ \hat{\phi}_W(\omega) \right\} = \frac{1}{N} \sum_{t=1}^{N} \sum_{s=1}^{N} v(t)v^*(s)r(t-s)e^{-i\omega(t-s)}
\]

(2.6.26)

Inserting

\[
r(t-s) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega)e^{i\omega(t-s)} d\omega
\]

(2.6.27)
in (2.6.26) gives

\[
E \{ \hat{\phi}_W(\omega) \} = \frac{1}{N^2 \pi} \int_{-\pi}^{\pi} \phi(\psi) \left[\sum_{t=1}^{N} \sum_{s=1}^{N} v(t) v^*(s) e^{-i(\omega-\psi)(t-s)} \right] d\psi \\
= \frac{1}{N^2 \pi} \int_{-\pi}^{\pi} \phi(\psi) \left| \sum_{t=1}^{N} v(t) e^{-i(\omega-\psi)t} \right|^2 d\psi \quad (2.6.28)
\]

Define

\[
W(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} v(t) e^{-i\omega t} \right|^2 \quad (2.6.29)
\]

By using this notation, we can write (2.6.28) as

\[
E \{ \hat{\phi}_W(\omega) \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\psi) W(\omega - \psi) d\psi \quad (2.6.30)
\]

As the equation (2.6.29) is similar to (2.6.13), the sequence whose DTFT is equal to \(W(\omega) \) immediately follows from (2.6.15):

\[
w(k) = \frac{1}{N} \sum_{n=1}^{N} v(n) v^*(n-k) \quad (2.6.31)
\]

Next, by comparing (2.6.30) and (2.5.3), we get the following result.

The windowed periodogram and the windowed correlogram have the same average behavior, provided the temporal and lag windows are related as in (2.6.31).\[(2.6.32) \]

Hence \(E\{\hat{\phi}_W(\omega)\} = E\{\hat{\phi}_{BT}(\omega)\} \), provided the temporal and lag windows are matched to one another. A similarly simple relationship between \(\phi_W(\omega) \) and \(\hat{\phi}_{BT}(\omega) \), however, does not seem to exist. This makes it somewhat difficult to motivate the windowed periodogram as defined in (2.6.24). The Welch periodogram, though, does not weigh all data samples as in (2.6.24), and is a useful spectral estimator (see the next section).

2.7 OTHER REFINED PERIODOGRAM METHODS

In Section 2.5 we introduced the Blackman–Tukey estimator as an alternative to the periodogram. In this section we present three other modified periodograms: the Bartlett, Welch, and Daniell methods. Like the Blackman–Tukey method, they seek to reduce the variance of the periodogram by smoothing or averaging the periodogram estimates in some way. We will relate these methods to one another and to the Blackman–Tukey method.
2.7.1 Bartlett Method

The basic idea of the Bartlett method [BARTLETT 1948; BARTLETT 1950] is simple: to reduce the large fluctuations of the periodogram, split up the available sample of N observations into $L = N/M$ subsamples of M observations each, and then average the periodograms obtained from the subsamples for each value of ω. Mathematically, the Bartlett method can be described as follows. Let

$$y_j(t) = y((j-1)M + t), \quad t = 1, \ldots, M$$

$$j = 1, \ldots, L$$

(2.7.1)

denote the observations of the jth subsample, and let

$$\hat{\phi}_j(\omega) = \frac{1}{M} \left| \sum_{t=1}^{M} y_j(t)e^{-i\omega t} \right|^2$$

(2.7.2)

denote the corresponding periodogram. The Bartlett spectral estimate is then given by

$$\hat{\phi}_B(\omega) = \frac{1}{L} \sum_{j=1}^{L} \hat{\phi}_j(\omega)$$

(2.7.3)

Since the Bartlett method operates on data segments of length M, the resolution afforded should be on the order of $1/M$. Hence, the spectral resolution of the Bartlett method is reduced by a factor L, compared to the resolution of the original periodogram method. In return for this reduction in resolution, we can expect that the Bartlett method has a reduced variance. It can, in fact, be shown that the Bartlett method reduces the variance of the periodogram by the same factor L (see below). The compromise between resolution and variance when selecting M (or L) is thus evident.

An interesting way to look at the Bartlett method and its properties is by relating it to the Blackman–Tukey method. As we know, $\hat{\phi}_j(\omega)$ of (2.7.2) can be rewritten as

$$\hat{\phi}_j(\omega) = \sum_{k=-(M-1)}^{M-1} \hat{r}_j(k)e^{-i\omega k}$$

(2.7.4)

where $\{\hat{r}_j(k)\}$ is the sample covariance sequence corresponding to the jth subsample. Inserting (2.7.4) in (2.7.3) gives

$$\hat{\phi}_B(\omega) = \sum_{k=-(M-1)}^{M-1} \left[\frac{1}{L} \sum_{j=1}^{L} \hat{r}_j(k) \right] e^{-i\omega k}$$

(2.7.5)

We see that $\hat{\phi}_B(\omega)$ is similar in form to the Blackman–Tukey estimator that uses a rectangular window. The average, over j, of the subsample covariance $\hat{r}_j(k)$ is an estimate of the ACS $r(k)$. However, the ACS estimate in (2.7.5) does not make efficient use of available data lag products $y(t)y^*(t-k)$, especially for $|k|$ near $M-1$ (see Exercise 2.14). In fact, for $k = M-1$, only about $1/M$th of the available lag products are used to form the ACS estimate in (2.7.5). We expect that the variance
Chapter 2 Nonparametric Methods

of these lags is higher than for the corresponding \(r(k) \) lags used in the Blackman–Tukey estimate, and similarly, the variance of \(\hat{\phi}_B(\omega) \) is higher than that of \(\hat{\phi}_{BT}(\omega) \). In addition, the Bartlett method uses a fixed rectangular lag window, and thus has less flexibility in resolution–leakage tradeoff than does the Blackman–Tukey method. For these reasons, we conclude that

\[
\text{The Bartlett estimate, as defined in (2.7.1)–(2.7.3), is similar in form to, but typically has a slightly higher variance than, the Blackman–Tukey estimate with a rectangular lag window of length } M. \tag{2.7.6}
\]

The reduction in resolution and the decrease of variance (both by a factor \(L = N/M \)) for the Bartlett estimate, as compared to the basic periodogram method, follows from (2.7.6) and the properties of the Blackman–Tukey spectral estimator given previously.

The main lobe of the rectangular window is narrower than that associated with most other lag windows (this follows from the observation that the rectangular window clearly has the largest equivalent time width, and the fact that the time–bandwidth product is constant, see (2.6.5)). Thus, it follows from (2.7.6) that in the class of Blackman–Tukey estimates, the Bartlett estimator can be expected to have the least smearing (and hence the best resolution) but the most significant leakage.

2.7.2 Welch Method

The Welch method [WELCH 1967] is obtained by refining the Bartlett method in two respects. First, the data segments in the Welch method are allowed to overlap. Second, each data segment is windowed prior to computing the periodogram. To describe the Welch method in a mathematical form, let

\[
y_j(t) = y((j - 1)K + t), \quad t = 1, \ldots, M \quad j = 1, \ldots, S \tag{2.7.7}
\]

denote the \(j \)th data segment. In (2.7.7), \((j - 1)K\) is the starting point for the \(j \)th sequence of observations. If \(K = M \), then the sequences do not overlap (but are contiguous) and we get the sample splitting used by the Bartlett method (which leads to \(S = L = N/M \) data subsamples). However, the value recommended for \(K \) in the Welch method is \(K = M/2 \), in which case \(S \approx 2M/N \) data segments (with 50% overlap between successive segments) are obtained.

The windowed periodogram corresponding to \(y_j(t) \) is computed as

\[
\hat{\phi}_j(\omega) = \frac{1}{MP} \left| \sum_{t=1}^{M} v(t)y_j(t)e^{-i\omega t} \right|^2 \tag{2.7.8}
\]

where \(P \) denotes the “power” of the temporal window \(\{v(t)\} \):

\[
P = \frac{1}{M} \sum_{t=1}^{M} |v(t)|^2 \tag{2.7.9}
\]
The Welch estimate of PSD is determined by averaging the windowed periodograms in (2.7.8):

$$\hat{\phi}_W(\omega) = \frac{1}{S} \sum_{j=1}^{S} \hat{\phi}_j(\omega)$$

(2.7.10)

The reasons for the above modifications to the Bartlett method, which led to the Welch method, are simple to explain. By allowing overlap between the data segments and hence by getting more periodograms to be averaged in (2.7.10), we hope to decrease the variance of the estimated PSD. By introducing the window in the periodogram computation it may be hoped to get more control over the bias/resolution properties of the estimated PSD (see Section 2.6.4). Additionally, the temporal window may be used to give less weight to the data samples at the ends of each subsample, hence making the consecutive subsample sequences less correlated to one another, even though they are overlapping. The principal effect of this “decorrelation” should be a more effective reduction of variance via the averaging in (2.7.10).

The analysis that led to the results (2.6.30)–(2.6.32) can be modified to show that the use of windowed periodograms in the Welch method, as contrasted to the unwindowed periodograms in the Bartlett method, indeed offers more flexibility in controlling the bias properties of the estimated spectrum. The variance of the Welch spectral estimator is more difficult to analyze (except in some special cases). However, there is empirical evidence that the Welch method can offer lower variance than the Bartlett method but the difference in the variances corresponding to the two methods is not dramatic.

We can relate the Welch estimator to the Blackman–Tukey spectral estimator by a straightforward calculation as we did for the Bartlett method. By inserting (2.7.8) in (2.7.10), we obtain

$$\hat{\phi}_W(\omega) = \frac{1}{S} \sum_{j=1}^{S} \frac{1}{MP} \sum_{t=1}^{M} \sum_{k=1}^{M} v(t) u^*(k) y_j(t) y_j^*(k) e^{-i\omega(t-k)}$$

(2.7.11)

For large values of N and for $K = M/2$ or smaller, S results sufficiently large for the average $(1/S) \sum_{j=1}^{S} y_j(t) y_j^*(k)$ to be close to the covariance $r(t-k)$. We do not replace the previous sum by the true covariance lag. However, we assume that this sum does not depend on both t and k, but only on their difference $(t-k)$, at least approximately; say

$$\bar{r}(t, k) = \frac{1}{S} \sum_{j=1}^{S} y_j(t) y_j^*(k) \simeq \hat{r}(t-k)$$

(2.7.12)
Chapter 2 Nonparametric Methods

Using (2.7.12) in (2.7.11) gives

\[\hat{\phi}_W(\omega) \simeq \frac{1}{MP} \sum_{t=1}^{M} \sum_{k=1}^{M} v(t)v^*(k)\hat{r}(t-k)e^{-i\omega(t-k)} \]

\[= \frac{1}{MP} \sum_{t=1}^{M} \sum_{\tau=t-1}^{t-M} v(t)v^*(t-\tau)\hat{r}(\tau)e^{-i\omega\tau} \]

\[= \sum_{\tau=-(M-1)}^{M-1} \left[\frac{1}{MP} \sum_{t=1}^{M} v(t)v^*(t-\tau) \right] \hat{r}(\tau)e^{-i\omega\tau} \] (2.7.13)

By introducing

\[w(\tau) = \frac{1}{MP} \sum_{t=1}^{M} v(t)v^*(t-\tau) \] (2.7.14)

(under the convention that \(v(k) = 0 \) for \(k < 1 \) and \(k > M \)), we can write (2.7.13) as

\[\hat{\phi}_W(\omega) \simeq \sum_{\tau=-(M-1)}^{M-1} w(\tau)\hat{r}(\tau)e^{-i\omega\tau} \] (2.7.15)

which is to be compared to the form of the Blackman–Tukey estimator. To summarize, the Welch estimator has been shown to approximate a Blackman–Tukey–type estimator for the estimated covariance sequence (2.7.12) (which may be expected to have finite–sample properties different from those of \(\hat{r}(k) \)).

The Welch estimator can be efficiently computed via the FFT, and is one of the most frequently used PSD estimation methods. Its previous interpretation is pleasing, even if approximate, since the Blackman–Tukey form of spectral estimator is theoretically the most favored one. This interpretation also shows that we may think of replacing the usual covariance estimates \(\{\hat{r}(k)\} \) in the Blackman–Tukey estimator by other sample covariances, with the purpose of either reducing the computational burden or improving the statistical accuracy.

2.7.3 Daniell Method

As shown in (2.4.21), the periodogram values \(\hat{\phi}(\omega_k) \) corresponding to different frequency values \(\omega_k \) are (asymptotically) uncorrelated random variables. One may then think of reducing the large variance of the basic periodogram estimator by averaging the periodogram over small intervals centered on the current frequency \(\omega \). This is the idea behind the Daniell method [DANIELL 1946]. The practical form of the Daniell estimate, which can be implemented by means of the FFT, is the following:

\[\hat{\phi}_D(\omega_k) = \frac{1}{2J+1} \sum_{j=k-J}^{k+J} \hat{\phi}_p(\omega_j) \] (2.7.16)

where

\[\omega_k = \frac{2\pi}{N} k, \quad k = 0, \ldots, \tilde{N} - 1 \] (2.7.17)
Section 2.7 Other Refined Periodogram Methods

and where \(\tilde{N} \) is (much) larger than \(N \) to ensure a fine sampling of \(\hat{p}(\omega) \). The periodogram samples needed in (2.7.16) can be obtained, for example, by using a radix-2 FFT algorithm applied to the zero-padded data sequence, as described in Section 2.3. The parameter \(J \) in the Daniell method should be chosen sufficiently small to guarantee that \(\phi(\omega) \) is nearly constant on the interval(s):

\[
\left[\omega - \frac{2\pi}{\tilde{N}} J, \omega + \frac{2\pi}{\tilde{N}} J \right]
\]

(2.7.18)

Since \(\tilde{N} \) can in principle be chosen as large as we want, we can choose \(J \) fairly large without violating the above requirement that \(\phi(\omega) \) is nearly constant over the interval in (2.7.18). For the sake of illustration, let us assume that we keep the ratio \(J/\tilde{N} \) constant, but increase both \(J \) and \(\tilde{N} \) significantly. As \(J/\tilde{N} \) is constant, the resolution/bias properties of the Daniell estimator should be basically unaffected. On the other hand, the fact that the number of periodogram values averaged in (2.7.16) increases with increased \(J \) might suggest that the variance decreases. However, we know that this should not be possible, as the variance can be decreased only at the expense of increasing the bias (and vice versa). Indeed, in the case under discussion the periodogram values averaged in (2.7.16) become more and more correlated as \(\tilde{N} \) increases and hence the variance of \(\hat{D}(\omega) \) does not necessarily decrease with \(J \) if \(\tilde{N} \) is larger than \(N \) (see, e.g., Exercise 2.13). We will return to the bias and variance properties of the Daniell method a bit later.

By introducing \(\beta = 2J/\tilde{N} \), one can write (2.7.18) in a form that is more convenient for the discussion that follows, namely

\[
[\omega - \pi \beta, \omega + \pi \beta]
\]

(2.7.19)

Equation (2.7.16) is a discrete approximation of the theoretical version of the Daniell estimator, which is given by

\[
\hat{D}(\omega) = \frac{1}{2\pi \beta} \int_{-\pi}^{\pi} \hat{p}(\psi) d\psi
\]

(2.7.20)

The larger the \(\tilde{N} \), the smaller the difference between the approximation (2.7.16) and the continuous version, (2.7.20), of the Daniell spectral estimator.

It is intuitively clear from (2.7.20) that as \(\beta \) increases, the resolution of the Daniell estimator decreases (or, essentially equivalent, the bias increases) and the variance gets lower. In fact, if we introduce

\[
M = 1/\beta
\]

(2.7.21)

(in an approximate sense, as \(1/\beta \) is not necessarily an integer) then we may expect that the resolution and the variance of the Daniell estimator are both decreased by a factor \(M \), compared to the basic periodogram method. In order to support this claim, we relate the Daniell estimator to the Blackman–Tukey estimation technique.
By simply comparing (2.7.20) and (2.5.3), we obtain the following result.

The Daniell estimator is a particular case of the Blackman–Tukey class of spectral estimators, corresponding to a rectangular spectral window:

$$W(\omega) = \begin{cases} \frac{1}{\beta}, & \omega \in [-\beta\pi, \beta\pi] \\ 0, & \text{otherwise} \end{cases} \quad (2.7.22)$$

The above observation, along with the time–bandwidth product result and the properties of the Blackman–Tukey spectral estimator, lends support to the previously made claim on the Daniell estimator. Note that the Daniell estimate of PSD is a nonnegative function by its very definition, (2.7.20), which is not necessarily the case for several members of the Blackman–Tukey class of PSD estimators.

The lag window corresponding to the $W(\omega)$ in (2.7.22) is readily evaluated as follows:

$$w(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega)e^{i\omega k} d\omega = \frac{1}{2\pi \beta} \int_{-\pi \beta}^{\pi \beta} e^{i\omega k} d\omega$$

$$= \frac{\sin(k\pi \beta)}{k\pi \beta} = \text{sinc}(k\pi \beta) \quad (2.7.23)$$

Note that $w(k)$ does not vanish as k increases, which leads to a subtle (but not essential) difference between the lag windowed forms of the Daniell and Blackman–Tukey estimators. Since the inverse DTFT of $\hat{\phi}_p(\omega)$ is given by the sequence \{\ldots, 0, 0, \hat{r}(-(N-1)), \ldots, \hat{r}(N-1), 0, 0, \ldots\}, it follows immediately from (2.7.20) that $\hat{\phi}_D(\omega)$ can also be written as

$$\hat{\phi}_D(\omega) = \sum_{k=-(N-1)}^{N-1} w(k)\hat{r}(k)e^{-i\omega k} \quad (2.7.24)$$

It is seen from (2.7.24) that, like the Blackman–Tukey estimator, $\hat{\phi}_D(\omega)$ is a windowed version of the correlogram but, unlike the Blackman–Tukey estimator, the sum in (2.7.24) is not truncated to a value $M < N$. Hence, contrary to what might have been expected intuitively, the parameter M defined in (2.7.21) cannot be exactly interpreted as a “truncation point” for the lag windowed version of $\hat{\phi}_D(\omega)$. However, since the equivalent bandwidth of $W(\omega)$ is clearly equal to β,

$$\beta_e = \beta$$

it follows that the equivalent time width of $w(k)$ is

$$N_e = 1/\beta_e = M$$

which shows that M plays essentially the same role here as the “truncation point” in the Blackman–Tukey estimator (and, indeed, it can be verified that $w(k)$ in (2.7.23) takes small values for $|k| > M$).
In closing this section and this chapter, we point out that the periodogram-based methods for spectrum estimation are all variations on the same theme. These methods attempt to reduce the variance of the basic periodogram estimator, at the expense of some reduction in resolution, by various means such as: averaging periodograms derived from data subsamples (Bartlett and Welch methods); averaging periodogram values locally around the frequency of interest (Daniell method); and smoothing the periodogram (Blackman–Tukey method). The unifying theme of these methods is seen in that they are essentially special forms of the Blackman–Tukey approach. In Chapter 5 we will push the unifying theme one step further by showing that the periodogram-based methods can also be obtained as special cases of the filter bank approach to spectrum estimation described there (see also Mullis and Scharf 1991).

Finally, it is interesting to note that, while the modifications of the periodogram described in this chapter are indeed required when estimating a continuous PSD, the unmodified periodogram can be shown to be a satisfactory estimator (actually, the best one in large samples) for discrete (or line) spectra corresponding to sinusoidal signals. This is shown in Chapter 4.

2.8 COMPLEMENTS

2.8.1 Sample Covariance Computation via FFT

Computation of the sample covariances is a ubiquitous problem in spectral estimation and signal processing applications. In this complement we make use of the DTFT–like formula (2.2.2), relating the periodogram and the sample covariance sequence, to devise an FFT–based algorithm for computation of the \(\{\hat{r}(k)\}_{k=0}^{N-1} \). We also compare the computational requirements of such an algorithm with those corresponding to the evaluation of \(\{\hat{r}(k)\} \) via the temporal averaging formula (2.2.4), and show that the former may be computationally more efficient than the latter if \(N \) is larger than a certain value.

From (2.2.2) and (2.2.6) we have that (we omit the subscript \(p \) of \(\hat{\varphi}_p(\omega) \) for notational simplicity):

\[
\hat{\varphi}(\omega) = \sum_{k=-N+1}^{N-1} \hat{r}(k)e^{-i\omega k} = \sum_{p=1}^{2N-1} \hat{r}(p-N)e^{-i\omega(p-N)}
\]

or, equivalently,

\[
e^{-i\omega N} \hat{\varphi}(\omega) = \sum_{p=1}^{2N-1} \rho(p)e^{-i\omega p} \tag{2.8.1}
\]

where \(\rho(p) \equiv \hat{r}(p-N) \). Equation (2.8.1) has the standard form of a DFT. It is evident from (2.8.1) that in order to determine the sample covariance sequence we need at least \((2N-1)\) values of the periodogram. This is expected: the sequence \(\{\hat{r}(k)\}_{k=0}^{N-1} \) contains \((2N-1)\) real–valued unknowns for the determination of which at least \((2N-1)\) periodogram values should be necessary (as \(\hat{\varphi}(\omega) \) is real valued).

Let

\[
\omega_k = \frac{2\pi}{2N-1} (k-1), \quad k = 1, \ldots, 2N-1
\]
Also, let the sequence \(\{y(t)\}_{t=1}^{2N-1} \) be obtained by padding the raw data sequence with \((N - 1)\) zeroes. Compute

\[
Y_k = \sum_{t=1}^{2N-1} y(t) e^{-i\omega_k t} \quad (k = 1, 2, \ldots, 2N - 1) \tag{2.8.2}
\]

by means of a \((2N - 1)\)-point FFT algorithm. Next, evaluate

\[
\tilde{\phi}_k = e^{-i\omega_k N} |Y_k|^2 / N \quad (k = 1, \ldots, 2N - 1) \tag{2.8.3}
\]

Finally, determine the sample covariances via the “inversion” of (2.8.1):

\[
\rho(p) = \sum_{k=1}^{2N-1} \tilde{\phi}_k e^{i\omega_k p} / (2N - 1)
= \sum_{k=1}^{2N-1} \tilde{\phi}_k e^{i\omega_k p} / (2N - 1) \tag{2.8.4}
\]

The previous computation may once again be done by using a \((2N - 1)\)-point FFT algorithm. The bulk of the procedure outlined above consists of the FFT–based computation of (2.8.2) and (2.8.4). That computation requires about \(2N \log_2(2N)\) flops (assuming that the radix–2 FFT algorithm is used; the required number of operations is larger than the one previously given whenever \(N\) is not a power of two). The direct evaluation of the sample covariance sequence via (2.2.4) requires

\[
N + (N - 1) + \cdots + 1 \simeq N^2 / 2 \quad \text{flops}
\]

Hence, the FFT–based computation would be more efficient whenever

\[
N > 4 \log_2(2N)
\]

This inequality is satisfied for \(N \geq 32\). (Actually, \(N\) needs to be greater than 32 because we neglected the operations needed to implement equation (2.8.3).)

The previous discussion assumes that \(N\) is a power of two. If this is not the case then the relative computational efficiency of the two procedures may be different. Note, also, that there are several other issues that may affect this comparison. For instance, if only the lags \(\{\tilde{r}(k)\}_{k=0}^{M-1}\) (with \(M \ll N\) are required, then the number of computations required by (2.2.4) is drastically reduced. On the other hand, the FFT–based procedure can also be implemented in a more efficient way in such a case, so that it remains computationally more efficient than a direct calculation, for instance, for \(N \geq 100\) [OPPENHEIM AND SCHAFFER 1989]. We conclude that the various implementation details may change the value of \(N\) beyond which the FFT–based procedure is more efficient than the direct approach, and hence may influence the decision as to which of the two procedures should be used in a given application.
2.8.2 FFT–Based Computation of Windowed Blackman–Tukey Periodograms

The windowed Blackman–Tukey periodogram (2.5.1), unlike its unwindowed version, is not amenable to a direct computation via a single FFT. In this complement we show that three FFTs are sufficient to evaluate (2.5.1): two FFTs for the computation of the sample covariance sequence entering the equation (2.5.1) (as described in Complement 2.8.1), and one FFT for the evaluation of (2.5.1). We also show that the computational formula for \(\hat{r}(k) \) derived in Complement 2.8.1 can be used to obtain an FFT–based algorithm for evaluation of (2.5.1) directly in terms of \(\hat{\phi}_p(\omega) \).

We relate the latter way of computing (2.5.1) to the evaluation of \(\hat{\phi}_{BT}(\omega) \) from the integral equation (2.5.3). Finally, we compare the two ways outlined above for evaluating the windowed Blackman–Tukey periodogram.

The windowed Blackman–Tukey periodogram can be written as

\[
\hat{\phi}_{BT}(\omega) = \sum_{k=-N-1}^{N-1} w(k)\hat{r}(k)e^{-i\omega k}
\]

\[
= \sum_{k=0}^{N-1} w(k)\hat{r}(k)e^{-i\omega k} + \sum_{k=0}^{N-1} w(k)\hat{r}^*(k)e^{i\omega k} - w(0)\hat{r}(0)
\]

\[
= 2\text{Re} \left\{ \sum_{k=0}^{N-1} w(k)\hat{r}(k)e^{-i\omega k} \right\} - w(0)\hat{r}(0) \tag{2.8.5}
\]

where we made use of the facts that the window sequence is even and \(\hat{r}(-k) = \hat{r}^*(k) \). It is now evident that an \(N \)-point FFT can be used to evaluate \(\hat{\phi}_{BT}(\omega) \) at \(\omega = 2\pi k/N \) \((k = 0, \ldots, N - 1) \). This requires about \(\frac{1}{2}N \log_2(N) \) flops that should be added to the \(2N \log_2(2N) \) flops required to compute \{\(\hat{r}(k) \)\} (as in Complement 2.8.1), hence giving a total of about \(N[\frac{1}{2} \log_2(N) + \log_2(2N)] \) flops for this way of evaluating \(\hat{\phi}_{BT}(\omega) \).

Next, we make use of the expression (2.8.4) for \(\hat{r}(k) \) that is derived in Complement 2.8.1,

\[
\hat{r}(p - N) = \frac{1}{2N-1} \sum_{k=1}^{2N-1} \hat{\phi}(\tilde{\omega}_k)e^{i\omega_k(p - N)} \quad (p = 1, \ldots, 2N - 1) \tag{2.8.6}
\]

where \(\tilde{\omega}_k = 2\pi(k - 1)/(2N - 1) \), \((k = 1, \ldots, 2N - 1) \), and where \(\hat{\phi}(\omega) \) is the unwindowed periodogram. Inserting (2.8.6) into (2.5.1), we obtain

\[
\hat{\phi}_{BT}(\omega) = \frac{1}{2N-1} \sum_{s=-N-1}^{N-1} w(s)e^{-i\omega s} \sum_{k=1}^{2N-1} \hat{\phi}(\tilde{\omega}_k)e^{i\omega_k s}
\]

\[
= \frac{1}{2N-1} \sum_{k=1}^{2N-1} \hat{\phi}(\tilde{\omega}_k) \left[\sum_{s=-N-1}^{N-1} w(s)e^{-i(\omega - \tilde{\omega}_k)s} \right] \tag{2.8.7}
\]
Chapter 2 Nonparametric Methods

which gives

\[
\hat{\phi}_{BT}(\omega) = \frac{1}{2N-1} \sum_{k=1}^{2N-1} \hat{\phi}(\tilde{\omega}_k) W(\omega - \tilde{\omega}_k) \tag{2.8.8}
\]

where \(W(\omega)\) is the spectral window.

It might be thought that the last step in the above derivation requires that \(\{w(k)\}\) is a “truncated-type” window (i.e., \(w(k) = 0\) for \(|k| \geq N\)). However, no such requirement on \(\{w(k)\}\) is needed, as explained next. By inserting the usual expression for \(\hat{r}(p - N)\) into (2.8.6) we obtain:

\[
\hat{r}(p - N) = \frac{1}{2N-1} \sum_{k=1}^{N-1} \hat{r}(s)e^{-i\tilde{\omega}_k s} e^{i\tilde{\omega}_k (p - N)} \nonumber
\]

\[
= \frac{1}{2N-1} \sum_{s=-(N-1)}^{N-1} \hat{r}(s) \left[\sum_{k=1}^{2N-1} e^{i\tilde{\omega}_k (p - N - s)} \right] \nonumber
\]

\[
\triangleq \frac{1}{2N-1} \sum_{s=-(N-1)}^{N-1} \hat{r}(s) \Delta(s, p) \nonumber
\]

where

\[
\Delta(s, p) = \sum_{k=1}^{2N-1} e^{i\tilde{\omega}_{p-N-s} k} = e^{i\tilde{\omega}_{p-N-s}} \frac{e^{i(2N-1)\tilde{\omega}_{p-N-s}} - 1}{e^{i\tilde{\omega}_{p-N-s}} - 1} \nonumber
\]

As \((2N-1)\tilde{\omega}_{p-N-s} = 2\pi(p - N - s)\), it follows that

\[
\Delta(s, p) = (2N-1)\delta_{p-N,s} \nonumber
\]

from which we immediately get

\[
\frac{1}{2N-1} \sum_{s=-(N-1)}^{N-1} \hat{r}(s) \Delta(s, p) = \begin{cases} \hat{r}(p - N) & p = 1, \ldots, 2N-1 \\ 0 & \text{otherwise} \end{cases} \tag{2.8.9}
\]

First, the above calculation provides a cross-checking of the derivation of equation (2.8.6) in Complement 2.8.1. Second, the result (2.8.9) implies that the values of \(\hat{r}(p - N)\) calculated with the formula (2.8.6) are equal to zero for \(p < 1\) or \(p > 2N-1\). It follows that the limits for the summation over \(s\) in (2.8.7) can be extended to \(\pm \infty\), hence showing that (2.8.8) is valid for an arbitrary window. In the general case there seems to be no way for evaluating (2.8.8) by means of an FFT algorithm. Hence, it appears that for a general window it is more efficient to base the computation of \(\hat{\phi}_{BT}(\omega)\) on (2.8.5) rather than on (2.8.8). For certain windows, however, (2.8.8) may be computationally more efficient than (2.8.5). For instance, in the case of the Daniell method, which corresponds to a rectangular spectral window, (2.8.8) takes a very convenient computational form and should
be preferred to (2.8.5). It should be noted that (2.8.8) can be viewed as an exact formula for evaluation of the integral in equation (2.5.3). In particular, (2.8.8) provides an exact implementation formula for the Daniell periodogram (2.7.20) (whereas (2.7.16) is only an approximation of the integral (2.7.20) that is valid for sufficiently large values of N).

2.8.3 Data and Frequency Dependent Temporal Windows: The Apodization Approach

All windows discussed so far are both data and frequency independent; in other words, the window used is the same at any frequency of the spectrum and for any data sequence. Apparently this is a rather serious restriction. A consequence of this restriction is that for such non-adaptive windows (i.e., windows that do not adapt to the data under analysis) any attempt to reduce the leakage effect (by keeping the sidelobes low) inherently leads to a reduction of the resolution (due to the widening of the main lobe), and vice versa; see Section 2.6.1.

In this complement we show how to design a data and frequency dependent temporal window that has the following desirable properties:

- It mitigates the leakage problem of the periodogram without compromising its resolution; and
- It does so with only a very marginal increase in the computational burden.

Our presentation is based on the apodization approach of [Stankwitz, Dal-laire, and Fienup 1994], even though in some places we will deviate from it to some extent. Apodization is a term borrowed from optics where it has been used to mean a reduction of the sidelobes induced by diffraction.

We begin our presentation with a derivation of the temporally windowed periodogram, (2.6.24), in a least-squares (LS) framework. Consider the following weighted LS fitting problem

$$\min_a \sum_{t=1}^N \rho(t) |y(t) - ae^{i\omega t}|^2$$ \hspace{1cm} (2.8.10)

where ω is given and so are the weights $\rho(t) \geq 0$. It can be readily verified that the minimizer of (2.8.10) is given by

$$\hat{a} = \frac{\sum_{t=1}^N \rho(t) y(t) e^{-i\omega t}}{\sum_{t=1}^N \rho(t)}$$ \hspace{1cm} (2.8.11)

If we let

$$v(t) = \frac{\rho(t)}{\sum_{t=1}^N \rho(t)}$$ \hspace{1cm} (2.8.12)

then we can rewrite (2.8.11) as a windowed DFT

$$\hat{a} = \sum_{t=1}^N v(t) y(t) e^{-i\omega t}$$ \hspace{1cm} (2.8.13)
The squared magnitude of (2.8.13) appears in the windowed periodogram formula (2.6.24), which of course is not accidental as $|\hat{a}|^2$ should indicate the power in $y(t)$ at frequency ω (cf. (2.8.10)).

The usefulness of the LS-based derivation of (2.6.24) above lies in the fact that it reveals two constraints which must be satisfied by a temporal window:

$$v(t) \geq 0$$ (2.8.14)

which follows from $\rho(t) \geq 0$, and

$$\sum_{t=1}^{N} v(t) = 1$$ (2.8.15)

which follows from (2.8.12). The constraint (2.8.15) can also be obtained by inspection of (2.6.24): indeed, if $y(t)$ had a component with frequency ω then that component would pass undistorted (or unbiased) through the DFT in (2.6.24) if and only if (2.8.15) holds. For this reason, (2.8.15) is sometimes called the unbiasedness condition. On the other hand, the constraint (2.8.14) appears to be more difficult to obtain directly from (2.6.24).

Next, we turn our attention to window design, which is the problem of main interest here. To emphasize the dependence of the temporally windowed periodogram in (2.6.24) on $f v(t)$ we use the notation $\hat{\phi}_v(\omega)$:

$$\hat{\phi}_v(\omega) = N \left| \sum_{t=1}^{N} v(t) y(t) e^{-i\omega t} \right|^2$$ (2.8.16)

Note that in (2.8.16) the squared modulus is multiplied by N whereas in (2.6.24) it is divided by N; this difference is due to the fact that the window $\{v(t)\}$ in this complement is constrained to satisfy (2.8.15), whereas in Section 2.6 it is implicitly assumed to satisfy $\sum_{t=1}^{N} v(t) = N$.

In the apodization approach the window is selected such that

$$\hat{\phi}_v(\omega) = \text{minimum}$$ (2.8.17)

for each ω and for the given data sequence. Evidently, the apodization window will in general be both frequency and data dependent. Sometimes such a window is said to be frequency and data adaptive. Let \mathcal{C} denote the class of windows over which we perform the minimization in (2.8.17). Each window in \mathcal{C} must satisfy the constraints (2.8.14) and (2.8.15). Usually, \mathcal{C} is generated by an archetype window that depends on a number of unknown or free parameters, most commonly in a linear manner. It is important to observe that we should not use more than two free parameters to describe the windows $v(t) \in \mathcal{C}$. Indeed, one parameter is needed to satisfy the constraint (2.8.15) and the remaining one(s) to minimize the function in (2.8.17) under the inequality constraint (2.8.14); if in the minimization operation, $\hat{\phi}_v(\omega)$
depends quadratically on more than one parameter, then in general the minimum value will be zero, \(\phi_v(\omega) = 0 \) for all \(\omega \), which is not acceptable. We postpone a more detailed discussion on the parameterization of \(C \) until we have presented a motivation for the apodization design criterion in (2.8.17).

To understand intuitively why (2.8.17) makes sense, consider an example in which the data consists of two noise-free sinusoids. In this example we use a rectangular window \(v_1(t) \) and a Kaiser window \(v_2(t) \). The use of these windows leads to the windowed periodograms in Figure 2.5. As is apparent from this figure, \(v_1(t) \) is a “high-resolution” window that trades off leakage for resolution, whereas \(v_2(t) \) compromises resolution (the two sinusoids are not resolved in the corresponding periodogram) for less leakage. By using the apodization principle in (2.8.17) to choose between \(\phi_{v_1}(\omega) \) and \(\phi_{v_2}(\omega) \), at each frequency \(\omega \), we obtain the spectral estimate shown in Figure 2.5, which inherits the high resolution of \(\phi_{v_1}(\omega) \) and the low leakage of \(\phi_{v_2}(\omega) \).

A more formal motivation of the apodization approach can be obtained as follows. Let

\[
h_t = v(t)e^{-i\omega t}
\]

In terms of \(\{h_t\} \) the equality constraint (2.8.15) becomes

\[
\sum_{t=1}^{N} h_t e^{i\omega t} = 1
\]

and hence the apodization design problem is to minimize

\[
\left| \sum_{t=1}^{N} h_t y(t) \right|^2
\]
subject to (2.8.18) as well as (2.8.14) and any other conditions resulting from the parameterization used for \{v(t)\} (and therefore for \{h_t\}). We can interpret \{h_t\} as an FIR filter of length \(N\), and consequently (2.8.19) is the “power” of the filter output and (2.8.18) is the (complex) gain of the filter at frequency \(\omega\). Therefore, making use of \{h_t\}, we can describe the apodization principle in words as follows: find the (parameterized) FIR filter \{h_t\} which passes without distortion the sinusoid with frequency \(\omega\) (see (2.8.18)) and minimizes the output power (see (2.8.19)), and thus attenuates any other frequency components in the data as much as possible. The (normalized) power at the output of the filter is taken as an estimate of the power in the data at frequency \(\omega\). This interpretation can clearly serve as a motivation of the apodization approach and it sheds more light on the apodization principle. In effect, minimizing (2.8.19) subject to (2.8.18) (along with the other constraints on \{h_t\} resulting from the parameterization used for \{v(t)\}) is a special case of a sound approach to spectral analysis that will be described in Section 5.4.1 (a fact apparently noted for the first time in [Lee and Munson Jr. 1995]).

As already stated above, an important aspect that remains to be discussed is the parameterization of \{v(t)\}. For the apodization principle to make sense, the class \(C\) of windows must be chosen carefully. In particular, as explained above, we should not use more than two parameters to describe \{v(t)\} (to prevent the meaningless “spectral estimate” \(\hat{\phi}_v(\omega) \equiv 0\)). The choice of the class \(C\) is also important from a computational standpoint. Indeed, the task of solving (2.8.17), for each \(\omega\), and then computing the corresponding \(\hat{\phi}_v(\omega)\) may be computationally demanding unless \(C\) is carefully chosen.

In the following we will consider the class of temporal windows used in [Stankowitz, Dallaire, and Fienup 1994]:

\[
v(t) = \frac{1}{N} \left[\alpha - \beta \cos \left(\frac{2\pi}{N} t \right) \right], \quad t = 1, \ldots, N \tag{2.8.20}
\]

It can be readily checked that (2.8.20) satisfies the constraints (2.8.14) and (2.8.15) if and only if

\[
\alpha = 1 \text{ and } |\beta| \leq 1
\tag{2.8.21}
\]

In addition we require that

\[
\beta \geq 0 \tag{2.8.22}
\]

to ensure that the peak of \(v(t)\) occurs in the middle of the interval \([1,N]\); this condition guarantees that the window in (2.8.20) (with \(\beta > 0\)) has lower sidelobes than the rectangular window corresponding to \(\beta = 0\) (the window (2.8.20) with \(\beta < 0\) generally has higher sidelobes than the rectangular window, and hence \(\beta < 0\) cannot be a solution to the apodization design problem).

Remark: The temporal window (2.8.20) is of the same type as the lag Hanning and Hamming windows in Table 2.1. For the latter windows the interval of interest is \([-N,N]\) and hence for the peak of these windows to occur in the middle of the interval of interest, we need \(\beta \leq 0\) (cf. Table 2.1). This observation explains the difference between (2.8.20) and the lag windows in Table 2.1.
Combining (2.8.20), (2.8.21), and (2.8.22) leads to the following (constrained) parameterization of the temporal windows:

\[v(t) = \frac{1}{N} \left[1 - \beta \cos \left(\frac{2\pi}{N} t \right) \right] \]
\[= \frac{1}{N} \left[1 - \frac{\beta}{2} \left(e^{i \frac{2\pi}{N} t} + e^{-i \frac{2\pi}{N} t} \right) \right], \quad \beta \in [0, 1] \quad (2.8.23) \]

Assume, for simplicity, that \(N \) is a power of two (for the general case we refer to [DeGraaf 1994]) and that a radix-2 FFT algorithm is used to compute

\[Y(k) = \sum_{t=1}^{N} y(t)e^{-i \frac{2\pi}{N} kt}, \quad k = 1, \ldots, N \quad (2.8.24) \]

(see Section 2.3). Then the windowed periodogram corresponding to (2.8.23) can be conveniently computed as follows:

\[\hat{\psi}_v(k) = \frac{1}{N} \left| Y(k) - \frac{\beta}{2} [Y(k-1) + Y(k+1)] \right|^2, \quad k = 2, \ldots, N - 1 \quad (2.8.25) \]

Furthermore, in (2.8.25) \(\beta \) is the solution to the following apodization design problem:

\[\min_{\beta \in [0, 1]} \left| Y(k) - \frac{\beta}{2} [Y(k-1) + Y(k+1)] \right|^2 \quad (2.8.26) \]

The unconstrained minimizer of the above function is given by:

\[\beta_0 = \text{Re} \left[\frac{2Y(k)}{Y(k-1) + Y(k+1)} \right] \quad (2.8.27) \]

Because the function in (2.8.26) is quadratic in \(\beta \), it follows that the constrained minimizer of (2.8.26) is given by

\[\beta = \begin{cases}
0, & \text{if } \beta_0 < 0 \\
\beta_0, & \text{if } 0 \leq \beta_0 \leq 1 \\
1, & \text{if } \beta_0 > 1
\end{cases} \quad (2.8.28) \]

Remark: It is interesting to note from (2.8.28) that a change of the value of \(\alpha \) in the window expression (2.8.20) will affect the apodization (optimal) window in a more complicated way than just a simple scaling. Indeed, if we change the value of \(\alpha \), for instance to \(\alpha = 0.75 \), then the interval for \(\beta \) becomes \(\beta \in [0, 0.75] \) and this modification will affect the apodization window nonlinearly via (2.8.28).

The apodization-based windowed periodogram is simply obtained by using \(\beta \) given by (2.8.28) in (2.8.25). Hence, despite the fact that the apodization window is both frequency and data dependent (via \(\beta \) in (2.8.27), (2.8.28)) the implementation
of the corresponding spectral estimate is only marginally more computationally demanding than the implementation of an unwindowed periodogram. Compared with the latter, however, the apodization-based windowed periodogram has a considerably reduced leakage problem and essentially the same resolution (see [STANKWITZ, DALLAIRE, AND FIE Napoleon 1994; DEGRAAF 1994] for numerical examples illustrating this fact).

2.8.4 Estimation of Cross–Spectra and Coherency Spectra

As can be seen from Complement 1.6.1, the estimation of the cross–spectrum \(\phi_{yu}(\omega) \) of two stationary signals, \(y(t) \) and \(u(t) \), is a useful operation when studying possible linear (dynamic) relations between \(y(t) \) and \(u(t) \). Let \(z(t) \) denote the bivariate signal

\[
z(t) = [y(t) \ u(t)]^T
\]

and let

\[
\hat{\phi}(\omega) = \frac{1}{N} Z(\omega) Z^*(\omega) \tag{2.8.29}
\]

denote the unwindowed periodogram estimate of the spectral density matrix of \(z(t) \). In equation (2.8.29),

\[
Z(\omega) = \sum_{t=1}^{N} z(t)e^{-i\omega t}
\]

is the DTFT of \(\{z(t)\}_{t=1}^{N} \). Partition \(\hat{\phi}(\omega) \) as

\[
\hat{\phi}(\omega) = \begin{bmatrix}
\hat{\phi}_{yy}(\omega) & \hat{\phi}_{yu}(\omega) \\
\hat{\phi}_{yu}^*(\omega) & \hat{\phi}_{uu}(\omega)
\end{bmatrix} \tag{2.8.30}
\]

As indicated by the notation previously used, estimates of \(\hat{\phi}_{yy}(\omega) \), \(\hat{\phi}_{uu}(\omega) \) and of the cross–spectrum \(\hat{\phi}_{yu}(\omega) \) may be obtained from the corresponding elements of \(\hat{\phi}(\omega) \).

We first show that the estimate of the coherency spectrum obtained from (2.8.30) is always such that

\[
|\hat{C}_{yu}(\omega)| = 1 \quad \text{for all } \omega \tag{2.8.31}
\]

and hence it is useless. To see this, note that since the rank of the \(2 \times 2 \) matrix in (2.8.30) is equal to one (see Result R22 in Appendix A), we must have

\[
\hat{\phi}_{uu}(\omega)\hat{\phi}_{yu}(\omega) = |\hat{\phi}_{yu}(\omega)|^2
\]

which readily leads to the conclusion that the coherency spectrum estimate obtained from the elements of \(\hat{\phi}(\omega) \) is bound to satisfy (2.8.31), and hence is meaningless. This result is yet another indication that the unwindowed periodogram is a poor estimate of the PSD.

Consider next a windowed Blackman–Tukey periodogram estimate of the cross–spectrum:

\[
\hat{\phi}_{yu}(\omega) = \sum_{k=-M}^{M} w(k)\tilde{r}_{yu}(k)e^{-i\omega k} \tag{2.8.32}
\]
where \(w(k) \) is the lag window, and \(\hat{r}_{yu}(k) \) is some usual estimate of \(r_{yu}(k) \). Unlike \(r_{yy}(k) \) or \(r_{uu}(k) \), \(r_{yu}(k) \) does not necessarily peak at \(k = 0 \) and, moreover, is not an even function in general. The choice of the lag window for estimating cross-spectra may hence be governed by different rules from those commonly used in the autospectrum estimation.

The main task of a lag window is to retain the “essential part” of the covariance sequence in the defining equation for the spectral density. In this way the bias is kept small and the variance is also reduced as the noisy tails of the sample covariance sequence are weighted out. For simplicity of discussion, assume that most of the area under the plot of \(\hat{r}_{yu}(k) \) is concentrated about \(k = k_0 \), with \(|k_0| \ll N \). As \(\hat{r}_{yu}(k) \) is a reasonably accurate estimate of \(r_{yu}(k) \), provided \(|k| \ll N \), we can assume that \(\{ \hat{r}_{yu}(k) \} \) and \(\{ r_{yu}(k) \} \) have similar shapes. In such a case, one can redefine (2.8.32) as

\[
\hat{\phi}_{yu}(\omega) = \sum_{k=-M}^{M} w(k - k_0) \hat{r}_{yu}(k)e^{-i\omega k}
\]

where the lag window \(w(s) \) is of the type recommended for autospectrum estimation. The choice of an appropriate value for \(k_0 \) in the above cross-spectral estimator is essential, for if \(k_0 \) is poorly selected the following situations can occur:

- If \(M \) is chosen small to reduce the variance, the bias may be significant as “essential” lags of the cross-covariance sequence may be left out.
- If \(M \) is chosen large to reduce the bias, the variance may significantly be inflated as poorly estimated high-order “nonessential” lags are included into the spectral estimation formula.

Finally, let us look at the cross-spectrum estimators derived from (2.8.30) and (2.8.32), respectively, with a view of establishing a relation between them. Partition \(Z(\omega) \) as

\[
Z(\omega) = \begin{bmatrix} Y(\omega) \\ U(\omega) \end{bmatrix}
\]

and observe that

\[
\frac{1}{2\pi N} \int_{-\pi}^{\pi} Y(\omega)U^*(\omega)e^{i\omega k} \, d\omega \\
= \frac{1}{2\pi N} \int_{-\pi}^{\pi} \sum_{t=1}^{N} \sum_{s=1}^{N} y(t)u^*(s)e^{-i\omega(t-s)} e^{i\omega k} \, d\omega \\
= \frac{1}{N} \sum_{t=1}^{N} \sum_{s=1}^{N} y(t)u^*(s)\delta_{k,t-s} \\
= \frac{1}{N} \sum_{t \in [1,N]\cap [1+k,N+k]} y(t)u^*(t-k) \triangleq \hat{r}_{yu}(k)
\]

(2.8.33)
where \(\hat{r}_{yu}(k) \) can be rewritten in the following more familiar form:

\[
\hat{r}_{yu}(k) = \begin{cases}
\frac{1}{N} \sum_{t=k+1}^{N} y(t) u^*(t-k), & k = 0, 1, 2, \ldots \\
\frac{1}{N} \sum_{t=1}^{N+k} y(t) u^*(t-k), & k = 0, -1, -2, \ldots
\end{cases}
\]

Let

\[
\hat{\phi}_{yu}^p(\omega) = \frac{1}{N} Y(\omega) U^*(\omega)
\]

denote the unwined cross–spectral periodogram–like estimator, given by the off–diagonal element of \(\hat{\phi}(\omega) \) in (2.8.30). With this notation, (2.8.33) can be written more compactly as

\[
\hat{r}_{yu}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_{yu}^p(\mu)e^{i\mu k} \, d\mu
\]

By using the above equation in (2.8.32), we obtain:

\[
\hat{\phi}_{yu}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{\phi}_{yu}^p(\mu) \sum_{k=-M}^{M} w(k)e^{-i(\omega-\mu)k} \, d\mu
\]

\[
= \frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega-\mu) \hat{\phi}_{yu}^p(\mu) \, d\mu \quad (2.8.34)
\]

where \(W(\omega) = \sum_{k=-\infty}^{\infty} w(k)e^{-i\omega k} \) is the spectral window. The previous equation should be compared with the similar equation, (2.5.3), that holds in the case of autospectra.

For implementation purposes, one can use the following discrete approximation of (2.8.34):

\[
\hat{\phi}_{yu}(\omega) = \frac{1}{N} \sum_{k=-N}^{N} W(\omega - \omega_k) \hat{\phi}_{yu}^p(\omega_k)
\]

where \(\omega_k = \frac{2\pi}{N} k \) are the Fourier frequencies. The periodogram (cross–spectral) estimate that appears in the above equation can be efficiently computed by means of an FFT algorithm.

2.8.5 More Time–Bandwidth Product Results

The time (or duration)–bandwidth product result (2.6.5) relies on the assumptions that both \(w(t) \) and \(W(\omega) \) have a dominant peak at the origin, that they both are real–valued, and that they take on nonnegative values only. While most window–like signals (nearly) satisfy these assumptions, many other signals do not satisfy them. In this complement we obtain time–bandwidth product results that apply to a much broader class of signals.
We begin by showing how the result (2.6.5) can be extended to a more general class of signals. Let \(x(t) \) denote a general discrete-time sequence and let \(X(\omega) \) denote its DTFT. Both \(x(t) \) and \(X(\omega) \) are allowed to take negative or complex values, and neither is required to peak at the origin. Let \(t_0 \) and \(\omega_0 \) denote the maximum points of \(|x(t)| \) and \(|X(\omega)| \), respectively. The time width (or duration) and bandwidth definitions in (2.6.1) and (2.6.2) are modified as follows:

\[
\tilde{N}_c = \frac{\sum_{t=-\infty}^{\infty} |x(t)|}{|x(t_0)|}
\]

and

\[
\tilde{\beta}_c = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|X(\omega)|d\omega}{|X(\omega_0)|}
\]

Because \(x(t) \) and \(X(\omega) \) form a Fourier transform pair, we obtain

\[
|X(\omega_0)| = \sum_{t=-\infty}^{\infty} x(t)e^{-i\omega_0 t} \leq \sum_{t=-\infty}^{\infty} |x(t)|
\]

and

\[
|x(t_0)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega)e^{i\omega t_0} d\omega \right| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|d\omega
\]

which implies that

\[
\tilde{N}_c \tilde{\beta}_c \geq 1 \tag{2.8.35}
\]

The above result, similar to (2.6.5), can be used to conclude that:

\[
\text{A sequence \{x(t)\} cannot be narrow in both time and frequency.} \tag{2.8.36}
\]

More precisely, if \(x(t) \) is narrow in one domain it must be wide in the other domain. However, the inequality result (2.8.35), unlike (2.6.5), does not necessarily imply that \(\tilde{\beta}_c \) decreases whenever \(\tilde{N}_c \) increases (or vice versa). Furthermore, the result (2.8.35) — again unlike (2.6.5) — does not exclude the possibility that the signal is broad in both domains. In fact, in the general class of signals to which (2.8.35) applies there are signals which are broad in both the time and frequency domains (for such signals \(\tilde{N}_c \tilde{\beta}_c \gg 1 \)); see, e.g., [PAPOLIS 1977]. Evidently, the significant consequence of (2.8.35) is (2.8.36), which is precisely what makes the duration-bandwidth result an important one.

The duration-bandwidth product type of result (such as (2.6.5) or (2.8.35), and (2.8.40) below) has been sometimes referred to by using the generic name of uncertainty principle, in an attempt to relate it to the Heisenberg Uncertainty Principle in quantum mechanics. (Briefly stated, the Heisenberg Uncertainty Principle asserts that the position and velocity of a particle cannot be simultaneously specified to arbitrary precision.) To support the relationship, one can argue as follows:
Suppose that we are given a sequence with (equivalent) duration equal to \(N_e \) and that we are asked to use a linear filtering device to determine the sequence’s spectral content in a certain narrow band. Because the filter impulse response cannot be longer than \(N_e \) (in fact, it should be (much) shorter!), it follows from the time–bandwidth product result that the filter’s bandwidth can be on the order of \(1/N_e \) but not smaller. Hence, the sequence’s spectral content in fine bands on an order smaller than \(1/N_e \) cannot be exactly determined and therefore is “uncertain”. This is in effect the type of limitation that applies to the nonparametric spectral methods discussed in this chapter. However, this way of arguing is related to a specific approach to spectral estimation and not to a fundamental limitation associated with the signal itself. (As we will see in later chapters of this text, there are parametric methods of spectral analysis that can provide the “high resolution” necessary to determine the spectral content in bands that are on an order less than \(1/N_e \)).

Next, we present another, slightly more general form of time–bandwidth product result. The definitions of duration and bandwidth used to obtain (2.8.35) make full sense whenever \(|x(t)|\) and \(|X(\omega)|\) are single pulse–like waveforms, though these definitions may give reasonable results in many other instances as well. There are several other possible definitions of the broadness of a waveform in either the time or frequency domain. The definition used below and the corresponding time–bandwidth product result appear to be among the most general.

Let
\[
\hat{x}(t) = \frac{x(t)}{\sqrt{\sum_{t=-\infty}^{\infty}|x(t)|^2}}
\]
(2.8.37)
and
\[
\hat{X}(\omega) = \frac{X(\omega)}{\sqrt{\frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega}}
\]
(2.8.38)

By Parseval’s theorem (see (1.2.6)) the denominators in (2.8.37) and (2.8.38) are equal to each other. Therefore, \(\hat{X}(\omega) \) is the DTFT of \(\hat{x}(t) \) as is already indicated by notation. Observe that
\[
\sum_{t=-\infty}^{\infty} |\hat{x}(t)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\hat{X}(\omega)|^2 d\omega = 1
\]

Hence, both \(\{ |\hat{x}(t)|^2 \} \) and \(\{ |\hat{X}(\omega)|^2 / 2\pi \} \) can be interpreted as probability density functions in the sense that they are nonnegative and that they sum or integrate to one. The means and variances associated with these two “probability” densities are given by the following equations.

Time Domain:
\[
\mu = \sum_{t=-\infty}^{\infty} t |\hat{x}(t)|^2
\]
\[
\sigma^2 = \sum_{t=-\infty}^{\infty} (t - \mu)^2 |\hat{x}(t)|^2
\]
Frequency Domain:

\[
\nu = \frac{1}{(2\pi)^2} \int_{-\pi}^{\pi} \omega |\tilde{X}(\omega)|^2 d\omega \\
\rho^2 = \frac{1}{(2\pi)^3} \int_{-\pi}^{\pi} (\omega - 2\pi \nu)^2 |\tilde{X}(\omega)|^2 d\omega
\]

The values of the “standard deviations” \(\sigma\) and \(\rho\) show whether the normalized functions \(\{|\tilde{x}(t)|\}\) and \(\{|\tilde{X}(\omega)|\}\), respectively, are narrow or broad. Hence, we can use \(\sigma\) and \(\rho\) as definitions for the duration and bandwidth, respectively, of the original functions \(\{x(t)\}\) and \(\{X(\omega)\}\).

In what follows, we assume that:

\[
\mu = 0, \quad \nu = 0 \quad (2.8.39)
\]

For continuous-time signals, the zero-mean assumptions can always be made to hold by appropriately translating the origin on the time and frequency axes (see, e.g., [COHEN 1995]). However, doing the same in the case of the discrete-time sequences considered here does not appear to be possible. Indeed, \(\mu\) may not be integer-valued, and the support of \(X(\omega)\) is finite and hence is affected by translation. Consequently, in the present case the zero-mean assumption introduces some restriction; nevertheless we impose it to simplify the analysis.

According to the discussion above and assumption (2.8.39), we define the (equivalent) time width and bandwidth of \(x(t)\) as follows:

\[
\tilde{N}_e = \left[\sum_{t = -\infty}^{\infty} t^2 |\tilde{x}(t)|^2 \right]^{1/2} \\
\tilde{\beta}_e = \frac{1}{2\pi} \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \omega^2 |\tilde{X}(\omega)|^2 d\omega \right]^{1/2}
\]

In the remainder of this complement, we prove the following time–bandwidth product result:

\[
\tilde{N}_e \tilde{\beta}_e \geq \frac{1}{4\pi} \quad (2.8.40)
\]

which holds true under (2.8.39) and the weak additional assumption that

\[
|\tilde{X}(\pi)| = 0 \quad (2.8.41)
\]

To prove (2.8.40), first we note that

\[
\tilde{X}'(\omega) \triangleq \frac{d\tilde{X}(\omega)}{d\omega} = -i \sum_{t = -\infty}^{\infty} t\tilde{x}(t)e^{-i\omega t}
\]
Chapter 2 Nonparametric Methods

Hence, \(i\tilde{X}'(\omega) \) is the DTFT of \(\{t\tilde{x}(t)\} \), which implies (by Parseval’s theorem) that

\[
\sum_{t=-\infty}^{\infty} t^2 |\tilde{x}(t)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\tilde{X}'(\omega)|^2 d\omega \tag{2.8.42}
\]

Consequently, by the Cauchy–Schwartz inequality for functions (see Result R23 in Appendix A),

\[
\begin{align*}
\hat{N}_e \hat{\beta}_c &= \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |\tilde{X}'(\omega)|^2 d\omega \right]^{1/2} \left[\frac{1}{(2\pi)^3} \int_{-\pi}^{\pi} \omega^2 |\tilde{X}(\omega)|^2 d\omega \right]^{1/2} \\
&\geq \frac{1}{(2\pi)^2} \left| \int_{-\pi}^{\pi} \omega \tilde{X}^*(\omega) \tilde{X}'(\omega) d\omega \right| \\
&= \frac{1}{2(2\pi)^2} \left\{ \left| \int_{-\pi}^{\pi} \omega \tilde{X}^*(\omega) \tilde{X}'(\omega) d\omega \right| \\
&\quad + \left| \int_{-\pi}^{\pi} \omega \tilde{X}(\omega) \tilde{X}''(\omega) d\omega \right| \right\} \tag{2.8.43}
\end{align*}
\]

(the first equality above follows from (2.8.42) and the last one from a simple calculation). Hence

\[
\hat{N}_e \hat{\beta}_c \geq \frac{1}{2(2\pi)^2} \left| \int_{-\pi}^{\pi} \omega \left[\tilde{X}^*(\omega) \tilde{X}'(\omega) + \tilde{X}(\omega) \tilde{X}''(\omega) \right] d\omega \right|
\]

which, after integrating by parts and using (2.8.41), yields

\[
\hat{N}_e \hat{\beta}_c \geq \frac{1}{2(2\pi)^2} \left| \omega |\tilde{X}(\omega)|^2 \right|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} |\tilde{X}(\omega)|^2 d\omega \right| = \frac{1}{2(2\pi)}
\]

and the proof is concluded.

Remark: There is an alternative way to complete the proof above, starting from the inequality in (2.8.43). In fact, as we will see, this alternative proof yields a tighter inequality than (2.8.40). Let \(\varphi(\omega) \) denote the phase of \(\tilde{X}(\omega) \):

\[\tilde{X}(\omega) = |\tilde{X}(\omega)|e^{i\varphi(\omega)} \]

Then,

\[\omega \tilde{X}^*(\omega) \tilde{X}'(\omega) = \omega |\tilde{X}(\omega)| \left[|\tilde{X}(\omega)| \right]' + i\omega \varphi'(\omega) |\tilde{X}(\omega)|^2 \]

\[= \frac{1}{2} \left[\omega |\tilde{X}(\omega)|^2 \right]' - \frac{1}{2} \left| \tilde{X}(\omega) \right|^2 + i\omega \varphi'(\omega) |\tilde{X}(\omega)|^2 \tag{2.8.44} \]

Inserting (2.8.44) into (2.8.43) yields

\[
\hat{N}_e \hat{\beta}_c \geq \frac{1}{2(2\pi)^2} \left| \frac{\omega}{2} |\tilde{X}(\omega)|^2 \right|_{-\pi}^{-\pi} + i2\pi \gamma \right| \tag{2.8.45}
\]
where
\[\gamma = \frac{1}{2\pi} \int_{-\pi}^{\pi} \omega \varphi'(\omega) |\tilde{X}(\omega)|^2 d\omega \]
can be interpreted as the “covariance” of \(\omega \) and \(\varphi'(\omega) \) under the “probability density function” given by \(|\tilde{X}(\omega)|^2/(2\pi) \). From (2.8.45) we obtain at once
\[\hat{N}_e \hat{\gamma} \geq \frac{1}{4\pi} \sqrt{1 + 4\gamma^2} \] (2.8.46)
which is a slightly stronger result than (2.8.40).

The results (2.8.40) and (2.8.46) are similar to (2.8.35), and hence the type of comments previously made about (2.8.35) applies to (2.8.40) and (2.8.46) as well.

For a more general time-bandwidth product result than the one above, see [Doroslovacki 1998]; the papers [Calvez and Vilbe 1992] and [Ishii and Furukawa 1986] contain similar results to the one presented in this complement.

2.9 Exercises

Exercise 2.1: Covariance Estimation for Signals with Unknown Means

The sample covariance estimators (2.2.3) and (2.2.4) are based on the assumption that the signal mean is equal to zero. A simple calculation shows that, under the zero-mean assumption,
\[E \{ \hat{r}(k) \} = r(k) \] (2.9.1)
and
\[E \{ \hat{r}(k) \} = \frac{N - |k|}{N} r(k) \] (2.9.2)
where \(\{ \hat{r}(k) \} \) denotes the sample covariance estimate in (2.2.3). Equations (2.9.1) and (2.9.2) show that \(\hat{r}(k) \) is an unbiased estimate of \(r(k) \), whereas \(\hat{r}(k) \) is a biased one (note, however, that the bias in \(\hat{r}(k) \) is small for \(N \gg |k| \)). For this reason, \(\{ \hat{r}(k) \} \) and \(\{ \hat{r}(k) \} \) are often called the unbiased and, respectively, biased sample covariances.

Whenever the signal mean is unknown, a most natural modification of the covariance estimators (2.2.3) and (2.2.4) is as follows:
\[\hat{r}(k) = \frac{1}{N - k} \sum_{t=k+1}^{N} [y(t) - \tilde{y}] [y(t - k) - \tilde{y}]^* \] (2.9.3)
and
\[\hat{r}(k) = \frac{1}{N} \sum_{t=k+1}^{N} [y(t) - \tilde{y}] [y(t - k) - \tilde{y}]^* \] (2.9.4)
where \bar{y} is the sample mean

$$\bar{y} = \frac{1}{N} \sum_{t=1}^{N} y(t) \quad (2.9.5)$$

Show that in the unknown mean case, the usual names of unbiased and biased sample covariances associated with (2.9.3) and (2.9.4), respectively, may no longer be appropriate. Indeed, in such a case both estimators may be biased; furthermore, $\hat{r}(k)$ may be less biased than $\tilde{r}(k)$. To simplify the calculations, assume that $y(t)$ is white noise.

Exercise 2.2: Covariance Estimation for Signals with Unknown Means (cont’d)

Show that the sample covariance sequence $\{\hat{r}(k)\}$ in equation (2.9.4) of Exercise 2.1 satisfies the following equality:

$$\sum_{k=-(N-1)}^{N-1} \hat{r}(k) = 0 \quad (2.9.6)$$

The above equality may seem somewhat surprising. (Why should the $\{\hat{r}(k)\}$ satisfy such a constraint, which the true covariances do not necessarily satisfy? Note, for instance, that the latter covariance sequence may well comprise only positive elements.) However, the equality in (2.9.6) has a natural explanation when viewed in the context of periodogram–based spectral estimation. Derive and explain formula (2.9.6) in the aforementioned context.

Exercise 2.3: Unbiased ACS Estimates may lead to Negative Spectral Estimates

We stated in Section 2.2.2 that if unbiased ACS estimates, given by equation (2.2.3), are used in the correlogram spectral estimate (2.2.2), then negative spectral estimates may result. Find an example data sequence $\{y(t)\}_{t=1}^{N}$ that gives such a negative spectral estimate.

Exercise 2.4: Variance of Estimated ACS

Let $\{y(t)\}_{t=1}^{N}$ be real Gaussian (for simplicity), with zero mean, ACS equal to $\{r(k)\}$, and ACS estimate (either biased or unbiased) equal to $\{\hat{r}(k)\}$ (given by equation (2.2.3) or (2.2.4); we treat both cases simultaneously). Assume, without loss of generality, that $k \geq 0$.

(a) Make use of equation (2.4.24) to show that

$$\text{var}\{\hat{r}(k)\} = \alpha^2(k) \sum_{m=-(N-k-1)}^{N-k-1} (N-k-|m|) \left[r^2(m) + r(m+k)r(m-k) \right]$$

where

$$\alpha(k) = \begin{cases} \frac{1}{N-k} & \text{for unbiased ACS estimates} \\ \frac{1}{N} & \text{for biased ACS estimates} \end{cases}$$
Section 2.9 Exercises 73

Hence, for large N, the standard deviation of the ACS estimate is $O(1/\sqrt{N})$ under weak conditions on the true ACS $\{r(k)\}$.

(b) For the special case that $y(t)$ is white Gaussian noise, show that $\text{cov}\{\hat{r}(k), \hat{r}(l)\} = 0$ for $k \neq l$, and find a simple expression for $\text{var}\{\hat{r}(k)\}$.

Exercise 2.5: Another Proof of the Equality $\hat{\phi}_p(\omega) = \hat{\phi}_c(\omega)$

The proof of the result (2.2.6) in the text introduces an auxiliary random sequence and treats the original data sequence as deterministic (nonrandom). That proof relies on several results previously derived. A more direct proof of (2.2.6) can be found using only (2.2.1), (2.2.2), and (2.2.4). Find such a proof.

Exercise 2.6: A Compact Expression for the Sample ACS

Show that the expressions for the sample ACS given in the text (equations (2.2.3) or (2.2.4) for $k \geq 0$ and (2.2.5) for $k < 0$) can be rewritten using a single formula as follows:

$$\hat{r}(k) = \rho \sum_{p=1}^{N} \sum_{s=1}^{N} y(p)y^*(s)\delta_{k,p-s}, \quad k = 0, \pm 1, \ldots, \pm(N-1) \quad (2.9.7)$$

where $\rho = \frac{1}{N}$ for (2.2.4) and $\rho = \frac{1}{N-|k|}$ for (2.2.3).

Exercise 2.7: Yet Another Proof of the Equality $\hat{\phi}_p(\omega) = \hat{\phi}_c(\omega)$

Use the compact expression for the sample ACS derived in Exercise 2.6 to obtain a very simple proof of (2.2.6).

Exercise 2.8: Linear Transformation Interpretation of the DFT

Let F be the $N \times N$ matrix whose (k,t)th element is given by W^{kt}, where W is as defined in (2.3.2). Then the DFT, (2.3.3), can be written as a linear transformation of the data vector $y \triangleq [y(1) \ldots y(N)]^T$,

$$Y \triangleq [Y(0) \ldots Y(N-1)]^T = FY \quad (2.9.8)$$

Show that F is an orthogonal matrix that satisfies

$$\frac{1}{N} FF^* = I \quad (2.9.9)$$

and, as a result, that the inverse transform is

$$y = \frac{1}{N} F^* Y \quad (2.9.10)$$

Deduce from the above that the DFT is nothing but a representation of the data vector y via an orthogonal basis in \mathbb{C}^n (the basis vectors are the columns of F^*). Also, deduce that if the sequence $\{y(t)\}$ is periodic with a period equal to N, then the Fourier coefficient vector, Y, determines the whole sequence $\{y(t)\}_{t=1,2,\ldots}$ and that in effect the inverse transform (2.9.10) can be extended to include all samples $y(1), \ldots, y(N), y(N+1), y(N+2), \ldots$.
Chapter 2 Nonparametric Methods

Exercise 2.9: For White Noise the Periodogram is an Unbiased PSD Estimator

Let \(y(t) \) be a zero-mean white noise with variance \(\sigma^2 \) and let
\[
Y(\omega_k) = \frac{1}{\sqrt{N}} \sum_{t=0}^{N-1} y(t) e^{-i\omega_k t} ; \quad \omega_k = \frac{2\pi}{N} k \quad (k = 0, \ldots, N - 1)
\]
denote its (normalized) DFT evaluated at the Fourier frequencies.

(a) Derive the covariances
\[
E\{Y(\omega_k)Y^*(\omega_r)\}, \quad k, r = 0, \ldots, N - 1
\]

(b) Use the result of the previous calculation to conclude that the periodogram
\(\hat{\phi}(\omega_k) = |Y(\omega_k)|^2 \) is an unbiased estimator of the PSD of \(y(t) \).
(c) Explain whether the unbiasedness property holds for \(\omega \neq \omega_k \) as well. Present an intuitive explanation for your finding.

Exercise 2.10: Shrinking the Periodogram

First, we introduce a simple general result on mean squared error (MSE) reduction by shrinking. Let \(\hat{x} \) be some estimate of a true (and unknown) parameter \(x \). Assume that \(\hat{x} \) is unbiased, i.e., \(E(\hat{x}) = x \), and let \(\sigma^2_{\hat{x}} \) denote the MSE of \(\hat{x} \)
\[
\sigma^2_{\hat{x}} = E\{(\hat{x} - x)^2\}
\]
(Since \(\hat{x} \) is unbiased, \(\sigma^2_{\hat{x}} \) also equals the variance of \(\hat{x} \).) For a fixed (nonrandom) \(\rho \), let
\[
\hat{x} = \rho \hat{x}
\]
be another estimate of \(x \). The “shrinkage coefficient” \(\rho \) can be chosen so as to make the MSE of \(\hat{x} \) (much) smaller than \(\sigma^2_{\hat{x}} \). (Note that \(\hat{x} \), for \(\rho \neq 1 \), is a biased estimate of \(x \); hence \(\hat{x} \) trades off bias for variance.) More precisely, show that the MSE of \(\hat{x} \), \(\sigma^2_{\hat{x}} \), achieves its minimum value (with respect to \(\rho \)) of
\[
\sigma^2_{\hat{x},o} = \rho_o \sigma^2_{\hat{x}}
\]
for
\[
\rho_o = \frac{x^2}{x^2 + \sigma^2_{\hat{x}}}
\]
Next, consider the application of the previous result to the periodogram. As we explained in the chapter, the periodogram–based spectral estimate is asymptotically unbiased and has an asymptotic MSE equal to the squared PSD value:
\[
E\{\hat{\phi}_p(\omega)\} \to \phi(\omega), \quad E\{(\hat{\phi}_p(\omega) - \phi(\omega))^2\} \to \phi^2(\omega) \quad \text{as } N \to \infty
\]
Show that the “optimally shrunk” periodogram estimate is
\[
\hat{\phi}(\omega) = \hat{\phi}_p(\omega)/2
\]
and that the MSE of $\hat{\phi}(\omega)$ is half the MSE of $\hat{\phi}_p(\omega)$.

Finally, comment on the general applicability of this extremely simple tool for MSE reduction.

Exercise 2.11: Asymptotic Maximum Likelihood Estimation of $\phi(\omega)$ from $\hat{\phi}_p(\omega)$

It follows from the calculations in Section 2.4 that, asymptotically in N, $\hat{\phi}_p(\omega)$ has mean $\phi(\omega)$ and variance $\phi^2(\omega)$. In this exercise we assume that $\hat{\phi}_p(\omega)$ is (asymptotically) Gaussian distributed (which is not necessarily the case; however, the spectral estimator derived here under the Gaussian assumption may also be used when this assumption does not hold). Hence, the asymptotic probability density function of $\hat{\phi}_p(\omega)$ is (we omit the index p as well as the dependence on ω to simplify the notation):

$$p_{\phi}(\hat{\phi}) = \frac{1}{\sqrt{2\pi}\phi^2} \exp\left[-\frac{(\hat{\phi} - \phi)^2}{2\phi^2}\right]$$

Show that the maximum likelihood estimate (MLE) of ϕ based on $\hat{\phi}$, which by definition is equal to the maximizer of $p_{\phi}(\hat{\phi})$ (see Appendices B and C for a short introduction of maximum likelihood estimation) is given by

$$\tilde{\phi} = \frac{\sqrt{5} - 1}{2} \hat{\phi}$$

Compare $\tilde{\phi}$ with the “optimally shrunk” estimate of ϕ derived in Exercise 2.10.

Exercise 2.12: Plotting the Spectral Estimates in dB

It has been shown in this chapter that the spectral estimate $\hat{\phi}(\omega)$, obtained via an improved periodogram method, is asymptotically unbiased with a variance of the form $\mu^2\phi^2(\omega)$, where μ is a constant that can be made (much) smaller than one by appropriately choosing the window. This fact implies that the confidence interval $\phi(\omega) \pm \mu\phi(\omega)$, constructed around the estimated PSD, should include the true (and unknown) PSD with a large probability. Now, obtaining a confidence interval as above has a twofold drawback: first, $\phi(\omega)$ is unknown; secondly, the interval may have significantly different widths for different frequency values.

Show that plotting $\hat{\phi}(\omega)$ in decibels eliminates the previous drawbacks. More precisely, show that when $\hat{\phi}(\omega)$ is expressed in dB, its asymptotic variance is $c^2\mu^2$ (with $c = 10 \log_{10} e$), and hence that the confidence interval for a log-scale plot has the same width (independent of $\phi(\omega)$) for all ω.

Exercise 2.13: Finite–Sample Variance/Covariance Analysis of the Periodogram

This exercise has two aims. *First*, it shows that in the Gaussian case the variance/covariance analysis of the periodogram can be done in an extremely simple manner (even without the assumption that the data comes from a linear process, as in (2.4.26)). *Secondly*, the exercise asks for a finite–sample analysis which, for some purposes, may be more useful than the asymptotic analysis presented in the text. Indeed, the asymptotic analysis result (2.4.21) may be misleading if not interpreted
with care. For instance, (2.4.21) says that asymptotically (for \(N \to \infty \)) \(\hat{\phi}(\omega_1) \) and \(\hat{\phi}(\omega_2) \) are uncorrelated with one another, no matter how close \(\omega_1 \) and \(\omega_2 \) are. This cannot be true in finite samples, and hence the following question naturally arises: For a given \(N \), how close can \(\omega_1 \) be to \(\omega_2 \) such that \(\hat{\phi}(\omega_1) \) and \(\hat{\phi}(\omega_2) \) are (nearly) uncorrelated with each other? The finite-sample analysis of this exercise can provide an answer to such questions, whereas the asymptotic analysis cannot.

Let

\[
\begin{align*}
 a(\omega) &= [e^{i\omega} \ldots e^{iN\omega}]^T \\
 y &= [y(1) \ldots y(N)]^T
\end{align*}
\]

Then the periodogram, (2.2.1), can be written as (we omit the subindex \(p \) of \(\hat{\phi}_p(\omega) \) in this exercise):

\[
\hat{\phi}(\omega) = |a^*(\omega)y|^2/N \quad (2.9.11)
\]

Assume that \(\{y(t)\} \) is a zero mean, stationary circular Gaussian process. The “circular Gaussianity” assumption (see, e.g., Appendix B) allows us to write the fourth-order moments of \(\{y(t)\} \) as (see equation (2.4.24)):

\[
E \{y(t) y^*(s) y(u) y^*(v)\} = E \{y(t) y^*(s)\} E \{y(u) y^*(v)\} + E \{y(t) y^*(v)\} E \{y(u) y^*(s)\} \quad (2.9.12)
\]

Make use of (2.9.11) and (2.9.12) to show that

\[
\begin{align*}
\text{cov}\{\hat{\phi}(\mu), \hat{\phi}(\nu)\} &\triangleq E \left\{ \left[\hat{\phi}(\mu) - E\{\hat{\phi}(\mu)\} \right] \left[\hat{\phi}(\nu) - E\{\hat{\phi}(\nu)\} \right] \right\} \\
&= |a^*(\mu) R a(\nu)|^2/N^2 \quad (2.9.13)
\end{align*}
\]

where \(R = E\{yy^*\} \). Deduce from (2.9.13) that

\[
\text{var}\{\hat{\phi}(\mu)\} = |a^*(\mu) R a(\mu)|^2/N^2 \quad (2.9.14)
\]

Use (2.9.14) to readily rederive the variance part of the asymptotic result (2.4.21). Next, use (2.9.14) to show that the covariance between \(\hat{\phi}(\mu) \) and \(\hat{\phi}(\nu) \) is not significant if

\[
|\mu - \nu| > 4\pi/N
\]

and also that it may be significant otherwise. Hint: To show the inequality above, make use of the Carathéodory parameterization of a covariance matrix in Section 4.9.2.

Exercise 2.14: Data–Weighted ACS Estimate Interpretation of Bartlett and Welch Methods

Consider the Bartlett estimator, and assume \(LM = N \).

(a) Show that the Bartlett spectral estimate can be written as:

\[
\hat{\phi}_B(\omega) = \sum_{k=-(M-1)}^{M-1} \hat{r}(k)e^{-i\omega k}
\]
where
\[\tilde{r}(k) = \sum_{t=k+1}^{N} \alpha(k,t) y(t)y^*(t-k), \quad 0 \leq k < M \]
for some \(\alpha(k,t) \) to be derived. Note that this is nearly of the form of the Blackman–Tukey spectral estimator, with the exception that the “standard” biased ACS estimate that is used in the Blackman–Tukey estimator is replaced by the “generalized” ACS estimate \(\tilde{r}(k) \).

(b) Make use of the derived expression for \(\alpha(k,t) \) to conclude that the Bartlett estimator is inferior to the Blackman–Tukey estimator (especially for small \(N \)) because it fails to use all available lag products in forming ACS estimates.

(c) Find \(\alpha(k,t) \) for the Welch method. What overlap values (\(K \) in equation (2.7.7)) give lag product usage similar to the Blackman–Tukey method?

Exercise 2.15: Approximate Formula for Bandwidth Calculation

Let \(W(\omega) \) denote a general spectral window that has a peak at \(\omega = 0 \) and is symmetric about that point. In addition, assume that the peak of \(W(\omega) \) is narrow (as usually it should be). Under these assumptions, make use of a Taylor series expansion to show that an approximate formula for calculating the bandwidth \(B \) of the peak of \(W(\omega) \) is the following:

\[B \approx 2\sqrt{|W(0)/W''(0)|} \tag{2.9.15} \]

The spectral peak bandwidth \(B \) is mathematically defined as follows. Let \(\omega_1 \) and \(\omega_2 \) denote the “half–power points,” defined through

\[W(\omega_1) = W(\omega_2) = W(0)/2, \quad \omega_1 < \omega_2 \]

(hence the ratio \(10 \log_{10} (W(0)/W(\omega_j)) \) \(\approx \) 3 dB for \(j = 1, 2 \); we use \(10 \log_{10} \) rather than \(20 \log_{10} \) because the spectral window is applied to a power quantity, \(\phi(\omega) \)). Then since \(W(\omega) \) is symmetric, so \(\omega_2 = -\omega_1 \),

\[B \triangleq \omega_2 - \omega_1 = 2\omega_2 \]

As an application of (2.9.15), show that

\[B \approx 0.78 \cdot 2\pi/N \text{ (in radians per sampling interval)} \]

or, equivalently, that

\[B \approx 0.78/N \text{ (in cycles per sampling interval)} \]

for the Bartlett window (2.4.15).

Note that this formula remains approximate even as \(N \to \infty \). Even though the half power bandwidth of the window gets smaller as \(N \) increases (so that one would expect the Taylor series expansion to be more accurate), the curvature of the window at \(\omega = 0 \) increases without bound as \(N \) increases. For the Bartlett
window, verify that \(B \approx 0.9 \cdot 2\pi/N \) for \(N \) large, which differs from the prediction in this exercise by about 16%.

Exercise 2.16: A Further Look at the Time–Bandwidth Product

We saw in Section 2.6.1 that the product between the equivalent time and frequency widths of a regular window equals unity. Use the formula (2.9.15) derived in Exercise 2.15 to show that the spectral peak bandwidth \(B \) of a window \(w(k) \) that is nonzero only for \(|k| < N \), satisfies

\[
B \cdot N \geq 1/\pi, \quad \text{(in cycles per sampling interval)}
\]

(2.9.16)

This once again illustrates the “time–bandwidth product” type of result. Note that (2.9.16) involves the effective window time length and spectral peak width, as opposed to (2.6.5) which is concerned with equivalent time and frequency widths.

Exercise 2.17: Bias Considerations in Blackman–Tukey Window Design

The discussion in this chapter treated the bias of a spectral estimator and its resolution as two interrelated properties. This exercise illustrates further the strong relationship between bias and resolution.

Consider \(\hat{\phi}_{BT}(\omega) \) as in (2.5.1), and without loss of generality assume that \(E\{\hat{r}(k)\} = r(k) \). (Generality is not lost because, if \(E\{\hat{r}(k)\} = \alpha(k)r(k) \), then replacing \(w(k) \) by \(\alpha(k)w(k) \) and \(\hat{r}(k) \) by \(\hat{r}(k)/\alpha(k) \) results in an equivalent estimator with unbiased ACS estimates.) Find the weights \(\{w(k)\}_{k=-M+1}^{M-1} \) that minimize the squared bias, as given by the error measure:

\[
\epsilon = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\phi(\omega) - E\{\hat{\phi}_{BT}(\omega)\} \right]^2 d\omega
\]

(2.9.17)

In particular, show that the weight function that minimizes \(\epsilon \) is the rectangular window. Recall that the rectangular window also has the narrowest main lobe, and hence the best resolution.

Exercise 2.18: A Property of the Bartlett Window

Let the window length, \(M \), be given. Then, in the general case, the rectangular window can be expected to yield the windowed spectral estimate with the most favorable bias properties, owing to the fact that the sample covariance lags \(\{\hat{r}(k)\}_{k=-M-1}^{M-1} \), appearing in (2.5.1), are left unchanged by this window (also see Exercise 2.17). The rectangular window, however, has the drawback that it is not positive definite and hence may produce negative spectral estimates. The Bartlett window, on the other hand, is positive definite and therefore yields a spectral estimate that is positive for all frequencies. Show that the latter window is the positive definite window which is closest to the rectangular one, in the sense of minimizing
the following criterion:

$$\min_{\{w(k)\}} \sum_{k=0}^{M-1} |1 - w(k)| \quad \text{subject to:}$$

1) \(w(k) \equiv 0\) for \(|k| \geq M\)
2) \(\{w(k)\}_{k=-\infty}^{\infty}\) is a positive definite sequence
3) \(w(0) = 1\)

\[(2.9.18) \]

Conclude that the Bartlett window is the positive definite window that distorts the sample covariances \(\{\hat{r}(k)\}_{k=-M+1}^{M-1}\) least in the windowed spectral estimate formula. Hint: Any positive definite real window \(\{w(k)\}_{k=-M+1}^{M-1}\) can be written as

$$w(k) = \sum_{i=0}^{M-1} b_i \cdot b_{i+k} \quad (b_i = 0 \text{ for } i \geq M)$$

\[(2.9.19) \]

for some real-valued parameters \(\{b_i\}_{i=0}^{M-1}\). Make use of the above parameterization of the set of positive definite windows to transform (2.9.18) into an optimization problem without constraints.

COMPUTER EXERCISES

Tools for Periodogram Spectral Estimation:

The text web site www.prenhall.com/stoica contains the following MATLAB functions for use in computing periodogram-based spectral estimates. In each case, \(y\) is the input data vector, \(L\) controls the frequency sample spacing of the output, and the output vector \(\phi = \phi(\omega_k)\) where \(\omega_k = \frac{2\pi k}{L}\). MATLAB functions that generate the Correlogram, Blackman–Tukey, Windowed Periodogram, Bartlett, Welch, and Daniell spectral estimates are as follows:

- \(\phi = \text{correlogramse}(y,L)\)
 Implements the correlogram spectral estimate in equation (2.2.2).

- \(\phi = \text{btse}(y,w,L)\)
 Implements the Blackman–Tukey spectral estimate in equation (2.5.1); \(w\) is the vector \([w(0), \ldots, w(M-1)]^T\).

- \(\phi = \text{periodogramse}(y,v,L)\)
 Implements the windowed periodogram spectral estimate in equation (2.6.24); \(v\) is a vector of window function elements \([v(1), \ldots, v(N)]^T\), and should be the same size as \(y\). If \(v\) is a vector of ones, this function implements the unwindowed periodogram spectral estimate in equation (2.2.1).

- \(\phi = \text{bartlettse}(y,M,L)\)
 Implements the Bartlett spectral estimate in equations (2.7.2) and (2.7.3); \(M\) is the size of each subsequence as in equation (2.7.2).

- \(\phi = \text{welchse}(y,v,K,L)\)
 Implements the Welch spectral estimate in equation (2.7.8); \(M\) is the size of
each subsequence, v is the window function $[v(1), \ldots, v(M)]^T$ applied to each subsequence, and K is the overlap parameter, as in equation (2.7.7).

- $\phi = \text{daniellse}(y, J, N\tilde{t})$

 Implements the Daniell spectral estimate in equation (2.7.16); J and $N\tilde{t}$ correspond to J and \tilde{N} there.

Exercise C2.19: Zero Padding Effects on Periodogram Estimators

In this exercise we study the effect zero padding has on the periodogram. Consider the sequence

$$y(t) = 10 \sin(0.2 \cdot 2\pi t + \phi_1) + 5 \sin((0.2 + 1/N)2\pi t + \phi_2) + e(t), \quad (2.9.20)$$

where $t = 0, \ldots, N-1$, and $e(t)$ is white Gaussian noise with variance 1. Let $N = 64$ and $\phi_1 = \phi_2 = 0$.

From the results in Chapter 4, we find the spectrum of $y(t)$ to be

$$\phi(\omega) = 50\pi [\delta(\omega - 0.2 \cdot 2\pi) + \delta(\omega + 0.2 \cdot 2\pi)]$$

$$+ 12.5\pi [\delta(\omega - (0.2 + 1/N) \cdot 2\pi) + \delta(\omega + (0.2 + 1/N) \cdot 2\pi)] + 1$$

Plot the periodogram for the sequence $\{y(t)\}$, and the sequence $\{y(t)\}$ zero padded with N, $3N$, $5N$, and $7N$ zeroes.

Explain the difference between the five periodograms. Why does the first periodogram not give a good description of the spectral content of the signal? Note that zero padding does not change the resolution of the estimator.

Exercise C2.20: Resolution and Leakage Properties of the Periodogram

We have seen from Section 2.4 that the expected value of the periodogram is the convolution of the true spectrum $\phi_y(\omega)$ with the Fourier transform of a Bartlett window, denoted $W_B(\omega)$ (see equation (2.4.15)). The shape and size of the $W_B(\omega)$ function determines the amount of smearing and leakage in the periodogram. Similarly, in Section 2.5 we introduced a windowed periodogram in (2.6.24) whose expected value is equal to the expected value of a corresponding Blackman–Tukey estimate with weights $w(k)$ given by (2.6.31). Different window functions than the rectangular window could be used in the periodogram estimate, giving rise to correspondingly different windows in the correlogram estimate. The choice of window affects the resolution and leakage properties of the periodogram (correlogram) spectral estimate.

Resolution Properties: The amount of smearing of the spectral estimate is determined by the width of the main lobe, and the amount of leakage is determined by the energy in the sidelobes. The amount of smearing is what limits the resolving power of the periodogram, and is studied empirically below.

We first study the resolution properties by considering a sequence made up of two sinusoids in noise, where the two sinusoidal frequencies are “close”. Consider

$$y(t) = a_1 \sin(f_0 \cdot 2\pi t + \phi_1) + a_2 \sin((f_0 + \alpha/N)2\pi t + \phi_2) + e(t), \quad (2.9.21)$$

where $e(t)$ is real-valued Gaussian white noise with zero mean and variance σ^2. We choose $f_0 = 0.2$ and $N = 256$, but the results are nearly independent of f_0 and N.
(a) Determine empirically the 3 dB width of the main lobe of $W_B(\omega)$ as a function of N, and verify equation (2.4.18). Also determine the peak sidelobe height (in dB) as a function of N. Note that the sidelobe level of a window function is generally independent of N. Verify this by examining plots of the magnitude of $W_B(\omega)$ for several values of N; try both linear and dB scales in your plots.

(b) Set $\sigma^2 = 0$ (this eliminates the statistical variation in the periodogram, so that the bias properties can be isolated and studied). Set $a_1 = a_2 = 1$ and $\phi_1 = \phi_2 = 0$. Plot the (zero–padded) periodogram of $y(t)$ for various α and determine the resolution threshold (i.e., the minimum value of α for which the two frequency components can be resolved). How does this value of α compare with the predicted resolution in Section 2.4?

(c) Repeat part (b) for a Hamming–windowed correlogram estimate.

(d) For reasonably high signal–to–noise ratio (SNR) values and reasonably close signal amplitudes, the resolution thresholds in parts (b) and (c) above are not very sensitive to variations in the signal amplitudes and frequency f_0. However, these thresholds are sensitive to the phases ϕ_1 and ϕ_2, especially if α is smaller than 1. Try two pairs (ϕ_1, ϕ_2) so that the two sinusoids are in phase and out of phase, respectively, at the center of the observation interval, and compare the resolution thresholds. Also, try different values of a_1, a_2, and σ^2 to verify that their values have relatively little effect on the resolution threshold.

Spectral Leakage: In this part we analyze the effects of leakage on the periodogram estimate. Leakage properties can be clearly seen when trying to estimate two sinusoidal terms that are well separated but have greatly differing amplitudes.

(a) Generate the sinusoidal sequence above for $\alpha = 4$, $\sigma^2 = 0$, and $\phi_1 = \phi_2 = 0$. Set $a_1 = 1$ and vary a_2 (choose $a_2 = 1$, 0.1, 0.01, and 0.001, for example). Compute the periodogram (using a rectangular data window), and comment on the ability to identify the second sinusoidal term from the spectral estimate.

(b) Repeat part (a) for $\alpha = 12$. Does the amplitude threshold for identifiability of the second sinusoidal term change?

(c) Explain your results in parts (a) and (b) by looking at the amplitude of the Bartlett window’s Fourier transform at frequencies corresponding to α/N for $\alpha = 4$ and $\alpha = 12$.

(d) The Bartlett window (and many other windows) has the property that the leakage level depends on the distance between spectral components in the data, as seen in parts (a) and (b). For many practical applications it may be known what dynamic range the sinusoidal components in the data may have, and it is thus desirable to use a data window with a constant sidelobe level that can be chosen by the user. The Chebyshev window (or Taylor window) is a good choice for these applications, because the user can select the (constant) sidelobe level in the window design (see the MATLAB command `chebwin`).

Assume we know that the maximum dynamic range of sinusoidal components is 60 dB. Design a Chebyshev window $v(t)$ and corresponding Blackman–Tukey window $w(k)$ using (2.6.31) so that the two sinusoidal components of
Chapter 2 Nonparametric Methods

the data can be resolved for this dynamic range using (i) the Blackman–Tukey spectral estimator with window \(w(k)\), and (ii) the windowed periodogram method with window \(v(t)\). Plot the Fourier transform of the window and determine the spectral resolution of the window.

Test your window design by computing the Blackman–Tukey and windowed periodogram estimates for two sinusoids whose amplitudes differ by 50 dB in dynamic range, and whose frequency separation is the minimum value you predicted. Compare the resolution results with your predictions. Explain why the smaller amplitude sinusoid can be detected using one of the methods but not the other.

Exercise C2.21: Bias and Variance Properties of the Periodogram Spectral Estimate

In this exercise we verify the theoretical predictions about bias and variance properties of the periodogram spectral estimate. We use autoregressive moving average (ARMA) signals (see Chapter 3) as test signals.

Bias Properties — Resolution and Leakage: We consider a random process \(y(t)\) generated by filtering white noise:

\[y(t) = H(z)e(t) \]

where \(e(t)\) is zero mean Gaussian white noise with variance \(\sigma^2 = 1\), and the filter \(H(z)\) is given by:

\[H(z) = \sum_{k=1}^{2} A_k \left[\frac{1 - z_k z^{-1}}{1 - p_k z^{-1}} + \frac{1 - z_k^* z^{-1}}{1 - p_k^* z^{-1}} \right] \tag{2.9.22} \]

with

\begin{align*}
 p_1 &= 0.99e^{j2\pi0.3} \\
 p_2 &= 0.99e^{j2\pi(0.3+\alpha)} \\
 z_1 &= 0.95e^{j2\pi0.3} \\
 z_2 &= 0.95e^{j2\pi(0.3+\alpha)} \tag{2.9.23}
\end{align*}

We first let \(A_1 = A_2 = 1\) and \(\alpha = 0.05\).

(a) Plot the true spectrum \(\phi(\omega)\). Using a sufficiently fine grid for \(\omega\) so that approximation errors are small, plot the ACS using an inverse FFT of \(\phi(\omega)\).

(b) For \(N = 64\), plot the Fourier transform of the Bartlett window, and also plot the expected value of the periodogram estimate \(\hat{\phi}_p(\omega)\) as given by equation (2.4.8). We see that for this example and data length, the main lobe width of the Bartlett window is wider than the distance between the spectral peaks in \(\phi(\omega)\). Discuss how this relatively wide main lobe width affects the resolution properties of the estimator.

(c) Generate 50 realizations of \(y(t)\), each of length \(N = 64\) data points. You can generate the data by passing white noise through the filter \(H(z)\) (see the MATLAB commands \texttt{dimpulse} and \texttt{filter}); be sure to discard a sufficient number of initial filter output points to effectively remove the transient part of the filter output. Compute the periodogram spectral estimates for each data
sequence; plot 10 spectral estimates overlaid on a single plot. Also plot the average of the 50 spectral estimates. Compare the average with the predicted expected value as found in part (b).

(d) The resolution of the spectral peaks in $\phi(\omega)$ will depend on their separation relative to the width of the Bartlett window main lobe. Generate realizations of $y(t)$ for $N = 256$, and find the minimum value of α so that the spectral peaks can be resolved in the averaged spectral estimate. Compare your results with the predicted formula (2.4.18) for spectral resolution.

(e) Leakage from the Bartlett window will impact the ability to identify peaks of different amplitudes. To illustrate this, generate realizations of $y(t)$ for $N = 64$, for both $\alpha = 4/N$ and $\alpha = 12/N$. For each value of α, set $A_1 = 1$, and vary A_2 to find the minimum amplitude for which the lower amplitude peak can reliably be identified from the averaged spectral estimate. Compare this value with the Bartlett window sidelobe level for $\omega = 2\pi\alpha$ and for the two values of α. Does the window sidelobe level accurately reflect the amplitude separation required to identify the second peak?

Variance Properties: In this part we will verify that the variance of the periodogram is almost independent of the data length, and compare the empirical variance with theoretical predictions. For this part, we consider a broadband signal $y(t)$ for which the Bartlett window smearing and leakage effects are small.

Consider the broadband ARMA process

$$y(t) = \frac{B_1(z)}{A_1(z)} e(t)$$

with

$$A_1(z) = 1 - 1.3817z^{-1} + 1.5632z^{-2} - 0.8843z^{-3} + 0.4096z^{-4}$$
$$B_1(z) = 1 + 0.3544z^{-1} + 0.3508z^{-2} + 0.1736z^{-3} + 0.2401z^{-4}$$

(a) Plot the true spectrum $\phi(\omega)$.

(b) Generate 50 Monte-Carlo data realizations using different noise sequences, and compute the corresponding 50 periodogram spectral estimates. Plot the sample mean, the sample mean plus one sample standard deviation and sample mean minus one sample standard deviation spectral estimate curves. Do this for $N = 64$, 256, and 1024. Note that the variance does not decrease with N.

(c) Compare the sample variance to the predicted variance in equation (2.4.21). It may help to plot $\text{stdev}(\hat{\phi}(\omega))/\phi(\omega)$ and determine to what degree this curve is approximately constant. Discuss your results.

Exercise C2.22: Refined Methods: Variance–Resolution Tradeoff

In this exercise we apply the Blackman–Tukey and Welch estimators to both a narrowband and broadband random process. We consider the same processes in Chapters 3 and 5 to facilitate comparison with the spectral estimation methods developed in those chapters.
Broadband ARMA Process: Generate realizations of the broadband autoregressive moving-average (ARMA) process

\[y(t) = \frac{B_1(z)}{A_1(z)} e(t) \]

with

\[A_1(z) = 1 - 1.3817z^{-1} + 1.5632z^{-2} - 0.8843z^{-3} + 0.4096z^{-4} \]
\[B_1(z) = 1 + 0.3544z^{-1} + 0.3508z^{-2} + 0.1736z^{-3} + 0.2401z^{-4} \]

Choose the number of samples as \(N = 256 \).

(a) Generate 50 Monte-Carlo data realizations using different noise sequences, and compute the corresponding 50 spectral estimates using the following methods:

- The Blackman–Tukey spectral estimate using the Bartlett window \(w_B(t) \). Try both \(M = N/4 \) and \(M = N/16 \).
- The Welch spectral estimate using the rectangular window \(w_R(t) \), and using both \(M = N/4 \) and \(M = N/16 \) and overlap parameter \(K = M/2 \).

Plot the sample mean, the sample mean plus one sample standard deviation and sample mean minus one sample standard deviation spectral estimate curves. Compare with the periodogram results from Exercise C2.21, and with each other.

(b) Judging from the plots you have obtained, how has the variance decreased in the refined estimates? How does this variance decrease compare to the theoretical expectations?

(c) As discussed in the text, the value of \(M \) should be chosen to compromise between low “smearing” and low variance. For the Blackman–Tukey estimate, experiment with different values of \(M \) and different window functions to find a “best design” (in your judgment), and plot the corresponding spectral estimates.

Narrowband ARMA Process: Generate realizations of the narrowband ARMA process

\[y(t) = \frac{B_2(z)}{A_2(z)} e(t) \]

with

\[A_2(z) = 1 - 1.6408z^{-1} + 2.2044z^{-2} - 1.4808z^{-3} + 0.8145z^{-4} \]
\[B_2(z) = 1 + 1.5857z^{-1} + 0.9604z^{-2} \]

and \(N = 256 \).

Repeat the experiments and comparisons in the broadband example for the narrowband process.
Exercise C2.23: Periodogram–Based Estimators applied to Measured Data

Consider the data sets in the files `sunspotdata.mat` and `lynxdata.mat`. These files can be obtained from the text web site www.prenhall.com/stoica. Apply periodogram–based estimation techniques (possibly after some preprocessing; see the following) to estimate the spectral content of these data. Try to answer the following questions:

(a) Are there sinusoidal components (or periodic structure) in the data? If so, how many components and at what frequencies?

(b) Nonlinear transformations and linear or polynomial trend removal are often applied before spectral analysis of a time series. For the lynx data, compare your spectral analysis results from the original data, and the data transformed first by taking the logarithm of each sample and then by subtracting the sample mean of this logarithmic data. Does the logarithmic transformation make the data more sinusoidal in nature?
CHAPTER 3

Parametric Methods for Rational Spectra

3.1 INTRODUCTION

The principal difference between the spectral estimation methods of Chapter 2 and those in this chapter, is that in Chapter 2 we made no assumption on the studied signal (except for its stationarity). The *parametric or model-based methods* of spectral estimation assume that the signal satisfies a generating model with known functional form, and then proceed by estimating the parameters in the assumed model. The signal’s spectral characteristics of interest are then derived from the estimated model. In those cases where the assumed model is a close approximation to the reality, it is no wonder that the parametric methods provide more accurate spectral estimates than the nonparametric techniques. The nonparametric approach to PSD estimation remains useful, though, in applications where there is little or no information about the signal in question.

Our discussion of parametric methods for spectral estimation is divided into two parts. In this chapter, we discuss parametric methods for rational spectra which form a dense set in the class of *continuous spectra* (see Section 3.2) [Anderson 1971; Wei 1990]; more precisely, we discuss methods for estimating the parameters in rational spectral models. The parametric methods of spectral analysis, unlike the nonparametric approaches, also require the selection of the *structure* (or order) of the spectral model. A review of methods that can be used to solve the structure selection problem can be found in Appendix C. Furthermore, in Appendix B we discuss the Cramer–Rao bound and the best accuracy achievable in the rational class of spectral models. However, we do not include detailed results on the statistical properties of the estimation methods discussed in the following sections since: (i) such results are readily available in the literature [Kay 1988; Priestley 1981; Söderström and Stoica 1989]; (ii) parametric methods provide consistent spectral estimates and hence (for large sample sizes, at least) the issue of statistical behavior is not so critical; and (iii) a detailed statistical analysis is beyond the scope of an introductory course.

The second part of our discussion on parametric methods is contained in the next chapter where we consider *discrete spectra* such as those associated with sinusoidal signals buried in white noise. *Mixed spectra* (containing both continuous and discrete spectral components, such as in the case of sinusoidal signals corrupted by colored noise) are not covered explicitly in this text, but we remark that some methods in Chapter 4 can be extended to deal with such spectra as well.
Section 3.2 Signals with Rational Spectra

3.2 SIGNALS WITH RATIONAL SPECTRA

A rational PSD is a rational function of $e^{-i\omega}$ (i.e., the ratio of two polynomials in $e^{-i\omega}$):

$$\phi(\omega) = \frac{\sum_{k=-m}^{m} \gamma_k e^{-i\omega k}}{\sum_{k=-n}^{n} \rho_k e^{-i\omega k}}$$ \hspace{1cm} (3.2.1)

where $\gamma_k = \gamma^*_k$ and $\rho_k = \rho^*_k$. The Weierstrass Theorem from calculus asserts that any continuous PSD can be approximated arbitrarily closely by a rational PSD of the form (3.2.1), provided the degrees m and n in (3.2.1) are chosen sufficiently large; that is, the rational PSDs form a dense set in the class of all continuous spectra. This observation partly motivates the significant interest in the model (3.2.1) for $\phi(\omega)$, among the researchers in the “spectral estimation community”.

It is not difficult to show that, since $\phi(\omega) \geq 0$, the rational spectral density in (3.2.1) can be factored as follows:

$$\phi(\omega) = \frac{|B(\omega)|^2}{A(\omega)} \sigma^2$$ \hspace{1cm} (3.2.2)

where σ^2 is a positive scalar, and $A(\omega)$ and $B(\omega)$ are the polynomials

$$A(\omega) = 1 + a_1 e^{-i\omega} + \cdots + a_n e^{-i\omega^n}$$
$$B(\omega) = 1 + b_1 e^{-i\omega} + \cdots + b_m e^{-i\omega^m}$$ \hspace{1cm} (3.2.3)

The result (3.2.2) can similarly be expressed in the Z-domain. With the notation $\phi(z) = \sum_{k=-m}^{m} \gamma_k z^{-k} / \sum_{k=-n}^{n} \rho_k z^{-k}$, we can factor $\phi(z)$ as:

$$\phi(z) = \sigma^2 \frac{B(z)B^*(1/z^*)}{A(z)A^*(1/z^*)}$$ \hspace{1cm} (3.2.4)

where, for example,

$$A(z) = 1 + a_1 z^{-1} + \cdots + a_n z^{-n}$$
$$A^*(1/z^*) = [A(1/z^*)]^* = 1 + a_1^* z + \cdots + a_n^* z^n$$

Recall the notational convention in this text that we write, for example, $A(z)$ and $A(\omega)$ with the implicit understanding that when we convert from a function of z to a function of ω, we use the substitution $z = e^{i\omega}$.

We note that the zeroes and poles of $\phi(z)$ are in symmetric pairs about the unit circle; if $z_i = re^{i\theta}$ is a zero (pole) of $\phi(z)$, then $(1/z^*_i) = (1/r)e^{i\theta}$ is also a zero (pole) (see Exercise 1.3). Under the assumption that $\phi(z)$ has no pole with modulus equal to one, the region of convergence of $\phi(z)$ includes the unit circle $z = e^{i\omega}$. The result that (3.2.1) can be written as in (3.2.2) and (3.2.4) is called the spectral factorization theorem (see, e.g., [SÖDERSTRÖM AND STOICA 1989; KAY 1988]).

The next point of interest is to compare (3.2.2) and (1.4.9). This comparison leads to the following result.

The arbitrary rational PSD in (3.2.2) can be associated with a signal obtained by filtering white noise of power σ^2 through the rational filter with transfer function $H(\omega) = B(\omega)/A(\omega)$. \hspace{1cm} (3.2.5)
The filtering referred to in (3.2.5) can be written in the time domain as

\[y(t) = \frac{B(z)}{A(z)} e(t) \]

(3.2.6)

or, alternatively,

\[A(z)y(t) = B(z)e(t) \]

(3.2.7)

where \(y(t) \) is the filter output, and

\[z^{-1} = \text{the unit delay operator} \quad (z^{-k} y(t) = y(t-k)) \]

\[e(t) = \text{white noise of variance equal to } \sigma^2 \]

Hence, by means of the spectral factorization theorem, the parameterized model of \(\phi(\omega) \) turned into a model of the signal itself. The spectral estimation problem can then be reduced to a problem of signal modeling. In the following sections, we present several methods for estimating the parameters in the signal model (3.2.7) and in two of its special cases corresponding to \(m = 0 \) and, respectively, \(n = 0 \).

A signal \(y(t) \) satisfying the equation (3.2.6) is called an autoregressive moving average (ARMA or ARMA\((n,m)\)) signal. If \(m = 0 \) in (3.2.6), then \(y(t) \) is an autoregressive (AR or AR\((n)\)) signal; and \(y(t) \) is a moving average (MA or MA\((m)\)) signal if \(n = 0 \). For easy reference, we summarize these naming conventions below.

<table>
<thead>
<tr>
<th>ARMA</th>
<th>(A(z)y(t) = B(z)e(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>(A(z)y(t) = e(t))</td>
</tr>
<tr>
<td>MA</td>
<td>(y(t) = B(z)e(t))</td>
</tr>
</tbody>
</table>

(3.2.8)

By assumption, \(\phi(\omega) \) is finite for all \(\omega \) values; as a result, \(A(z) \) cannot have any zero exactly on the unit circle. Furthermore, since the poles and zeroes of \(\phi(z) \) are in reciprocal pairs, as explained before, it is always possible to choose \(A(z) \) to have all its zeroes strictly inside the unit disc. The corresponding model (3.2.6) is then said to be stable. If we assume, for simplicity, that \(\phi(\omega) \) does not vanish at any \(\omega \) then — similarly to the above — we can choose the polynomial \(B(z) \) so that it has all zeroes inside the unit (open) disc. The corresponding model (3.2.6) is said to be minimum phase (see Exercise 3.1 for a motivation for the name minimum phase).

We remark that in the previous paragraph we actually provided a sketch of the proof of the spectral factorization theorem. That discussion also showed that the spectral factorization problem associated with a rational PSD has multiple solutions, with the stable and minimum phase ARMA model being only one of them. In the following, we will consider the problem of estimating the parameters in this particular ARMA equation. When the final goal is the estimation of \(\phi(\omega) \), focusing on the stable and minimum phase ARMA model is no restriction.

3.3 Covariance Structure of ARMA Processes

In this section we derive an expression for the covariances of an ARMA process in terms of the parameters \(\{a_i\}_{i=1}^n, \{b_i\}_{i=1}^m \), and \(\sigma^2 \). The expression provides a
Section 3.3 Covariance Structure of ARMA Processes 89

convenient method for estimating the ARMA parameters by replacing the true autocovariances with estimates obtained from data. Nearly all ARMA spectral estimation methods exploit this covariance structure either explicitly or implicitly, and thus it will be widely used in the remainder of the chapter.

Equation (3.2.7) can be written as

$$ y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j \epsilon(t-j), \quad (b_0 = 1) \tag{3.3.1} $$

Multiplying (3.3.1) by $y(t-k)$ and taking expectation yields

$$ r(k) + \sum_{i=1}^{n} a_i r(k-i) = \sum_{j=0}^{m} b_j E \{ \epsilon(t-j)y^*(t-k) \} \tag{3.3.2} $$

Since the filter $H(z) = B(z)/A(z)$ is asymptotically stable and causal, we can write

$$ H(z) = B(z)/A(z) = \sum_{k=0}^{\infty} h_k z^{-k}, \quad (h_0 = 1) $$

which gives

$$ y(t) = H(z)\epsilon(t) = \sum_{k=0}^{\infty} h_k \epsilon(t-k). $$

Then the term $E \{ \epsilon(t-j)y^*(t-k) \}$ becomes

$$ E \{ \epsilon(t-j)y^*(t-k) \} = E \left\{ \epsilon(t-j) \sum_{s=0}^{\infty} h_s^* \epsilon^*(t-k-s) \right\} $$

$$ = \sigma^2 \sum_{s=0}^{\infty} h_s^* \delta_{j,k+s} = \sigma^2 h_j^* $$

where we use the convention that $h_k = 0$ for $k < 0$. Thus, equation (3.3.2) becomes

$$ r(k) + \sum_{i=1}^{n} a_i r(k-i) = \sigma^2 \sum_{j=0}^{m} b_j h_j^* \tag{3.3.3} $$

In general, h_k is a nonlinear function of the $\{a_i\}$ and $\{b_i\}$ coefficients. However, since $h_s = 0$ for $s < 0$, equation (3.3.3) for $k \geq m+1$ reduces to

$$ r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad \text{for } k > m \tag{3.3.4} $$

Equation (3.3.4) is the basis for many estimators of the AR coefficients of AR(MA) processes, as we will see.
3.4 AR SIGNALS

In the ARMA class, the autoregressive or all-pole signals constitute the type that is most frequently used in applications. The AR equation may model spectra with narrow peaks by placing zeroes of the A–polynomial in (3.2.2) (with $B(\omega) \equiv 1$) close to the unit circle. This is an important feature since narrowband spectra are quite common in practice. In addition, the estimation of parameters in AR signal models is a well–established topic; the estimates are found by solving a system of linear equations, and the stability of the estimated AR polynomial can be guaranteed.

We consider two methods for AR spectral estimation. The first is based directly on the linear relationship between the covariances and the AR parameters derived in equation (3.3.4); it is called the Yule–Walker method. The second method is based on a least squares solution of AR parameters using the time–domain equation $A(z)y(t) = e(t)$. This so–called least squares method is closely related to the problem of linear prediction, as we shall see.

3.4.1 Yule–Walker Method

In this section, we focus on a technique for estimating the AR parameters which is called the Yule–Walker (YW) method ([Yule 1927; Walker 1931]). For AR signals, $m = 0$ and $B(z) = 1$. Thus, equation (3.3.4) holds for $k > 0$. Also, we have from equation (3.3.3) that

$$r(0) + \sum_{i=1}^{n} a_i r(-i) = \sigma^2 \sum_{j=0}^{0} b_j h_j^* = \sigma^2$$

(3.4.1)

Combining (3.4.1) and (3.3.4) for $k = 1, \ldots, n$ gives the following system of linear equations

$$\begin{bmatrix} r(0) & r(-1) & \cdots & r(-n) \\ r(1) & r(0) & \vdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ r(n) & \cdots & r(-1) & r(0) \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

(3.4.2)

The above equations are called the Yule–Walker equations or Normal equations, and form the basis of many AR estimation methods. If \{r(k)\}_k=0^n were known, we could solve (3.4.2) for

$$\theta = [a_1, \ldots, a_n]^T$$

(3.4.3)

by using all but the first row of (3.4.2):

$$\begin{bmatrix} r(1) \\ \vdots \\ r(n) \end{bmatrix} + \begin{bmatrix} r(0) & \cdots & r(-n+1) \\ \vdots & \ddots & \vdots \\ r(n-1) & \cdots & r(0) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

(3.4.4)

or, with obvious definitions,

$$r_n + R_n^\theta = 0.$$
The solution is $\theta = -R_{n+1}^{-1}r_n$. Once θ is found, σ^2 can be obtained from the first row of (3.4.2) or, equivalently, from (3.4.1).

The Yule–Walker method for AR spectral estimation is based directly on (3.4.2). Given data $\{y(t)\}_{t=1}^{N}$, we first obtain sample covariances $\{\hat{r}(k)\}_{k=0}^{n}$ using the standard biased ACS estimator (2.2.4). We insert these ACS estimates in (3.4.2) and solve for $\hat{\theta}$ and $\hat{\sigma}^2$ as explained above in the known–covariance case.

Note that the covariance matrix in (3.4.2) can be shown to be positive definite for any n, and hence the solution to (3.4.2) is unique [Söderström and Stoica 1989]. When the covariances are replaced by standard biased ACS estimates, the matrix can be shown to be positive definite for any sample (not necessarily generated by an AR equation) that is not identically equal to zero; see the remark in the next section for a proof.

To explicitly stress the dependence of θ and σ^2 on the order n, we can write (3.4.2) as

$$R_{n+1} \begin{bmatrix} 1 \\ \theta_n \end{bmatrix} = \begin{bmatrix} \sigma_n^2 \\ 0 \end{bmatrix}$$

(3.4.6)

We will return to the above equation in Section 3.5.

3.4.2 Least Squares Method

The Yule–Walker method for estimating the AR parameters is based on equation (3.4.2) with the true covariance elements $\{r(k)\}$ replaced by the sample covariances $\{\hat{r}(k)\}$. In this section, we derive another type of AR estimator based on a least squares (LS) minimization criterion using the time–domain relation $A(z)y(t) = e(t)$. We develop the LS estimator by considering the closely related problem of linear prediction. We then interpret the LS method as a Yule–Walker-type method that uses a different estimate of R_{n+1} in equation (3.4.6).

We first relate the Yule–Walker equations to the linear prediction problem. Let $y(t)$ be an AR process of order n. Then $y(t)$ satisfies

$$e(t) = y(t) + \sum_{i=1}^{n} a_i y(t - i) = y(t) + \varphi^T(t)\theta$$

(3.4.7)

where $\varphi(t) = \begin{bmatrix} y(t-1), \ldots, y(t-n) \end{bmatrix}^T$. We interpret $\hat{y}(t)$ as a linear prediction of $y(t)$ from the n previous samples $y(t-1), \ldots, y(t-n)$, and we interpret $e(t)$ as the corresponding prediction error. See Complement 3.9.1 and also Exercises 3.3–3.5 for more discussion on this and other related linear prediction problems. The vector θ that minimizes the prediction error variance $\sigma_n^2 \triangleq E \{ |e(t)|^2 \}$ is the AR coefficient vector in (3.4.6), as we will show. From (3.4.7) we have

$$\sigma_n^2 = E \{ |e(t)|^2 \} = E \{ [y^*(t) + \theta^* \varphi^*(t)] [y(t) + \varphi(T)\theta] \} = r(0) + r_n^* \theta + \theta^* R_n \theta$$

(3.4.8)
where \(r_n \) and \(R_n \) are defined in equations (3.4.4)–(3.4.5). The vector \(\theta \) that minimizes (3.4.8) is given by (see Result R34 in Appendix A)

\[
\theta = -R_n^{-1}r_n \tag{3.4.9}
\]

with corresponding minimum prediction error

\[
\sigma_n^2 = r(0) - r_n^*R_n^{-1}r_n \tag{3.4.10}
\]

Equations (3.4.9) and (3.4.10) are exactly the Yule–Walker equations in (3.4.5) and (3.4.1) (or, equivalently, in (3.4.6)). Thus, we see that the Yule–Walker equations can be interpreted as the solution to the problem of finding the best linear predictor of \(y(t) \) from its \(n \) most recent past samples. For this reason, AR modeling is sometimes referred to as **linear predictive modeling**.

The Least Squares AR estimation method is based on a finite-sample approximate solution of the above minimization problem. Given a finite set of measurements \(\{y(t)\}_{i=1}^N \), we approximate the minimization of \(E\{|e(t)|^2\} \) by the finite-sample cost function

\[
f(\theta) = \sum_{t=N_1}^{N_2} |e(t)|^2 = \sum_{t=N_1}^{N_2} \left| y(t) + \sum_{i=1}^{n} a_i y(t - i) \right|^2
\]

\[
= \left\| \begin{bmatrix} y(N_1) \\ y(N_1 + 1) \\ \vdots \\ y(N_2) \end{bmatrix} + \begin{bmatrix} y(N_1 - 1) & \cdots & y(N_1 - n) \\ y(N_1) & \cdots & y(N_1 + 1 - n) \\ \vdots & \vdots & \vdots \\ y(N_2 - 1) & \cdots & y(N_2 - n) \end{bmatrix} \theta \right\|^2 \triangleq ||y + Y\theta||^2 \tag{3.4.11}
\]

where we assume \(y(t) = 0 \) for \(t < 1 \) and \(t > N \). The vector \(\theta \) that minimizes \(f(\theta) \) is given by (see Result R32 in Appendix A)

\[
\hat{\theta} = -(Y^*Y)^{-1}(Y^*y) \tag{3.4.12}
\]

where, as seen from (3.4.11), the definitions of \(Y \) and \(y \) depend on the choice of
$y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(n+1) \\ y(n+2) \\ \vdots \\ y(N-1) \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & 0 & \ldots & 0 \\ y(1) & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ y(n) & y(n-1) & \cdots & y(1) \\ y(n+1) & y(n) & \cdots & y(2) \\ \vdots & \vdots & \ddots & \vdots \\ y(N-1) & y(N-2) & \cdots & y(N-n) \\ 0 & y(N-1) & \cdots & y(N-n+1) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \vdots & y(N) \end{bmatrix}$

\begin{equation}
(3.4.13)
\end{equation}

Notice the Toeplitz structure of Y, and also that y matches this Toeplitz structure when it is appended to the left of Y; that is, $[y | Y]$ also shares this Toeplitz structure.

The two most common choices for N_1 and N_2 are:

- $N_1 = 1$, $N_2 = N + n$ (considered above). This choice yields the so-called autocorrelation method.

- $N_1 = n + 1$, $N_2 = N$. This choice corresponds to removing the first n and last n rows of Y and y in equation (3.4.13), and hence eliminates all the arbitrary zero values there. The estimate (3.4.12) with this choice of (N_1, N_2) is often named the covariance method. We refer to this method as the covariance LS method, or the LS method.

Other choices for N_1 and N_2 have also been suggested. For example, the prewindow method uses $N_1 = 1$ and $N_2 = N$, and the postwindow method uses $N_1 = n + 1$ and $N_2 = N$.

The least squares methods can be interpreted as approximate solutions to the Yule–Walker equations in (3.4.4) by recognizing that Y^*Y and Y^*y are, to within a multiplicative constant, finite–sample estimates of R_n and r_n, respectively. In fact, it is easy to show that for the autocorrelation method, the elements of $(Y^*Y)/N$ and $(Y^*y)/N$ are exactly the biased ACS estimates (2.2.4) used in the Yule–Walker AR estimate. Writing $\hat{\theta}$ in (3.4.12) as

\[\hat{\theta} = -\left(\frac{1}{N}Y^*Y\right)^{-1}\left[\frac{1}{N}Y^*y\right] \]

we see as a consequence that

The autocorrelation method of least squares AR estimation is equivalent to the Yule–Walker method.

Remark: We can now prove a claim made in the previous subsection that the matrix Y^*Y in (3.4.12), with Y given by (3.4.13), is positive definite for any sample
that is not identically equal to zero. To prove this claim it is necessary and sufficient to show that \(\text{rank}(Y) = n \). If \(y(1) \neq 0 \), then clearly \(\text{rank}(Y) = n \). If \(y(1) = 0 \) and \(y(2) \neq 0 \), then again we clearly have \(\text{rank}(Y) = n \), and so on.

For the LS estimator, \((Y^*Y)/(N - n) \) and \((Y^*y)/(N - n) \) are unbiased estimates of \(R_n \) and \(r_n \) in equations (3.4.4) and (3.4.5), and they do not use any measurement data outside the available interval \(1 \leq t \leq N \). On the other hand, the matrix \((Y^*Y)/(N - n) \) is not Toeplitz, so the Levinson–Durbin or Delsarte–Genin algorithms in the next section cannot be used (although similar fast algorithms for the LS method have been developed; see, e.g., [Marple 1987]).

As \(N \) increases, the difference between the covariance matrix estimates used by the Yule–Walker and the LS methods diminishes. Consequently, for large samples (i.e., for \(N \gg 1 \)), the YW and LS estimates of the AR parameters nearly coincide with one another.

For small or medium sample lengths, the Yule–Walker and covariance LS methods may behave differently. First, the estimated AR model obtained with the Yule–Walker method is always guaranteed to be stable (see, e.g., [Stoica and Nehorai 1987] and Exercise 3.8), whereas the estimated LS model may be unstable. For applications in which one is interested in the AR model (and not just the AR spectral estimate), stability of the model is often an important requirement. It may, therefore, be thought that the potential instability of the AR model provided by the LS method is a significant drawback of this method. The case, however, is that estimated LS models which are unstable only appear infrequently and, moreover, when they do occur there are simple means to “stabilize” them (for instance, by reflecting the unstable poles inside the unit circle). Hence, to conclude this point, the lack of guaranteed stability is a drawback of the LS method, when compared with the Yule–Walker method, but often not a serious one.

Second, the LS method has been found to be more accurate than the Yule–Walker method in the sense that the estimated parameters of the former are on the average closer to the true values than those of the latter [Marple 1987; Kay 1988]. Since the finite–sample statistical analysis of these methods is underdeveloped, a theoretical explanation of this behavior is not possible at this time. Only heuristic explanations are available. One such explanation is that the assumption that \(y(t) = 0 \) outside the interval \(1 \leq t \leq N \), and the corresponding zero elements in \(Y \) and \(y \), result in bias in the Yule–Walker estimates of the AR parameters. When \(N \) is not much greater than \(n \), this bias can be significant.

3.5 ORDER–RECURSIVE SOLUTIONS TO THE YULE–WALKER EQUATIONS

In applications, where \emph{a priori} information about the true order \(n \) is usually lacking, AR models with different orders have to be tested and hence the Yule–Walker system of equations, (3.4.6), has to be solved for \(n = 1 \) up to \(n = n_{\text{max}} \) (some prespecified maximum order); see Appendix C. By using a general solving method, this task requires \(\mathcal{O}(n_{\text{max}}^4) \) flops. This may be a significant computational burden if \(n_{\text{max}} \) is large. This is, for example, the case in the applications dealing with narrowband signals, where values of 50 or even 100 for \(n_{\text{max}} \) are not uncommon. In such applications, it may be important to reduce the number of flops required.
Section 3.5 Order–Recursive Solutions to the Yule–Walker Equations
to determine \(\{\theta_n, \sigma_n^2\} \) in (3.4.6). In order to be able to do so, the special algebraic
structure of (3.4.6) should be exploited, as explained next.

The matrix \(R_{n+1} \) in the Yule–Walker system of equations is highly struc-
tured: it is \textit{Hermitian} and \textit{Toeplitz}. The first algorithm which exploited this fact
to determine \(\{\theta_n, \sigma_n^2\}_{n=1}^{n_{\text{max}}} \) in \(n_{\text{max}}^2 \) flops is the \textit{Levinson–Durbin algorithm} (LDA)
[LEVINSON 1947; DURBIN 1960]. The number of flops required by the LDA is
on the order of \(n_{\text{max}} \) times smaller than that required by a general linear equation
solver to determine \(\{\theta_n, \sigma_n^2\}_{n=1}^{n_{\text{max}}} \), and on the order of \(n_{\text{max}}^2 \) times smaller than that
required by a general linear equation solver to determine \(\{\theta_n, \sigma_n^2\}_{n=1}^{n_{\text{max}}} \). The LDA
is discussed in Section 3.5.1. In Section 3.5.2 we present another algorithm, the
\textit{Delsarte–Genin algorithm} (DGA), also named the \textit{split–Levinson algorithm}, which
in the case of real–valued signals is about two times faster than the LDA [DELSARTE
AND GENIN 1986].

Both the LDA and DGA solve, recursively in the order \(n \), equation (3.4.6).
The only requirement is that the matrix there be positive definite, Hermitian, and
Toeplitz. Thus, the algorithms apply equally well to the Yule–Walker AR estimator
(or, equivalently, the autocorrelation least squares AR method), in which the \textit{true}
ACS elements are replaced by estimates. Hence, to cover both cases simultaneously,
in the following:

\(\rho_k \) is used to represent either \(r(k) \) or \(\hat{r}(k) \) \hspace{1cm} (3.5.1)

By using the above convention, we have

\[
R_{n+1} = \begin{bmatrix}
\rho_0 & \rho_1 & \cdots & \rho_n \\
\rho_1 & \rho_0 & & \\
\vdots & & \ddots & \rho_1 \\
\rho_n & \cdots & \rho_1 & \rho_0
\end{bmatrix} = \begin{bmatrix}
\rho_0 & \rho_1^* & \cdots & \rho_n^* \\
\rho_1 & \rho_0 & & \\
\vdots & & \ddots & \rho_1^* \\
\rho_n & \cdots & \rho_1 & \rho_0
\end{bmatrix}
\hspace{1cm} (3.5.2)
\]

The following notational convention will also be frequently used in this section.
For a vector \(x = [x_1 \ldots x_n]^T \), we define

\[\tilde{x} = [x_n^* \ldots x_1^*]^T \]

An important property of any Hermitian Toeplitz matrix \(R \) is that

\[y = Rx \implies \tilde{y} = R\tilde{x} \hspace{1cm} (3.5.3) \]

The result (3.5.3) follows from the following calculation

\[
\tilde{y}_i = y_{n-i+1}^* = \sum_{k=1}^{n} R_{n-i+1,k}^* x_k^*
\]

\[
= \sum_{k=1}^{n} \rho_{n-i+1-k}^* x_k^* \sum_{p=1}^{n} \rho_{p-i}^* x_{n-p+1}^* = \sum_{p=1}^{n} R_{i,p} \tilde{x}_p
\]

\[= (R\tilde{x})_i \]

where \(R_{i,j} \) denotes the \((i,j)\)th element of the matrix \(R \).
3.5.1 Levinson–Durbin Algorithm

The basic idea of the LDA is to solve (3.4.6) recursively in \(n \), starting from the solution for \(n = 1 \) (which is easily determined). By using (3.4.6) and the nested structure of the \(R \) matrix, we can write

\[
R_{n+2} \begin{bmatrix} 1 & \theta_n \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} R_{n+1} & \rho_{n+1}^* \\ \rho_{n+1} & \tilde{r}_n^* \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \theta_n & \rho_0 \end{bmatrix} = \begin{bmatrix} \sigma_n^2 & 0 \\ 0 & \alpha_n \end{bmatrix} \tag{3.5.4}
\]

where

\[
r_n = [\rho_1 \ldots \rho_n]^T \tag{3.5.5}
\]

\[
\alpha_n = \rho_{n+1} + \tilde{r}_n^* \theta_n \tag{3.5.6}
\]

Equation (3.5.4) would be the counterpart of (3.4.6) when \(n \) is increased by one, if \(\alpha_n \) in (3.5.4) could be nulled. To do so, let

\[
k_{n+1} = -\alpha_n / \sigma_n^2 \tag{3.5.7}
\]

It follows from (3.5.3) and (3.5.4) that

\[
R_{n+2} \begin{bmatrix} 1 & \theta_n \\ 0 & 0 \end{bmatrix} + k_{n+1} \begin{bmatrix} 0 & \tilde{\theta}_n \\ \tilde{\theta}_n & 1 \end{bmatrix} = \begin{bmatrix} \sigma_n^2 & 0 \\ 0 & \alpha_n \end{bmatrix} + k_{n+1} \begin{bmatrix} \alpha_n^* & 0 \\ 0 & \sigma_n^2 \end{bmatrix}
\]

\[
= \begin{bmatrix} \sigma_n^2 + k_{n+1} \alpha_n^* \\ 0 \end{bmatrix} \tag{3.5.8}
\]

which has the same structure as

\[
R_{n+2} \begin{bmatrix} 1 & \theta_{n+1} \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \sigma_{n+1}^2 \\ 0 \end{bmatrix} \tag{3.5.9}
\]

Comparing (3.5.8) and (3.5.9) and making use of the fact that the solution to (3.4.6) is unique for any \(n \), we reach the conclusion that

\[
\theta_{n+1} = \begin{bmatrix} \theta_n \\ 0 \end{bmatrix} + k_{n+1} \begin{bmatrix} \tilde{\theta}_n \\ 1 \end{bmatrix} \tag{3.5.10}
\]

and

\[
\sigma_{n+1}^2 = \sigma_n^2 (1 - |k_{n+1}|^2) \tag{3.5.11}
\]

constitute the solution to (3.4.6) for order \((n + 1)\).

Equations (3.5.10) and (3.5.11) form the core of the LDA. The initialization of these recursive–in–\(n \) equations is straightforward. The box below summarizes the LDA in a form that should be convenient for machine coding. The LDA has many interesting properties and uses for which we refer to [SÖDERSTRÖM AND STOICA 1989; MARPLE 1987; KAY 1988]. The coefficients \(k_i \) in the LDA are often called the reflection coefficients; \(-k_i\) are also called the partial correlation (PARCOR) coefficients. The motivation for the name “partial correlation coefficient” is developed in Complement 3.9.1.
The Levinson–Durbin Algorithm

Initialization:
\[\theta_1 = -\rho_1 / \rho_0 = k_1 \] [1 flop]
\[\sigma_1^2 = \rho_0 - |\rho_1|^2 / \rho_0 \] [1 flop]

For \(n = 1, \ldots, n_{\text{max}} \), do:
\[k_{n+1} = -\frac{\rho_{n+1} + \sigma_n \theta_n}{\sigma_n^2} \] \[n + 1 \text{ flops] \]
\[\sigma_{n+1}^2 = \sigma_n^2 (1 - |k_{n+1}|^2) \] [2 flops]
\[\theta_{n+1} = \begin{bmatrix} \theta_n \\ 0 \end{bmatrix} + k_{n+1} \begin{bmatrix} \theta_n \\ 1 \end{bmatrix} \] [\(n \) flops]

It can be seen from the box above that the LDA requires on the order of \(2n \) flops to compute \(\{\theta_{n+1}, \sigma_{n+1}^2\} \) from \(\{\theta_n, \sigma_n^2\} \). Hence a total of about \(n_{\text{max}}^2 \) flops is needed to compute all the solutions to the Yule–Walker system of equations, from \(n = 1 \) to \(n = n_{\text{max}} \). This confirms the claim that the LDA reduces the computational burden associated with a general solver by two orders of magnitude.

3.5.2 Delsarte–Genin Algorithm

In the real data case (i.e., whenever \(y(t) \) is real valued), the Delsarte–Genin algorithm (DGA), or the split Levinson algorithm, exploits some further structure of the Yule–Walker problem, which is not exploited by the LDA, to decrease even more the number of flops required to solve for \(\{\theta_n, \sigma_n^2\} \) [DELSARTE AND GENIN 1986]. In the following, we present a derivation of the DGA which is simpler than the original derivation. As already stated, we assume that the covariance elements \(\{\rho_k\} \) in the Yule–Walker equations are real valued.

Let \(\Delta_n \) be defined by
\[R_{n+1} \Delta_n = \beta_n \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \quad (3.5.12) \]

where the scalar \(\beta_n \) is unspecified for the moment. As the matrix \(R_{n+1} \) is positive definite, the \((n+1) \)-vector \(\Delta_n \) is uniquely defined by (3.5.12) (once \(\beta_n \) is specified; as a matter of fact, note that \(\beta_n \) only has a scaling effect on the components of \(\Delta_n \)). It follows from (3.5.12) and (3.5.3) that \(\Delta_n \) is a “symmetric vector”, i.e., it satisfies
\[\Delta_n = \hat{\Delta}_n \quad (3.5.13) \]

The key idea of the DGA is to introduce such symmetric vectors into the computations involved by the LDA, as only half of the elements of these vectors need to be computed.
Chapter 3
Parametric Methods for Rational Spectra

Next, note that by using the nested structure of R_{n+1} and the defining equation (3.5.12), we can write:

$$
R_{n+1} \begin{bmatrix} 0 \\ \Delta_{n-1} \end{bmatrix} = \begin{bmatrix} \rho_0 & r_n^T \\ r_n & R_n \end{bmatrix} \begin{bmatrix} 0 \\ \Delta_{n-1} \end{bmatrix} = \begin{bmatrix} \gamma_{n-1} \\ \beta_{n-1} \\ \vdots \\ \beta_{n-1} \end{bmatrix}
$$

(3.5.14)

where r_n is defined in (3.5.5) and

$$
\gamma_{n-1} = r_n^T \Delta_{n-1}
$$

(3.5.15)

The systems of equations (3.5.12) and (3.5.14) can be linearly combined into a system having the structure of (3.4.6). To do so, let

$$
\lambda_n = \beta_n / \beta_{n-1}
$$

(3.5.16)

Then, from (3.5.12), (3.5.14) and (3.5.16), we get

$$
R_{n+1} \left\{ \Delta_n - \lambda_n \begin{bmatrix} 0 \\ \Delta_{n-1} \end{bmatrix} \right\} = \begin{bmatrix} \beta_n - \lambda_n \gamma_{n-1} \\ 0 \end{bmatrix}
$$

(3.5.17)

It will be shown that β_n can always be chosen so as to make the first element of Δ_n equal to one,

$$(\Delta_n)_1 = 1
$$

(3.5.18)

In such a case, (3.5.17) has exactly the same structure as (3.4.6) and, as the solutions to these two systems of equations are unique, we are led to the following relations:

$$
\begin{bmatrix} 1 \\ \theta_n \end{bmatrix} = \Delta_n - \lambda_n \begin{bmatrix} 0 \\ \Delta_{n-1} \end{bmatrix}
$$

(3.5.19)

$$
\sigma_n^2 = \beta_n - \lambda_n \gamma_{n-1}
$$

(3.5.20)

Furthermore, since $(\Delta_n)_1 = 1$ and Δ_n is a symmetric vector, we must also have $(\Delta_n)_{n+1} = 1$. This observation, along with (3.5.19) and the fact that k_n is the last element of θ_n (see (3.5.10)), gives the following expression for k_n:

$$
k_n = 1 - \lambda_n
$$

(3.5.21)

The equations (3.5.19)–(3.5.21) express the LDA variables $\{\theta_n, \sigma_n^2, k_n\}$ as functions of $\{\Delta_n\}$ and $\{\beta_n\}$. It remains to derive recursive–in–n formulas for $\{\Delta_n\}$ and $\{\beta_n\}$, and also to prove that (3.5.18) really holds. This is done in the following.

Let $\{\beta_n\}$ be defined recursively by the following second–order difference equation:

$$
\beta_n = 2\beta_{n-1} - \alpha_n \beta_{n-2}
$$

(3.5.22)

where

$$
\alpha_n = (\beta_{n-1} - \gamma_{n-1}) / (\beta_{n-2} - \gamma_{n-2})
$$

(3.5.23)
Section 3.5 Order–Recursive Solutions to the Yule–Walker Equations

The initial values required to start the recursion (3.5.22) are: \(\beta_0 = \rho_0 \) and \(\beta_1 = \rho_0 + \rho_1 \). With this definition of \(\{ \beta_n \} \), we claim that the vectors \(\{ \Delta_n \} \) (as defined in (3.5.12)) satisfy (3.5.18) as well as the following second–order recursion:

\[
\Delta_n = \begin{bmatrix} \Delta_{n-1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \Delta_{n-1} \end{bmatrix} - \alpha_n \begin{bmatrix} 0 \\ \Delta_{n-2} \end{bmatrix} \quad (3.5.24)
\]

In order to prove the above claim, we first apply the result (3.5.3) to (3.5.14) to get

\[
R_{n+1} \begin{bmatrix} \Delta_{n-1} \\ 0 \end{bmatrix} = \begin{bmatrix} \beta_{n-1} \\ \vdots \\ \beta_{n-1} \end{bmatrix}
\]

Next, we note that

\[
R_{n+1} \begin{bmatrix} 0 \\ \Delta_{n-2} \\ 0 \end{bmatrix} = \begin{bmatrix} \rho_0 & \tilde{r}_{n-1} & \rho_n \\ \tilde{r}_{n-1} & \tilde{r}_{n-1} & \rho_n \\ \rho_n & \tilde{r}_{n-1} & \rho_0 \end{bmatrix} \begin{bmatrix} 0 \\ \Delta_{n-2} \\ 0 \end{bmatrix} = \begin{bmatrix} \gamma_{n-2} \\ \beta_{n-2} \\ \vdots \\ \beta_{n-2} \end{bmatrix} \quad (3.5.26)
\]

The right–hand sides of equations (3.5.14), (3.5.25) and (3.5.26) can be linearly combined, as described below, to get the right–hand side of (3.5.12):

\[
\begin{bmatrix} \gamma_{n-1} \\ \beta_{n-1} \\ \vdots \\ \beta_{n-1} \end{bmatrix} + \begin{bmatrix} \beta_{n-1} \\ \vdots \\ \beta_{n-1} \end{bmatrix} - \alpha_n \begin{bmatrix} \gamma_{n-2} \\ \beta_{n-2} \\ \vdots \\ \beta_{n-2} \end{bmatrix} = \beta_n \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (3.5.27)
\]

The equality in (3.5.27) follows from the defining equations of \(\beta_n \) and \(\alpha_n \). This observation, in conjunction with (3.5.14), (3.5.25) and (3.5.26), gives the following system of linear equations

\[
R_{n+1} \begin{bmatrix} \Delta_{n-1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ \Delta_{n-1} \end{bmatrix} - \alpha_n \begin{bmatrix} 0 \\ \Delta_{n-2} \end{bmatrix} = \beta_n \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad (3.5.28)
\]

which has exactly the structure of (3.5.12). Since the solutions to (3.5.12) and (3.5.28) are unique, they must coincide and hence (3.5.24) follows.

Next, turn to the condition (3.5.18). From (3.5.24) we see that \(\Delta_n \) = \((\Delta_{n-1})_1 \). Hence, in order to prove that (3.5.18) holds, it suffices to show that \(\Delta_1 = [1 \hspace{1em} 1]^T \). The initial values \(\beta_0 = \rho_0 \) and \(\beta_1 = \rho_0 + \rho_1 \) (purposely chosen for the sequence \(\{ \beta_n \} \)), when inserted in (3.5.12), give \(\Delta_0 = 1 \) and \(\Delta_1 = [1 \hspace{1em} 1]^T \). With this observation, the proof of (3.5.18) and (3.5.24) is finished.
The DGA consists of the equations (3.5.16) and (3.5.19)–(3.5.24). These equations include second–order recursions and appear to be more complicated than the first–order recursive equations of the LDA. In reality, owing to the symmetry of the Δ_n vectors, the DGA is computationally more efficient than the LDA (see below). The DGA equations are summarized in the box below, along with an approximate count of the number of flops required for implementation.

The Delsarte–Genin Algorithm

<table>
<thead>
<tr>
<th>DGA equations</th>
<th>Operation count</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no. of (\times)</td>
</tr>
<tr>
<td>Initialization:</td>
<td></td>
</tr>
<tr>
<td>$\Delta_0 = 1$, $\beta_0 = \rho_0$, $\gamma_0 = \rho_1$</td>
<td></td>
</tr>
<tr>
<td>$\Delta_1 = [1 \ 1]^T$, $\beta_1 = \rho_0 + \rho_1$, $\gamma_1 = \rho_1 + \rho_2$</td>
<td></td>
</tr>
<tr>
<td>For $n = 2, \ldots, n_{\text{max}}$ do:</td>
<td></td>
</tr>
<tr>
<td>(a) $\alpha_n = (\beta_{n-1} - \gamma_{n-1})/(\beta_{n-2} - \gamma_{n-2})$</td>
<td>1</td>
</tr>
<tr>
<td>$\beta_n = 2\beta_{n-1} - \alpha_n \beta_{n-2}$</td>
<td>2</td>
</tr>
<tr>
<td>$\Delta_n = \begin{bmatrix} \Delta_{n-1} \ 0 \end{bmatrix} + \begin{bmatrix} 0 \ \Delta_{n-1} \end{bmatrix} - \alpha_n \begin{bmatrix} 0 \ \Delta_{n-2} \end{bmatrix}$</td>
<td>$\sim n/2$</td>
</tr>
<tr>
<td>$\gamma_n = r_n^T \Delta_n = (\rho_1 + \rho_{n+1})$</td>
<td></td>
</tr>
<tr>
<td>$\Delta_{n,2}(\rho_2 + \rho_n) + \ldots$</td>
<td>$\sim n/2$</td>
</tr>
<tr>
<td>(b) $\lambda_n = \beta_n/\beta_{n-1}$</td>
<td>1</td>
</tr>
<tr>
<td>$\sigma_n^2 = \beta_n - \lambda_n \gamma_{n-1}$</td>
<td>1</td>
</tr>
<tr>
<td>$k_n = 1 - \lambda_n$</td>
<td>-</td>
</tr>
<tr>
<td>(c) $\begin{bmatrix} 1 \ \theta_n \end{bmatrix} = \Delta_n - \lambda_n \begin{bmatrix} 0 \ \Delta_{n-1} \end{bmatrix}$</td>
<td>$\sim n/2$</td>
</tr>
</tbody>
</table>

The DGA can be implemented in two principal modes, depending on the application at hand.

DGA — Mode 1: In most AR modeling exercises, we do not really need all $\{\theta_n\}_{n=1}^{n_{\text{max}}}$. We do, however, need $\{\sigma_1^2, \sigma_2^2, \ldots\}$ for the purpose of order selection (see Appendix C). Assume that we determined the AR order on the basis of the σ^2 sequence. For simplicity, let this order be denoted by n_{max}. Then the only θ vector to be computed is $\theta_{n_{\text{max}}}$. We may also need to compute the $\{k_n\}$ sequence since this bears useful information about the stability of the determined AR model (see, e.g., [SöDERSTRÖM and STOICA 1989; KAY 1988; THERRIEN 1992]).

In the modeling application outlined above, we need to iterate only the groups (a) and (b) of equations in the previous DGA summary. The matrix equation (c) is computed only for $n = n_{\text{max}}$. This way of implementing the DGA requires the following number of multiplications and additions:

$$\text{no. of (\times)} \sim n_{\text{max}}^2/2 \quad \text{no. of (+)} \sim n_{\text{max}}^2 \quad (3.5.29)$$
Recall that, for LDA, no. of $(\times) = \text{no. of (+)} \simeq n_{\max}^2$. Thus, the DGA is approximately \textit{two times faster} than the LDA (on computers for which multiplication is much more time consuming than addition). We may remark that in some parameter estimation applications, the equations in group (b) of the DGA can also be left out, but this will speed up the implementation of the DGA only slightly.

\textbf{DGA — Mode 2:} In other applications, we need all $\{\theta_n\}_{n=1}^{n_{\max}}$. An example of such an application is the Cholesky factorization of the inverse covariance matrix $R_{-1}^{-1} n_{\max}$ (see, e.g., Exercise 3.7 and [SÖDERSTRÖM AND STOICA 1989]). In such a case, we need to iterate all equations in the DGA, which results in the following number of arithmetic operations:

\begin{equation}
\text{no. of (\times)} \simeq 0.75 n_{\max}^2 \quad \text{no. of (+)} \simeq 1.5 n_{\max}^2 \quad (3.5.30)
\end{equation}

This is still about 25\% faster than the LDA (assuming, once again, that the computation time required for multiplication dominates the time corresponding to an addition).

In closing this section, we note that the computational comparisons between the DGA and the LDA above neglected terms on the order $O(n_{\max})$. This is acceptable if n_{\max} is reasonably large (say, $n_{\max} \geq 10$). If n_{\max} is small, then these comparisons are no longer valid and, in fact, LDA may be computationally more efficient than the DGA in such a case. In such low-dimensional applications, the LDA is therefore to be preferred to the DGA. Also recall that the LDA is the algorithm to use with complex-valued data, since the DGA does not appear to have a computationally efficient extension for complex-valued data.

3.6 MA SIGNALS

According to the definition in (3.2.8), an \textit{MA signal} is obtained by filtering white noise with an \textit{all-zero filter}. Owing to this all-zero structure, it is not possible to use an MA equation to model a spectrum with sharp peaks unless the MA order is chosen “sufficiently large”. This is to be contrasted to the ability of the AR (or “all-pole”) equation to model narrowband spectra by using fairly low model orders (\textit{cf.} the discussion in the previous sections). The MA model provides a good approximation for those spectra which are characterized by broad peaks and sharp nulls. Such spectra are encountered less frequently in applications than narrowband spectra, so there is a somewhat limited engineering interest in using the MA signal model for spectral estimation. Another reason for this limited interest is that the MA parameter estimation problem is basically a nonlinear one, and is significantly more difficult to solve than the AR parameter estimation problem. In any case, the types of difficulties we must face in MA and ARMA estimation problems are quite similar, and hence we may almost always prefer to use the more general ARMA model in lieu of the MA one. For these reasons, our discussion of the MA spectral estimation will be brief.

One method to estimate an MA spectrum consists of two steps: (i) Estimate the MA parameters $\{b_k\}_{k=1}^{n_{\max}}$ and σ^2; and (ii) Insert the estimated parameters from the first step in the MA PSD formula (see (3.2.2)):

\begin{equation}
\phi(\omega) = \sigma^2 |B(\omega)|^2 \quad (3.6.1)
\end{equation}
The difficulty with this approach lies in step (i) which is a nonlinear estimation problem. Approximate linear solutions to this problem do, however, exist. One of these approximate procedures, perhaps the most used method for MA parameter estimation, is based on a two-stage least squares methodology [Durbin 1959]. It is called Durbin’s method and will be described in the next section in the more general context of ARMA parameter estimation.

Another method to estimate an MA spectrum is based on the reparameterization of the PSD in terms of the covariance sequence. We see from (3.2.8) that for an MA of order \(m \),

\[
\phi(\omega) = \sum_{k=-m}^{m} r(k)e^{-i\omega k} \tag{3.6.3}
\]

Owing to this simple observation, the definition of the PSD as a function of \(\{r(k)\} \) turns into a finite-dimensional spectral model:

\[
\hat{\phi}(\omega) = \sum_{k=-m}^{m} \hat{r}(k)e^{-i\omega k} \tag{3.6.4}
\]

This spectral estimate is of the form of the Blackman–Tukey estimator (2.5.1). More precisely, (3.6.4) coincides with a Blackman–Tukey estimator using a rectangular window of length \(2m + 1 \). This is not unexpected. If we impose the zero-bias restriction on the nonparametric approach to spectral estimation (to make the comparison with the parametric approach fair) then the Blackman–Tukey estimator with a rectangular window of length \(2m + 1 \) implicitly assumes that the covariance lags outside the window interval are equal to zero. This is, however, precisely the assumption behind the MA signal model; see (3.6.2). Alternatively, if we make use of the assumption (3.6.2) in a Blackman–Tukey estimator, then we definitely end up with (3.6.4) as in such a case this is the spectral estimator in the Blackman–Tukey class with zero bias and "minimum" variance.

The analogy between the Blackman–Tukey and MA spectrum estimation methods makes it simpler to understand a problem associated with the MA spectral estimator (3.6.4). Owing to the (implicit) use of a rectangular window in (3.6.4), the so-obtained spectral estimate is not necessarily positive at all frequencies (see (2.5.5) and the discussion following that equation). Indeed, it is often noted in applications that (3.6.4) produces negative PSD estimates. In order to cure this deficiency of (3.6.4), we may use another lag window which is guaranteed to be positive semidefinite, in lieu of the rectangular one. This way of correcting \(\hat{\phi}(\omega) \) in (3.6.4) is, of course, reminiscent of the Blackman–Tukey approach. It should be
noted, however, that the so–corrected \(\hat{\phi}(\omega) \) is no longer an unbiased estimator of
the PSD of an MA\((m) \) signal (see, e.g., [Moses and Beex 1986] for details on
this aspect).

3.7 ARMA SIGNALS

Spectra with both sharp peaks and deep nulls cannot be modeled by either AR or
MA equations of reasonably small orders. There are, of course, other instances of
rational spectra that cannot be exactly described as AR or MA spectra. It is in
these cases where the more general ARMA model, also called the pole–zero model,
is valuable. However, the great initial promise of ARMA spectral estimation di-
minishes to some extent because there is yet no well–established algorithm, from
both theoretical and practical standpoints, for ARMA parameter estimation. The
“theoretically optimal ARMA estimators” are based on iterative procedures whose
global convergence is not guaranteed. The “practical ARMA estimators”, on the
other hand, are computationally simple and often quite reliable, but their statistical
accuracy may be poor in some cases. In the following, we describe two ARMA spec-
tral estimation algorithms which have been used in applications with a reasonable
degree of success (see also [Byrnes, Georgiou, and Lindquist 2000; Byrnes,
Georgiou, and Lindquist 2001] for some recent results on ARMA parameter
estimation).

3.7.1 Modified Yule–Walker Method

The modified Yule–Walker method is a two–stage procedure for estimating the
ARMA spectral density. In the first stage we estimate the AR coefficients using
equation (3.3.4). In the second stage, we use the AR coefficient and ACS estimates
in equation (3.2.1) to estimate the \(a_k \) coefficients. We describe the two steps below.

Writing equation (3.3.4) for \(k = m + 1, m + 2, \ldots, m + M \) in a matrix form
gives

\[
\begin{bmatrix}
 r(m) & r(m-1) & \cdots & r(m-n+1) \\
 r(m+1) & r(m) & \cdots & r(m-n+2) \\
 \vdots & \ddots & \ddots & \vdots \\
 r(m+M-1) & \cdots & \cdots & r(m-n+M)
\end{bmatrix}
\begin{bmatrix}
a_1 \\
\vdots \\
a_n
\end{bmatrix}
= -
\begin{bmatrix}
r(m+1) \\
r(m+2) \\
\vdots \\
r(m+M)
\end{bmatrix}
\]

(3.7.1)

If we set \(M = n \) in (3.7.1) we obtain a system of \(n \) equations in \(n \) unknowns. This
constitutes a generalization of the Yule–Walker system of equations that holds in
the AR case. Hence, these equations are said to form the modified Yule–Walker
(MYW) system of equations [Gersh 1970; Kinkel, Perl, Scharf, and Stub-
berud 1979; Beex and Scharf 1981; Cadzow 1982]. Replacing the theoretical
covariances \(\{r(k)\} \) by their sample estimates \(\{\hat{r}(k)\} \) in these equations leads to:

\[
\begin{bmatrix}
 \hat{r}(m) & \cdots & \hat{r}(m-n+1) \\
 \vdots & \ddots & \vdots \\
 \hat{r}(m+n-1) & \cdots & \hat{r}(m)
\end{bmatrix}
\begin{bmatrix}
 \hat{a}_1 \\
 \vdots \\
 \hat{a}_n
\end{bmatrix}
= -
\begin{bmatrix}
 \hat{r}(m+1) \\
 \vdots \\
 \hat{r}(m+n)
\end{bmatrix}
\]

(3.7.2)
The above linear system can be solved for \(\{ \hat{a}_i \} \), which are called the modified Yule–Walker estimates of \(\{ a_i \} \). The square matrix in (3.7.2) can be shown to be nonsingular under mild conditions. Note that there exist fast algorithms of the Levinson type for solving non-Hermitian Toeplitz systems of equations of the form of (3.7.2); they require about twice the computational burden of the LDA algorithm (see [Marple 1987; Kay 1988; Söderström and Stoica 1989]).

The MYW AR estimate has reasonable accuracy if the zeroes of \(B(z) \) in the ARMA model are well inside the unit circle. However, (3.7.2) may give very inaccurate estimates in those cases where the poles and zeroes of the ARMA model description are closely spaced together at positions near the unit circle. Such ARMA models, with nearly coinciding poles and zeroes of modulus close to one, correspond to narrowband signals. The covariance sequence of narrowband signals decays very slowly. Indeed, as we know, the more concentrated a signal is in frequency, usually the more expanded it is in time, and vice versa. This means that there is “information” in the higher-lag covariances of the signal that can be exploited to improve the accuracy of the AR coefficient estimates. We can exploit the additional information by choosing \(M > n \) in equation (3.7.1) and solving the so-obtained overdetermined system of equations. If we replace the true covariances in (3.7.1) with finite-sample estimates, there will in general be no exact solution. A most natural idea to overcome this problem is to solve the resultant equations

\[
\hat{R} \hat{a} \simeq -\hat{r}
\]

(3.7.3)

in a least squares (LS) or total least squares (TLS) sense (see Appendix A). Here, \(\hat{R} \) and \(\hat{r} \) represent the ACS matrix and vector in (3.7.1) with sample ACS estimates replacing the true ACS there. For instance, the (weighted) least squares solution to (3.7.3) is mathematically given by\(^1\)

\[
\hat{a} = - (\hat{R}^* W \hat{R})^{-1} (\hat{R}^* W \hat{r})
\]

(3.7.4)

where \(W \) is an \(M \times M \) positive definite weighting matrix. The AR estimate derived from (3.7.3) with \(M > n \) is called the overdetermined modified YW estimate [Beex and Scharf 1981; Cadzow 1982].

Some notes on the choice between (3.7.2) and (3.7.3), and on the selection of \(M \), are in order.

- Choosing \(M > n \) does not always improve the accuracy of the previous AR coefficient estimates. In fact, if the poles and zeroes are not close to the unit circle, choosing \(M > n \) can make the accuracy worse. When the ACS decays slowly to zero, however, choosing \(M > n \) generally improves the accuracy of \(\hat{a} \) [Cadzow 1982; Stoica, Friedlander, and Söderström 1987b].

A qualitative explanation for this phenomenon can be seen by thinking of a finite-sample ACS estimate as being the sum of its “signal” component \(r(k) \) and a “noise” component due to finite-sample estimation: \(\hat{r}(k) = r(k) + n(k) \).

If the ACS decays slowly to zero, the signal component is “large” compared to the noise component even for relatively large values of \(k \), and including

\(^1\)From a numerical viewpoint, equation (3.7.4) is not a particularly good way to solve (3.7.3). A more numerically sound approach is to use the QR decomposition; see Section A.8.2 for details.
\(\hat{r}(k) \) in the estimation of \(\hat{a} \) improves accuracy. If the noise component of \(\hat{r}(k) \) dominates, including \(\hat{r}(k) \) in the estimation of \(\hat{a} \) may decrease the accuracy of \(\hat{a} \).

- The statistical and numerical accuracies of the solution \(\{\hat{a}_i\} \) to (3.7.3) are quite interrelated. In more exact but still loose terms, it can be shown that the statistical accuracy of \(\{\hat{a}_i\} \) is poor (good) if the condition number of the matrix \(\hat{R} \) in (3.7.3) is large (small) (see [STOICA, FRIEDLANDER, AND SÖDERSTRÖM 1987b; SÖDERSTRÖM AND STOICA 1989] and also Appendix A). This observation suggests that \(M \) should be selected so as to make the matrix in (3.7.3) reasonably well-conditioned. In order to make a connection between this rule of thumb for selecting \(M \) and the previous explanation for the poor accuracy of (3.7.2) in the case of narrowband signals, note that for slowly decaying covariance sequences the columns of the matrix in (3.7.2) are nearly linearly dependent. Hence, the condition number of the covariance matrix may be quite high in such a case, and we may need to increase \(M \) in order to lower the condition number to a reasonable value.

- The weighting matrix \(W \) in (3.7.4) can also be chosen to improve the accuracy of the AR coefficient estimates. A simple first choice is \(W = I \), resulting in the regular (unweighted) least squares estimate. Some accuracy improvement can be obtained by choosing \(W \) to be diagonal with decreasing positive diagonal elements (to reflect the decreased confidence in higher ACS lag estimates). In addition, optimal weighting matrices have been derived (see [STOICA, FRIEDLANDER, AND SÖDERSTRÖM 1987a]); the optimal weight minimizes the covariance of \(\hat{a} \) (for large \(N \)) over all choices of \(W \). Unfortunately, the optimal weight depends on the (unknown) ARMA parameters. Thus, to use optimally weighted methods, a two-step “bootstrap” approach is used, in which a fixed \(W \) is first chosen and initial parameter estimates are obtained; these initial estimates are used to form an optimal \(W \), and a second estimation gives the “optimal accuracy” AR coefficients. As a general rule, the performance gain in using optimal weighting is relatively small compared to the computational overhead required to compute the optimal weighting matrix. Most accuracy improvement can be realized by choosing \(M > n \) and \(W = I \) for many problems. We refer the reader to [STOICA, FRIEDLANDER, AND SÖDERSTRÖM 1987a; CADZOW 1982] for a discussion on the effect of \(W \) on the accuracy of \(\hat{a} \) and on optimal weighting matrices.

Once the AR estimates are obtained, we turn to the problem of estimating the MA part of the ARMA spectrum. Let

\[
\gamma_k = E \left\{ [B(z)e(t)][B(z)e(t-k)]^* \right\} \quad (3.7.5)
\]

denote the covariances of the MA part. Since the PSD of this part of the ARMA signal model is given by (see (3.6.1) and (3.6.3)):

\[
\sigma^2 |B(\omega)|^2 = \sum_{k=-m}^{m} \gamma_k e^{-i\omega k} \quad (3.7.6)
\]
it suffices to estimate \(\gamma_k \) in order to characterize the spectrum of the MA part. From (3.2.7) and (3.7.5), we obtain

\[
\gamma_k = E \{ [A(z)y(t)][A(z)y(t-k)]^* \} = \sum_{j=0}^{n} \sum_{p=0}^{n} a_j a_p^* E \{ y(t-j)y^*(t-k-p) \} = \sum_{j=0}^{n} \sum_{p=0}^{n} a_j a_p^* r(k+p-j) \quad (a_0 \neq 1)
\]

(3.7.7)

for \(k = 0, \ldots, m \). Inserting the previously calculated estimates of \(a_k \) and \(r_k \) in (3.7.7) leads to the following estimator of \(\gamma_k \)

\[
\hat{\gamma}_k = \begin{cases} \sum_{j=0}^{n} \sum_{p=0}^{n} \hat{a}_j \hat{a}_p^* \hat{r}(k+p-j), & k = 0, \ldots, m \ (\hat{a}_0 \neq 1) \\ \hat{\gamma}_{-k}, & k = -1, \ldots, -m \end{cases}
\]

(3.7.8)

Finally, the ARMA spectrum is estimated as follows:

\[
\hat{\phi}(\omega) = \frac{\sum_{k=-m}^{m} \hat{\gamma}_k e^{-i\omega k}}{|\hat{A}(\omega)|^2}
\]

(3.7.9)

The MA estimate used by the above ARMA spectral estimator is of the type (3.6.4) encountered in the MA context. Hence, the criticism of (3.6.4) in the previous section is still valid. In particular, the numerator in (3.7.9) is not guaranteed to be positive for all \(\omega \) values, which may lead to negative ARMA spectral estimates (see, e.g., [Kinkel, Perl, Scharf, and Stubberud 1979; Moses and Beex 1986]).

Since (3.7.9) relies on the modified YW method of AR parameter estimation, we call (3.7.9) the modified YW ARMA spectral estimator. Refined versions of this ARMA spectral estimator, which improve the estimation accuracy if \(N \) is sufficiently large, were proposed in [Stoica and Nehorai 1986; Stoica, Friedlander, and Söderström 1987a; Moses, Šimonytė, Stoica, and Söderström 1994]. A related ARMA spectral estimation method is outlined in Exercise 3.14.

3.7.2 Two-Stage Least Squares Method

If the noise sequence \(\{e(t)\} \) were known, then the problem of estimating the parameters in the ARMA model (3.2.7) would have been a simple input-output system parameter estimation problem which could be solved by a diversity of means of which the most simple is the least squares (LS) method. In the LS method, we express equation (3.2.7) as

\[
y(t) + \varphi^T(t)\theta = e(t)
\]

(3.7.10)
Section 3.7 ARMA Signals

where

$$\varphi^T(t) = [y(t-1), \ldots, y(t-n)] - e(t-1), \ldots, -e(t-m)]$$
$$\theta = [a_1, \ldots, a_n; b_1, \ldots, b_m]^T$$

Writing (3.7.10) in matrix form for \(t = L + 1, \ldots, N\) (for some \(L > \max(m, n)\)) gives

$$z + Z\theta = e$$

where

$$Z = \begin{bmatrix} y(L) & \ldots & y(L-n+1) & -e(L) & \ldots & -e(L-m+1) \\ y(L+1) & \ldots & y(L-n+2) & -e(L+1) & \ldots & -e(L-m+2) \\ \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ y(N-1) & \ldots & y(N-n) & -e(N-1) & \ldots & -e(N-m) \end{bmatrix}$$

(3.7.12)

$$z = [y(L+1), y(L+2), \ldots, y(N)]^T$$

(3.7.13)

$$e = [e(L+1), e(L+2), \ldots, e(N)]^T$$

(3.7.14)

Assume we know \(Z\); then we could solve for \(\theta\) in (3.7.11) by minimizing \(\|e\|^2\). This leads to a least squares estimate similar to the AR LS estimate introduced in Section 3.4.2 (see also Result R32 in Appendix A):

$$\hat{\theta} = -(Z^*Z)^{-1}(Z^*z)$$

(3.7.15)

Of course, the \(\{e(t)\}\) in \(Z\) are not known. However, they may be estimated as described next.

Since the ARMA model (3.2.7) is minimum phase, by assumption, it can alternatively be written as an infinite-order AR equation:

$$(1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \ldots) y(t) = e(t)$$

(3.7.16)

where the coefficients \(\{\alpha_k\}\) of \(1 + \alpha_1 z^{-1} + \alpha_2 z^{-2} + \ldots \hat{=} A(z)/B(z)\) converge to zero as \(k\) increases. An idea to estimate \(\{e(t)\}\) is to first determine the AR parameters \(\{\alpha_k\}\) in (3.7.16) and next obtain \(\{e(t)\}\) by filtering \(\{y(t)\}\) as in (3.7.16). Of course, we cannot estimate an infinite number of (independent) parameters from a finite number of samples. In practice, the AR equation must be approximated by one of order \(K\) (say). The parameters in the truncated AR model of \(y(t)\) can be estimated by using either the YW or the LS procedure in Section 3.4.

The above discussion leads to the two-stage LS algorithm summarized in the box below. The two-stage LS parameter estimator is also discussed, for example, in [Mayne and Firoozan 1982; Söderström and Stoica 1989]. The spectral estimate is guaranteed to be positive for all frequencies by construction. Owing to the practical requirement to truncate the AR model (3.7.16), the two-stage LS estimate is biased. The bias can be made small by choosing \(K\) sufficiently large; however, \(K\) should not be too large with respect to \(N\) or the accuracy of \(\hat{\theta}\) in Step 2.
will decrease. The difficult case for this method is apparently that of ARMA signals with zeroes close to the unit circle. In such a case, it may be necessary to select a very large value of K in order to keep the approximation (bias) errors in Step 1 at a reasonable level. The computational burden of Step 1 may then become prohibitively large. It should be noted, however, that the case of ARMA signals with zeroes near the unit circle is a difficult one for all known ARMA estimation methods [Kay 1988; Marple 1987; Söderström and Stoica 1989].

The Two–Stage Least Squares ARMA Method

Step 1. Estimate the parameters $\{\alpha_k\}$ in an AR(K) model of $y(t)$ by the YW or covariance LS method. Let $\{\hat{\alpha}_k\}_{k=1}^K$ denote the estimated parameters.

Obtain an estimate of the noise sequence $\{\varepsilon(t)\}$ by

$$
\hat{\varepsilon}(t) = y(t) + \sum_{k=1}^K \hat{\alpha}_k y(t - k)
$$

for $t = K + 1, \ldots, N$.

Step 2. Replace $\varepsilon(t)$ in (3.7.12) by $\hat{\varepsilon}(t)$ determined in Step 1. Obtain $\hat{\theta}$ from (3.7.15) with $L = K + m$. Estimate

$$
\hat{\sigma}^2 = \frac{1}{N - L} \hat{\varepsilon}^* \hat{\varepsilon}
$$

where $\hat{\varepsilon} = \hat{Z} \hat{\theta} + z$ is the LS error from (3.7.11).

Insert $\{\hat{\theta}, \hat{\sigma}^2\}$ into the PSD expression (3.2.2) to estimate the ARMA spectrum.

Finally, we remark that the two–stage LS algorithm may be modified to estimate the parameters in MA models, simply by skipping over the estimation of AR parameters in Step 2. The so–obtained method was for the first time suggested in [Durbin 1959], and is often called Durbin’s Method.
3.8 MULTIVARIATE ARMA SIGNALS

The multivariate analog of the ARMA signal in equation (3.2.7) is:

\[A(z)y(t) = B(z)e(t) \]

(3.8.1)

where \(y(t) \) and \(e(t) \) are \(ny \times 1 \) vectors, and \(A(z) \) and \(B(z) \) are \(ny \times ny \) matrix polynomials in the unit delay operator. The task of estimating the matrix coefficients, \(\{A_i, B_j\} \) say, of the AR and MA polynomials in (3.8.1) is much more complicated than in the scalar case for at least one reason: The representation of \(y(t) \) in (3.8.1), with all elements in \(\{A_i, B_j\} \) assumed to be unknown, may well be *nonunique* even though the orders of \(A(z) \) and \(B(z) \) may have been chosen correctly. More precisely, assume that we are given the spectral density matrix of an ARMA signal \(y(t) \) along with the (minimal) orders of the AR and MA polynomials in its ARMA equation. If all elements of \(\{A_i, B_j\} \) are considered to be unknown, then, *unlike in the scalar case*, the previous information may not be sufficient to determine the matrix coefficients \(\{A_i, B_j\} \) uniquely (see, e.g., [HANNAN AND DEISTLER 1988] and also Exercise 3.16). The lack of uniqueness of the representation may lead to a *numerically ill-conditioned parameter estimation* problem. For instance, this would be the case with the multivariate analog of the modified Yule–Walker method discussed in Section 3.7.1.

Apparently the only possible cure to the aforementioned problem consists of using a *canonical parameterization* for the AR and MA coefficients. Basically this amounts to setting some of the elements of \(\{A_i, B_j\} \) to known values, such as 0 or 1, hence reducing the number of unknowns. The problem, however, is that to know which elements should be set to 0 or 1 in a specific case, we need to know *ny indices* (called “structure indices”) which are usually difficult to determine in practice [KAILATH 1980; HANNAN AND DEISTLER 1988]. The difficulty in obtaining those indices has hampered the use of canonical parameterizations in applications. For this reason we do not go into any detail of the canonical forms for ARMA signals. The nonuniqueness of the fully parameterized ARMA equation will, however, receive further attention in the next subsection.

Concerning the other approach to ARMA parameter estimation discussed in Section 3.7.2, namely the *two-stage least squares method*, it is worth noting that it *can be extended to the multivariate case in a straightforward manner*. In particular there is no need for using a canonical parameterization in either step of the extended method (see, e.g., [SÖDERSTRÖM AND STOICA 1989]). Working the details of the extension is left as an interesting exercise to the reader. We stress that the two-stage LS approach is perhaps the only real competitor to the subspace ARMA parameter estimation method described in the next subsections.

3.8.1 ARMA State-Space Equations

The difference equation representation in (3.8.1) can be transformed into the following *state-space representation*, and vice versa (see, e.g., [AOKI 1987; KAILATH 1980]):

\[
\begin{align*}
x(t + 1) &= Ax(t) + Be(t) & (n \times 1) \\
y(t) &= Cx(t) + e(t) & (ny \times 1)
\end{align*}
\]

(3.8.2)
Chapter 3 Parametric Methods for Rational Spectra

Thereafter, \(x(t) \) is the state vector of dimension \(n \); \(A, B, \) and \(C \) are matrices of appropriate dimensions (with \(A \) having all eigenvalues inside the unit circle); and \(e(t) \) is white noise with zero mean and covariance matrix denoted by \(Q \):

\[
E \{ e(t) \} = 0 \tag{3.8.3}
\]

\[
E \{ e(t)e^*(s) \} = Q \delta_{t,s} \tag{3.8.4}
\]

where \(Q \) is positive definite by assumption.

The transfer filter corresponding to (3.8.2), also called the ARMA shaping filter, is readily seen to be:

\[
H(z) = z^{-1}C(I - Az^{-1})^{-1}B + I \tag{3.8.5}
\]

By paralleling the calculation leading to (1.4.9), it is then possible to show that the ARMA power spectral density (PSD) matrix is given by:

\[
\phi(\omega) = H(\omega)QH^*(\omega) \tag{3.8.6}
\]

(The derivation of (3.8.6) is left as an exercise to the reader.)

In the next subsections, we will introduce a methodology for estimating the matrices \(A, B, C, \) and \(Q \) of the state–space equation (3.8.2), and hence the ARMA’s power spectral density (via (3.8.5) and (3.8.6)). In this subsection, we derive a number of results that prepare the discussion in the next subsections.

Let

\[
R_k = E \{ y(t)y^*(t-k) \} \tag{3.8.7}
\]

\[
P = E \{ x(t)x^*(t) \} \tag{3.8.8}
\]

Observe that, for \(k \geq 1 \),

\[
R_k = E \{ [Cx(t+k) + e(t+k)][x^*(t)C^* + e^*(t)] \}
= CE \{ x(t+k)x^*(t) \} C^* + CE \{ x(t+k)e^*(t) \} \tag{3.8.9}
\]

From equation (3.8.2), we obtain (by induction):

\[
x(t + k) = A^kx(t) + \sum_{\ell=0}^{k-1} A^{k-\ell-1} Be(t + \ell) \tag{3.8.10}
\]

which implies that

\[
E \{ x(t + k)x^*(t) \} = A^kP \tag{3.8.11}
\]

and

\[
E \{ x(t + k)e^*(t) \} = A^{k-1}BQ \tag{3.8.12}
\]

Inserting (3.8.11) and (3.8.12) into (3.8.9) yields:

\[
R_k = CA^{k-1}D \quad \text{(for } k \geq 1) \tag{3.8.13}
\]
where

\[D = APC^* + BQ \]

(3.8.14)

From the first equation in (3.8.2), we also readily obtain

\[P = APA^* + BQB^* \]

(3.8.15)

and from the second equation,

\[R_0 = CPC^* + Q \]

(3.8.16)

It follows from (3.8.14) and (3.8.16) that

\[B = (D - APC^*) Q^{-1} \]

(3.8.17)

and, respectively,

\[Q = R_0 - CPC^* \]

(3.8.18)

Finally, inserting (3.8.17) and (3.8.18) into (3.8.15) gives the following Riccati equation for \(P \):

\[P = APA^* + (D - APC^*)(R_0 - CPC^*)^{-1}(D - APC^*)^* \]

(3.8.19)

The above results lead to a number of interesting observations.

The (Non)Uniqueness Issue: It is well known that a linear nonsingular transformation of the state vector in (3.8.2) leaves the transfer function matrix associated with (3.8.2) unchanged. To be more precise, let the new state vector be given by:

\[\tilde{x}(t) = Tx(t), \quad (|T| \neq 0) \]

(3.8.20)

It can be verified that the state–space equations in \(\tilde{x}(t) \), corresponding to (3.8.2), are:

\[\begin{align*}
\tilde{x}(t+1) &= \tilde{A}\tilde{x}(t) + \tilde{B}e(t) \\
y(t) &= \tilde{C}\tilde{x}(t) + e(t)
\end{align*} \]

(3.8.21)

where

\[\tilde{A} = TAT^{-1}; \quad \tilde{B} = TB; \quad \tilde{C} = CT^{-1} \]

(3.8.22)

As \(\{y(t)\} \) and \(\{e(t)\} \) in (3.8.21) are the same as in (3.8.2), the transfer function \(H(z) \) from \(e(t) \) to \(y(t) \) must be the same for both (3.8.2) and (3.8.21). (Verifying this by direct calculation is left to the reader.) The consequence is that there exists an infinite number of triples \((A, B, C)\) (with all matrix elements assumed unknown) that lead to the same ARMA transfer function, and hence the same ARMA covariance sequence and PSD matrix. For the transfer function matrix, the nonuniqueness induced by the similarity transformation (3.8.22) is the only type
possible (as we know from the deterministic system theory, e.g., [Kailath 1980]). For the covariance sequence and the PSD, however, other types of nonuniqueness are also possible (see, e.g., [Faurre 1976] and [Söderström and Stoica 1989, Problem 6.3]).

Most ARMA estimation methods require the use of a uniquely parameterized representation. The previous discussion has clearly shown that letting all elements of \(A, B, C, \) and \(Q \) be unknown does not lead to such a unique representation. The latter representation is obtained only if a canonical form is used. As already explained, the ARMA parameter estimation methods relying on canonical parameterizations are impractical. The subspace–based estimation approach discussed in the next subsection circumvents the canonical parameterization requirement in an interesting way: The nonuniqueness of the ARMA representation with \(A, B, C, \) and \(Q \) fully parameterized is reduced to the nonuniqueness of a certain decomposition of covariance matrices; then by choosing a specific decomposition, a triplet \((A, B, C)\) is isolated and determined in a numerically well–posed manner.

The Minimality Issue: Let, for some integer–valued \(m \),

\[
\mathcal{O} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{m-1} \end{bmatrix} \quad (3.8.23)
\]

and

\[
C^* = [D \ AD \ \cdots \ A^{m-1}D] \quad (3.8.24)
\]

The similarity between the above matrices and the observability and controllability matrices, respectively, from the theory of deterministic state–space equations is evident. In fact, it follows from the aforementioned theory and from (3.8.13) that the triplet \((A, D, C)\) is a minimal representation (i.e., one with the minimum possible dimension \(n \)) of the covariance sequence \(\{R_k\} \) if and only if (see, e.g., [Kailath 1980; Hannan and Deistler 1988]):

\[
\text{rank}(\mathcal{O}) = \text{rank}(\mathcal{C}) = n \quad \text{(for } m \geq n) \quad (3.8.25)
\]

As shown previously, the other matrices \(P, Q, \) and \(B \) of the state–space equation (3.8.2) can be obtained from \(A, C, \) and \(D \) (see equations (3.8.19), (3.8.18), and (3.8.17), respectively). It follows that the state–space equation (3.8.2) is a minimal representation of the ARMA covariance sequence \(\{R_k\} \) if and only if the condition (3.8.25) is satisfied. In what follows, we assume that the “minimality condition” (3.8.25) holds true.
Section 3.8 Multivariate ARMA Signals

3.8.2 Subspace Parameter Estimation — Theoretical Aspects

We begin with showing how A, C, and D can be obtained from a sequence of theoretical ARMA covariances. Let

$$ R = \begin{bmatrix} R_1 & R_2 & \cdots & R_m \\ R_2 & R_3 & \cdots & R_{m+1} \\ \vdots & \vdots & \ddots & \vdots \\ R_m & R_{m+1} & \cdots & R_{2m-1} \end{bmatrix} $$

$$ = E \begin{bmatrix} y(t) \\ \vdots \\ y(t + m - 1) \end{bmatrix} \begin{bmatrix} y^*(t - 1) \cdots y^*(t - m) \end{bmatrix} \right) \right) (3.8.26)$$

denote the block–Hankel matrix of covariances. (The name given to (3.8.26) is due to its special structure: the submatrices on its block antidiagonals are identical. Such a matrix is a block extension to the standard Hankel matrix; see Definition D14 in Appendix A.) According to (3.8.13), we can factor R as follows:

$$ R = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{m-1} \end{bmatrix} [D \ AD \ \cdots \ A^{m-1} \ D] = OC^* \right) (3.8.27)$$

It follows from (3.8.25) and (3.8.27) that (see Result R4 in Appendix A):

$$ \text{rank}(R) = n \quad (\text{for } m \geq n) \right) (3.8.28)$$

Hence, n could in principle be obtained as the rank of R. To determine A, C, and D let us consider the singular value decomposition (SVD) of R (see Appendix A):

$$ R = U \Sigma V^* \right) (3.8.29)$$

where Σ is a nonsingular $n \times n$ diagonal matrix, and

$$ U^*U = V^*V = I \quad (n \times n) \right)$$

By comparing (3.8.27) and (3.8.29), we obtain

$$ O = U \Sigma^{1/2}T \quad \text{for some nonsingular transformation matrix } T \right) (3.8.30)$$

because the columns of both O and $U \Sigma^{1/2}$ are bases of the range space of R. Henceforth, $\Sigma^{1/2}$ denotes a square root of Σ (that is, $\Sigma^{1/2} \Sigma^{1/2} = \Sigma$). By inserting (3.8.30) in the equation $O C^* = U \Sigma V^*$, we also obtain:

$$ C = V \Sigma^{1/2}(T^{-1})^* \right) (3.8.31)$$

Next, observe that

$$ OT^{-1} = \begin{bmatrix} (CT^{-1}) \\ (CT^{-1})(TAT^{-1}) \\ \vdots \\ (CT^{-1})(TAT^{-1})^{m-1} \end{bmatrix} \right) (3.8.32)$$
Chapter 3 Parametric Methods for Rational Spectra

and

\[TC^* = [(TD) \cdots (TAT^{-1})^{m-1}(TD)] \] \hspace{1cm} (3.8.33)

This implies that by identifying \(O \) and \(C \) with the matrices made from all possible bases of the range spaces of \(R \) and \(R^* \), respectively, we obtain the set of similarity-equivalent triples \((A, D, C)\). Hence, picking up a certain basis yields a specific triple \((A, D, C)\) in the aforementioned set. This is how the subspace approach to ARMA state-space parameter estimation circumvents the nonuniqueness problem associated with a fully parameterized model.

In view of the previous discussion we can, for instance, set \(T = I \) in (3.8.30) and (3.8.31) and obtain \(C \) as the first \(ny \) rows of \(U\Sigma^{1/2} \) and \(D \) as the first \(ny \) columns of \(\Sigma^{1/2}V^* \). Then, \(A \) may be obtained as the solution to the linear system of equations

\[(U\Sigma^{1/2})A = U\Sigma^{1/2} \] \hspace{1cm} (3.8.34)

where \(\bar{U} \) and \(U \) are the matrices made from the first and, respectively, the last \((m - 1)\) block rows of \(U \). Once \(A, C, \) and \(D \) have been determined, \(P \) is obtained by solving the Riccati equation (3.8.19) and then \(Q \) and \(B \) are derived from (3.8.18) and (3.8.17). Algorithms for solving the Riccati equation are presented, for instance, in [van Overschee and de Moor 1996] and the references therein.

A modification of the above procedure that does not change the solution obtained in the theoretical case but which appears to have beneficial effects on the parameter estimates obtained from finite samples is as follows. Let us denote the two vectors appearing in (3.8.26) by the following symbols:

\[f(t) = [y^T(t) \cdots y^T(t + m - 1)]^T \] \hspace{1cm} (3.8.35)

\[p(t) = [y^T(t - 1) \cdots y^T(t - m)]^T \] \hspace{1cm} (3.8.36)

Let

\[R_{fp} = E \{f(t)p^*(t)\} \] \hspace{1cm} (3.8.37)

and let \(R_{ff} \) and \(R_{pp} \) be similarly defined. Redefine the matrix in (3.8.26) as

\[R = R_{ff}^{-1/2}R_{fp}R_{pp}^{-1/2} \] \hspace{1cm} (3.8.38)

where \(R_{ff}^{-1/2} \) and \(R_{pp}^{-1/2} \) are the Hermitian square roots of \(R_{ff}^{-1} \) and \(R_{pp}^{-1} \) (see Appendix A). A heuristic explanation why the previous modification should lead to better parameter estimates in finite samples is as follows. The matrix \(R \) in (3.8.26) is equal to \(R_{fp} \), whereas the \(R \) in (3.8.38) can be written as \(R_{fp} \) where both \(f(t) = R_{ff}^{-1/2}f(t) \) and \(p(t) = R_{pp}^{-1/2}p(t) \) have unity covariance matrices. Owing to the latter property the cross-covariance matrix \(R_{fp} \) and its singular elements are usually estimated more accurately from finite samples than are \(R_{fp} \) and its singular elements. This fact should eventually lead to better parameter estimates.

By making use of the factorization (3.8.27) of \(R_{fp} \) along with the formula (3.8.38) for the matrix \(R \), we can write:

\[R = R_{ff}^{-1/2}R_{fp}R_{pp}^{-1/2} = R_{ff}^{-1/2}OC^*R_{pp}^{-1/2} = U\Sigma V^* \] \hspace{1cm} (3.8.39)
where $U \Sigma V^*$ is now the SVD of R in (3.8.38). Identifying $R_{ff}^{-1/2} \mathcal{O}$ with $U \Sigma^{1/2}$ and $R_{pp}^{-1/2} \mathcal{C}$ with $V \Sigma^{1/2}$, we obtain

$$\mathcal{O} = R_{ff}^{-1/2} U \Sigma^{1/2}$$ \hspace{1cm} (3.8.40)$$

$$\mathcal{C} = R_{pp}^{-1/2} V \Sigma^{1/2}$$ \hspace{1cm} (3.8.41)$$

The matrices A, C, and D can be determined from these equations as previously described. Then we can derive P, Q, and B as has also been indicated before.

3.8.3 Subspace Parameter Estimation — Implementation Aspects

Let \hat{R}_{fp} be the sample estimate of R_{fp}, for example,

$$\hat{R}_{fp} = \frac{1}{N} \sum_{t=m+1}^{N-m+1} f(t) p^*(t)$$ \hspace{1cm} (3.8.42)$$

and let \hat{R}_{ff} etc be similarly defined. Compute \hat{R} as

$$\hat{R} = \hat{R}_{ff}^{-1/2} \hat{R}_{fp} \hat{R}_{pp}^{-1/2}$$ \hspace{1cm} (3.8.43)$$

and its SVD. Estimate n as the “practical rank” of \hat{R}:

$$\hat{n} = \text{p-rank}(\hat{R})$$ \hspace{1cm} (3.8.44)$$

(i.e., the number of singular values of \hat{R} which are significantly larger than the remaining ones; statistical tests for deciding whether a singular value of a given sample covariance matrix is significantly different from zero are discussed in, e.g., [Fuchs 1987].) Let \hat{U}, $\hat{\Sigma}$ and \hat{V} denote the matrices made from the \hat{n} principal singular elements of \hat{R}, corresponding to the matrices U, Σ and V in (3.8.39). Take

$$\hat{C} = \text{the first } ny \text{ rows of } \hat{R}_{ff}^{1/2} \hat{U} \hat{\Sigma}^{1/2}$$

$$\hat{D} = \text{the first } ny \text{ columns of } \hat{\Sigma}^{1/2} \hat{V}^* \hat{R}_{pp}^{1/2}$$ \hspace{1cm} (3.8.45)$$

Next, let

$$\hat{\Gamma} \text{ and } \Gamma = \text{the matrices made from the first and, respectively, last } (m-1) \text{ block rows of } \hat{R}_{ff}^{1/2} \hat{U} \hat{\Sigma}^{1/2}.$$ \hspace{1cm} (3.8.46)$$

Estimate A as

$$\hat{A} = \text{the LS or TLS solution to } \hat{\Gamma} A \simeq \Gamma$$ \hspace{1cm} (3.8.47)$$

Finally, estimate P as

$$\hat{P} = \text{the positive definite solution, if any, of the Riccati equation (3.8.19) with } A, C, D \text{ and } R_0 \text{ replaced by their estimates}$$ \hspace{1cm} (3.8.48)$$
and Q and B as:

$$
\begin{align*}
\dot{Q} &= \dot{R}_0 - \dot{C}P\dot{C}^* \\
\dot{B} &= (\dot{D} - \dot{A}\dot{P}\dot{C}^*)\dot{Q}^{-1}
\end{align*}
$$

(3.8.49)

In some cases, the previous procedure cannot be completed because the Riccati equation has no positive definite solution or even no solution at all. (In the case of a real-valued ARMA signal, for instance, that equation may have no real-valued solution.) In such cases, we can approximately determine P as follows. (Note that only the estimation of P has to be modified; all the other parameter estimates can be obtained as described above.)

A straightforward calculation making use of (3.8.11) and (3.8.12) yields:

$$
E \{x(t)y^*(t - k)\} = A^kPC^* + A^{k-1}BQ
$$

(3.8.50)

Hence,

$$
C^* = E \{x(t)p^*(t)\}
$$

(3.8.51)

Let

$$
\psi = C^*R_{pp}^{-1}
$$

(3.8.52)

and define $\epsilon(t)$ via the equation:

$$
x(t) = \psi p(t) + \epsilon(t)
$$

(3.8.53)

It is not difficult to verify that $\epsilon(t)$ is uncorrelated with $p(t)$. Indeed,

$$
E \{\epsilon(t)p^*(t)\} = E \{[x(t) - \psi p(t)]p^*(t)\} = C^* - \psi R_{pp} = 0
$$

(3.8.54)

This implies that the first term in (3.8.53) is the least squares approximation of $x(t)$ based on the past signal values in $p(t)$ (see, e.g., [SöDERSTRÖM and STOICA 1989] and Appendix A). It follows from this observation that $\psi p(t)$ approaches $x(t)$ as m increases. Hence,

$$
\psi R_{pp}\psi^* = C^*R_{pp}^{-1}C \rightarrow P \quad \text{(as } m \rightarrow \infty)\n$$

(3.8.55)

However, in view of (3.8.41),

$$
C^*R_{pp}^{-1}C = \Sigma
$$

(3.8.56)

The conclusion is that, provided m is chosen large enough, we can approximate P as

$$
\tilde{P} = \hat{\Sigma}, \quad \text{for } m \gg 1
$$

(3.8.57)

This is the alternative estimate of P which can be used in lieu of (3.8.48) whenever the latter estimation procedure fails. The estimate \tilde{P} approaches the true value P as N tends to infinity provided m is also increased without bound at an appropriate
rate. However, if (3.8.57) is used with too small a value of m the estimate of P so obtained may be heavily biased.

The reader interested in more aspects on the subspace approach to parameter estimation for rational models should consult [Aoki 1987; Van Overschee and de Moor 1996; Rao and Arun 1992; Viberg 1995] and the references therein.

3.9 COMPLEMENTS

3.9.1 The Partial Autocorrelation Sequence

The sequence $\{k_j\}$ computed in equation (3.5.7) of the LDA has an interesting statistical interpretation, as explained next. The covariance lag ρ_j "measures" the degree of correlation between the data samples $y(t)$ and $y(t - j)$ (in the chapter ρ_j is equal to either $r(j)$ or $\hat{r}(j)$; here $\rho_j = r(j)$). The normalized covariance sequence $\{\rho_j/\rho_0\}$ is often called the autocorrelation function. Now, $y(t)$ and $y(t - j)$ are related to one another not only "directly" but also through the intermediate samples:

\[
[y(t - 1) \ldots y(t - j + 1)]^T \triangleq \varphi(t)
\]

Let $\epsilon_f(t)$ and $\epsilon_b(t - j)$ denote the errors of the LS linear predictions of $y(t)$ and $y(t - j)$, respectively, based on $\varphi(t)$ above; in particular, $\epsilon_f(t)$ and $\epsilon_b(t - j)$ must then be uncorrelated with $\varphi(t)$: $E\{\epsilon_f(t)\varphi^*(t)\} = E\{\epsilon_b(t - j)\varphi^*(t)\} = 0$. (Note that $\epsilon_f(t)$ and $\epsilon_b(t - j)$ are termed forward and backward prediction errors respectively; see also Exercises 3.3 and 3.4.) We show that

\[
k_j = -\frac{E\{\epsilon_f(t)\varphi^*(t-j)\}}{[E\{\epsilon_f(t)^2\}E\{\epsilon_b(t-j)^2\}]^{1/2}} \tag{3.9.1}
\]

Hence, k_j is the negative of the so-called partial correlation (PARCOR) coefficient of $\{y(t)\}$, which measures the "partial correlation" between $y(t)$ and $y(t - j)$ after the correlation due to the intermediate values $y(t - 1), \ldots, y(t - j + 1)$ has been eliminated.

Let

\[
\epsilon_f(t) = y(t) + \varphi^T(t)\theta
\]

where, similarly to (3.4.9),

\[
\theta = -\{E\{\varphi^*(t)\varphi^T(t)\}\}^{-1} E\{\varphi^*(t) y(t)\} \triangleq -R^{-1}r
\]

It is readily verified (by making use of the previous definition for θ) that:

\[
E\{\varphi^*(t)\epsilon_f(t)\} = 0
\]

which shows that $\epsilon_f(t)$, as defined above, is indeed the error of the linear forward LS prediction of $y(t)$, based on $\varphi(t)$.

Similarly, define the following linear backward LS prediction error:

\[
\epsilon_b(t - j) = y(t - j) + \varphi^T(t)\alpha
\]
Chapter 3 Parametric Methods for Rational Spectra

where

$$\alpha = - \{ E \{ \varphi^c(t) \varphi^T(t) \} \}^{-1} E \{ \varphi^c(t) y(t - j) \} = R^{-1} \tilde{\theta}$$

The last equality above follows from (3.5.3). We thus have

$$E \{ \varphi^c(t) \epsilon_b(t - j) \} = 0$$

as required.

Next, some simple calculations give:

$$E \{ \epsilon_f(t-j)^2 \} = E \{ y^*(t)[y(t) + \varphi^T(t)\theta] \}$$

$$= \rho_0 + [\rho_1 \ldots \rho_{j-1}]\theta = \sigma_{j-1}^2$$

and

$$E \{ \epsilon_b(t-j)^2 \} = E \{ y^*(t-j)[y(t-j) + \varphi^T(t)\alpha] \}$$

$$= \rho_0 + [\rho_{j-1} \ldots \rho_1]\tilde{\theta} = \sigma_{j-1}^2$$

and

$$E \{ \epsilon_f(t)\epsilon_b(t-j) \} = E \{ [y(t) + \varphi^T(t)\theta]y^*(t-j) \}$$

$$= \rho_j + [\rho_{j-1} \ldots \rho_1]\theta = \alpha_{j-1}$$

(cf. (3.4.1) and (3.5.6)). By using the previous equations in (3.9.1), we obtain

$$k_j = -\alpha_{j-1}/\sigma_{j-1}^2$$

which coincides with (3.5.7).

3.9.2 Some Properties of Covariance Extensions

Assume we are given a finite sequence \(\{ r(k) \} \) \(_{k=-(m-1)}^{m-1} \) with \(r(-k) = r^*(k) \), and such that \(R_m \) in equation (3.4.6) is positive definite. We show that the finite sequence can be extended to an infinite sequence that is a valid ACS. Moreover, there are an infinite number of possible covariance extensions and we derive an algorithm to construct these extensions. One such extension, in which the reflection coefficients \(k_m, k_{m+1}, \ldots \) are all zero (and thus the infinite ACS corresponds to an AR process of order less than or equal to \(m-1 \)), gives the so-called Maximum Entropy extension [BURG 1975].

We begin by constructing the set of \(r(m) \) values for which \(R_{m+1} > 0 \). Using the result of Exercise 3.7, we have

$$|R_{m+1}| = \sigma_m^2 |R_m|$$ \hspace{1cm} (3.9.3)

From the Levinson–Durbin algorithm,

$$\sigma_m^2 = \sigma_{m-1}^2 \left[1 - |k_m|^2 \right] = \sigma_{m-1}^2 \left[1 - \frac{|r(m) + \hat{r}_{m-1}^* \theta_{m-1}|^2}{\sigma_{m-1}^4} \right]$$ \hspace{1cm} (3.9.4)

Combining (3.9.3) and (3.9.4) gives

$$|R_{m+1}| = |R_m| \cdot \sigma_{m-1}^2 \left[1 - \frac{|r(m) + \hat{r}_{m-1}^* \theta_{m-1}|^2}{\sigma_{m-1}^4} \right]$$ \hspace{1cm} (3.9.5)
which shows that \(|R_{m+1}|\) is quadratic in \(r(m)\). Since \(\sigma^2_{m-1} > 0\) and \(R_m\) is positive definite, it follows that

\[
|R_{m+1}| > 0 \text{ if and only if } |r(m) + \tilde{r}_{m-1}^* \theta_{m-1}|^2 < \sigma^2_{m-1}
\] (3.9.6)

The above region is an open disk in the complex plane whose center is \(-\tilde{r}_{m-1}^* \theta_{m-1}\) and radius is \(\sigma^2_{m-1}\).

Equation (3.9.6) leads to a construction of all possible covariance extensions. Note that if \(R_p > 0\) and we choose \(r(p)\) inside the disk \(|r(p) + \tilde{r}_{p-1}^* \theta_{p-1}|^2 < \sigma^2_{p-1}\), then \(|R_{p+1}| > 0\). This implies \(\sigma^2_p > 0\), and the admissible disk for \(r(p+1)\) has nonzero radius, so there are an infinite number of possible choices for \(r(p+1)\) such that \(|R_{p+2}| > 0\). Arguing inductively in this way for \(p = m, m + 1, \ldots\) shows that there are an infinite number of covariance extensions and provides a construction for them.

If we choose \(r(p) = -\tilde{r}_{p-1}^* \theta_{p-1}\) for \(p = m, m + 1, \ldots\) (i.e., \(r(p)\) is chosen to be at the center of each disk in (3.9.6)), then from (3.9.4) we see that the reflection coefficient \(k_p = 0\). Thus, from the Levinson–Durbin algorithm (see equation (3.5.10)) we have

\[
\theta_p = \begin{bmatrix} \theta_{p-1} \\ 0 \end{bmatrix}
\] (3.9.7)

and

\[
\sigma^2_p = \sigma^2_{p-1}
\] (3.9.8)

Arguing inductively again, we find that \(k_p = 0\), \(\theta_p = \begin{bmatrix} \theta_{m-1} \\ 0 \end{bmatrix}\), and \(\sigma^2_p = \sigma^2_{m-1}\) for \(p = m, m + 1, \ldots\). This extension, called the Maximum Entropy extension [BURG 1975], thus gives an ACS sequence that corresponds to an AR process of order less than or equal to \((m - 1)\). The name maximum entropy arises because the so-obtained spectrum has maximum entropy rate \(\int_{-\pi}^{\pi} \ln(\phi(\omega))d\omega\) under the Gaussian assumption [BURG 1975]; the entropy rate is closely related to the numerator in the spectral flatness measure introduced in Exercise 3.6.

For some recent results on the covariance extension problem and its variations, we refer to [BYRNES, GEORGIOU, AND LINDQUIST 2001] and the references therein.

3.9.3 The Burg Method for AR Parameter Estimation

The thesis [BURG 1975] developed a method for AR parameter estimation that is based on forward and backward prediction errors, and on direct estimation of the reflection coefficients in equation (3.9.1). In this complement, we develop the Burg estimator and discuss some of its properties.

Assume we have data measurements \(\{y(t)\}\) for \(t = 1, 2, \ldots, N\). Similarly to Complement 3.9.1, we define the forward and backward prediction errors for a \(p\)-th order model as:

\[
\hat{e}_{f,p}(t) = y(t) + \sum_{i=1}^{p} \hat{a}_{p,i} y(t-i), \quad t = p + 1, \ldots, N
\] (3.9.9)

\[
\hat{e}_{b,p}(t) = y(t-p) + \sum_{i=1}^{p} \hat{a}_{p,i}^* y(t-p+i), \quad t = p + 1, \ldots, N
\] (3.9.10)
We use hats to denote estimated quantities, and we explicitly denote the order \(p \) in both the prediction error sequences and the AR coefficients. The AR parameters are related to the reflection coefficient \(\hat{k}_p \) by (see (3.5.10))

\[
\hat{a}_{p,i} = \begin{cases}
\hat{a}_{p-1,i} + \hat{k}_p \hat{a}_{p-1,p-i}^*, & i = 1, \ldots, p - 1 \\
\hat{k}_p, & i = p
\end{cases}
\] (3.9.11)

Burg’s method considers the recursive–in–order estimation of \(\hat{k}_p \) given that the AR coefficients for order \(p - 1 \) have been computed. In particular, Burg’s method finds \(\hat{k}_p \) to minimize the arithmetic mean of the forward and backward prediction error variance estimates:

\[
\min_{\hat{k}_p} \frac{1}{2} [\hat{\rho}_f(p) + \hat{\rho}_b(p)]
\] (3.9.12)

where

\[
\hat{\rho}_f(p) = \frac{1}{N - p} \sum_{t=p+1}^{N} |\hat{e}_{f,p}(t)|^2
\]

\[
\hat{\rho}_b(p) = \frac{1}{N - p} \sum_{t=p+1}^{N} |\hat{e}_{b,p}(t)|^2
\]

and where \(\{\hat{a}_{p-1,i}\}_{i=1}^{p-1} \) are assumed to be known from the recursion at the previous order.

The prediction errors satisfy the following recursive–in–order expressions

\[
\hat{e}_{f,p}(t) = \hat{e}_{f,p-1}(t) + \hat{k}_p \hat{e}_{b,p-1}(t - 1)
\] (3.9.13)

\[
\hat{e}_{b,p}(t) = \hat{e}_{b,p-1}(t - 1) + \hat{k}_p^* \hat{e}_{f,p-1}(t)
\] (3.9.14)

Equation (3.9.13) follows directly from (3.9.9)–(3.9.11) as

\[
\hat{e}_{f,p}(t) = y(t) + \sum_{i=1}^{p-1} \left(\hat{a}_{p-1,i} + \hat{k}_p \hat{a}_{p-1,p-i}^* \right) y(t-i) + \hat{k}_p y(t-p)
\]

\[
= \left[y(t) + \sum_{i=1}^{p-1} \hat{a}_{p-1,i} y(t-i) \right] + \hat{k}_p \left[y(t-p) + \sum_{i=1}^{p-1} \hat{a}_{p-1,i}^* y(t-p+i) \right]
\]

\[
= \hat{e}_{f,p-1}(t) + \hat{k}_p \hat{e}_{b,p-1}(t - 1)
\]

Similarly,

\[
\hat{e}_{b,p}(t) = y(t-p) + \sum_{i=1}^{p-1} [\hat{a}_{p-1,i}^* + \hat{k}_p^* \hat{a}_{p-1,p-i}] y(t-p+i) + \hat{k}_p^* y(t)
\]

\[
= \hat{e}_{b,p-1}(t - 1) + \hat{k}_p^* \hat{e}_{f,p-1}(t)
\]
which shows (3.9.14).

We can use the above expressions to develop a recursive–in–order algorithm for estimating the AR coefficients. Note that the quantity to be minimized in (3.9.12) is quadratic in \hat{k}_p since

$$
\frac{1}{2} [\hat{\rho}_f(p) + \hat{\rho}_b(p)] = \frac{1}{2(N-p)} \sum_{t=p+1}^{N} \left\{ \left| \hat{e}_{f,p-1}(t) + \hat{k}_p \hat{e}_{b,p-1}(t-1) \right|^2 + \left| \hat{e}_{b,p-1}(t-1) + \hat{k}_p^* \hat{e}_{f,p-1}(t) \right|^2 \right\}
$$

$$
= \frac{1}{2(N-p)} \sum_{t=p+1}^{N} \left\{ \left[\hat{e}_{f,p-1}(t) + \hat{e}_{b,p-1}(t-1) \right]^2 \left[1 + |\hat{k}_p|^2 \right] + 2 \hat{e}_{f,p-1}(t) \hat{e}_{b,p-1}(t-1) \hat{k}_p^* + 2 \hat{e}_{f,p-1}(t) \hat{e}_{b,p-1}(t-1) \hat{k}_p \right\}
$$

Using Result R34 in Appendix A, we find that the \hat{k}_p that minimizes the above quantity is given by

$$
\hat{k}_p = \frac{-2 \sum_{t=p+1}^{N} \hat{e}_{f,p-1}(t) \hat{e}_{b,p-1}^*(t-1)}{\sum_{t=p+1}^{N} \left[\hat{e}_{f,p-1}(t)^2 + \hat{e}_{b,p-1}(t-1)^2 \right]} \quad (3.9.15)
$$

A recursive–in–order algorithm for estimating the AR parameters, called the Burg algorithm, is as follows:

The Burg Algorithm

Step 0. Initialize $\hat{e}_{f,0}(t) = \hat{e}_{b,0}(t) = y(t)$.

Step 1. For $p = 1, \ldots, n$,

(a) Compute $\hat{e}_{f,p-1}(t)$ and $\hat{e}_{b,p-1}(t)$ for $t = p+1, \ldots, N$ from (3.9.13) and (3.9.14).

(b) Compute \hat{k}_p from (3.9.15).

(c) Compute $\hat{a}_{p,i}$ for $i = 1, \ldots, p$ from (3.9.11).

Then $\hat{\theta} = [\hat{a}_{p,1}, \ldots, \hat{a}_{p,p}]^T$ is the vector of AR coefficient estimates.

Finally, we show that the resulting AR model is stable; this is accomplished by showing that $|\hat{k}_p| \leq 1$ for $p = 1, \ldots, n$ (see Exercise 3.9). To do so, we express \hat{k}_p as

$$
\hat{k}_p = \frac{-2c^*d}{c^*c + d^*d} \quad (3.9.16)
$$

where

$$
c = [\hat{e}_{b,p-1}(p), \ldots, \hat{e}_{b,p-1}(N-1)]^T
$$

$$
d = [\hat{e}_{f,p-1}(p+1), \ldots, \hat{e}_{f,p-1}(N)]^T
$$
Then
\[
0 \leq \|c - e^{i\alpha}d\|^2 = c^*c + d^*d - 2\text{Re}\{e^{i\alpha}c^*d\} \quad \text{for every } \alpha \in [-\pi, \pi]
\]
\[
\Rightarrow 2\text{Re}\{e^{i\alpha}c^*d\} \leq c^*c + d^*d \quad \text{for every } \alpha \in [-\pi, \pi]
\]
\[
\Rightarrow 2|c^*d| \leq c^*c + d^*d \implies |\hat{k}_p| \leq 1
\]

The Burg algorithm is computationally simple, and is amenable to both order-recursive and time-recursive solutions. In addition, the Burg AR model estimate is guaranteed to be stable. On the other hand, the Burg method is suboptimal in that it estimates the \(n \) reflection coefficients by decoupling an \(n \)-dimensional minimization problem into the \(n \) one-dimensional minimizations in (3.9.12). This is in contrast to the Least Squares AR method in Section 3.4.2, in which the AR coefficients are found by an \(n \)-dimensional minimization. For large \(N \), the two algorithms give very similar performance; for short or medium data lengths, the Burg algorithm usually behaves somewhere between the LS method and the Yule-Walker method.

3.9.4 The Gohberg–Semencul Formula

The Hermitian Toeplitz matrix \(R_{n+1} \) in (3.4.6) is highly structured. In particular, it is completely defined by its first column (or row). As shown in Section 3.5, exploitation of the special algebraic structure of (3.4.6) makes it possible to solve this system of equations very efficiently. In this complement we show that the Toeplitz structure of \(R_{n+1} \) may also be exploited to derive a closed-form expression for the inverse of this matrix. This expression is what is usually called the Gohberg–Semencul (GS) formula (or the Gohberg–Semencul–Heining formula, in recognition of the contribution also made by Heining to its discovery) [Söderström and Stoica 1989; Iohvidov 1982; Böttcher and Silbermann 1983]. As will be seen, an interesting consequence of the GS formula is the fact that, even if \(R_{n+1}^{-1} \) is not Toeplitz in general, it is still completely determined by its first column. Observe from (3.4.6) that the first column of \(R_{n+1}^{-1} \) is given by \(1 \theta^T/\sigma^2 \). In what follows, we drop the subscript \(n \) of \(\theta \) for notational convenience.

The derivation of the GS formula requires some preparations. First, note that the following nested structures of \(R_{n+1} \),

\[
R_{n+1} = \begin{bmatrix} \rho_0 & r_n^* \\ r_n & R_n \end{bmatrix} = \begin{bmatrix} R_n & \tilde{r}_n \\ \tilde{r}_n^* & \rho_0 \end{bmatrix}
\]

along with (3.4.6) and the result (3.5.3), imply that

\[
\theta = -R_n^{-1}r_n, \quad \tilde{\theta} = -R_n^{-1}\tilde{r}_n
\]

\[
\sigma_n^2 = \rho_0 - r_n^*R_n^{-1}r_n = \rho_0 - \tilde{r}_n^*R_n^{-1}\tilde{r}_n
\]

Next, make use of the above equations and a standard formula for the inverse of a
partitioned matrix (see Result R26 in Appendix A) to write

\[R_{n+1}^{-1} = \begin{bmatrix} 0 & 0 \\ 0 & R_n^{-1} \end{bmatrix} + \begin{bmatrix} 1 \\ \theta \end{bmatrix} \begin{bmatrix} 1 & \theta^* \end{bmatrix} / \sigma_n^2 \]
(3.9.17)

\[= \begin{bmatrix} R_n^{-1} & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} \hat{\theta} \\ 1 \end{bmatrix} \begin{bmatrix} \hat{\theta^*} & 1 \end{bmatrix} / \sigma_n^2 \]
(3.9.18)

Finally, introduce the following \((n+1) \times (n+1)\) matrix

\[Z = \begin{bmatrix} 0 & \cdots & 0 \\ 1 & \ddots & \vdots \\ \vdots & \ddots & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ & \ddots & \vdots \\ & \ddots & I_{n \times n} \\ & & 0 \end{bmatrix} \]

and observe that multiplication by \(Z\) of a vector or a matrix has the effects indicated below.

Owing to these effects of the linear transformation by \(Z\), this matrix is called a \textit{shift} or \textit{displacement operator}.

We are now prepared to present a simple derivation of the GS formula. The basic idea of this derivation is to eliminate \(R_n^{-1}\) from the expressions for \(R_{n+1}^{-1}\) in (3.9.17) and (3.9.18) by making use of the above displacement properties of \(Z\). Hence, using the expression (3.9.17) for \(R_{n+1}^{-1}\), and its “dual” (3.9.18) for calculating
Chapter 3 Parametric Methods for Rational Spectra

\(ZR_{n+1}^{-1}Z^T\), gives

\[
R_{n+1}^{-1} - ZR_{n+1}^{-1}Z^T = \frac{1}{\sigma_n^2} \begin{bmatrix}
1 & a_1 & \cdots & a_n \\
a_1 & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
a_n & \cdots & \cdots & 1
\end{bmatrix} \begin{bmatrix}
a_1^* & \cdots & a_n^*
\end{bmatrix} - \begin{bmatrix}
a_n^* & \cdots & a_1^*
\end{bmatrix} \begin{bmatrix}
0 & a_n & \cdots & a_1 \\
0 & \cdots & \ddots & \vdots \\
0 & \cdots & & 1
\end{bmatrix}
\] (3.9.19)

Premultiplying and postmultiplying (3.9.19) by \(Z\) and \(Z^T\), respectively, and then continuing to do so with the resulting equations, we obtain

\[
ZR_{n+1}^{-1}Z^T - Z^2R_{n+1}^{-1}Z^{2T} =
\frac{1}{\sigma_n^2} \begin{bmatrix}
0 & 1 & a_1 & \cdots & a_n \\
1 & \ddots & & & \vdots \\
\vdots & & \ddots & & \vdots \\
a_n & \cdots & \cdots & 1 & \vdots \\
a_{n-1} & & \cdots & \cdots & a_1
\end{bmatrix} \begin{bmatrix}
a_1^* & \cdots & a_{n-1}^*
\end{bmatrix} - \begin{bmatrix}
a_n^* & \cdots & a_1^*
\end{bmatrix} \begin{bmatrix}
0 & a_n & \cdots & a_1 \\
0 & \cdots & \ddots & \vdots \\
0 & \cdots & & 1
\end{bmatrix}
\] (3.9.20)

\[
Z^nR_{n+1}^{-1}Z^n = \frac{1}{\sigma_n^2} \begin{bmatrix}
0 & 1 & a_1 & \cdots & a_n \\
1 & \ddots & & & \vdots \\
\vdots & & \ddots & & \vdots \\
a_n & \cdots & \cdots & 1 & \vdots \\
a_{n-1} & & \cdots & \cdots & a_1
\end{bmatrix} \begin{bmatrix}
a_1^* & \cdots & a_{n-1}^*
\end{bmatrix} - \begin{bmatrix}
a_n^* & \cdots & a_1^*
\end{bmatrix} \begin{bmatrix}
0 & a_n & \cdots & a_1 \\
0 & \cdots & \ddots & \vdots \\
0 & \cdots & & 1
\end{bmatrix}
\] (3.9.21)

In (3.9.21), use is made of the fact that \(Z\) is a nilpotent matrix of order \(n + 1\), in the sense that:

\(Z^{n+1} = 0\)

(which can be readily verified). Now, by simply summing up the above equations (3.9.19)–(3.9.21), we derive the following expression for \(R_{n+1}^{-1}\):

\[
R_{n+1}^{-1} = \frac{1}{\sigma_n^2} \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & a_1 & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \cdots & \cdots & 1
\end{bmatrix} \begin{bmatrix}
a_1^* & \cdots & a_n^*
\end{bmatrix} - \begin{bmatrix}
a_n^* & \cdots & a_1^*
\end{bmatrix} \begin{bmatrix}
0 & a_n & \cdots & a_1 \\
0 & \cdots & \ddots & \vdots \\
0 & \cdots & & 1
\end{bmatrix}
\] (3.9.22)

which is the GS formula. Note from (3.9.22) that \(R_{n+1}^{-1}\) is, indeed, completely determined by its first column, as is claimed earlier.
The GS formula is inherently related to the Yule–Walker method of AR modeling, and this is one of the reasons for including it in this book. The GS formula is also useful in studying other spectral estimators, such as the Capon method, which is discussed in Chapter 5. The hope that the curious reader who studies this part will become interested in the fascinating topic of Toeplitz matrices and allied subjects is another reason for its inclusion. In particular, it is indeed fascinating to be able to derive an analytical formula for the inverse of a given matrix, as is shown above to be the case for Toeplitz matrices. The basic ideas of the previous derivation may be extended to more general matrices. Let us explain this briefly. For a given matrix X, the rank of $X - ZXZ^T$ is called the displacement rank of X under Z. As can be seen from (3.9.19), the inverse of a Hermitian Toeplitz matrix has a displacement rank equal to two. Now, assume we are given a (structured) matrix X for which we are able to find a nilpotent matrix Y such that X^{-1} has a low displacement rank under Y; the matrix Y does not need to have the previous form of Z. Then, paralleling the calculations in (3.9.19)–(3.9.22), we might be able to derive a simple “closed-form” expression for X^{-1}. See [FRIEDLANDER, MORF, KAILATH, AND LJUNG 1979] for more details on the topic of this complement.

3.9.5 MA Parameter Estimation in Polynomial Time

The parameter estimation of an AR process via the LS method leads to a quadratic minimization problem that can be solved in closed form (see (3.4.11), (3.4.12)). On the other hand, for an MA process the LS criterion similar to (3.4.11), which is given by

$$
\sum_{t=N_1}^{N_2} \left| \frac{1}{B(z)} y(t) \right|^2
$$

(3.9.23)

is a highly nonlinear function of the MA parameters (and likewise for an ARMA process).

A simple MA spectral estimator, that does not require solving a nonlinear minimization problem, is given by equation (3.6.4) and is repeated here:

$$
\hat{\phi}(\omega) = \sum_{k=-\hat{m}}^{\hat{m}} \hat{r}(k)e^{-i\omega k}
$$

(3.9.24)

where \hat{m} is the assumed MA order and $\{\hat{r}(k)\}$ are the standard sample covariances. As explained in Section 3.6 the main problem associated with (3.9.24) is the fact that $\hat{\phi}(\omega)$ is not guaranteed to be positive for all $\omega \in [0, 2\pi]$. If the final goal of the signal processing exercise is spectral analysis then an occurrence of negative values $\hat{\phi}(\omega) < 0$ (for some values of ω) is not acceptable, as the true spectral density of course satisfies $\phi(\omega) \geq 0$ for all $\omega \in [0, 2\pi]$. If the goal is MA parameter estimation, then the problem induced by $\hat{\phi}(\omega) < 0$ (for some values of ω) is even more serious because in such a case $\hat{\phi}(\omega)$ cannot be factored as in (3.6.1), and hence no MA parameter estimates can be determined directly from $\hat{\phi}(\omega)$. In this complement we will show how to get around the problem of $\hat{\phi}(\omega) < 0$, and hence how to obtain MA parameter estimates from such an invalid MA spectral density estimate, using an indirect but computationally efficient method (see [STOICA, MCKELVEY, AND...
A sound way of tackling this problem of “factoring the unfactorable” is as follows. Let \(\phi(\omega) \) denote the PSD of an MA process of order \(m \):

\[
\phi(\omega) = \sum_{k=0}^{m} r(k) e^{-i\omega k} \geq 0, \quad \omega \in [0, 2\pi]
\]

(3.9.25)

We would like to determine the \(\phi(\omega) \) in (3.9.25) that is closest to \(\hat{\phi}(\omega) \) in (3.9.24), in the following LS sense:

\[
\min \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\hat{\phi}(\omega) - \phi(\omega) \right)^2 d\omega
\]

(3.9.26)

The order \(m \) in (3.9.25) may be different from the order \(\hat{m} \) in (3.9.24). Without loss of generality we can assume that \(m \leq \hat{m} \) (indeed, if \(m > \hat{m} \) we can extend the sequence \(\{\hat{r}(k)\} \) with zeroes to make \(m \leq \hat{m} \)). Once \(\phi(\omega) \) has been obtained by solving (3.9.26) we can factor it by using any of a number of available spectral factorization algorithms (see, e.g., [Wilson 1969; Vostry 1975; Vostry 1976]), and in this way derive MA parameter estimates \(\{b_k\} \) satisfying

\[
\phi(\omega) = \sigma^2 |B(\omega)|^2
\]

(3.9.27)

(see (3.6.1)). This step of obtaining \(\{b_k\} \) and \(\sigma^2 \) from \(\phi(\omega) \) can be computed in \(O(m^2) \) flops. The problem that remains is to solve (3.9.26) for \(\phi(\omega) \) in a similarly efficient computational way.

As

\[
\hat{\phi}(\omega) - \phi(\omega) = \sum_{k=-m}^{m} [\hat{r}(k) - r(k)] e^{-i\omega k} + \sum_{|k|>m} \hat{r}(k) e^{-i\omega k}
\]

it follows from Parseval’s theorem (see (1.2.6)) that the spectral LS criterion of (3.9.26) can be rewritten as a covariance fitting criterion:

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\hat{\phi}(\omega) - \phi(\omega) \right]^2 d\omega = \sum_{k=-m}^{m} |\hat{r}(k) - r(k)|^2 + \sum_{|k|>m} |\hat{r}(k)|^2
\]

Consequently, the approximation problem (3.9.26) is equivalent to:

\[
\min_{\{r(k)\}} ||\hat{r} - r||_W^2, \text{ subject to (3.9.25)}
\]

(3.9.28)
where $\|x\|_W^2 = x^* W x$ and

$$\hat{r} = \begin{bmatrix} \hat{r}(0) & \ldots & \hat{r}(m) \end{bmatrix}^T$$
$$r = \begin{bmatrix} r(0) & \ldots & r(m) \end{bmatrix}^T$$

$$W = \begin{bmatrix} 1 & 0 \\ 0 & \ddots \\ 0 & 2 \end{bmatrix}$$

In the following we will describe a computationally efficient and reliable algorithm for solving problem (3.9.28) (with a general W matrix) in a time that is a polynomial function of m (a more precise flop count is given below). Note that a possible way of tackling (3.9.28) would consist of writing the covariances $\{r(k)\}$ as functions of the MA parameters (see (3.3.3)), which would guarantee that they satisfy (3.9.25), and then minimize the function in (3.9.28) with respect to the MA parameters. However, the so-obtained minimization problem would be, similarly to (3.9.23), nonlinear in the MA parameters (more precisely, the criterion in (3.9.28) is quartic in $\{b_k\}$), which is exactly the type of problem we tried to avoid in the first place.

As a preparation step for solving (3.9.28) we first derive a parameterization of the MA covariance sequence $\{r(k)\}$, which will turn out to be more convenient than the parameterization via $\{b_k\}$. Let J_k denote the $(m+1) \times (m+1)$ matrix with ones on the $(k+1)$st diagonal and zeroes everywhere else:

$$J_k = \begin{bmatrix} 0 & \ldots & 0 & 1 & 0 \\ \vdots & 0 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & 0 & \vdots \\ 0 & \ldots & \ldots & \ldots & 0 \end{bmatrix}, \quad (m+1) \times (m+1)$$

(for $k = 0, \ldots, m$). Note that $J_0 = I$. Then the following result holds:

Any MA covariance sequence $\{r(k)\}_{k=0}^m$ can be written as $r(k) = \text{tr}(J_k Q)$ for $k = 0, \ldots, m$, where Q is an $(m+1) \times (m+1)$ positive semidefinite matrix.

To prove this result, let

$$a(\omega) = [1 \ e^{i\omega} \ \ldots \ e^{im\omega}]^T$$
Chapter 3 Parametric Methods for Rational Spectra

and observe that

\[
a(\omega)a^*(\omega) = \begin{bmatrix} 1 & e^{-i\omega} & \cdots & e^{-im\omega} \\
e^{i\omega} & 1 & \cdots & \vdots \\
\vdots & \ddots & \ddots & e^{-i\omega} \\
e^{im\omega} & \cdots & e^{i\omega} & 1 \end{bmatrix} = \sum_{k=-m}^{m} J_k e^{-ik\omega}
\]

where \(J_{-k} = J_k^T \) (for \(k \geq 0 \)). Hence, for the sequence parameterized as in (3.9.29), we have that

\[
\sum_{k=-m}^{m} r(k) e^{-ik\omega} = \text{tr} \left[\sum_{k=-m}^{m} J_k Q e^{-ik\omega} \right]
= \text{tr} [a(\omega)a^*(\omega)Q] = a^*(\omega)Qa(\omega) \geq 0, \quad \text{for} \ \omega \in [0, 2\pi]
\]

which implies that \(\{r(k)\} \) indeed is an MA\((m)\) covariance sequence. To show that any MA\((m)\) covariance sequence can be parameterized as in (3.9.29), we make use of (3.3.3) to write (for \(k = 0, \ldots, m \))

\[
r(k) = \sigma^2 \sum_{j=k}^{m} b_j b^*_{j-k} = \sigma^2 \begin{bmatrix} b_0^* & \cdots & b_m^* \end{bmatrix} J_k \begin{bmatrix} b_0 \\
\vdots \\
b_m \end{bmatrix}
= \text{tr} \left\{ J_k \cdot \sigma^2 \begin{bmatrix} b_0 \\
\vdots \\
b_m \end{bmatrix} \begin{bmatrix} b_0^* & \cdots & b_m^* \end{bmatrix} \right\}
\]

(3.9.30)

Evidently (3.9.30) has the form stated in (3.9.29) with

\[
Q = \sigma^2 \begin{bmatrix} b_0 \\
\vdots \\
b_m \end{bmatrix} \begin{bmatrix} b_0^* & \cdots & b_m^* \end{bmatrix}
\]

With this observation, the proof of (3.9.29) is complete.

We can now turn our attention to the main problem, (3.9.28). We will describe an efficient algorithm for solving (3.9.28) with a general weighting matrix \(W > 0 \) (as already stated.). For a choice of \(W \) that usually yields more accurate MA parameter estimates than the simple diagonal weighting in (3.9.28), we refer the reader to [STOICA, MCKELVEY, AND MARI 2000]. Let

\[
\mu = C(\hat{r} - r)
\]

where \(C \) is the Cholesky factor of \(W \) (i.e., \(C \) is an upper triangular matrix and \(W = C^*C \)). Also, let \(\alpha \) be a vector containing all the elements in the upper triangle of \(Q \), including the diagonal:

\[
\alpha = [Q_{1,1} \ Q_{1,2} \ \cdots \ Q_{1,m+1} ; Q_{2,2} \ \cdots \ Q_{2,m+1} ; \cdots ; Q_{m+1,m+1}]^T
\]
Section 3.10 Exercises

Note that α defines Q; that is, the elements of Q are either elements of α or complex conjugates of elements of α. Making use of this notation and of (3.9.29) we can rewrite (3.9.28) in the following form (for real-valued sequences):

$$\min_{\rho, \mu, \alpha} \rho \quad \text{subject to:}$$

$$\|\mu\| \leq \rho$$

$$Q \succeq 0$$

$$ \begin{bmatrix}
 \text{tr}[Q] \\
 \text{tr} \left[\frac{1}{2} (J_1 + J_1^T) Q \right] \\
 \vdots \\
 \text{tr} \left[\frac{1}{2} (J_m + J_m^T) Q \right]
\end{bmatrix} + C^{-1}\mu = \hat{\nu}$$

(3.9.31)

Note that to obtain the equality constraint in (3.9.31) we used the fact that (in the real-valued case; the complex-valued case can be treated similarly):

$$r(k) = \text{tr}(J_k Q) = \text{tr}(Q^T J_k^T) = \text{tr}(J_k^T Q) = \frac{1}{2} \text{tr} \left[(J_k + J_k^T)Q\right]$$

The reason for this seemingly artificial trick is that we need the matrices multiplying Q in (3.9.31) to be symmetric. In effect, the problem (3.9.31) has precisely the form of a semidefinite quadratic program (SQP) which can be solved efficiently by means of interior point methods (see [Sturm 1999] and also [Dumitrescu, Tabus, and Stoica 2001] and references therein). Specifically, it can be shown that an interior point method (such as the ones in [Sturm 1999]) when applied to the SQP in (3.9.31) requires $O(m^4)$ flops per iteration; furthermore, the number of iterations needed to achieve practical convergence of the method is typically quite small (and nearly independent of m), for instance between 10 and 20 iterations. The overall conclusion, therefore, is that (3.9.31), and hence the original problem (3.9.28), can be efficiently solved in $O(m^4)$ flops. Once the solution to (3.9.31) has been computed, we can obtain the corresponding MA covariances either as $r = \hat{\nu} - C^{-1}\mu$ or as $r(k) = \text{tr}(J_k Q)$ for $k = 0, \ldots, m$. Numerical results obtained with the MA parameter estimation algorithm outlined above have been reported in [Dumitrescu, Tabus, and Stoica 2001] (see also [Stoica, McKelvey, and Mari 2000]).

3.10 Exercises

Exercise 3.1: The Minimum Phase Property

As stated in the text, a polynomial $A(z)$ is said to be minimum phase if all its zeroes are inside the unit circle. In this exercise, we motivate the name minimum phase. Specifically, we will show that if $A(z) = 1 + a_1 z^{-1} + \cdots + a_n z^{-n}$ has real-valued coefficients and has all its zeroes inside the unit circle, and if $B(z)$ is any other polynomial in z^{-1} with real-valued coefficients that satisfies $|B(\omega)| = |A(\omega)|$ and $B(0) = A(0)$ (where $B(\omega) \triangleq B(z)|_{z=e^{i\omega}}$), then the phase lag of $B(\omega)$, given by
Chapter 3 Parametric Methods for Rational Spectra

$-\arg B(\omega)$, is greater than or equal to the phase lag of $A(\omega)$:

$$-\arg B(\omega) \geq -\arg A(\omega)$$

Since we can factor $A(z)$ as

$$A(z) = \prod_{k=1}^{n} (1 - \alpha_k z^{-1})$$

and $\arg A(\omega) = \sum_{k=1}^{n} \arg (1 - \alpha_k e^{-i\omega})$, we begin by proving the minimum phase property for first-order polynomials. Let

$$C(z) = 1 - \alpha z^{-1}, \quad \alpha = r e^{i\theta}, \quad r < 1$$

$$D(z) = z^{-1} - \alpha^* = C(z) \frac{z^{-1} - \alpha^*}{1 - \alpha z^{-1}} \triangleq C(z) E(z)$$

(3.10.1)

(a) Show that the zero of $D(z)$ is outside the unit circle, and that $|D(\omega)| = |C(\omega)|$.

(b) Show that

$$-\arg E(\omega) = \omega + 2 \tan^{-1} \left(\frac{r \sin(\omega - \theta)}{1 - r \cos(\omega - \theta)} \right)$$

Also, show that the above function is increasing.

(c) If α is real, conclude that $-\arg D(\omega) \geq -\arg C(\omega)$ for $0 \leq \omega \leq \pi$, which justifies the name minimum phase for $C(z)$ in the first-order case.

(d) Generalize the first-order results proven in parts (a)-(c) to polynomials $A(z)$ and $B(z)$ of arbitrary order; in this case, the α_k are either real or occur in complex-conjugate pairs.

Exercise 3.2: Generating the ACS from ARMA Parameters

In this chapter we developed equations expressing the ARMA coefficients $\{\sigma^2, a_i, b_j\}$ in terms of the ACS $\{r(k)\}_{k=-\infty}^{\infty}$. Find the inverse map; that is, given $\sigma^2, a_1, \ldots, a_n, b_1, \ldots, b_m$, find equations to determine $\{r(k)\}_{k=-\infty}^{\infty}$.

Exercise 3.3: Relationship between AR Modeling and Forward Linear Prediction

Suppose we have a zero mean stationary process $\{y(t)\}$ (not necessarily AR) with ACS $\{r(k)\}_{k=-\infty}^{\infty}$. We wish to predict $y(t)$ by a linear combination of its n past values; that is, the predicted value is given by

$$\hat{y}_f(t) = \sum_{k=1}^{n} (-a_k) y(t-k)$$

We define the forward prediction error as

$$e_f(t) = y(t) - \hat{y}_f(t) = \sum_{k=0}^{n} a_k y(t-k)$$
Section 3.10 Exercises

with \(a_0 = 1 \). Show that the vector \(\theta_f = [a_1 \ldots a_n]^T \) of prediction coefficients that minimizes the prediction error variance \(\sigma_f^2 \triangleq E\{e_f(t)^2\} \) is the solution to (3.4.2).

Show also that \(\sigma_f^2 = \sigma_n^2 \), i.e., that \(\sigma_n^2 \) in (3.4.2) is the prediction error variance.

Furthermore, show that if \(\{y(t)\} \) is an AR(\(p \)) process with \(p \leq n \), then the prediction error is white noise, and that

\[
\begin{align*}
 k_j &= 0 \quad \text{for } j > p
\end{align*}
\]

where \(k_j \) is the \(j \)th reflection coefficient defined in (3.5.7). Show that, as a consequence, \(a_{p+1}, \ldots, a_n = 0 \). Hint: The calculations performed in Section 3.4.2 and in Complement 3.9.2 will be useful in solving this problem.

Exercise 3.4: Relationship between AR Modeling and Backward Linear Prediction

Consider the signal \(\{y(t)\} \) as in Exercise 3.3. This time, we will consider backward prediction; that is, we will predict \(y(t) \) from its \(n \) immediate future values:

\[
\hat{y}_b(t) = \sum_{k=1}^{n} (-b_k)y(t + k)
\]

with corresponding backward prediction error \(e_b(t) = y(t) - \hat{y}_b(t) \). Such backward prediction is useful in applications where noncausal processing is permitted; for example, when the data has been prerecorded and is stored in memory or on a tape and we want to make inferences on samples that precede the observed ones. Find an expression similar to (3.4.2) for the backward prediction coefficient vector \(\theta_b = [b_1 \ldots b_n]^T \). Find a relationship between the \(\theta_b \) and the corresponding forward prediction coefficient vector \(\theta_f \). Relate the forward and backward prediction error variances.

Exercise 3.5: Prediction Filters and Smoothing Filters

The smoothing filter is a practically useful variation on the theme of linear prediction. A result of Exercises 3.3 and 3.4 should be that for the forward and backward prediction filters

\[
A(z) = 1 + \sum_{k=1}^{n} a_k z^{-k} \quad \text{and} \quad B(z) = 1 + \sum_{k=1}^{n} b_k z^{-k},
\]

the prediction coefficients satisfy \(a_k = b_k^* \), and the prediction error variances are equal.

Now consider the smoothing filter

\[
e_s(t) = \sum_{k=1}^{m} c_k y(t - k) + y(t) + \sum_{k=1}^{m} d_k y(t + k).
\]

(a) Derive a system of linear equations, similar to the forward and backward linear prediction equations, that relate the smoothing filter coefficients, the smoothing prediction error variance \(\sigma_s^2 = E\{|e_s(t)|^2\} \), and the ACS of \(y(t) \).
Chapter 3 Parametric Methods for Rational Spectra

(b) For \(n = 2m \), provide an example of a zero-mean stationary random process for which the minimum smoothing prediction error variance is greater than the minimum forward prediction error variance. Also provide a second example where the minimum smoothing filter prediction error variance is less than the corresponding minimum forward prediction error variance.

(c) Assume \(m = n \), but now constrain the smoothing prediction coefficients to be complex-conjugate symmetric: \(c_k = d_k^* \) for \(k = 1, \ldots, m \). In this case the two prediction filters and the smoothing filter have the same number of degrees of freedom. Prove that the minimum smoothing prediction error variance is less than or equal to the minimum (forward or backward) prediction error variance. Hint: Show that the unconstrained minimum smoothing error variance solution (where we do not impose the constraint \(c_k = d_k^* \)) satisfies \(c_k = d_k^* \) anyway.

Exercise 3.6: Relationship between Minimum Prediction Error and Spectral Flatness

Consider a random process \(\{y(t)\} \) with ACS \(\{r(k)\} \) \((y(t) \) is not necessarily an AR process\). We find an AR\((n) \) model for \(y(t) \) by solving (3.4.6) for \(\sigma_n^2 \) and \(\theta_n \). These parameters generate an AR PSD model:

\[
\phi_{AR}(\omega) = \frac{\sigma_n^2}{|A(\omega)|^2}
\]

whose inverse Fourier transform we denote by \(\{r_{AR}(k)\}_{k=-\infty}^{\infty} \). In this exercise we explore the relationship between \(\{r(k)\} \) and \(\{r_{AR}(k)\} \), and between \(\phi_y(\omega) \) and \(\phi_{AR}(\omega) \).

(a) Verify that the AR model has the property that

\[
r_{AR}(k) = r(k), \quad k = 0, \ldots, n.
\]

(b) We have seen from Exercise 3.3 that the AR model minimizes the nth-order forward prediction error variance; that is, the variance of

\[
e(t) = y(t) + a_1y(t-1) + \ldots + a_ny(t-n).
\]

For the special case that \(\{y(t)\} \) is AR of order \(n \) or less, we also know that \(\{e(t)\} \) is white noise, so \(\phi_e(\omega) \) is flat. We will extend this last property by showing that, for general \(\{y(t)\} \), \(\phi_e(\omega) \) is maximally flat in the sense that the AR model maximizes the spectral flatness measure given by

\[
f_e = \frac{\exp \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln \phi_e(\omega) d\omega \right]}{\int_{-\pi}^{\pi} \phi_e(\omega) d\omega} \quad (3.10.2)
\]

where

\[
\phi_e(\omega) = |A(\omega)|^2 \phi_y(\omega) = \sigma_n^2 \frac{\phi_y(\omega)}{\phi_{AR}(\omega)}.
\]

Show that the measure \(f_e \) has the following “desirable” properties of a spectral flatness measure:
Section 3.10 Exercises 133

(i) \(f_e \) is unchanged if \(\phi_e(\omega) \) is multiplied by a constant.
(ii) \(0 \leq f_e \leq 1 \).
(iii) \(f_e = 1 \) if and only if \(\phi_e(\omega) = \text{constant} \).

Hint: Use the fact that

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln |A(\omega)|^2 \, d\omega = 0 \tag{3.10.3}
\]

(The above result can be proven using the Cauchy integral formula). Show that (3.10.3) implies

\[
f_e = f_y \frac{r_y(0)}{r_e(0)} \tag{3.10.4}
\]

and thus that minimizing \(r_e(0) \) maximizes \(f_e \).

Exercise 3.7: Diagonalization of the Covariance Matrix

Show that \(R_{n+1} \) in equation (3.5.2) satisfies

\[
L^* R_{n+1} L = D
\]

where

\[
L = \begin{bmatrix}
1 & 0 & \cdots & 0 & 0 \\
1 & \ddots & & \vdots & \\
\vdots & \ddots & 0 & \ddots & \ddots \\
\theta_n & \theta_{n-1} & \cdots & 1 & 0 \\
\theta_n & \theta_{n-1} & \cdots & \theta_1 & 1 \\
\end{bmatrix}
\]

and \(D = \text{diag} [\sigma_n^2, \sigma_{n-1}^2, \ldots, \sigma_0^2] \)

and where \(\theta_k \) and \(\sigma_k^2 \) are defined in (3.4.6). Use this property to show that

\[
|R_{n+1}| = \prod_{k=0}^{n} \sigma_k^2
\]

Exercise 3.8: Stability of Yule–Walker AR Models

Assume that the matrix \(R_{n+1} \) in equation (3.4.6) is positive definite. (This can be achieved by using the sample covariances in (2.2.4) to build \(R_{n+1} \), as explained in Section 2.2.) Then show that the AR model obtained from the Yule–Walker equations (3.4.6) is stable in the sense that the polynomial \(A(z) \) has all its zeroes strictly inside the unit circle. (Most of the available proofs for this property are discussed in [STOICA AND NEHORAI 1987]).

Exercise 3.9: Three Equivalent Representations for AR Processes

In this chapter we have considered three ways to parameterize an AR(\(n \)), but we have not explicitly shown when they are equivalent. Show that, for a nondegenerate AR(\(n \)) process (i.e., one for which \(R_{n+1} \) is positive definite), the following three parameterizations are equivalent:

(R) \(r(0), \ldots, r(n) \) such that \(R_{n+1} \) is positive definite.

(K) \(r(0), k_1, \ldots, k_n \) such that \(r(0) > 0 \) and \(|k_i| < 1 \) for \(i = 1, \ldots, n \).
(A) $\sigma_n^2, a_1, \ldots, a_n$ such that $\sigma_n^2 > 0$ and all the zeroes of $A(z)$ are inside the unit circle.

Find the mapping from each parameterization to the others (some of these have already been derived in the text and in the previous exercises).

Exercise 3.10: An Alternative Proof of the Stability Property of Reflection Coefficients

Prove that \hat{k}_p which minimizes (3.9.12) must be such that $|\hat{k}_p| \leq 1$, without using the expression (3.9.15) for \hat{k}_p. **Hint:** Write the criterion in (3.9.12) as

$$ f(k_p) = E \left(\left\| \begin{bmatrix} 1 & k_p \times \hat{e}_p(t) \end{bmatrix} z(t) \right\|^2 \right) $$

where

$$ E(\cdot) = \frac{1}{2(N-p)} \sum_{t=p+1}^{N} (\cdot) $$

$$ z(t) = \begin{bmatrix} \hat{e}_{f,p-1}(t) \hat{e}_{b,p-1}(t-1) \end{bmatrix}^T $$

and show that if $|k_p| > 1$ then $f(k_p) > f(1/k_p^*)$.

Exercise 3.11: Recurrence Properties of Reflection Coefficient Sequence for an MA Model

For an AR process of order n, the reflection coefficients satisfy $k_i = 0$ for $i > n$ (see Exercise 3.3), and the ACS satisfies the linear recurrence relationship $A(z)r(k) = 0$ for $k > 0$. Since an MA process of order m has the property that $r(i) = 0$ for $i > m$, we might wonder if a recurrence relationship holds for the reflection coefficients corresponding to a MA process. We will investigate this “conjecture” for a simple case.

Consider an MA process of order 1 with parameter b_1. Show that $|R_n|$ satisfies the relationship

$$ |R_n| = r(0) |R_{n-1}| - |r(1)|^2 |R_{n-2}|, \quad n \geq 2 $$

Show that $k_n = (\pm r(1))^{-n/|R_n|}$ and that the reflection coefficient sequence satisfies the recurrence relationship:

$$ \frac{1}{k_n} = \frac{r(0)}{r(1)} \frac{1}{k_{n-1}} - \frac{r^*(1)}{r(1)} \frac{1}{k_{n-2}} \quad (3.10.5) $$

with appropriate initial conditions (state them). Show that the solution to (3.10.5) for $|b_1| < 1$ is

$$ k_n = \frac{(1 - |b_1|^2)(-b_1)^n}{1 - |b_1|^{2n+2}} \quad (3.10.6) $$

This sequence decays exponentially to zero. When $b_1 = -1$, show that $k_n = 1/n$.

Section 3.10 Exercises

135

It has been shown that for large n, $B(z)k_n \approx 0$, where ≈ 0 means that the residue is small compared to the k_n terms [GEORGIOU 1987]. This result holds even for MA processes of order higher than 1. Unfortunately, the result is of little practical use as a means of estimating the b_k coefficients since for large n the k_n values are (very) small.

Exercise 3.12: Asymptotic Variance of the ARMA Spectral Estimator

Consider the ARMA spectral estimator (3.2.2) with any consistent estimate of σ^2 and $\{a_i, b_j\}$. For simplicity, assume that the ARMA parameters are real; however, the result holds for complex ARMA processes as well. Show that the asymptotic (for large data sets) variance of this spectral estimator can be written in the form

$$E \left\{ \left(\hat{\phi}(\omega) - \phi(\omega) \right)^2 \right\} = C(\omega)\phi^2(\omega)$$ \hspace{1cm} (3.10.7)

where $C(\omega) = \varphi^T(\omega)P\varphi(\omega)$. Here, P is the covariance matrix of the estimate of the parameter vector $[\sigma^2, a^T, b^T]^T$ and the vector $\varphi(\omega)$ has an expression that is to be found. Deduce that (3.10.7) has the same form as the asymptotic variance of the periodogram spectral estimator but with the essential difference that in the ARMA estimator case $C(\omega)$ goes to zero as the number of data samples processed increases (and that $C(\omega)$ in (3.10.7) is a function of ω). **Hint:** Use a Taylor series expansion of $\hat{\phi}(\omega)$ as a function of the estimated parameters $\{\hat{\sigma}^2, \hat{a}_i, \hat{b}_j\}$ (see, e.g., Appendix B).

Exercise 3.13: Filtering Interpretation of Numerator Estimators in ARMA Estimation

An alternative method for estimating the MA part of an ARMA PSD is as follows. Assume we have estimated the AR coefficients (e.g., from equation (3.7.2) or (3.7.4)). We filter $y(t)$ by $A(z)$ to form $f(t)$:

$$f(t) = y(t) + \sum_{i=1}^{n} \hat{a}_i y(t-i), \quad t = n+1, \ldots, N.$$ \hspace{1cm}

Then estimate the ARMA PSD as

$$\hat{\phi}(\omega) = \frac{\sum_{k=-m}^{m} \hat{r}_f(k)e^{-i\omega k}}{|A(\omega)|^2}$$

where $\hat{r}_f(k)$ are the standard ACS estimates for $f(t)$. Show that the above estimator is quite similar to (3.7.8) and (3.7.9) for large N.

Exercise 3.14: An Alternative Expression for ARMA Power Spectral Density

Consider an ARMA(n,m) process. Show that

$$\phi(z) = \sigma^2 B(z)B^*(1/z^*) \frac{1}{A(z)A^*(1/z^*)}$$

can be written as

$$\phi(z) = \frac{C(z)}{A(z)} + \frac{C^*(1/z^*)}{A^*(1/z^*)}$$ \hspace{1cm} (3.10.8)
where

\[C(z) = \sum_{k=0}^{\max(m,n)} c_k z^{-k} \]

Show that the polynomial \(C(z) \) satisfying (3.10.8) is unique, and find an expression for \(c_k \) in terms of \(\{a_i\} \) and \(\{r(k)\} \).

Equation (3.10.8) motivates an alternative estimation procedure to that in equations (3.7.8) and (3.7.9) for ARMA spectral estimation. In the alternative approach, we first estimate the AR coefficients \(\{\hat{a}_i\}_{i=1}^n \) using, e.g., equation (3.7.2). We then estimate the \(c_k \) coefficients using the formula found in this exercise, and finally insert the estimates \(\hat{a}_k \) and \(\hat{c}_k \) into the right-hand side of (3.10.8) to obtain a spectral estimate. Prove that this alternative estimator is equivalent to that in (3.7.8)–(3.7.9) under certain conditions, and find conditions on \(\hat{a}_k \) so that they are equivalent. Also, compare (3.7.9) and (3.10.8) for ARMA(\(n;m \)) spectral estimation when \(m < n \).

Exercise 3.15: Padé Approximation

A minimum phase (or causally invertible) ARMA(\(n;m \)) model \(B(z)/A(z) \) can be equivalently represented as an AR(\(\infty \)) model \(1/C(z) \). The approximation of a ratio of polynomials by a polynomial of higher order was considered by Padé in the late 1800s. One possible application of the Padé approximation is to obtain an ARMA spectral model by first estimating the coefficients of a high–order AR model, then solving for a (low–order) ARMA model from the estimated AR coefficients. In this exercise we investigate the model relationships and some consequences of truncating the AR model polynomial coefficients.

Define:

\[
A(z) = 1 + a_1 z^{-1} + \cdots + a_n z^{-n} \\
B(z) = 1 + b_1 z^{-1} + \cdots + b_m z^{-m} \\
C(z) = 1 + c_1 z^{-1} + c_2 z^{-2} + \cdots
\]

(a) Show that

\[
c_k = \begin{cases}
1, & k = 0 \\
\hat{a}_k - \sum_{i=1}^{m} b_i \hat{c}_{k-i}, & 1 \leq k \leq n \\
-\sum_{i=1}^{m} b_i \hat{c}_{k-i}, & k > n
\end{cases}
\]

where we assume any polynomial coefficient is equal to zero outside its defined range.

(b) Using the equations above, derive a procedure for computing the \(a_i \) and \(b_j \) parameters from a given set of \(\{c_k\}_{k=0}^{m+n} \) parameters. Assume \(m \) and \(n \) are known.

(c) The above equations give an exact representation using an infinite–order AR polynomial. In the Padé method, an \textit{approximation} to \(B(z)/A(z) = 1/C(z) \) is obtained by truncating (setting to zero) the \(c_k \) coefficients for \(k > m + n \).
Suppose a stable minimum phase ARMA(n,m) filter is approximated by an AR$(m+n)$ filter using the Padé approximation. Give an example to show that the resulting AR approximation is not necessarily stable.

Exercise 3.16: (Non)Uniqueness of Fully Parameterized ARMA Equations

The shaping filter (or transfer function) of the ARMA equation (3.8.1) is given by the following matrix fraction:

\[H(z) = A^{-1}(z)B(z), \quad (ny \times ny) \tag{3.10.9} \]

where \(z \) is a dummy variable, and

\[A(z) = I + A_1 z^{-1} + \cdots + A_p z^{-p} \]

\[B(z) = I + B_1 z^{-1} + \cdots + B_p z^{-p} \]

(if the AR and MA orders, \(n \) and \(m \), are different, then \(p \) above is equal to \(\max(m,n) \)). Assume that \(A(z) \) and \(B(z) \) are “fully parameterized” in the sense that all elements of the matrix coefficients \(\{A_i, B_j\} \) are unknown.

The matrix fraction description (MFD) (3.10.9) of the ARMA shaping filter is unique if and only if there exist no matrix polynomials \(\tilde{A}(z) \) and \(\tilde{B}(z) \) of degree \(p \) and no matrix polynomial \(L(z) \neq I \) such that

\[\tilde{A}(z) = L(z)A(z) \quad \tilde{B}(z) = L(z)B(z) \tag{3.10.10} \]

This can be verified by making use of (3.10.9); see, e.g., [Kailath 1980].

Show that the above uniqueness condition is satisfied for the fully parameterized MFD if and only if

\[\text{rank}[A_p, B_p] = ny \tag{3.10.11} \]

Comment on the character of this condition: is it restrictive or not?

COMPUTER EXERCISES

Tools for AR, MA, and ARMA Spectral Estimation:

The text web site www.prenhall.com/stoica contains the following MATLAB functions for use in computing AR, MA, and ARMA spectral estimates and selecting the model order. For the first four functions, \(y \) is the input data vector, \(n \) is the desired AR order, and \(m \) is the desired MA order (if applicable). The outputs are \(a \), the vector \([\hat{a}_1, \ldots, \hat{a}_n]^T \) of estimated AR parameters, \(b \), the vector \([\hat{b}_1, \ldots, \hat{b}_m]^T \) of MA parameters (if applicable), and \(\text{sig2} \), the noise variance estimate \(\hat{\sigma}^2 \). Variable definitions specific to a particular functions are given below.
Chapter 3 Parametric Methods for Rational Spectra

- \([a, sig2]=\text{yulewalker}(y, n)\)
 The Yule–Walker AR method given by equation (3.4.2).

- \([a, sig2]=\text{lsar}(y, n)\)
 The covariance Least Squares AR method given by equation (3.4.12).

- \([a, gamma]=\text{myarma}(y, n, m, M)\)
 The modified Yule–Walker based ARMA spectral estimate given by equation (3.7.9), where the AR coefficients are estimated from the overdetermined set of equations (3.7.4) with \(W = I\). Here, \(M\) is the number of Yule-Walker equations used in (3.7.4) and \(\gamma\) is the vector
 \[^{\gamma_0; \ldots; \gamma_m}\]

- \([a, b, sig2]=\text{lsarma}(y, n, m, K)\)
 The two–stage Least Squares ARMA method given in Section 3.7.2; \(K\) is the number of AR parameters to estimate in Step 1 of that algorithm.

- \(\text{order=armaorder}(mo, sig2, N, nu)\)
 Computes the AIC, AICc, GIC, and BIC model order selections for general parameter estimation problems (see Appendix C for details on the derivations of these methods). Here, \(mo\) is a vector of possible model orders, \(sig2\) is the vector of estimated residual variances corresponding to the model orders in \(mo\), \(N\) is the length of the observed data vector, and \(nu\) is a parameter in the GIC method. The output 4-element vector \(\text{order}\) contains the model orders selected using AIC, AICc, GIC, and BIC, respectively.

Exercise C3.17: Comparison of AR, ARMA and Periodogram Methods for ARMA Signals

In this exercise we examine the properties of parametric methods for PSD estimation. We will use two ARMA signals, one broadband and one narrowband, to illustrate the performance of these parametric methods.

Broadband ARMA Process: Generate realizations of the broadband ARMA process

\[y(t) = \frac{B_1(z)}{A_1(z)} e(t) \]

with \(\sigma^2 = 1\) and

\[A_1(z) = 1 - 1.3817z^{-1} + 1.5632z^{-2} - 0.8843z^{-3} + 0.4096z^{-4} \]

\[B_1(z) = 1 + 0.3544z^{-1} + 0.3508z^{-2} + 0.1736z^{-3} + 0.2401z^{-4} \]

Choose the number of samples as \(N = 256\).

(a) Estimate the PSD of the realizations by using the four AR and ARMA estimators described above. Use AR(4), AR(8), ARMA(4,4), and ARMA(8,8); for the MYW algorithm, use both \(M = n\) and \(M = 2n\); for the LS AR(MA) algorithms, use \(K = 2n\). Illustrate the performance by plotting ten overlaid estimates of the PSD. Also, plot the true PSD on the same diagram.
In addition, plot pole or pole–zero estimates for the various methods. (For the MYW method, the zeroes can be found by spectral factorization of the numerator; comment on the difficulties you encounter, if any.)

(b) Compare the two AR algorithms. How are they different in performance?

(c) Compare the two ARMA algorithms. How does M impact performance of the MYW algorithm? How do the accuracies of the respective pole and zero estimates compare?

(d) Use an ARMA(4,4) model for the LS ARMA algorithm, and estimate the PSD of the realizations for $K = 4, 8, 12, \text{and } 16$. How does K impact performance of the algorithm?

(e) Compare the lower–order estimates with the higher–order estimates. In what way(s) does increasing the model order improve or degrade estimation performance?

(f) Compare the AR to the ARMA estimates. How does the AR(8) model perform with respect to the ARMA(4,4) model and the ARMA(8,8) model?

(g) Compare your results with those using the periodogram method on the same process (from Exercise C2.21 in Chapter 2). Comment on the difference between the methods with respect to variance, bias, and any other relevant properties of the estimators you notice.

Narrowband ARMA Process: Generate realizations of the narrowband ARMA process

$$y(t) = \frac{B_2(z)}{A_2(z)} e(t)$$

with $\sigma^2 = 1$ and

$$A_2(z) = 1 - 1.6408z^{-1} + 2.2044z^{-2} - 1.4808z^{-3} + 0.8145z^{-4}$$

$$B_2(z) = 1 + 1.5857z^{-1} + 0.9604z^{-2}$$

(a) Repeat the experiments and comparisons in the broadband example for the narrowband process; this time, use the following model orders: AR(4), AR(8), AR(12), AR(16), ARMA(4,2), ARMA(8,4), and ARMA(12,6).

(b) Study qualitatively how the algorithm performances differ for narrowband and broadband data. Comment separately on performance near the spectral peaks and near the spectral valleys.

Exercise C3.18: AR and ARMA Estimators for Line Spectral Estimation

The ARMA methods can also be used to estimate line spectra (estimation of line spectra by other methods is the topic of Chapter 4). In this application, AR(MA) techniques are often said to provide super–resolution capabilities because they are able to resolve sinusoids too closely spaced in frequency to be resolved by periodogram–based methods.

We again consider the four AR and ARMA estimators described above.
Chapter 3 Parametric Methods for Rational Spectra

(a) Generate realizations of the signal

\[y(t) = 10 \sin(0.24\pi t + \varphi_1) + 5 \sin(0.26\pi t + \varphi_2) + e(t), \quad t = 1, \ldots, N \]

where \(e(t) \) is (real) white Gaussian noise with variance \(\sigma^2 \), and where \(\varphi_1, \varphi_2 \) are independent random variables each uniformly distributed on \([0, 2\pi]\). From the results in Chapter 4, we find the spectrum of \(y(t) \) to be

\[\phi(\omega) = 50\pi \left[\delta(\omega - 0.24\pi) + \delta(\omega + 0.24\pi) \right] + 12.5\pi \left[\delta(\omega - 0.26\pi) + \delta(\omega + 0.26\pi) \right] + \sigma^2 \]

(b) Compute the “true” AR polynomial (using the true ACS sequence; see equation (4.1.6)) using the Yule–Walker equations for both AR(4), AR(12), ARMA(4,4) and ARMA(12,12) models when \(\sigma^2 = 1 \). This experiment corresponds to estimates obtained as \(N \to \infty \). Plot \(1/|A(\omega)|^2 \) for each case, and find the roots of \(A(z) \). Which method(s) are able to resolve the two sinusoids?

c) Consider now \(N = 64 \), and set \(\sigma^2 = 0 \); this corresponds to the finite data length but infinite SNR case. Compute estimated AR polynomials using the four spectral estimators and the AR and ARMA model orders described above; for the MYW technique consider both \(M = n \) and \(M = 2n \), and for the LS ARMA technique use both \(K = n \) and \(K = 2n \). Plot \(1/|A(\omega)|^2 \), overlaid, for 50 different Monte–Carlo simulations (using different values of \(\varphi_1 \) and \(\varphi_2 \) for each). Also plot the zeroes of \(A(z) \), overlaid, for these 50 simulations. Which method(s) are reliably able to resolve the sinusoids? Explain why. Note that as \(\sigma^2 \to 0 \), \(y(t) \) corresponds to a (limiting) AR(4) process. How does the choice of \(M \) or \(K \) in the ARMA methods affect resolution or accuracy of the frequency estimates?

d) Obtain spectral estimates \(\hat{\sigma}^2|\hat{B}(\omega)|^2/|\hat{A}(\omega)|^2 \) for the ARMA estimators and \(\hat{\sigma}^2/|\hat{A}(\omega)|^2 \) for the AR estimators) for the four methods when \(N = 64 \) and \(\sigma^2 = 1 \). Plot ten overlaid spectral estimates and overlaid polynomial zeroes of the \(\hat{A}(z) \) estimates. Experiment with different AR and ARMA model orders to see if the true frequencies are estimated more accurately; note also the appearance and severity of “spurious” sinusoids in the estimates for higher model orders. Which method(s) give reliable “super-resolution” estimation of the sinusoids? How does the model order influence the resolution properties? Which method appears to have the best resolution?

You may want to experiment further by changing the SNR and the relative amplitudes of the sinusoids to gain a better understanding of the relative differences between the methods. Also, experiment with different model orders and parameters \(K \) and \(M \) to understand their impact on estimation accuracy.

e) Compare the estimation results with periodogram–based estimates obtained from the same signals. Discuss differences in resolution, bias, and variance of the techniques.

Exercise C3.19: Model Order Selection for AR and ARMA Processes
Section 3.10 Exercises

In this exercise we examine four methods for model order selection in AR and ARMA spectral estimation. We will experiment with both broadband and narrowband processes.

As discussed in Appendix C, several important model order selection rules have the following general form (see (C.8.1)–(C.8.2)):

$$-2 \ln p_n(y, \hat{\theta}^n) + \eta(n, N)n$$ \hspace{1cm} (3.10.12)

with different penalty coefficients $\eta(n, N)$ for the different methods:

- **AIC**: $\eta(n, N) = 2$
- **AICc**: $\eta(n, N) = 2 \frac{N}{N - n - 1}$ \hspace{1cm} (3.10.13)
- **GIC**: $\eta(n, N) = \nu$ (e.g., $\nu = 4$)
- **BIC**: $\eta(n, N) = \ln N$

The term $\ln p_n(y, \hat{\theta}^n)$ is the log-likelihood of the observed data vector y given the maximum-likelihood (ML) estimate of the parameter vector θ for a model of order n (where n is the total number of estimated real-valued parameters in the model); for the case of AR, MA, and ARMA models, a large-sample approximation for $-2 \ln p_n(y, \hat{\theta}^n)$ that is commonly used for order selection (see, e.g., [Ljung 1987; Söderström and Stoica 1989]) is given by:

$$-2 \ln p_n(y, \hat{\theta}^n) \approx N \hat{\sigma}^2_n + \text{constant}$$ \hspace{1cm} (3.10.14)

where $\hat{\sigma}^2_n$ is the sample estimate of σ^2 in (3.2.2) corresponding to the model of order n. The selected order is the value of n that minimizes (3.10.12). The order selection rules above, while derived for ML estimates of θ, can be used even with approximate ML estimates of θ, albeit with some loss of performance.

Broadband AR Process: Generate 100 realizations of the broadband AR process

$$y(t) = \frac{1}{A_1(z)} e(t)$$

with $\sigma^2 = 1$ and

$$A_1(z) = 1 - 1.3817z^{-1} + 1.5632z^{-2} - 0.8843z^{-3} + 0.4096z^{-4}$$

Choose the number of samples as $N = 128$. For each realization:

(a) Estimate the model parameters using the LS AR estimator, and using AR model orders from 1 to 12.

(b) Find the model orders that minimize the AIC, AICc, GIC (with $\nu = 4$), and BIC criteria (See Appendix C). Note that for an AR model of order m, $n = m + 1$.

(c) For each of the four order selection methods, plot a histogram of the selected orders for the 100 realizations. Comment on their relative performance.
Repeat the above experiment using \(N = 256 \) and \(N = 1024 \) samples. Discuss the relative performance of the order selection methods as \(N \) increases.

Narrowband AR Process: Repeat the above experiment using the narrowband AR process:

\[
y(t) = \frac{1}{A_2(z)} e(t)
\]

with \(\sigma^2 = 1 \) and

\[
A_2(z) = 1 - 1.6408z^{-1} + 2.2044z^{-2} - 1.4808z^{-3} + 0.8145z^{-4}
\]

Compare the narrowband AR and broadband AR order selection results, and discuss the relative order selection performance for these two AR processes.

Broadband ARMA Process: Repeat the broadband AR experiment using the broadband ARMA process

\[
y(t) = \frac{B_1(z)}{A_1(z)} e(t)
\]

with \(\sigma^2 = 1 \) and

\[
A_1(z) = 1 - 1.3817z^{-1} + 1.5632z^{-2} - 0.8843z^{-3} + 0.4096z^{-4}
\]

\[
B_1(z) = 1 + 0.3544z^{-1} + 0.3508z^{-2} + 0.1736z^{-3} + 0.2401z^{-4}
\]

For the broadband ARMA process, use \(N = 256 \) and \(N = 1024 \) data samples. For each value of \(N \), find ARMA\((m,m)\) models (so \(n = 2m + 1 \) in equation (3.10.12)) for \(m = 1, \ldots, 12 \). Use the two-stage LS ARMA method with \(K = 4m \) to estimate parameters.

Narrowband ARMA Process: Repeat the broadband ARMA experiment using the narrowband ARMA process:

\[
y(t) = \frac{B_2(z)}{A_2(z)} e(t)
\]

with \(\sigma^2 = 1 \) and

\[
A_2(z) = 1 - 1.6408z^{-1} + 2.2044z^{-2} - 1.4808z^{-3} + 0.8145z^{-4}
\]

\[
B_2(z) = 1 + 1.1100z^{-1} + 0.4706z^{-2}
\]

Find ARMA\((2m,m)\) models for \(m = 1, \ldots, 6 \) (so \(n = 3m + 1 \) in equation (3.10.12)) using the two-stage LS ARMA method with \(K = 8m \). Compare the narrowband ARMA and broadband ARMA order selection results, and discuss the relative order selection performance for these two ARMA processes.

Exercise C3.20: AR and ARMA Estimators applied to Measured Data

Consider the data sets in the files `sunspotdata.mat` and `lynxdata.mat`. These files can be obtained from the text web site `www.prenhall.com/stoica`.
Apply your favorite AR and ARMA estimator(s) (for the lynx data, use both the original data and the logarithmically transformed data as in Exercise C2.23) to estimate the spectral content of these data. You will also need to determine appropriate model orders m and n (see, e.g., Exercise C3.19). As in Exercise C2.23, try to answer the following questions: Are there sinusoidal components (or periodic structure) in the data? If so, how many components and at what frequencies? Discuss the relative strengths and weaknesses of parametric and nonparametric estimators for understanding the spectral content of these data. In particular, discuss how a combination of the two techniques can be used to estimate the spectral and periodic structure of the data.
CHAPTER 4

Parametric Methods for Line Spectra

4.1 INTRODUCTION

In several applications, particularly in communications, radar, sonar, geophysical seismology and so forth, the signals dealt with can be well described by the following sinusoidal model:

\[y(t) = x(t) + e(t) \quad ; \quad x(t) = \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} \] (4.1.1)

where \(x(t) \) denotes the noise–free complex–valued sinusoidal signal; \(\{\alpha_k\} \), \(\{\omega_k\} \), \(\{\varphi_k\} \) are its amplitudes, (angular) frequencies and initial phases, respectively; and \(e(t) \) is an additive observation noise. The complex–valued form (4.1.1), of course, is not encountered in practice as it stands; practical signals are real valued. However, as already mentioned in Chapter 1, in many applications both the in–phase and quadrature components of the studied signal are available. (See Chapter 6 for more details on this aspect.) In the case of a (real–valued) sinusoidal signal, this means that both the sine and the corresponding cosine components are available. These two components may be processed by arranging them in a two–dimensional vector signal or a complex–valued signal of the form of (4.1.1). Since the complex–valued description (4.1.1) of the in–phase and quadrature components of a sinusoidal signal is the most convenient one from a mathematical standpoint, we focus on it in this chapter.

The noise \(\{e(t)\} \) in (4.1.1) is usually assumed to be (complex–valued) circular white noise as defined in (2.4.19). We also make the white noise assumption in this chapter. We may argue in the following way that the white noise assumption is not particularly restrictive. Let the continuous–time counterpart of the noise in (4.1.1) be correlated, but assume that the “correlation time” of the continuous–time noise is less than half of the shortest period of the sine wave components in the continuous–time counterpart of \(x(t) \) in (4.1.1). If this mild condition is satisfied, then choosing the sampling period larger than the noise correlation time (yet smaller than half the shortest sinusoidal signal period, to avoid aliasing) results in a white discrete–time noise sequence \(\{e(t)\} \). If the correlation condition above is not satisfied, but we know the shape of the noise spectrum, we can filter \(y(t) \) by a linear whitening filter which makes the noise component at the filter output white; the sinusoidal components remain sinusoidal with the same frequencies, and with amplitudes and phases altered in a known way.
Section 4.1 Introduction

If the noise process is not white and has unknown spectral shape, then accurate frequency estimates can still be found if we estimate the sinusoids using the nonlinear least squares (NLS) method in Section 4.3 (see [Stoica and Nehorai 1989b], for example). Indeed, the properties of the NLS estimates in the colored and unknown noise case are quite similar to those for the white noise case, only with the sinusoidal signal amplitudes “adjusted” to give corresponding local SNRs — the signal-to-noise power ratio at each frequency ω_k. This amplitude adjustment is the same as that realized by the whitening filter approach. It is important to note that these comments only apply if the NLS method is used. The other estimation methods in this chapter (e.g., the subspace-based methods) depend on the assumption that the noise is white, and may be adversely affected if the noise is not white (or is not prewhitened).

Concerning the signal in (4.1.1), we assume that $\omega_k \in [-\pi, \pi]$ and that $\alpha_k > 0$. We need to specify the sign of $\{\alpha_k\}$; otherwise we are left with a phase ambiguity. More precisely, without the condition $\alpha_k > 0$ in (4.1.1), both $\{\alpha_k, \omega_k, \varphi_k\}$ and $\{-\alpha_k, \omega_k, \varphi_k + \pi\}$ give the same signal $\{x(t)\}$, so the parameterization is not unique. As to the initial phases $\{\varphi_k\}$ in (4.1.1), one could assume that they are fixed (nonrandom) constants, which would result in $\{x(t)\}$ being a deterministic signal. In most applications, however, $\{\varphi_k\}$ are nuisance parameters and it is more convenient to assume that they are random variables. Note that if we try to mimic the conditions of a previous experiment as much as possible, we will usually be unable to ensure the same initial phases of the sine waves in the observed sinusoidal signal (this will be particularly true for received signals). Since there is usually no reason to believe that a specific set of initial phases is more likely than another one, or that two different initial phases are interrelated, we make the following assumption:

The initial phases $\{\varphi_k\}$ are independent random variables uniformly distributed on $[-\pi, \pi]$ (4.1.2)

The covariance function and the PSD of the noisy sinusoidal signal $\{y(t)\}$ can be calculated in a straightforward manner under the assumptions made above. By using (4.1.2), we get

$$E \{e^{i\varphi_p}e^{-i\varphi_j}\} = 1 \quad \text{for } p = j$$

and for $p \neq j$

$$E \{e^{i\varphi_p}e^{-i\varphi_j}\} = E \{e^{i\varphi_p}\} E \{e^{-i\varphi_j}\}$$

$$= \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\varphi} d\varphi\right] \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i\varphi} d\varphi\right] = 0$$

Thus,

$$E \{e^{i\varphi_p}e^{-i\varphi_j}\} = \delta_{p,j}$$

(4.1.3)

Let

$$x_p(t) = \alpha_p e^{i(\omega_p t + \varphi_p)}$$

(4.1.4)

denote the pth sine wave in (4.1.1). It follows from (4.1.3) that

$$E \{x_p(t)x_j^*(t - k)\} = \alpha_p^2 e^{i\omega_p k}\delta_{p,j}$$

(4.1.5)
which, in turn, gives

\[
r(k) = E \{ y(t) y^*(t-k) \} = \sum_{p=1}^{n} \alpha_p^2 e^{i\omega_p k} + \sigma^2 \delta_{k,0} \quad (4.1.6)
\]

and the derivation of the covariance function of \(y(t) \) is completed. The PSD of \(y(t) \) is given by the DTFT of \(\{ r(k) \} \) in (4.1.6), which is

\[
\phi(\omega) = 2\pi \sum_{p=1}^{n} \alpha_p^2 \delta(\omega - \omega_p) + \sigma^2 \quad (4.1.7)
\]

where \(\delta(\omega - \omega_p) \) is the Dirac impulse (or Dirac delta “function”) which, by definition, has the property that

\[
\int_{-\pi}^{\pi} F(\omega) \delta(\omega - \omega_p) d\omega = F(\omega_p) \quad (4.1.8)
\]

for any function \(F(\omega) \) that is continuous at \(\omega_p \). The expression (4.1.7) for \(\phi(\omega) \) may be verified by inserting it in the inverse transform formula (1.3.8) and checking that the result is the covariance function. Doing so, we obtain

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} [2\pi \sum_{p=1}^{n} \alpha_p^2 \delta(\omega - \omega_p) + \sigma^2] e^{i\omega k} d\omega = \sum_{p=1}^{n} \alpha_p^2 e^{i\omega_p k} + \sigma^2 \delta_{k,0} = r(k) \quad (4.1.9)
\]

which is the desired result.

The PSD (4.1.7) is depicted in Figure 4.1. It consists of a “floor” of constant level equal to the noise power \(\sigma^2 \), along with \(n \) vertical lines (or impulses) located at the sinusoidal frequencies \(\{ \omega_k \} \) and having zero support but nonzero areas equal to \(2\pi \) times the sine wave powers \(\{ \alpha_k^2 \} \). Owing to its appearance, as exhibited in Figure 4.1, \(\phi(\omega) \) in (4.1.7) is called a line or discrete spectrum.

It is evident from the previous discussion that a spectral analysis based on the parametric PSD model (4.1.7) reduces to the problem of estimating the parameters of the signal in (4.1.1). In most applications, such as those listed at the beginning of this chapter, the parameters of major interest are the locations of the spectral lines, namely the sinusoidal frequencies. In the following sections, we present a number of methods for spectral line analysis. We focus on the problem of frequency estimation meaning determination of \(\{ \omega_k \}_{k=1}^{n} \) from a set of observations \(\{ y(t) \}_{t=1}^{N} \). Once the frequencies have been determined, estimation of the other signal parameters (or PSD parameters) becomes a simple linear regression problem. More precisely, for given \(\{ \omega_k \} \) the observations \(y(t) \) can be written as a linear regression function whose coefficients are equal to the remaining unknowns \(\{ \alpha_k e^{i\omega_k} \triangleq \beta_k \} \):

\[
y(t) = \sum_{k=1}^{n} \beta_k e^{i\omega_k t} + e(t) \quad (4.1.10)
\]
Figure 4.1. The PSD of a complex sinusoidal signal in additive white noise.

If desired, $\{\beta_k\}$ (and hence $\{\alpha_k\}$, $\{\varphi_k\}$) in (4.1.10) can be obtained by a least squares method (as in equation (4.3.8) below). Alternatively, one may determine the signal powers $\{\alpha_k^2\}$ — for given $\{\omega_k\}$ — from the sample version of (4.1.6):

$$\hat{r}(k) = \sum_{p=1}^{n} \alpha_p^2 e^{i\omega_p k} + \text{residuals} \quad \text{for } k \geq 1 \quad (4.1.11)$$

where the residuals arise from finite-sample estimation of $r(k)$; this is, once more, a linear regression with $\{\alpha_p^2\}$ as unknown coefficients. The solution to either linear regression problem is straightforward and is discussed in Section A.8 of Appendix A.

The methods for frequency estimation that will be described in the following sections are sometimes called high-resolution (or, even, super-resolution) techniques. This is due to their ability to resolve spectral lines separated in frequency $f = \omega/2\pi$ by less than $1/N$ cycles per sampling interval, which is the resolution limit for the classical periodogram–based methods. All of the high-resolution methods to be discussed in the following provide consistent estimates of $\{\omega_k\}$ under the assumptions we made. Their consistency will surface in the following discussion in an obvious manner and hence we do not need to pay special attention to this aspect. Nor do we discuss in detail other statistical properties of the frequency estimates obtained by these high-resolution methods, though in Appendix B we review the Cramér–Rao bound and the best accuracy that can be achieved by such methods. For derivations and discussions of the statistical properties not addressed in this text, we refer the interested reader to [Stoica, Söderström, and Tj 1989; Stoica and Söderström 1991; Stoica, Moses, Friedlander, and Söderström 1989; Stoica and Nehorai 1989b]. Let us briefly summarize the conclusions of these analyses: All the high-resolution methods presented in the following provide very accurate frequency estimates, with only small differences in their statistical performances. Furthermore, the computational burdens associated with these methods are rather similar. Hence, selecting one of the high-resolution methods for frequency estimation is essentially a “matter of taste” even though we
will identify some advantages of one of these methods, named ESPRIT, over the others.

We should point out that the comparison in the previous paragraph between the high-resolution methods and the periodogram-based techniques is unfair in the sense that periodogram-based methods do not assume any knowledge about the data, whereas high-resolution methods exploit an exact description of the studied signal. Owing to the additional information assumed, a parametric method should be expected to offer better resolution than the nonparametric method of the periodogram. On the other hand, when no two spectral lines in the spectrum are separated by less than $1/N$, the unmodified periodogram turns out to be an excellent frequency estimator which may outperform any of the high-resolution methods (as we shall see). One may ask why the unmodified periodogram is preferred over the many windowed or smoothed periodogram techniques to which we paid so much attention in Chapter 2. The explanation actually follows from the discussion in that chapter. The unmodified periodogram can be viewed as a Blackman–Tukey “windowed” estimator with a rectangular window of maximum length equal to $2N + 1$. Of all window sequences, this is exactly the one which has the narrowest main lobe and hence the one which affords the maximum spectral resolution, a desirable property for high-resolution spectral line scenarios. It should be noted, however, that if the sinusoidal components in the signal are not too closely spaced in frequency, but their amplitudes differ significantly from one another, then a mildly windowed periodogram (to avoid leakage) may perform better than the unwindowed periodogram (in the unwindowed periodogram, the weaker sinusoids may be obscured by the leakage from the stronger ones, and hence they may not be visible in a plot of the estimated spectrum).

In order to simplify the discussion in this chapter, we assume that the number of sinusoidal components, n, in (4.1.1) is known. When n is unknown, which may well be the case in many applications, it can be determined from the available data as described for example in [Fuchs 1988; Kay 1988; Marple 1987; Proakis, Rader, Ling, and Nikias 1992; Söderström and Stoica 1989] and in Appendix C.

4.2 MODELS OF SINUSOIDAL SIGNALS IN NOISE

The frequency estimation methods presented in this chapter rely on three different models for the noisy sinusoidal signal (4.1.1). This section introduces the three models of (4.1.1).

4.2.1 Nonlinear Regression Model

The nonlinear regression model is given by (4.1.1). Note that $\{\omega_k\}$ enter in a nonlinear fashion in (4.1.1), hence the name “nonlinear regression” given to this type of model for $\{y(t)\}$. The other two models for $\{y(t)\}$, to be discussed in the following, are derived from (4.1.1); they are descriptions of the data that are not as complete as (4.1.1). However, they preserve the information required to determine the frequencies $\{\omega_k\}$ which, as already stated, are the parameters of major interest. Hence, in some sense, these two models are more appropriate for frequency estimation since they do not include some of the nuisance parameters.
which appear in (4.1.1).

4.2.2 ARMA Model

It can be readily verified that

\[(1 - e^{i\omega_k z^{-1}}) x_k(t) \equiv 0\]
(4.2.1)

where \(z^{-1}\) denotes the unit delay (or shift) operator introduced in Chapter 1. Hence, \((1 - e^{i\omega_k z^{-1}})\) is an *annihilating filter* for the \(k\)th component in \(x(t)\). By using this simple observation, we obtain the following *homogeneous AR equation* for \(\{x(t)\}\)

\[A(z)x(t) = 0\]
(4.2.2)

and the following *ARMA model* for the noisy data \(\{y(t)\}\):

\[
\begin{align*}
A(z)y(t) &= A(z)e(t) \\
A(z) &= \prod_{k=1}^{n}(1 - e^{i\omega_k z^{-1}})
\end{align*}
\]
(4.2.3)

It may be a useful exercise to derive equation (4.2.2) in a different way. The PSD of \(x(t)\) consists of \(n\) spectral lines located at \(\{\omega_k\}_{k=1}^{n}\). It should then be clear, in view of the relation (1.4.9) governing the transfer of a PSD through a linear system, that any filter which has zeroes at frequencies \(\{\omega_k\}\) is an annihilating filter for \(x(t)\).

The polynomial \(A(z)\) in (4.2.3) is the simplest kind of such an annihilating filter. This polynomial bears *complete information* about \(\{\omega_k\}\) and hence the problem of estimating the frequencies can be reduced to that of determining \(A(z)\).

We remark that the ARMA model (4.2.3) has a very special form (a reason for which it is sometimes called a “degenerate” ARMA). All its poles and zeroes are located exactly on the unit circle. Furthermore, its AR and MA parts are identical. It might be tempting to cancel the common poles and zeroes in (4.2.3). However, such an operation leads to the wrong conclusion that \(y(t) = e(t)\) and, therefore, should be invalid. Let us explain briefly why cancelation in (4.2.3) is not allowed.

The ARMA equation description of a signal \(y(t)\) is *asymptotically* equivalent to the associated transfer function description (in the sense that both give the same signal sequence, for \(t \to \infty\)) if and only if the poles are situated strictly inside the unit circle. If there are poles on the unit circle, then the equivalence between these two descriptions ceases. In particular, the solution of an ARMA equation with poles on the unit circle strongly depends on the initial conditions, whereas the transfer function description does not include a dependence on initial values.

4.2.3 Covariance Matrix Model

A notation that will often be used in the following is:

\[
\begin{align*}
\mathbf{a}(\omega) &\triangleq \begin{bmatrix} 1 & e^{-i\omega} & \cdots & e^{-i(m-1)\omega} \end{bmatrix}^T \quad (m \times 1) \\
A &= \begin{bmatrix} \mathbf{a}(\omega_1) & \cdots & \mathbf{a}(\omega_n) \end{bmatrix} \quad (m \times n)
\end{align*}
\]
(4.2.4)
Chapter 4 Parametric Methods for Line Spectra

In (4.2.4), \(m \) is a positive integer which is not yet specified. Note that the matrix \(A \) introduced above is a Vandermonde matrix which enjoys the following rank property (see Result R24 in Appendix A):

\[
\text{rank}(A) = n \quad \text{if} \quad m \geq n \quad \text{and} \quad \omega_k \neq \omega_p \quad \text{for} \quad k \neq p
\] \hspace{1cm} (4.2.5)

By making use of the previous notation, along with (4.1.1) and (4.1.4), we can write

\[
\tilde{y}(t) \triangleq \begin{bmatrix}
y(t) \\
y(t-1) \\
\vdots \\
y(t-m+1)
\end{bmatrix} = A\hat{x}(t) + \hat{e}(t)
\] \hspace{1cm} (4.2.6)

The following expression for the covariance matrix of \(\tilde{y}(t) \) can be readily derived from (4.1.5) and (4.2.6)

\[
R \triangleq E \{\tilde{y}(t)\tilde{y}^*(t)\} = APA^* + \sigma^2 I \quad ; \quad P = \begin{bmatrix}
\alpha_1^2 & 0 \\
\vdots & \ddots \\
0 & \alpha_n^2
\end{bmatrix}
\] \hspace{1cm} (4.2.7)

The above equation constitutes the covariance matrix model of the data. As we will show later, the eigenstructure of \(R \) contains complete information on the frequencies \(\{\omega_k\} \), and this is exactly where the usefulness of (4.2.7) lies.

From equations (4.2.6) and (4.1.5), we also derive for later use the following result:

\[
\Gamma \triangleq E \left\{ \begin{bmatrix}
y(t - L - 1) \\
\vdots \\
y(t - L - M)
\end{bmatrix} \begin{bmatrix}
y^*(t) \\
\vdots \\
y^*(t - L)
\end{bmatrix} \right\}
\] \hspace{1cm} (4.2.8)

where \(A_K \) stands for \(A \) in (4.2.4) with \(m = K \), and

\[
P_K = \begin{bmatrix}
\alpha_1^2 e^{-i\omega_1 K} & 0 \\
\vdots & \ddots \\
0 & \alpha_n^2 e^{-i\omega_n K}
\end{bmatrix}
\]

As we explain in detail later, the null space of the matrix \(\Gamma \) (with \(L, M \geq n \)) gives complete information on the frequencies \(\{\omega_k\} \).
4.3 NONLINEAR LEAST SQUARES METHOD

An intuitively appealing approach to spectral line analysis, based on the nonlinear regression model (4.1.1), consists of determining the unknown parameters as the minimizers of the following criterion:

\[f(\omega, \alpha, \varphi) = \sum_{t=1}^{N} \left| y(t) - \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} \right|^2 \]

where \(\omega \) is the vector of frequencies \(\omega_k \), and similarly for \(\alpha \) and \(\varphi \). The sinusoidal model determined as above has the smallest “sum of squares” distance to the observed data \(\{y(t)\}_{t=1}^{N} \). Since \(f \) is a nonlinear function of its arguments \(\{\omega, \varphi, \alpha\} \), the method which obtains parameter estimates by minimizing (4.3.1) is called the nonlinear least squares (NLS) method. When the (white) noise \(e(t) \) is Gaussian distributed, the minimization of (4.3.1) can also be interpreted as the method of maximum likelihood (see Appendices B and C); in that case, minimization of (4.3.1) can be shown to provide the parameter values which are most likely to “explain” the observed data sequence (see [SöDERSTRÖM and STOICA 1989; KAY 1988; MARPLE 1987]).

The criterion in (4.3.1) depends on both \(\{\alpha_k\} \) and \(\{\varphi_k\} \) as well as on \(\{\omega_k\} \). However, it can be concentrated with respect to the nuisance parameters \(\{\alpha_k, \varphi_k\} \), as explained next. By making use of the following notation,

\[
\beta_k = \alpha_k e^{i\varphi_k} \\
\beta = [\beta_1 \ldots \beta_n]^T \\
Y = [y(1) \ldots y(N)]^T \\
B = \begin{bmatrix} e^{i\omega_1} & \cdots & e^{i\omega_n} \\
\vdots & \ddots & \vdots \\
e^{iN\omega_1} & \cdots & e^{iN\omega_n} \end{bmatrix}
\]

we can write the function \(f \) in (4.3.1) as

\[
f = (Y - B\beta)^* (Y - B\beta) \]

(4.3.6)

The Vandermonde matrix \(B \) in (4.3.5) (which resembles the matrix \(A \) defined in (4.2.4)) has full column rank equal to \(n \) under the weak condition that \(N \geq n \); in this case, \((B^*B)^{-1} \) exists. By using this observation, we can put (4.3.6) in the more convenient form:

\[
f = [\beta - (B^*B)^{-1}B^*Y]^*[\beta - (B^*B)^{-1}B^*Y] \\
+ Y^*Y - Y^*B(B^*B)^{-1}B^*Y \]

(4.3.7)

For any choice of \(\omega = [\omega_1, \ldots, \omega_n]^T \) in \(B \) (which is such that \(\omega_k \neq \omega_p \) for \(k \neq p \)), we can choose \(\beta \) to make the first term of \(f \) zero; thus, we see that the vectors \(\beta \) and \(\omega \) which minimize \(f \) are given by

\[
\hat{\omega} = \arg \max_\omega [Y^*B(B^*B)^{-1}B^*Y] \\
\hat{\beta} = (B^*B)^{-1}B^*Y |_{\omega=\hat{\omega}}
\]

(4.3.8)
Chapter 4 Parametric Methods for Line Spectra

It can be shown that, as \(N \) tends to infinity, \(\hat{\omega} \) obtained as above converges to \(\omega \) (i.e., \(\hat{\omega} \) is a consistent estimate) and, in addition, the estimation errors \{\(\hat{\omega}_k - \omega_k \)\} have the following (asymptotic) covariance matrix:

\[
\text{Cov}(\hat{\omega}) = \frac{6\sigma^2}{N^3} \begin{bmatrix}
\frac{1}{\alpha_k^2} & 0 \\
0 & \ddots \\
0 & 1/\alpha_n^2
\end{bmatrix}
\]

(4.3.9)

(see [Stoica and Nehorai 1989a; Stoica, Moses, Friedlander, and Söderström 1989]). In the case of Gaussian noise, the matrix in (4.3.9) can also be shown to equal the Cramér–Rao limit matrix which gives a lower bound on the covariance matrix of any unbiased estimator of \(\omega \) (see Appendix B). Hence, under the Gaussian hypothesis the NLS method provides the most accurate (i.e., minimum variance) frequency estimates in a fairly general class of estimators. As a matter of fact, the variance of \{\(\hat{\omega}_k \)\} (as given by (4.3.9)) may take quite small values for reasonably large sample lengths \(N \) and signal–noise ratios \(\text{SNR}_k = \frac{\sigma_k^2}{\sigma^2} \). For example, for \(N = 300 \) and \(\text{SNR}_k = 30 \text{dB} \) it follows from (4.3.9) that we may expect frequency estimation errors on the order of \(10^{-5} \), which is comparable with the roundoff errors in a 32–bit fixed–point processor.

The NLS method has another advantage that sets it apart from the subspace–based approaches that are discussed in the remainder of the chapter. The NLS method does not critically depend on the assumption that the noise process is white. If the noise process is not white, the NLS still gives consistent frequency estimates. In fact, the asymptotic covariance of the frequency estimates is diagonal and \(\text{var}(\hat{\omega}_k) = \frac{6}{N^3\text{SNR}_k} \), where \(\text{SNR}_k = \frac{\sigma_k^2}{\phi_n(\omega_k)} \) (here \(\phi_n(\omega) \) is the noise PSD) is the “local” signal–to–noise ratio of the sinusoid at frequency \(\omega_k \) (see [Stoica and Nehorai 1989b], for example). Interestingly enough, the NLS method remains the most accurate method (if the data length is large) even in those cases where the (Gaussian) noise is colored [Stoica and Nehorai 1989b]. This fact spurred a renewed interest in the NLS approach and in reliable algorithms for performing the minimization required in (4.3.1) (see, e.g., [Hwang and Chen 1993; Ying, Potter, and Moses 1994; Li and Stoica 1996b; Umesh and Tufts 1996] and Complement 4.9.5).

Unfortunately, the good statistical performance associated with the NLS method of frequency estimation is difficult to achieve, for the following reason. The function (4.3.8) has a complicated multimodal shape with a very sharp global maximum corresponding to \(\hat{\omega} \) [Stoica, Moses, Friedlander, and Söderström 1989]. Hence, finding \(\hat{\omega} \) by a search algorithm requires very accurate initialization. Initialization procedures that provide fairly accurate approximations of the maximizer of (4.3.8) have been proposed in [Kumaresan, Scharf, and Shaw 1986], [Bresler and Macovski 1986], [Ziskind and Wax 1988]. However, there is no available method which is guaranteed to provide frequency estimates within the attraction domain of the global maximum \(\hat{\omega} \) of (4.3.8). As a consequence, a search algorithm may well fail to converge to \(\hat{\omega} \), or may even diverge.

The kind of difficulties indicated above, that must be faced when using the NLS method in applications, limits the practical interest in this approach to fre-
Section 4.3 Nonlinear Least Squares Method

There are, however, some instances when the NLS approach may be turned into a practical frequency estimation method. Consider, first, the case of a single sine wave \((n = 1)\). A straightforward calculation shows that, in such a case, the first equation in (4.3.8) can be rewritten in the following form:

\[
\hat{\omega} = \arg \max_{\omega} \hat{\phi}_p(\omega) \tag{4.3.10}
\]

where \(\hat{\phi}_p(\omega)\) is the periodogram (see (2.2.1))

\[
\hat{\phi}_p(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \tag{4.3.11}
\]

Hence, the NLS estimate of the frequency of a single sine wave buried in observation noise is precisely given by the highest peak of the unmodified periodogram.

Note that the above result is only approximately true (for \(N \gg 1\)) in the case of real-valued sinusoidal signals, a fact which lends additional support to the claim made in Chapter 1 that the analysis of the case of real-valued signals faces additional complications not encountered in the complex-valued case. Each real-valued sinusoid can be written as a sum of two complex exponentials, and the treatment of the real case with \(n = 1\) is similar to that of the complex case with \(n > 1\) presented below.

Next, consider the case of multiple sine waves \((n > 1)\). The key condition that makes it possible to treat this case in a manner similar to the one above, is that the minimum frequency separation between the sine waves in the studied signal is larger than the periodogram’s resolution limit:

\[
\Delta \omega = \inf_{k \neq p} |\omega_k - \omega_p| > 2\pi/N \tag{4.3.12}
\]

Since the estimation errors \(\{\hat{\omega}_k - \omega_k\}\) from the NLS estimates are of order \(O(1/N^{3/2})\) (because \(\text{cov}(\hat{\omega}) = O(1/N^3)\); see (4.3.9)), equation (4.3.12) implies a similar inequality for the NLS frequency estimates \(\{\hat{\omega}_k\}\): \(\Delta \hat{\omega} > 2\pi/N\). It should then be possible to resolve all \(n\) sine waves in the noisy signal and to obtain reasonable approximations \(\{\hat{\omega}_k\}\) to \(\{\omega_k\}\) by evaluating the function in (4.3.8) at the points of a grid corresponding to the sampling of each frequency variable as in the FFT:

\[
\omega_k = \frac{2\pi}{N} j \quad j = 0, \ldots, N - 1 \quad (k = 1, \ldots, n) \tag{4.3.13}
\]

Of course, a direct application of such a grid method for the approximate maximization of (4.3.8) would be computationally burdensome for large values of \(n\) or \(N\). However, it can be greatly simplified as described in the following.

The \(p,k\) element of the matrix \(B^*B\) occurring in (4.3.8), when evaluated at the points of the grid (4.3.13), is given by

\[
[B^*B]_{p,k} = N \quad \text{for} \quad p = k \tag{4.3.14}
\]
Chapter 4 Parametric Methods for Line Spectra

and

\[[B^* B]_{p,k} = \sum_{t=1}^{N} e^{i(\omega_k - \omega_p)t} = e^{i(\omega_k - \omega_p)} \left(e^{iN(\omega_k - \omega_p)} - 1 \right) \left(e^{i(\omega_k - \omega_p)} - 1 \right) \]

\[= 0 \quad \text{for} \quad p \neq k \quad (4.3.15) \]

which implies that the function to be minimized in (4.3.8) has, in such a case, the following form:

\[\sum_{k=1}^{n} \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i\omega_k t} \right|^2 \quad (4.3.16) \]

The previous additive decomposition in \(n \) functions of \(\omega_1, \ldots, \omega_n \) (respectively) leads to the conclusion that \(\{\tilde{\omega}_k\} \) (which, by definition, maximize (4.3.16) at the points of the grid (4.3.13)) are given by the \(n \) largest peaks of the periodogram. To show this, let us write the function in (4.3.16) as

\[g(\omega_1, \ldots, \omega_n) = \sum_{k=1}^{n} \hat{\phi}_p(\omega_k) \]

where \(\hat{\phi}_p(\omega) \) is once again the periodogram. Observe that

\[\frac{\partial g(\omega_1, \ldots, \omega_n)}{\partial \omega_k} = \hat{\phi}'_p(\omega_k) \]

and

\[\frac{\partial^2 g(\omega_1, \ldots, \omega_n)}{\partial \omega_k \partial \omega_j} = \hat{\phi}''_p(\omega_k) \delta_{k,j} \]

Hence, the maximum points of (4.3.16) satisfy

\[\hat{\phi}'_p(\omega_k) = 0 \quad \text{and} \quad \hat{\phi}''_p(\omega_k) < 0 \quad \text{for} \quad k = 1, \ldots, n \]

It follows that the set of maximizers of (4.3.16) is given by all possible combinations of \(n \) elements from the periodogram’s peak locations. Now, recall the assumption made that \(\{\omega_k\} \), and hence their estimates \(\{\hat{\omega}_k\} \), are distinct. Under this assumption the highest maximum of \(g(\omega_1, \ldots, \omega_n) \) is given by the locations of the \(n \) largest peaks of \(\hat{\phi}_p(\omega) \), which is the desired result.

The above findings are summarized as:

Under the condition (4.3.12), the unmodified periodogram resolves all the \(n \) sine waves present in the noisy signal. Furthermore, the locations \(\{\hat{\omega}_k\} \) of the \(n \) largest peaks in the periodogram provide \(O(1/N) \) approximations to the NLS frequency estimates \(\{\omega_k\} \). In the case of \(n = 1 \), we have \(\hat{\omega}_1 = \omega_1 \) exactly. (4.3.17)

The fact that the differences \(\{\hat{\omega}_k - \omega_k\} \) are \(O(1/N) \) means, of course, that the computationally convenient estimates \(\{\hat{\omega}_k\} \) (derived from the periodogram)
will generally have an inflated variance compared to \(\{ \hat{\omega}_k \} \). However, \(\{ \hat{\omega}_k \} \) can at least be used as initial values in a numerical implementation of the NLS estimator. In any case, the above discussion indicates that, under (4.3.12), the periodogram performs quite well as a frequency estimator (which actually is the task for which it was introduced by Schuster nearly a century ago).

In the following sections, we present several “high–resolution” methods for frequency estimation, which exploit the covariance matrix models. More precisely, all of these methods derive frequency estimates by exploiting the properties of the eigendecomposition of data covariance matrices and, in particular, the subspaces associated with those matrices. For this reason, these methods are sometimes referred to by the generic name of subspace methods. However, in spite of their common subspace theme, the methods are quite different, and we will treat them in separate sections below. The main features of these methods can be summarized as follows:

(i) Their statistical performance is close to the ultimate performance corresponding to the NLS method (and given by the Cramer–Rao lower bound, (4.3.9)); (ii) Unlike the NLS method, these methods are not based on multidimensional search procedures; and (iii) They do not depend on a “resolution condition”, such as (4.3.12), which means that they may generally have a lower resolution threshold than that of the periodogram. The chief drawback of these methods, as compared with the NLS method, is that their performance significantly degrades if the measurement noise in (4.1.1) cannot be assumed to be white.

4.4 HIGH–ORDER YULE–WALKER METHOD

The high–order Yule–Walker (HOYW) method of frequency estimation can be derived from the ARMA model of the sinusoidal data, (4.2.3), similarly to its counterpart in the rational PSD case (see Section 3.7 and [Cadzow 1982; Stoica, Söderström, and Ti 1989; Stoica, Moses, Söderström, and Li 1991]).

Actually, the HOYW method is based on an ARMA model of an order \(L \) higher than the minimal order \(n \), for a reason that will be explained shortly.

If the polynomial \(A(z) \) in (4.2.3) is multiplied by any other polynomial \(\tilde{A}(z) \), say of degree equal to \(L - n \), then we obtain a higher–order ARMA representation of our sinusoidal data, given by

\[
y(t) + b_1 y(t-1) + \ldots + b_L y(t-L) = e(t) + b_1 e(t-1) + \ldots + b_L e(t-L) \tag{4.4.1}
\]

or

\[
B(z)y(t) = B(z)e(t)
\]

where

\[
B(z) = 1 + \sum_{k=1}^{L} b_k z^{-k} \equiv A(z)\tilde{A}(z) \tag{4.4.2}
\]

Equation (4.4.1) can be rewritten in the following more condensed form (with obvious notation):

\[
\begin{bmatrix} y(t) & y(t-1) & \ldots & y(t-L) \end{bmatrix} \begin{bmatrix} 1 \\ b_1 \\ \vdots \\ b_L \end{bmatrix} = e(t) + \ldots + b_L e(t-L) \tag{4.4.3}
\]
Premultiplying (4.4.3) by \([y^*(t-L-1) \ldots y^*(t-L-M)]^T\) and taking the expectation leads to
\[
\Gamma^c \begin{bmatrix} 1 \\ b \end{bmatrix} = 0
\] (4.4.4)
where the matrix \(\Gamma^c\) is defined in (4.2.8) and \(M\) is a positive integer which is yet to be specified. In order to obtain (4.4.4) as indicated above, we made use of the fact that \(E\{y^*(t-k)e(t)\} = 0\) for \(k > 0\).

The similarity of (4.4.4) with the Yule–Walker system of equations encountered in Chapter 3 (see equation (3.7.1)) is more readily seen if (4.4.4) is rewritten in the following more detailed form:
\[
\begin{bmatrix} r(L) & \ldots & r(1) \\ \vdots & \ddots & \vdots \\ r(L+M-1) & \ldots & r(M) \end{bmatrix} b = - \begin{bmatrix} r(L+1) \\ \vdots \\ r(L+M) \end{bmatrix}
\] (4.4.5)
Owing to this analogy, the set of equations (4.4.5) associated with the noisy sinusoidal signal \(f_y(t)g\) is said to form a HOYW system.

The HOYW matrix equation (4.4.4) can also be obtained directly from (4.2.8). For any \(L \geq n\) and any polynomial \(\tilde{A}(z)\) (used in the defining equation, (4.4.2), for \(b\)), the elements of the vector \(A_T^{L+1} \begin{bmatrix} 1 \\ b \end{bmatrix}\) (4.4.6)
are equal to zero. Indeed, the \(k\)th row of (4.4.6) is
\[
\begin{bmatrix} 1 \\ e^{-i\omega_k} \\ \vdots \\ e^{-iL\omega_k} \end{bmatrix} b = 1 + \sum_{p=1}^{L} b_p e^{-i\omega_k p} = A(\omega_k) \tilde{A}(\omega_k) = 0, \quad k = 1, \ldots, n
\] (4.4.7)
(since \(A(\omega_k) = 0\), cf. (4.2.3)). It follows from (4.2.8) and (4.4.7) that the vector \(\begin{bmatrix} 1 \\ b \end{bmatrix}\) lies in the null space of \(\Gamma^c\) (see Definition D2 in Appendix A),
\[
\Gamma^c \begin{bmatrix} 1 \\ b \end{bmatrix} = 0
\]
which is the desired result, (4.4.4).

The HOYW system of equations derived above can be used for frequency estimation in the following way. By replacing the unavailable theoretical covariances \(\{r(k)\}\) in (4.4.5) by the sample covariances \(\{\hat{r}(k)\}\), we obtain
\[
\begin{bmatrix} \hat{r}(L) & \ldots & \hat{r}(1) \\ \vdots & \ddots & \vdots \\ \hat{r}(L+M-1) & \ldots & \hat{r}(M) \end{bmatrix} \hat{b} \simeq \begin{bmatrix} \hat{r}(L+1) \\ \vdots \\ \hat{r}(L+M) \end{bmatrix}
\] (4.4.8)
Owing to the estimation errors in \(\{\hat{r}(k)\}\) the matrix equation (4.4.8) cannot hold exactly in the general case, for any vector \(\hat{b}\), which is indicated above by the use of
the “approximate equality” symbol \approx. We can solve (4.4.8) for \hat{b} in a sense that is discussed in detail below, then form the polynomial

$$1 + \sum_{k=1}^{L} b_k z^{-k} \quad (4.4.9)$$

and finally (in view of (4.2.3) and (4.4.2)) obtain frequency estimates $\{\hat{\omega}_k\}$ as the angular positions of the n roots of (4.4.9) that are located nearest the unit circle.

It may be expected that increasing the values of M and L results in improved frequency estimates. Indeed, by increasing M and L we use higher-lag covariances in (4.4.8), which may bear “additional information” on the data at hand. Increasing M and L also has a second, more subtle, effect that is explained next.

Let Ω denote the $M \times L$ covariance matrix in (4.4.5) and, similarly, let $\hat{\Omega}$ denote the sample covariance matrix in (4.4.8). It can be seen from (4.2.8) that

$$\text{rank}(\Omega) = n \quad \text{for} \quad M, L \geq n \quad (4.4.10)$$

On the other hand, the matrix $\hat{\Omega}$ has full rank (almost surely)

$$\text{rank}(\hat{\Omega}) = \min(M, L) \quad (4.4.11)$$

owing to the random errors in $\{\hat{r}(k)\}$. However, for reasonably large values of N the matrix Ω is close to the rank-n matrix Ω since the sample covariances $\{\hat{r}(k)\}$ converge to $\{r(k)\}$ as N increases (this is shown in Complement 4.9.1). Hence, we may expect the linear system (4.4.8) to be ill-conditioned from a numerical standpoint (see the discussion in Section A.8.1 in Appendix A). In fact, there is compelling empirical evidence that any LS procedure which determines \hat{b} directly from (4.4.8) has very poor accuracy. In order to overcome the previously described difficulty we can make use of the a priori rank information (4.4.10). However, some preparations are required before we shall be able to do so. Let

$$\hat{\Omega} = U \Sigma V^* \triangleq [U_1 \quad U_2] \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^* \\ V_2^* \end{bmatrix} \} \{n \quad M-n \quad L-n \} \quad (4.4.12)$$

denote the singular value decomposition (SVD) of the matrix $\hat{\Omega}$ (see Section A.4 in Appendix A, and [SöDERSTRÖM AND STOICA 1989; VAN HUFFEL AND VANDEWAAL 1991] for general discussions on the SVD). In (4.4.12), U is an $M \times M$ unitary matrix, V is an $L \times L$ unitary matrix and Σ is an $M \times L$ diagonal matrix. As $\hat{\Omega}$ is close to a rank-n matrix, Σ_2 in (4.4.12) should be close to zero, which implies that

$$\hat{\Omega}_n \triangleq U_1 \Sigma_1 V_1^* \quad (4.4.13)$$

should be a good approximation for $\hat{\Omega}$. In fact, it can be proven that $\hat{\Omega}_n$ above is the best (in the Frobenius–norm sense) rank-n approximation of $\hat{\Omega}$ (see Result R18 in Appendix A). Hence, in accordance with the rank information (4.4.10), we can
158 Chapter 4 Parametric Methods for Line Spectra

use $\hat{\Omega}_n$ in (4.4.8) in lieu of $\hat{\Omega}$. The so-obtained rank-truncated HOYW system of equations:

$$
\hat{\Omega}_n \hat{b} \simeq - \begin{bmatrix}
\hat{r}(L + 1) \\
\vdots \\
\hat{r}(L + M)
\end{bmatrix}
$$

(4.4.14)

can be solved in a numerically sound way by using a simple LS procedure. It is readily verified that

$$
\hat{\Omega}_n^T = V_1 \Sigma_1^{-1} U_1^T
$$

(4.4.15)

is the pseudoinverse of $\hat{\Omega}_n$ (see Definition D15 and Result R32). Hence, the LS solution to (4.4.14) is given by

$$
\hat{b} = -V_1 \Sigma_1^{-1} U_1^T \begin{bmatrix}
\hat{r}(L + 1) \\
\vdots \\
\hat{r}(L + M)
\end{bmatrix}
$$

(4.4.16)

The additional bonus for using $\hat{\Omega}_n$ instead of $\hat{\Omega}$ in (4.4.8) is an improvement in the statistical accuracy of the frequency estimates obtained from (4.4.16). This improved accuracy is explained by the fact that $\hat{\Omega}_n$ should be closer to Ω than $\hat{\Omega}$ is; the improved covariance matrix estimate $\hat{\Omega}_n$ obtained by exploitation of the rank information (4.4.10), when used in the HOYW system of equations, should lead to refined frequency estimates.

We remark that a total least squares (TLS) solution for \hat{b} can also be obtained from (4.4.8) (see Definition D17 and Result R33 in Appendix A). A TLS solution makes sense because we have errors in both $\hat{\Omega}$ and the right-hand-side vector in equation (4.4.8). In fact the TLS-based estimate of \hat{b} is often slightly better than the estimate discussed above, which is obtained as the LS solution to the rank-truncated system of linear equations in (4.4.14).

We next return to the selection of L and M. As M and L increase, the information brought into the estimation problem under study by the rank condition (4.4.10) is more and more important, and hence the corresponding increase of accuracy is more and more pronounced. (For instance, the information that a 10×10 noisy matrix has rank one in the noise-free case leads to more relations between the matrix elements, and hence to more “noise cleaning”, than if the matrix were 2×2.) In fact, for $M = n$ or $L = n$ the rank condition is inactive as $\hat{\Omega}_n = \hat{\Omega}$ in such a case. The previous discussion gives another explanation as to why the accuracy of the frequency estimates obtained from (4.4.16) may be expected to increase with increasing M and L.

The box below summarizes the HOYW frequency estimation method. It should be noted that the operation in Step 3 of the HOYW method is implicitly based on the assumption that the estimated “signal roots” (i.e., the roots of $A(z)$ in (4.4.2)) are always closer to the unit circle than the estimated “noise roots” (i.e., the roots of $\hat{A}(z)$ in (4.4.2)). It can be shown that as $N \to \infty$, all roots of $\hat{A}(z)$ are strictly inside the unit circle (see, e.g., Complement 6.5.1 and [KUMARESAN AND TUFTS 1983]). While this property cannot be guaranteed in finite samples,
there is empirical evidence that it holds most often. In those rare cases where it fails to hold, the HOYW method produces spurious (or false) frequency estimates. The risk of producing spurious estimates is the price paid for the improved accuracy obtained by increasing L (note that for $L = n$ there is no “noise root”, and hence no spurious estimate can occur in such a case). The risk for false frequency estimation is a problem that is common to all methods which estimate the frequencies from the roots of a polynomial of degree larger than n, such as the MUSIC and Min–Norm methods to be discussed in the next two sections.

The HOYW Frequency Estimation Method

Step 1. Compute the sample covariances $\{\hat{r}(k)\}_{k=1}^{L+M}$. We may set $L \simeq M$ and select the values of these integers so that $L + M$ is a fraction of the sample length (such as $N/3$). Note that if $L + M$ is set to a value which is too close to N, then the higher–lag covariances required in (4.4.8) cannot be estimated in a reliable way.

Step 2. Compute the SVD of $\hat{\Omega}$, (4.4.12), and determine \hat{b} with (4.4.16).

Step 3. Isolate the n roots of the polynomial (4.4.9) that are closest to the unit circle, and obtain the frequency estimates as the angular positions of these roots.

4.5 PISARENKO AND MUSIC METHODS

The **MUltiple SIgnal Classification** (or **MUltiple SIgnal Characterization**) (MUSIC) method [SCHMIDT 1979; BIENVENU 1979] and Pisarenko’s method [PISARENKO 1973] (which is a special case of MUSIC, as explained below) are derived from the covariance model (4.2.7) with $m > n$. Let $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m$ denote the eigenvalues of R in (4.2.7), arranged in nonincreasing order, and let $\{s_1, \ldots, s_n\}$ be the orthonormal eigenvectors associated with $\{\lambda_1, \ldots, \lambda_n\}$, and $\{g_1, \ldots, g_{m-n}\}$ a set of orthonormal eigenvectors corresponding to $\{\lambda_{n+1}, \ldots, \lambda_m\}$ (see Appendix A). Since

$$\text{rank}(APA^*) = n$$

(4.5.1)

it follows that APA^* has n strictly positive eigenvalues, the remaining $(m - n)$ eigenvalues all being equal to zero. Combining this observation with the fact that (see Result R5 in Appendix A)

$$\lambda_k = \bar{\lambda}_k + \sigma^2 \quad (k = 1, \ldots, m)$$

(4.5.2)

where $\{\bar{\lambda}_k\}_{k=1}^m$ are the eigenvalues of APA^* (arranged in nonincreasing order), leads to the following result:

$$\left\{ \begin{array}{ll} \lambda_k \ > \ \sigma^2 & \text{for } k = 1, \ldots, n \\ \lambda_k \ = \ \sigma^2 & \text{for } k = n + 1, \ldots, m \end{array} \right.$$

(4.5.3)

The set of eigenvalues of R can hence be split into two subsets. Next, we show that the eigenvectors associated with each of these subsets, as introduced above, possess some interesting properties that can be used for frequency estimation.
Chapter 4 Parametric Methods for Line Spectra

Let
\[S = [s_1, \ldots, s_n] \quad (m \times n), \quad G = [g_1, \ldots, g_{m-n}] \quad (m \times (m-n)) \] (4.5.4)

From (4.2.7) and (4.5.3), we get at once:
\[RG = G \begin{bmatrix} \lambda_{n+1} & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \cdots & \vdots \\ 0 & \cdots & \lambda_m \end{bmatrix} = \sigma^2 G = APA^*G + \sigma^2 G. \] (4.5.5)

The first equality in (4.5.5) follows from the definition of \(G \) and \(\{\lambda_k\}_{k=n+1}^m \); the second equality follows from (4.5.3), and the third from (4.2.7). The last equality in equation (4.5.5) implies that \(APA^*G = 0 \), or (as the matrix \(AP \) has full column rank)
\[A^*G = 0 \] (4.5.6)

In other words, the columns \(\{g_k\} \) of \(G \) belong to the null space of \(A^* \), a fact which is denoted by \(g_k \in \mathcal{N}(A^*) \). Since \(\text{rank}(A) = n \), the dimension of \(\mathcal{N}(A^*) \) is equal to \(m - n \) which is also the dimension of the range space of \(G \), \(\mathcal{R}(G) \). It follows from this observation and (4.5.6) that
\[\mathcal{R}(G) = \mathcal{N}(A^*) \] (4.5.7)

In words (4.5.7) says that the vectors \(\{g_k\} \) span both \(\mathcal{R}(G) \) and \(\mathcal{N}(A^*) \). Now, since by definition
\[S^*G = 0 \] (4.5.8)
we also have \(\mathcal{R}(G) = \mathcal{N}(S^*) \); hence, \(\mathcal{N}(S^*) = \mathcal{N}(A^*) \). Since \(\mathcal{R}(S) \) and \(\mathcal{R}(A) \) are the orthogonal complements to \(\mathcal{N}(S^*) \) and \(\mathcal{N}(A^*) \), it follows that
\[\mathcal{R}(S) = \mathcal{R}(A) \] (4.5.9)

We can also derive the equality (4.5.9) directly from (4.2.7). Set
\[\tilde{\lambda} = \begin{bmatrix} \lambda_1 - \sigma^2 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \cdots & \vdots \\ 0 & \cdots & \lambda_n - \sigma^2 \end{bmatrix} \] (4.5.10)

From
\[RS = S \begin{bmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ \vdots & \ddots & \ddots & \cdots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} = APA^*S + \sigma^2 S \] (4.5.11)
we obtain
\[S = A \left(PA^*S\tilde{\lambda}^{-1} \right) \] (4.5.12)
Section 4.5 Pisarenko and MUSIC Methods 161

which shows that \(\mathcal{R}(S) \subset \mathcal{R}(A) \). However, \(\mathcal{R}(S) \) and \(\mathcal{R}(A) \) have the same dimension (equal to \(n \)); hence, (4.5.9) follows. Owing to (4.5.9) and (4.5.8), the subspaces \(\mathcal{R}(S) \) and \(\mathcal{R}(G) \) are sometimes called the signal subspace and noise subspace, respectively.

The following key result is obtained from (4.5.6).

The true frequency values \(\{\omega_k\}_{k=1}^n \) are the only solutions of the equation

\[
a^*(\omega)GG^*a(\omega) = 0 \quad \text{for any } m > n.
\]

The fact that \(\{\omega_k\} \) satisfy the above equation follows from (4.5.6). It only remains to prove that \(\{\omega_k\}_{k=1}^n \) are the only solutions to (4.5.13). Let \(\tilde{\omega} \) denote another possible solution, with \(\tilde{\omega} \neq \omega_k \) \((k = 1, \ldots, n) \). In (4.5.13), \(GG^* \) is the orthogonal projector onto \(\mathcal{R}(G) \) (see Section A.4). Hence, (4.5.13) implies that \(a(\tilde{\omega}) \) is orthogonal to \(\mathcal{R}(G) \), which means that \(a(\tilde{\omega}) \in \mathcal{N}(G^*) \). However, the Vandermonde vector \(a(\tilde{\omega}) \) is linearly independent of \(\{a(\omega_k)\}_{k=1}^n \). Since \(n + 1 \) linearly independent vectors cannot belong to an \(n \)–dimensional subspace, which is \(\mathcal{N}(G^*) \) in the present case, we conclude that no other solution \(\tilde{\omega} \) to (4.5.13) can exist; with this, the proof is finished.

The MUSIC algorithm uses the previous result to derive frequency estimates in the following steps.

Step 1. Compute the sample covariance matrix

\[
\hat{R} = \frac{1}{N} \sum_{t=m}^{N} \hat{y}(t)\hat{y}^*(t)
\]

and its eigendecomposition. Let \(\hat{S} \) and \(\hat{G} \) denote the matrices defined similarly to \(S \) and \(G \), but made from the eigenvectors \(\{\hat{s}_1, \ldots, \hat{s}_n\} \) and \(\{\hat{g}_1, \ldots, \hat{g}_{m-n}\} \) of \(\hat{R} \).

Step 2a. (Spectral MUSIC) [SCHMIDT 1979; BIENVENU 1979]. Determine frequency estimates as the locations of the \(n \) highest peaks of the function

\[
\frac{1}{a^*(\omega)GG^*a(\omega)}, \quad \omega \in [-\pi, \pi]
\]

(Sometimes (4.5.15) is called a “pseudospectrum” since it indicates the presence of sinusoidal components in the studied signal, but it is not a true PSD. This fact may explain the attribute “spectral” attached to this variant of MUSIC.)

OR:

Step 2b. (Root MUSIC) [BARABELL 1983]. Determine frequency estimates as the angular positions of the \(n \) (pairs of reciprocal) roots of the equation

\[
a^T(z^{-1})\hat{G}\hat{G}^*a(z) = 0
\]
which are located nearest the unit circle. In (4.5.16), \(a(z) \) stands for the vector \(a(\omega) \), (4.2.4), with \(e^{i\omega} \) replaced by \(z \), so
\[
a(z) = [1, z^{-1}, \ldots, z^{-(m-1)}]^T
\]
For \(m = n + 1 \) (which is the minimum possible value) the MUSIC algorithm reduces to the Pisarenko method, which was the earliest proposal for an eigenanalysis–based (or subspace–based) method of frequency estimation [PISARENKO 1973].

\[
\begin{align*}
\text{The Pisarenko method is MUSIC with } m &= n + 1 \\
\end{align*}
\] (4.5.17)

In the Pisarenko method, the estimated frequencies are determined from (4.5.16). For \(m = n + 1 \) this \(2(m-1) \)-degree equation can be reduced to the following equation of degree \(m-1 = n \):
\[
a^T(z^{-1})\hat{g}_1 = 0
\] (4.5.18)

The Pisarenko frequency estimates are obtained as the angular positions of the roots of (4.5.18). The Pisarenko method is the simplest version of MUSIC from a computational standpoint. In addition, unlike MUSIC with \(m > n + 1 \), the Pisarenko procedure does not have the problem of separating the “signal roots” from the “noise roots” (see the discussion on this point at the end of Section 4.4). However, it can be shown that the accuracy of the MUSIC frequency estimates increases significantly with increasing \(m \). Hence, the price paid for the computational simplicity of the Pisarenko method may be a relatively poor statistical accuracy.

Regarding the selection of a value for \(m \), this parameter may be chosen as large as possible, but not too close to \(N \), in order to still allow a reliable estimation of the covariance matrix (for example, as in (4.5.14)). In some applications, the largest possible value that may be selected for \(m \) may also be limited by computational complexity considerations.

Whenever the tradeoff between statistical accuracy and computational complexity is an important issue, the following simple ideas may be valuable.

The finite–sample statistical accuracy of MUSIC frequency estimates may be improved by modifying the covariance estimator (4.5.14). For instance, \(\hat{R} \) is not Toeplitz whereas the true covariance matrix \(R \) is. We may correct this situation by replacing the elements in each diagonal of \(\hat{R} \) with their average. The so–corrected sample covariance matrix can be shown to be the best (in the Frobenius–norm sense) Toeplitz approximation of \(\hat{R} \). Another modification of \(\hat{R} \), with the same purpose of improving the finite–sample statistical accuracy, is described in Section 4.8.

The computational complexity of MUSIC, for a given \(m \), may be reduced in various ways. Quite often, \(m \) is such that \(m - n > n \). Then, the computational burdens associated with both Spectral and Root MUSIC may be reduced by using \(I - \hat{S}\hat{S}^* \) in (4.5.15) or (4.5.16) in lieu of \(\hat{G}\hat{G}^* \). (Note that \(\hat{S}\hat{S}^* + \hat{G}\hat{G}^* = I \) by the very definition of the eigenvector matrices.) The computational burden of Root MUSIC may be further reduced as explained in the following. The polynomial in (4.5.16) is a self–reciprocal (or symmetric) one: its roots appear in reciprocal pairs \((pe^{i\phi}, \frac{1}{p}e^{i\phi})\). On the unit circle \(z = e^{i\omega} \), (4.5.16) is nonnegative and hence may be
interpreted as a PSD. Owing to the properties mentioned above, (4.5.16) can be factored as
\[a^T(z^{-1})\hat{G}G^*a(z) = \alpha(z)\alpha^*(1/z^*) \] (4.5.19)
where \(\alpha(z) \) is a polynomial of degree \((m-1)\) with all its zeroes located within or on the unit circle. We may then determine the frequency estimates from the \(n \) roots of \(\alpha(z) \) that are closest to the unit circle. Since there are efficient numerical procedures for spectral factorization, determining \(\alpha(z) \) as in (4.5.19) and then computing its zeroes is usually computationally more efficient than finding the (reciprocal) roots of the \(2(m-1) \)-degree polynomial (4.5.16).

Finally, we address the issue of spurious frequency estimates. As implied by the result (4.5.13), for \(N \to \infty \) there is no risk of obtaining false frequency estimates. However, in finite samples such a risk always exists. Usually, this risk is quite small but it may become a real problem if \(m \) takes on large values. The key result on which the standard MUSIC algorithm, (4.5.15), is based can be used to derive a modified MUSIC which does not suffer from the spurious estimate problem. In the following, we only explain the basic ideas leading to the modified MUSIC method without going into details of its implementation (for such details, the interested reader may consult [Stoica and Scharman 1990]). Let \(\{c_k\}_{k=1}^n \) denote the coefficients of the polynomial \(A(z) \) defined in (4.2.3):
\[A(z) = 1 + c_1 z^{-1} + \ldots + c_n z^{-n} = \prod_{k=1}^n (1 - e^{i\omega_k} z^{-1}) \] (4.5.20)
Introduce the following matrix made from \(\{c_k\} \):
\[C^* = \begin{bmatrix} 1 & c_1 & \ldots & c_n & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 1 & c_1 & \ldots & c_n \end{bmatrix}, \quad (m-n) \times m \] (4.5.21)
It is readily verified that
\[C^* A = 0, \quad (m-n) \times n \] (4.5.22)
where \(A \) is defined in (4.2.4). Combining (4.5.9) and (4.5.22) gives
\[C^* S = 0, \quad (m-n) \times n \] (4.5.23)
which is the key property here. The matrix equation (4.5.23) can be rewritten in the following form
\[\phi c = \mu \] (4.5.24)
where the \((m-n)n \times n\) matrix \(\phi \) and the \((m-n)n \times 1\) vector \(\mu \) are entirely determined from the elements of \(S \), and where
\[c = [c_1 \ldots c_n]^T \] (4.5.25)
By replacing the elements of \(S \) in \(\phi \) and \(\mu \) by the corresponding entries of \(\hat{S} \), we obtain the sample version of (4.5.24)
\[\phi \hat{c} \simeq \hat{\mu} \] (4.5.26)
from which an estimate \hat{c} of c may be obtained by an LS or TLS algorithm; see Section A.8 for details. The frequency estimates can then be derived from the roots of the estimated polynomial (4.5.20) corresponding to \hat{c}. Since this polynomial has a (minimal) degree equal to n, there is no risk for false frequency estimation.

4.6 MIN–NORM METHOD

MUSIC uses $(m - n)$ linearly independent vectors in $\mathcal{R}(\hat{G})$ to obtain the frequency estimates. Since any vector in $\mathcal{R}(\hat{G})$ is (asymptotically) orthogonal to $\{a(\omega_k)\}_{k=1}^{n}$ (cf. (4.5.7)), we may think of using only one such vector for frequency estimation. By doing so, we may achieve some computational saving, hopefully without sacrificing too much accuracy.

The Min–Norm method proceeds to estimate the frequencies along these lines [KUMARESAN AND TUFTS 1983]. Let

$$\begin{bmatrix} 1 \\ \hat{g} \end{bmatrix}$$

be the vector in $\mathcal{R}(\hat{G})$, with first element equal to one, that has minimum Euclidean norm. \hspace{1cm} (4.6.1)

Then, the Min–Norm frequency estimates are determined as

\begin{itemize}
\item \textbf{(Spectral Min–Norm).} The locations of the n highest peaks in the pseudospectrum

\begin{equation}
\frac{1}{\left| a^*(\omega) \begin{bmatrix} 1 \\ \hat{g} \end{bmatrix} \right|^2}
\end{equation}

\item \textbf{(Root Min–Norm).} The angular positions of the n roots of the polynomial

\begin{equation}
a^{T}(z^{-1}) \begin{bmatrix} 1 \\ \hat{g} \end{bmatrix}
\end{equation}

that are located nearest the unit circle.
\end{itemize}

It remains to determine the vector in (4.6.1) and, in particular, to show that its first element can always be normalized to one. We will later comment on the reason behind the specific selection (4.6.1) of a vector in $\mathcal{R}(\hat{G})$. In the following, the Euclidean norm of a vector is denoted by $\| \cdot \|$. Partition the matrix \hat{S} as

$$\hat{S} = \begin{bmatrix} \alpha^* \\ \hat{S} \end{bmatrix}_{m - 1}
\end{bmatrix}
\end{equation}

As $\begin{bmatrix} 1 \\ \hat{g} \end{bmatrix} \in \mathcal{R}(\hat{G})$, it must satisfy the equation

$$\hat{S}^* \begin{bmatrix} 1 \\ \hat{g} \end{bmatrix} = 0$$

(4.6.5)
which, using (4.6.4), can be rewritten as

\[\tilde{S}^* \hat{g} = -\alpha \] (4.6.6)

The minimum–norm solution to (4.6.6) is given by (see Result R31 in Appendix A):

\[\hat{g} = -\tilde{S}(\tilde{S}^* \tilde{S})^{-1} \alpha \] (4.6.7)

assuming that the inverse exists. Noting that

\[I = \tilde{S}^* \tilde{S} = \alpha \alpha^* + \tilde{S}^* \tilde{S} \] (4.6.8)

and also that one eigenvalue of \(I - \alpha \alpha^* \) is equal to \(1 - \|\alpha\|^2 \) and the remaining \((n - 1)\) eigenvalues of \(I - \alpha \alpha^* \) are equal to 1, it follows that the inverse in (4.6.7) exists if and only if

\[\|\alpha\|^2 \neq 1 \] (4.6.9)

If the above condition is not satisfied, there will be no vector of the form of (4.6.1) in \(R(\tilde{G}) \). We postpone the study of (4.6.9) until we obtain a final–form expression for \(\hat{g} \).

Under the condition (4.6.9), a simple calculation shows that

\[(\tilde{S}^* \tilde{S})^{-1} \alpha = (I - \alpha \alpha^*)^{-1} \alpha = \alpha / (1 - \|\alpha\|^2) \] (4.6.10)

Inserting (4.6.10) in (4.6.7) gives

\[\hat{g} = -\tilde{S} \alpha / (1 - \|\alpha\|^2) \] (4.6.11)

which expresses \(\hat{g} \) as a function of the elements of \(\tilde{S} \).

We can also obtain \(\hat{g} \) as a function of the entries in \(\tilde{G} \). To do so, partition \(\tilde{G} \) as

\[\tilde{G} = \begin{bmatrix} \beta^* \\ \tilde{G} \end{bmatrix} \] (4.6.12)

Since \(\tilde{S} \tilde{S}^* = I - \tilde{G} \tilde{G}^* \) by the definition of the matrices \(\tilde{S} \) and \(\tilde{G} \), it follows that

\[\begin{bmatrix} \|\alpha\|^2 & (\tilde{S} \alpha)^* \\ \tilde{S} \alpha & \tilde{S} \tilde{S}^* \end{bmatrix} = \begin{bmatrix} 1 - \|\beta\|^2 & -\tilde{G} \beta^* \\ -\tilde{G} \beta & I - \tilde{G} \tilde{G}^* \end{bmatrix} \] (4.6.13)

Comparing the blocks in (4.6.13) makes it possible to express \(\|\alpha\|^2 \) and \(\tilde{S} \alpha \) as functions of \(\tilde{G} \) and \(\beta \), which leads to the following equivalent expression for \(\hat{g} \):

\[\hat{g} = \tilde{G} \beta / \|\beta\|^2 \] (4.6.14)

If \(m - n > n \), then it is computationally more advantageous to obtain \(\hat{g} \) from (4.6.11); otherwise, (4.6.14) should be used.

Next, we return to the condition (4.6.9) that is implicitly assumed to hold in the previous derivations. As already mentioned, this condition is equivalent to

\[\text{rank}(\tilde{S}^* \tilde{S}) = n \] which, in turn, holds if and only if

\[\text{rank}(\tilde{S}) = n \] (4.6.15)
Now, it follows from (4.5.9) that any block of S made from more than n consecutive rows should have rank equal to n. Hence, (4.6.15) must hold at least for N sufficiently large. With this observation, the derivation of the Min–Norm frequency estimator is complete.

The statistical accuracy of the Min–Norm method is similar to that corresponding to MUSIC. Hence, Min–Norm achieves MUSIC’s performance at a reduced computational cost. It should be noted that the selection (4.6.1) of the vector in $\mathbb{R}(\hat{\mathbf{G}})$, used in the Min–Norm algorithm, is critical in obtaining frequency estimates with satisfactory statistical accuracy. Other choices of vectors in $\mathbb{R}(\hat{\mathbf{G}})$ may give rather poor accuracy. In addition, there is empirical evidence that the use of the minimum–norm vector in $\mathbb{R}(\hat{\mathbf{G}})$, as in (4.6.1), may decrease the risk of spurious frequency estimates compared with other vectors in $\mathbb{R}(\hat{\mathbf{G}})$ or even with MUSIC (see Complement 6.5.1 for details on this aspect).

4.7 ESPRIT METHOD

Let

$$A_1 = [I_{m-1} \ 0]A \quad (m-1) \times n \quad (4.7.1)$$

and

$$A_2 = [0 \ I_{m-1}]A \quad (m-1) \times n \quad (4.7.2)$$

where I_{m-1} is the identity matrix of dimension $(m-1) \times (m-1)$ and $[I_{m-1} \ 0]$ and $[0 \ I_{m-1}]$ are $(m-1) \times m$. It is readily verified that

$$A_2 = A_1 D \quad (4.7.3)$$

where

$$D = \begin{bmatrix} e^{-i\omega_1} & 0 \\ \vdots & \ddots \\ 0 & e^{-i\omega_n} \end{bmatrix} \quad (4.7.4)$$

Since D is a unitary matrix, the transformation in (4.7.3) is a rotation. ESPRIT, i.e., Estimation of Signal Parameters by Rotational Invariance Techniques ([Paulraj, Roy, and Kailath 1986; Roy and Kailath 1989]; see also [Kung, Arun, and Rao 1983]), relies on the rotational transformation (4.7.3) as we detail below.

Similarly to (4.7.1) and (4.7.2), define

$$S_1 = [I_{m-1} \ 0]S \quad (4.7.5)$$

$$S_2 = [0 \ I_{m-1}]S \quad (4.7.6)$$

From (4.5.12), we have that

$$S = AC \quad (4.7.7)$$

where C is the $n \times n$ nonsingular matrix given by

$$C = PA^*S\hat{A}^{-1} \quad (4.7.8)$$

(Observe that both S and A in (4.7.7) have full column rank, and hence C must be nonsingular; see Result R2 in Appendix A). The above explicit expression for C
actually has no relevance to the present discussion. It is only (4.7.7), and the fact that C is nonsingular, that counts.

By using (4.7.1)–(4.7.3) and (4.7.7), we can write

$$S_2 = A_2 C = A_1 D C = S_1 C^{-1} D C = S_1 \phi$$

(4.7.9)

where

$$\phi \triangleq C^{-1} D C$$

(4.7.10)

Owing to the Vandermonde structure of A, the matrices A_1 and A_2 have full column rank (equal to n). In view of (4.7.7), S_1 and S_2 must also have full column rank. It then follows from (4.7.9) that the matrix ϕ is uniquely given by

$$\phi = (S_1^* S_1)^{-1} S_1^* S_2$$

(4.7.11)

This formula expresses ϕ as a function of some quantities which can be estimated from the available sample. The importance of being able to estimate ϕ stems from the fact that ϕ and D have the same eigenvalues. (This can be seen from the equation (4.7.10), which is a similarity transformation relating ϕ and D, along with Result R6 in Appendix A.)

ESPRIT uses the previous observations to determine frequency estimates as described next.

ESPRIT estimates the frequencies $\{\omega_k\}_{k=1}^n$ as $-\arg(\hat{\nu}_k)$, where $\{\hat{\nu}_k\}_{k=1}^n$ are the eigenvalues of the following (consistent) estimate of the matrix ϕ:

$$\hat{\phi} = (\hat{S}_1^* \hat{S}_1)^{-1} \hat{S}_1^* \hat{S}_2$$

(4.7.12)

It should be noted that the above estimate of ϕ is implicitly obtained by solving the following linear system of equations:

$$\hat{S}_1 \phi \simeq \hat{S}_2$$

(4.7.13)

by an LS method. It has been empirically observed that better finite-sample accuracy may be achieved if (4.7.13) is solved for ϕ by a Total LS method (see Section A.8 and [Van Huffel and Vandewalle 1991] for discussions on the TLS approach).

The statistical accuracy of ESPRIT is similar to that of the previously described methods: HOYW, MUSIC and Min–Norm. In fact, in most cases, ESPRIT may provide slightly more accurate frequency estimates than the other methods mentioned above; and this at similar computational cost. In addition, unlike these other methods, ESPRIT has no problem with separating the “signal roots” from the “noise roots”, as can be seen from (4.7.12). Note that this property is shared by the modified MUSIC method (discussed in Section 4.5); however, in many cases ESPRIT outperforms modified MUSIC in terms of statistical accuracy. All these considerations recommend ESPRIT as the first choice in a frequency estimation application.
Chapter 4 Parametric Methods for Line Spectra

4.8 FORWARD–BACKWARD APPROACH

The previously described eigenanalysis–based methods (MUSIC, Min–Norm and ESPRIT) derive their frequency estimates from the eigenvectors of the sample covariance matrix \(\hat{R} \), (4.5.14), which is restated here for easy reference:

\[
\hat{R} = \frac{1}{N} \sum_{t=m}^{N} \begin{bmatrix} y(t) \\ \vdots \\ y(t-m+1) \end{bmatrix}[y^*(t) \ldots y^*(t-m+1)]
\]
(4.8.1)

The \(\hat{R} \) above is recognized to be the matrix that appears in the least squares (LS) estimation of the coefficients \(\{\alpha_k\} \) of an \(m \)th–order forward linear predictor of \(y^*(t+1) \):

\[
\hat{y}^*(t+1) = \alpha_1 y^*(t) + \ldots + \alpha_m y^*(t-m+1)
\]
(4.8.2)

For this reason, the methods which obtain frequency estimates from \(\hat{R} \) are named forward (F) approaches.

Extensive numerical experience with the aforementioned methods has shown that the corresponding frequency estimation accuracy can be enhanced by using the following modified sample covariance matrix, in lieu of \(\hat{R} \),

\[
\tilde{R} = \frac{1}{2} (\hat{R} + J\hat{R}^T J)
\]
(4.8.3)

where

\[
J = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}
\]
(4.8.4)

is the so–called “exchange” (or “reversal”) matrix. The second term in (4.8.3) has the following detailed form:

\[
J\hat{R}^T J = \frac{1}{N} \sum_{t=m}^{N} \begin{bmatrix} y^*(t-m+1) \\ \vdots \\ y^*(t) \end{bmatrix}[y(t-m+1) \ldots y(t)]
\]
(4.8.5)

The matrix (4.8.5) is the one that appears in the LS estimate of the coefficients of an \(m \)th–order backward linear predictor of \(y(t-m) \):

\[
\hat{y}(t-m) = \mu_1 y(t-m+1) + \ldots + \mu_m y(t)
\]
(4.8.6)

This observation, along with the previous remark made about \(\hat{R} \), suggests the name of forward–backward (FB) approaches for methods that determine frequency estimates from \(\hat{R} \) in (4.8.3).

The \((i, j)\) element of \(\tilde{R} \) is given by:

\[
\tilde{R}_{i,j} = \frac{1}{2N} \sum_{t=m}^{N} [y(t-i)y^*(t-j) + y^*(t-m+1+i)y(t-m+1+j)]
\]

\[
\triangleq T_1 + T_2 \quad (i, j = 0, \ldots, m-1)
\]
(4.8.7)
Assume that \(i \leq j \) (the other case \(i \geq j \) can be similarly treated). Let \(\hat{\rho}(j-i) \) denote the usual sample covariance:

\[
\hat{\rho}(j-i) = \frac{1}{N} \sum_{t=(j-i)+1}^{N} y(t)y^*(t-(j-i)) \tag{4.8.8}
\]

A straightforward calculation shows that the two terms \(T_1 \) and \(T_2 \) in (4.8.7) can be written as

\[
T_1 = \frac{1}{2N} \sum_{p=m-i}^{N-i} y(p)y^*(p-(j-i)) = \frac{1}{2}\hat{\rho}(j-i) + \mathcal{O}(1/N) \tag{4.8.9}
\]

and

\[
T_2 = \frac{1}{2N} \sum_{p=j+1}^{N-m+j+1} y(p)y^*(p-(j-i)) = \frac{1}{2}\hat{\rho}(j-i) + \mathcal{O}(1/N) \tag{4.8.10}
\]

where \(\mathcal{O}(1/N) \) denotes a term that tends to zero as \(1/N \) when \(N \) increases (it is here assumed that \(m \ll N \)). It follows from (4.8.7)–(4.8.10) that, for large \(N \), the difference between \(\hat{R}_{i,j} \) or \(\hat{R}_{j,i} \) and the sample covariance lag \(\hat{\rho}(j-i) \) is “small”. Hence, the frequency estimation methods based on \(\hat{R} \) or \(\hat{R} \) (or on \(\hat{\rho}(j-i) \)) may be expected to have similar performances in large samples.

In summary, it follows from the previous discussion that the empirically observed performance superiority of the forward–backward approach over the forward–only approach should only be manifest in samples with relatively small lengths. As such, this superiority cannot be easily established by theoretical means. Let us then argue heuristically.

First, note that the transformation \(J(\cdot)^TJ \) is such that the following equalities hold:

\[
(\hat{R})_{i,j} = (J\hat{R}J)_{m-i,m-j} = (J\hat{R}^TJ)_{m-j,m-i} \tag{4.8.11}
\]

and

\[
(\hat{R})_{m-j,m-i} = (J\hat{R}^TJ)_{i,j} \tag{4.8.12}
\]

This implies that the \((i, j)\) and \((m-j, m-i)\) elements of \(\hat{R} \) are both given by

\[
\hat{R}_{i,j} = \hat{R}_{m-j,m-i} = \frac{1}{2}(\hat{R}_{i,j} + \hat{R}_{m-j,m-i}) \tag{4.8.13}
\]

Equations (4.8.11)–(4.8.12) imply that \(\hat{R} \) is invariant to the transformation \(J(\cdot)^TJ \):

\[
J\hat{R}^TJ = \hat{R} \tag{4.8.14}
\]

Such a matrix is said to be persymmetric (also called centrosymmetric). In order to see the reason for this name, note that \(\hat{R} \) is Hermitian (symmetric in the real-valued case) with respect to its main diagonal; in addition, \(\hat{R} \) is symmetric about its main antidiagonal. Indeed, the equal elements \(\hat{R}_{i,j} \) and \(\hat{R}_{m-j,m-i} \) of \(\hat{R} \) belong to the same diagonal as \(i-j = (m-j) - (m-i) \). They are also symmetrically
placed with respect to the main antidiagonal: $\tilde{R}_{i,j}$ lies on antidiagonal $(i + j)$, $R_{m-j,m-i}$ on the $[2m - (j + i)]$th one, and the main antidiagonal is the mth one (and $m = [(i + j) + 2m - (i + j)]/2$).

The theoretical (and unknown) covariance matrix R is Toeplitz and hence persymmetric. Since \tilde{R} is persymmetric like R, whereas \hat{R} is not, we may expect \tilde{R} to be a better estimate of R than \hat{R}. In turn, this means that the frequency estimates derived from \tilde{R} are likely to be more accurate than those obtained from \hat{R}.

The impact of enforcing the persymmetric property can be seen by examining, say, the $(1,1)$ and (m,m) elements of \hat{R} and \tilde{R}. Both the $(1,1)$ and (m,m) elements of \tilde{R} are estimates of $r(0)$; however, the $(1,1)$ element does not use the first $(m-1)$ lag products $|y(1)|^2, \ldots, |y(m-1)|^2$, and the (m,m) element does not use the last $(m-1)$ lag products $|y(N-m+2)|^2, \ldots, |y(N)|^2$. If $N \gg m$, the omission of these lag products is negligible; for small N, however, this omission may be significant. On the other hand, all lag products of $y(t)$ are used to form the $(1,1)$ and (m,m) elements of \hat{R}, and in general the (i,j) element of \hat{R} uses more lag products of $y(t)$ than the corresponding element of \tilde{R}. For more details on the FB approach, we refer the reader to, e.g., [Rao and Hari 1993; Pillai 1989]; see also Complement 6.5.8.

Finally, the reader might wonder why we do not replace \hat{R} by a Toeplitz estimate, obtained for example by averaging the elements along each diagonal of \hat{R}. This Toeplitz estimate would at first seem to be a better approximation of R than either \tilde{R} or \hat{R}. The reason why we do not “Toeplitz–ize” \hat{R} or \tilde{R} is that for finite N, and infinite signal–to–noise ratio ($\sigma^2 \to 0$), the use of either \tilde{R} or \hat{R} gives exact frequency estimates, whereas the Toeplitz–averaged approximation of R does not. As $\sigma^2 \to 0$, both \tilde{R} and \hat{R} have rank n, but the Toeplitz–averaged approximation of R has full rank in general.

4.9 COMPLEMENTS

4.9.1 Mean Square Convergence of Sample Covariances for Line Spectral Processes

In this complement we prove that

$$\lim_{N \to \infty} \hat{r}(k) = r(k) \quad \text{(in a mean square sense)}$$

(4.9.1)

(that is, $\lim_{N \to \infty} \mathbb{E} \{ |\hat{r}(k) - r(k)|^2 \} = 0$). The above result has already been referred to in Section 4.4, in the discussion on the rank properties of Ω and $\hat{\Omega}$. It is also the basic result from which the consistency of all covariance–based frequency estimators discussed in this chapter can be readily concluded. Note that a signal $\{y(t)\}$ satisfying (4.9.1) is said to be second–order ergodic (see [Söderström and Stoica 1989; Brockwell and Davis 1991] for a more detailed discussion of the ergodicity property).
A straightforward calculation gives

\[
\hat{r}(k) = \frac{1}{N} \sum_{t=k+1}^{N} [x(t) + e(t)][x(t) - e(t)]
\]

\[
= \frac{1}{N} \sum_{t=k+1}^{N} [x(t)x(t) - x(t)] + x(t)e(t) + e(t)x(t) - e(t)
\]

\[+ e(t)e(t)] \equiv T_1 + T_2 + T_3 + T_4 \quad (4.9.2)
\]

The limit of \(T_1 \) is found as follows. First note that:

\[
\lim_{N \to \infty} E \{ |T_1 - r_x(k)|^2 \} = \lim_{N \to \infty} \left\{ \frac{1}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} E \{ x(t)x(t) - x(t) \} (s)(s - k) \right. \\
- \left. \left(\frac{2}{N} \sum_{t=k+1}^{N} |r_x(k)|^2 \right) \right\}
\]

\[
= \lim_{N \to \infty} \left\{ \frac{1}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} E \{ x(t)x(t) - x(t) \} (s)(s - k) \right\} \\
- |r_x(k)|^2
\]

Now,

\[
E \{ x(t)x(t) - x(t) \} (s)(s - k) \}
= \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{m=1}^{n} a_p a_j a_m e^{i(\omega_p - \omega_j)t} e^{i(\omega_m - \omega_j)s} \\
\times e^{i(\omega_j - \omega_m)k} E \{ e^{i\varphi_k} e^{-i\varphi_k} e^{i\varphi_k} e^{-i\varphi_k} \}
\]

\[
= \sum_{p=1}^{n} \sum_{j=1}^{n} \sum_{m=1}^{n} a_p a_j a_m e^{i(\omega_p - \omega_j)t} e^{i(\omega_m - \omega_j)s} \\
\times e^{i(\omega_j - \omega_m)k} \{ \delta_{p,j} \delta_{m,1} + \delta_{p,t} \delta_{m,j} - \delta_{p,j} \delta_{m,1} \}
\]

where the last equality follows from the assumed independence of the initial phases \{\varphi_k\}. Combining the results of the above two calculations yields:

\[
\lim_{N \to \infty} E \{ |T_1 - r_x(k)|^2 \} = \lim_{N \to \infty} \frac{1}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} \left\{ \sum_{p=1}^{n} \sum_{m=1}^{n} a_p a_m e^{i(\omega_p - \omega_m)k} \\
+ \sum_{m=1}^{n} \sum_{p=1}^{n} a_p a_m e^{i(\omega_p - \omega_m)(t-s)} \right. \\
- \left. \sum_{p=1}^{n} d_p^4 \right\} - |r_x(k)|^2
\]

\[
= \sum_{p=1}^{n} \sum_{m=1}^{n} a_p a_m \lim_{N \to \infty} \frac{1}{N^2} \sum_{\tau = -N}^{N} \left(N - |\tau| \right) e^{i(\omega_p - \omega_m)\tau}
\]

\[
= 0 \quad (4.9.3)
\]

It follows that \(T_1 \) converges to \(r(k) \) (in the mean square sense) as \(N \) tends to infinity.
4.9.2 The Carathéodory Parameterization of a Covariance Matrix

Hence, we show that for \(T_2 \) and \(T_3 \) are similar. Using the fact that \(\{x(t)\} \) and \(\{e(t)\} \) are by assumption independent random signals, we get

\[
E \{ |T_2|^2 \} = \frac{1}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} E \{ x(t)e^*(t-k)x^*(s)e(s-k) \}
\]

\[
= \frac{\sigma^2}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} E \{ x(t)x^*(s) \} \delta_{t,s}
\]

\[
= \frac{\sigma^2}{N^2} \sum_{t=k+1}^{N} E \{ |x(t)|^2 \} = \frac{(N-k)\sigma^2}{N^2} E \{ |x(t)|^2 \} \quad (4.9.4)
\]

which tends to zero, as \(N \to \infty \). Hence, \(T_2 \) (and, similarly, \(T_3 \)) converges to zero in the mean square sense.

The last term, \(T_4 \), in (4.9.2) converges to \(\sigma^2\delta_{k,0} \) by the “law of large numbers” (see [SÖDERSTRÖM and STOICA 1989; BROCKWELL and DAVIS 1991]). In fact, it is readily verified, at least under the Gaussian hypothesis, that

\[
E \{ |T_4 - \sigma^2\delta_{k,0}|^2 \} = \frac{1}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} E \{ e(t)e^*(t-k)e^*(s)e(s-k) \}
\]

\[
- \sigma^2\delta_{k,0} \left\{ \frac{1}{N} \sum_{t=k+1}^{N} E \{ e(t)e^*(t-k) + e^*(t)e(t-k) \} \right\}
\]

\[
+ \sigma^4\delta_{k,0}
\]

\[
= \frac{1}{N^2} \sum_{t=k+1}^{N} \sum_{s=k+1}^{N} [\sigma^4\delta_{k,0} + \sigma^4\delta_{k,s}]
\]

\[
- 2\sigma^4\delta_{k,0} \frac{1}{N} \sum_{t=k+1}^{N} (\delta_{k,0}) + \sigma^4\delta_{k,0}
\]

\[
\to \sigma^4\delta_{k,0} - 2\sigma^4\delta_{k,0} + \sigma^4\delta_{k,0} = 0 \quad (4.9.5)
\]

Hence, \(T_4 \) converges to \(\sigma^2\delta_{k,0} \) in the mean square sense if \(e(t) \) is Gaussian. It can be shown using the law of large numbers that \(T_4 \to \sigma^2\delta_{k,0} \) in the mean square sense even if \(e(t) \) is non-Gaussian, as long as the fourth-order moment of \(e(t) \) is finite.

Next, observe that since, for example, \(E\{|T_2|^2\} \) and \(E\{|T_3|^2\} \) converge to zero, then \(E\{T_2T_3^*\} \) also converges to zero (as \(N \to \infty \)); this is so because

\[
|E \{ T_2T_3^* \} | \leq \left[E \{ |T_2|^2 \} E \{ |T_3|^2 \} \right]^{1/2}
\]

With this observation, the proof of (4.9.1) is complete.

4.9.2 The Carathéodory Parameterization of a Covariance Matrix

The covariance matrix model in (4.2.7) is more general than it might appear at first sight. We show that for \emph{any} given covariance matrix \(R = \{r(i-j)\}_{i,j=1}^{m} \),
there exist \(n \leq m \), \(\sigma^2 \) and \(\{\omega_k, \alpha_k\}_{k=1}^{n} \) such that \(R \) can be written as in (4.2.7). Equation (4.2.7), associated with an arbitrary given covariance matrix \(R \), is named the Carathéodory parameterization of \(R \).

Let \(\sigma^2 \) denote the minimum eigenvalue of \(R \). As \(\sigma^2 \) is not necessarily unique, let \(\tilde{n} \) denote its multiplicity and set \(n = m - \tilde{n} \). Define

\[
\Gamma = R - \sigma^2 I
\]

The matrix \(\Gamma \) is positive semidefinite and Toeplitz and, hence, must be the covariance matrix associated with a stationary signal, say \(y(t) \):

\[
\Gamma = E \left\{ \begin{bmatrix} y(t) \\ \vdots \\ y(t-m+1) \end{bmatrix} [y^*(t) \ldots y^*(t-m+1)] \right\}
\]

By definition,

\[
\text{rank}(\Gamma) = n \tag{4.9.6}
\]

which implies that there must exist a linear combination between \(\{y(t), \ldots, y(t-n)\} \) for all \(t \). Moreover, both \(y(t) \) and \(y(t-n) \) must appear with nonzero coefficients in that linear combination (otherwise either \(\{y(t) \ldots y(t-n+1)\} \) or \(\{y(t-1) \ldots y(t-n)\} \) would be linearly related, and \(\text{rank}(\Gamma) \) would be less than \(n \), which would contradict (4.9.6)). Hence \(y(t) \) obeys the following homogeneous AR equation:

\[
B(z)y(t) = 0 \tag{4.9.7}
\]

where \(z^{-1} \) is the unit delay operator, and

\[
B(z) = 1 + b_1 z^{-1} + \cdots + b_n z^{-n}
\]

with \(b_n \neq 0 \). Let \(\phi(\omega) \) denote the PSD of \(y(t) \). Then we have the following equivalences:

\[
B(z)y(t) = 0 \iff \int_{-\pi}^{\pi} |B(\omega)|^2 \phi(\omega) \, d\omega = 0
\]

\[
\iff |B(\omega)|^2 \phi(\omega) = 0
\]

\[
\iff \{\text{If } \phi(\omega) > 0 \text{ then } B(\omega) = 0\}
\]

\[
\iff \{\phi(\omega) > 0 \text{ for at most } n \text{ values of } \omega\}
\]

Furthermore,

\[
\{y(t), \ldots, y(t-n+1) \text{ are linearly independent}\}
\]

\[
\iff \{E \left\{ |g_0 y(t) + \ldots + g_{n-1} y(t-n+1)|^2 \right\} > 0 \text{ for every } [g_0 \ldots g_{n-1}]^T \neq 0\}
\]

\[
\iff \left\{ \int_{-\pi}^{\pi} |G(\omega)|^2 \phi(\omega) \, d\omega > 0 \text{ for every } G(z) = \sum_{k=0}^{n-1} g_k z^{-k} \neq 0 \right\}
\]

\[
\iff \{\phi(\omega) > 0 \text{ for at least } n \text{ distinct values of } \omega\}
\]

It follows from the two results above that \(\phi(\omega) > 0 \) for exactly \(n \) distinct values of \(\omega \). Furthermore, the values of \(\omega \) for which \(\phi(\omega) > 0 \) are given by the \(n \) roots of the
equation $B(\omega) = 0$. A signal $y(t)$ with such a PSD consists of a sum of n sinusoidal components with an $m \times m$ covariance matrix given by

$$\Gamma = APA^*$$

(cf. (4.2.7)). In (4.9.8), the frequencies $\{\omega_k\}_{k=1}^n$ are defined as indicated above, and can be found from Γ using any of the subspace-based frequency estimation methods in this chapter. Once $\{\omega_k\}$ are available, $\{\alpha_k^2\}$ can be determined from Γ. (Show that.) By combining the additive decomposition $R = \Gamma + \sigma^2 I$ and (4.9.8) we obtain (4.2.7). With this observation, the derivation of the Carathéodory parameterization is complete.

It is interesting to note that the sinusoids-in-noise signal which “realizes” a given covariance sequence $\{r(0), \ldots, r(m)\}$ (as described above) also provides a positive definite extension of that sequence. More precisely, the covariance lags $\{r(m+1), r(m+2), \ldots\}$ derived from the sinusoidal signal equation, when appended to $\{r(0), \ldots, r(m)\}$, provide a positive definite covariance sequence of infinite length. The AR covariance realization is the other well-known method for obtaining a positive definite extension of a given covariance sequence of finite length (see Complement 3.9.2).

4.9.3 Using the Unwindowed Periodogram for Sine Wave Detection in White Noise

As shown in Section 4.3, the unwindowed periodogram is an accurate frequency estimation method whenever the minimum frequency separation is larger than $1/N$.

A simple intuitive explanation as to why the unwindowed periodogram is a better frequency estimator than the windowed periodogram(s) is as follows. The principal effect of a window is to remove the tails of the sample covariance sequence from the periodogram formula; while this is appropriate for signals whose covariance sequence “rapidly” goes to zero, it is inappropriate for sinusoidal signals whose covariance sequence never dies out (for sinusoidal signals, the use of a window is expected to introduce a significant bias in the estimated spectrum). Note, however, that if the data contains sinusoidal components with significantly different amplitudes, then it may be advisable to use a (mildly) windowed periodogram. This will induce bias in the frequency estimates, but, on the other hand, will reduce the leakage and hence make it possible to detect the low-amplitude components.

When using the (unwindowed) periodogram for frequency estimation, an important problem is to infer whether any of the many peaks of the erratic periodogram plot can really be associated with the existence of a sinusoidal component in the data. In order to be more precise, consider the following two hypotheses.

H_0: the data consists of (complex circular Gaussian) white noise only (with unknown variance σ^2).

H_1: the data consists of a sum of sinusoidal components and noise.

Deciding between H_0 and H_1 constitutes the so-called (signal) detection problem. A solution to the detection problem can be obtained as follows. From the calculations leading to the result (2.4.21) one can see that the normalized periodogram
values in (4.9.15) are independent random variables (under H_0). It remains to derive their distribution. Let

$$
\epsilon_r(\omega) = \frac{\sqrt{2}}{\sigma \sqrt{N}} \sum_{t=1}^{N} \text{Re}[e(t)e^{-i\omega t}]
$$

$$
\epsilon_i(\omega) = \frac{\sqrt{2}}{\sigma \sqrt{N}} \sum_{t=1}^{N} \text{Im}[e(t)e^{-i\omega t}]
$$

With this notation and under the null hypothesis H_0,

$$
2\hat{\phi}_p(\omega)/\sigma^2 = \epsilon_r^2(\omega) + \epsilon_i^2(\omega)
$$

For any two complex scalars z_1 and z_2 we have

$$
\text{Re}(z_1) \text{Im}(z_2) = \frac{z_1 + z_1^*}{2} \frac{z_2 - z_2^*}{2i} = \frac{1}{2} \text{Im} (z_1 z_2 + z_1^* z_2)
$$

and, similarly,

$$
\text{Re}(z_1) \text{Re}(z_2) = \frac{1}{2} \text{Re} (z_1 z_2 + z_1^* z_2)
$$

$$
\text{Im}(z_1) \text{Im}(z_2) = \frac{1}{2} \text{Re} (-z_1 z_2 + z_1^* z_2)
$$

By making use of (4.9.10)–(4.9.12), we can write

$$
E \{ \epsilon_r(\omega)\epsilon_i(\omega) \} = \frac{1}{\sigma^2 N} \text{Im} \left\{ \sum_{t=1}^{N} \sum_{s=1}^{N} E \left\{ e(t)e(s)e^{-i\omega(t+s)} + e^*(t)e(s)e^{i\omega(t-s)} \right\} \right\}
$$

$$
= \text{Im}\{1\} = 0
$$

$$
E \{ \epsilon_r^2(\omega) \} = \frac{1}{\sigma^2 N} \text{Re} \left\{ \sum_{t=1}^{N} \sum_{s=1}^{N} E \left\{ e(t)e(s)e^{-i\omega(t+s)} + e^*(t)e(s)e^{i\omega(t-s)} \right\} \right\}
$$

$$
= \text{Re}\{1\} = 1
$$

$$
E \{ \epsilon_i^2(\omega) \} = \frac{1}{\sigma^2 N} \text{Re} \left\{ \sum_{t=1}^{N} \sum_{s=1}^{N} E \left\{ -e(t)e(s)e^{-i\omega(t+s)} + e^*(t)e(s)e^{i\omega(t-s)} \right\} \right\}
$$

$$
= \text{Re}\{1\} = 1
$$

In addition, note that the random variables $\epsilon_r(\omega)$ and $\epsilon_i(\omega)$ are zero-mean Gaussian distributed because they are linear transformations of the Gaussian white noise sequence. Then, it follows that under H_0

The random variables

$$
\{2\hat{\phi}_p(\omega_k)/\sigma^2\}_{k=1}^{N},
$$

with $\min_{k \neq j} |\omega_k - \omega_j| \geq 2\pi/N$, are asymptotically independent and χ^2 distributed with 2 degrees of freedom.
Chapter 4 Parametric Methods for Line Spectra

(See, e.g., [Priestley 1981] and [Söderström and Stoica 1989] for the definition and properties of the \(\chi^2 \) distribution.) It is worth noting that if \(\{ \omega_k \} \) are equal to the Fourier frequencies \(\left\{ \frac{2\pi k}{N} \right\}_{k=0}^{N-1} \), then the previous distributional result is exactly valid (i.e., it holds in samples of finite length; see, for example, equation (2.4.26)). However, this observation is not as important as it might seem at first sight, since \(\sigma^2 \) in (4.9.15) is unknown. When the noise power in (4.9.15) is replaced by a consistent estimate \(\hat{\sigma}^2 \), the so-obtained normalized periodogram values

\[
\left\{ \frac{2\hat{\phi}_p(\omega_k)}{\hat{\sigma}^2} \right\}
\]

are \(\chi^2(2) \) distributed only asymptotically (for \(N \gg 1 \)). A consistent estimate of \(\sigma^2 \) can be obtained as follows. From (4.9.9), (4.9.13), and (4.9.14) we have that under \(H_0 \)

\[
E \left\{ \hat{\phi}_p(\omega_k) \right\} = \sigma^2 \quad \text{for} \quad k = 1, 2, \ldots, N
\]

Since \(\{ \hat{\phi}_p(\omega_k) \} \) are independent random variables, a consistent estimate of \(\sigma^2 \) is given by

\[
\hat{\sigma}^2 = \frac{1}{N} \sum_{k=1}^{N} \hat{\phi}_p(\omega_k)
\]

Inserting this expression for \(\hat{\sigma}^2 \) into (4.9.16) leads to the following “test statistic”:

\[
\mu_k = \frac{2N \hat{\phi}_p(\omega_k)}{\sum_{k=1}^{N} \hat{\phi}_p(\omega_k)}
\]

In accordance with the (asymptotic) \(\chi^2 \) distribution of \(\{ \mu_k \} \), we have (for any given \(c \geq 0 \); see, e.g., [Priestley 1981]):

\[
\Pr(\mu_k \leq c) = \int_{0}^{c} \frac{1}{2} e^{-x/2} \, dx = 1 - e^{-c/2}.
\]

(4.9.17)

Let

\[
\mu = \max_k [\mu_k]
\]

Using (4.9.17) and the fact that \(\{ \mu_k \} \) are independent random variables, gives (for any \(c \geq 0 \)):

\[
\Pr(\mu > c) = 1 - \Pr(\mu \leq c)
= 1 - \Pr(\mu_k \leq c \text{ for all } k)
= 1 - (1 - e^{-c/2})^N \quad \text{ (under } H_0)\]

This result can be used to set a bound on μ that, under H_0, holds with a (high) preassigned probability $1 - \alpha$ (say). More precisely, let α be given (e.g., $\alpha = 0.05$) and solve for c from the equation

$$(1 - e^{-c/2})^N = 1 - \alpha$$

Then

- If $\mu \leq c$, accept H_0 with an unknown risk. (That risk depends on the signal–to–noise ratio (SNR). The lower the SNR, the larger the risk of accepting H_0 when it does not hold.)
- If $\mu > c$, reject H_0 with a risk equal to α.

It should be noted that whenever H_0 is rejected by the above test, what we can really infer is that the periodogram peak in question is significant enough to make the existence of a sinusoidal component in the studied data highly probable. However, the previous test does not tell us the number of sinusoidal components in the data. In order to determine that number, the test should be continued by looking at the second highest peak in the periodogram. For a test of the significance of the second highest value of the periodogram, and so on, we refer to [Priestley 1981].

Finally, we note that in addition to the test presented in this complement, there are several other tests to decide between the hypotheses H_0 and H_1 above; see [Priestley 1997] for a review.

4.9.4 NLS Frequency Estimation for a Sinusoidal Signal with Time-Varying Amplitude

Consider the sinusoidal data model in (4.1.1) for the case of a single component ($n = 1$) but with a time-varying amplitude:

$$y(t) = \alpha(t)e^{i(\omega t + \varphi)} + e(t), \quad t = 1, \ldots, N$$

(4.9.18)

where $\alpha(t) \in \mathbb{R}$ is an arbitrary unknown envelope modulating the sinusoidal signal. The NLS estimates of $\alpha(t)$, ω, and φ are obtained by minimizing the following criterion:

$$f = \sum_{t=1}^{N} |y(t) - \alpha(t)e^{i(\omega t + \varphi)}|^2$$

(cf. (4.3.1)). In this complement we show that the above seemingly complicated minimization problem has in fact a simple solution. We also discuss briefly an FFT-based algorithm for computing that solution. The reader interested in more details on the topic of this complement can consult [Besson and Stoica 1999; Stoica, Besson, and Gershman 2001] and references therein.
Chapter 4 Parametric Methods for Line Spectra

A straightforward calculation shows that:

$$f = \sum_{t=1}^{N} \left[|y(t)|^2 + \left[\alpha(t) - \text{Re} \left(e^{-i(\omega t + \varphi)} y(t) \right) \right]^2 - \left[\text{Re} \left(e^{-i(\omega t + \varphi)} y(t) \right) \right]^2 \right]$$

(4.9.19)

The minimization of (4.9.19) with respect to $\alpha(t)$ is immediate:

$$\hat{\alpha}(t) = \text{Re} \left(e^{-i(\hat{\omega} t + \hat{\varphi})} y(t) \right)$$

(4.9.20)

where the NLS estimates $\hat{\omega}$ and $\hat{\varphi}$ are yet to be determined. Inserting (4.9.20) into (4.9.19) shows that the NLS estimates of φ and ω are obtained by maximizing the function

$$g = 2 \sum_{t=1}^{N} \left[\text{Re} \left(e^{-i(\hat{\omega} t + \hat{\varphi})} y(t) \right) \right]^2$$

where the factor 2 has been introduced for the sake of convenience. For any complex number c we have

$$|\text{Re}(c)|^2 = \frac{1}{4} (c + c^*)^2 = \frac{1}{2} \left[|c|^2 + \text{Re}(c^2) \right]$$

It follows that

$$g = \sum_{t=1}^{N} \left[|y(t)|^2 + \text{Re} \left[e^{-i2\omega t} y^2(t) \right] \right]$$

$$= \text{constant} + \left\| \sum_{t=1}^{N} y^2(t)e^{-i2\omega t} \right\| \cdot \cos \left[\arg \left(\sum_{t=1}^{N} y^2(t)e^{-i2\omega t} \right) - 2\varphi \right]$$

(4.9.21)

Clearly the maximizing φ is given by

$$\hat{\varphi} = \frac{1}{2} \arg \left(\sum_{t=1}^{N} y^2(t)e^{-i2\omega t} \right)$$

with the NLS estimate of ω given by

$$\hat{\omega} = \arg \max_{\omega} \left\| \sum_{t=1}^{N} y^2(t)e^{-i2\omega t} \right\|$$

(4.9.22)

It is important to note that the maximization in (4.9.22) should be conducted over $[0, \pi]$ instead of over $[0, 2\pi]$; indeed, the function in (4.9.22) is periodic with a period equal to π. The restriction of ω to $[0, \pi]$ is not a peculiar feature of the NLS approach, but rather it is a consequence of the generality of the problem considered in this complement. This is easily seen by making the substitution $\omega \to \omega + \pi$ in (4.9.18), which yields

$$y(t) = \hat{\alpha}(t)e^{i(\omega t + \varphi)} + e(t), \quad t = 1, \ldots, N$$
where \(\bar{\alpha}(t) = (-1)^{t}\alpha(t) \) is another valid (i.e., real-valued) envelope. This simple calculation confirms the fact that \(\omega \) is uniquely identifiable only in the interval \([0, \pi]\). In applications, the frequency can be made to belong to \([0, \pi]\) by using a sufficiently small sampling period.

The above estimate of \(\omega \) should be contrasted with the NLS estimate of \(\omega \) in the constant-amplitude case (see (4.3.11), (4.3.17)):

\[
\hat{\omega} = \arg \max_\omega \left| \sum_{t=1}^{N} y(t)e^{-i\omega t} \right| \quad \text{(for } \alpha(t) = \text{constant)} \quad (4.9.23)
\]

There is a striking similarity between (4.9.22) and (4.9.23); the only difference between these equations is the squaring of the terms in (4.9.22). As a consequence, we can apply the FFT to the squared data sequence \(\{y^2(t)\} \) to obtain the \(\hat{\omega} \) in (4.9.22).

The reader may wonder if there is an intuitive reason for the occurrence of the squared data in (4.9.22). A possible way to explain this occurrence goes as follows. Assume that \(\alpha(t) \) has zero average value. Hence the DFT of \(\{\alpha(t)\} \), denoted \(A(\bar{\omega}) \), takes on small values (theoretically zero) at \(\bar{\omega} = 0 \). As the DFT of \(\alpha(t)e^{i\omega t} \) is \(A(\bar{\omega} - \bar{\omega}) \), it follows that the modulus of this DFT has a valley instead of a peak at \(\bar{\omega} = \omega \), and hence the standard periodogram (see (4.9.23)) should not be used to determine \(\omega \). On the other hand, \(\alpha^2(t) \) always has a nonzero average value (or DC component), and hence the modulus of the DFT of \(\alpha^2(t)e^{i2\omega t} \) will typically have a peak at \(\bar{\omega} = 2\omega \). This observation provides an heuristic reason for the squaring operation in (4.9.22).

4.9.5 Monotonically Descending Techniques for Function Minimization

As explained in Section 4.3, minimizing the NLS criterion with respect to the unknown frequencies is a rather difficult task owing to the existence of possibly many local minima and the sharpness of the global minimum. In this complement\(^1\) we will discuss a number of methods that can be used to solve such a minimization problem. Our discussion is quite general and applies to many other functions, not just the NLS criterion that is used as an illustrating example in what follows.

We will denote the function to be minimized by \(f(\theta) \), where \(\theta \) is a vector. Sometimes we will write this function as \(f(x, y) \) where \([x^T, y^T]^T = \theta \). The algorithms for minimizing \(f(\theta) \) discussed in this complement are iterative. We let \(\theta^i \) denote the value taken by \(\theta \) at the \(i \)th iteration (and similarly for \(x \) and \(y \)). The common feature of the algorithms included in this complement is that they all monotonically decrease the function at each iteration:

\[
f(\theta^{i+1}) \leq f(\theta^i) \quad \text{for } i = 0, 1, 2, \ldots \quad (4.9.24)
\]

Hereafter \(\theta^0 \) denotes the initial value (or estimate) of \(\theta \) used by the minimization algorithm in question. Clearly (4.9.24) is an appealing property which in effect is the

main reason for the interest in the algorithms discussed here. However, we should note that usually (4.9.24) can only guarantee the convergence to a local minimum of \(f(\theta) \). The goodness of the initial estimate \(\theta^0 \) will often determine whether the algorithm will converge to the global minimum. In fact, for some of the algorithms discussed below not even the convergence to a local minimum is guaranteed. For example, the EM algorithm (discussed later in this complement) can converge to saddle points or local maxima (see, e.g., [MCLACHLAN AND KRISHNAN 1997]). However, such a behavior is rare in applications, provided that some regularity conditions are satisfied.

Cyclic Minimizer

To describe the main idea of this type of algorithm in its simplest form, let us partition \(\theta \) into two subvectors:

\[
\theta = \begin{bmatrix} x \\ y \end{bmatrix}
\]

Then the generic iteration of a cyclic algorithm for minimizing \(f(x, y) \) will have the following form:

\[
y^0 = \text{given} \\
\text{For } i = 1, 2, \ldots \text{ compute:} \\
x^i = \arg \min_x f(x, y^{i-1}) \\
y^i = \arg \min_y f(x^i, y)
\]

Note that (4.9.25) alternates (or cycles) between the minimization of \(f(x, y) \) with respect to \(x \) for given \(y \) and the minimization of \(f(x, y) \) with respect to \(y \) for given \(x \), and hence the name of “cyclic” given to this type of algorithm. An obvious modification of (4.9.25) allows us to start with \(x^0 \), if so desired. It is readily verified that the cyclic minimizer (4.9.25) possesses the property (4.9.24):

\[
f(x^i, y^i) \leq f(x^i, y^{i-1}) \leq f(x^{i-1}, y^{i-1})
\]

where the first inequality follows from the definition of \(y^i \) and the second from the definition of \(x^i \).

The partitioning of \(\theta \) into subvectors is usually done in such a way that the minimization operations in (4.9.25) (or at least one of them) are “easy” (in any case, easier than the minimization of \(f \) jointly with respect to \(x \) and \(y \)). Quite often, to achieve this desired property we need to partition \(\theta \) in more than two subvectors. The extension of (4.9.25) to such a case is straightforward and will not be discussed here. However, there is one point about this extension that we would like to make briefly: whenever \(\theta \) is partitioned into three or more subvectors we can choose the way in which the various minimization subproblems are iterated. For instance, if \(\theta = [x^T, y^T, z^T]^T \) then we may iterate the minimization steps with respect to \(x \) and with respect to \(y \) a number of times (with \(z \) being fixed), before re-determining \(z \), and so forth.
With reference to the NLS problem in Section 4.3, we can apply the above ideas to the following natural partitioning of the parameter vector:

\[
\theta = \begin{bmatrix}
\gamma_1 \\
\gamma_2 \\
\vdots \\
\gamma_n
\end{bmatrix}, \quad \gamma_k = \begin{bmatrix}
\omega_k \\
\varphi_k \\
\alpha_k
\end{bmatrix}
\] (4.9.26)

The main virtue of this partitioning of \(\theta \) is that the problem of minimizing the NLS criterion with respect to \(\gamma_k \), for given \(\{\gamma_j\} \ (j = 1, \ldots, n; j \neq k) \), can be solved via the FFT (see (4.3.10), (4.3.11)). Furthermore, the cyclic minimizer corresponding to (4.9.26) can be simply initialized with \(\gamma_2 = \cdots = \gamma_n = 0 \), in which case \(\gamma_1 \) minimizing the NLS criterion is obtained from the highest peak of the periodogram (which should give a reasonably accurate estimate of \(\gamma_1 \)), and so on.

An elaborated cyclic algorithm, called RELAX, for the minimization of the NLS criterion based on the above ideas (see (4.9.26)), was proposed in [Li and Stoica 1996b]. Note that cyclic minimizers are sometimes called relaxation algorithms, which provides a motivation for the name given to the algorithm in [Li and Stoica 1996b].

Majorization Technique

The main idea of this type of iterative technique for minimizing a given function \(f(\theta) \) is quite simple (see, e.g., [Heiser 1995] and the references therein). Assume that, at the i-th iteration, we can find a function \(g_i(\theta) \) (the subindex \(i \) indicates the dependence of this function on \(\theta^i \)) which possesses the following three properties:

\[
g_i(\theta^i) = f(\theta^i) \tag{4.9.27}
\]

\[
g_i(\theta) \geq f(\theta) \tag{4.9.28}
\]

and

\[\text{the minimization of } g_i(\theta) \text{ with respect to } \theta \text{ is "easy" (or, in any case, easier than the minimization of } f(\theta). \tag{4.9.29}\]

Owing to (4.9.28), \(g_i(\theta) \) is called a majorizing function for \(f(\theta) \) at the i-th iteration. In the majorization technique, the parameter vector at iteration \((i + 1) \) is obtained from the minimization of \(g_i(\theta) \):

\[
\theta^{i+1} = \arg \min_{\theta} g_i(\theta) \tag{4.9.30}
\]

The key property (4.9.24) is satisfied for (4.9.30), since

\[
f(\theta^i) = g_i(\theta^i) \geq g_i(\theta^{i+1}) \geq f(\theta^{i+1}) \tag{4.9.31}
\]

The first inequality in (4.9.31) follows from the definition of \(\theta^{i+1} \) in (4.9.30), and the second inequality from (4.9.28).
Chapter 4 Parametric Methods for Line Spectra

Note that any parameter vector \(\theta^{i+1} \) which gives a smaller value of \(g_i(\theta) \) than \(g_i(\theta^i) \) will satisfy (4.9.31). Consequently, whenever the minimum point of \(g_i(\theta) \) (see (4.9.30)) cannot be derived in closed-form we can think of determining \(\theta^{i+1} \), for example, by performing a few iterations with a gradient-based algorithm initialized at \(\theta^i \) and using a line search (to guarantee that \(g_i(\theta^{i+1}) \leq g_i(\theta^i) \)). We should note that a similar observation could be made on the cyclic minimizer in (4.9.25) when the minimization of either \(f(x, y^{i-1}) \) or \(f(x^i, y) \) cannot be done in closed-form.

The modification of either (4.9.30) or (4.9.25) in this way usually simplifies the computational effort of each iteration, but may slow down the convergence speed of the algorithm by increasing the number of iterations needed to achieve convergence.

An interesting question regarding the two algorithms discussed so far is whether we could obtain the cyclic minimizer by using the majorization principle on a certain majorizing function. In general it appears difficult or impossible to do so; nor can the majorization technique be obtained as a special case of a cyclic minimizer. Hence, these two iterative minimization techniques appear to have “independent lives”.

To draw more parallels between the cyclic minimizer and the majorization technique, we remark on the fact that in the former the user has to choose the partitioning of \(\theta \) that makes the minimization in, e.g., (4.9.25) “easy”, whereas in the latter a function \(g_i(\theta) \) has to be found that is not only “easy” to minimize but also possesses the essential property (4.9.28). Fortunately for the majorization approach, finding such functions \(g_i(\theta) \) is not as hard as it may at first seem. Below we will develop a method for constructing a function \(g_i(\theta) \) possessing the desired properties (4.9.27) and (4.9.28) for a general class of functions \(f(\theta) \) (including the NLS criterion) that are commonly encountered in parameter estimation applications.

EM Algorithm

The NLS criterion (see (4.3.1)),

\[
f(\theta) = \sum_{t=1}^{N} \left| y(t) - \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} \right|^2
\]

(4.9.32)

where \(\theta \) is defined in (4.9.26), is obtained from the data equation (4.1.1) in which the noise \(\{e(t)\} \) is assumed to be circular and white with mean zero and variance \(\sigma^2 \). Let us also assume that \(\{e(t)\} \) is Gaussian distributed. Then, the probability density function of the data vector \(y = [y(1), \ldots, y(N)]^T \), for given \(\theta \), is

\[
p(y, \theta) = \frac{1}{(\pi \sigma^2)^N} e^{-\frac{f(y)}{\sigma^2}}
\]

(4.9.33)

where \(f(\theta) \) is as defined in (4.9.32) above. The method of maximum likelihood (ML) obtains an estimate of \(\theta \) by maximizing (4.9.33) (see (B.1.7) in Appendix B) or, equivalently, by minimizing the so-called negative log-likelihood function:

\[- \ln p(y, \theta) = \text{constant} + N \ln \sigma^2 + \frac{f(\theta)}{\sigma^2}\]

(4.9.34)

Minimizing (4.9.34) with respect to \(\theta \) is equivalent to minimizing (4.9.32),
Section 4.9 Complements

which shows that the NLS method is identical to the ML method under the assumption that \(\{e(t)\} \) is Gaussian white noise.

The ML is without a doubt the most widely studied method of parameter estimation. In what follows we assume that this is the method used for parameter estimation, and hence that the function we want to minimize with respect to \(\theta \) is the negative log-likelihood:

\[
 f(\theta) = -\ln p(y, \theta) \tag{4.9.35}
\]

Our main goal in this subsection is to show how to construct a majorizing function for the estimation criterion in (4.9.35) and how the use of the corresponding majorization technique leads to the expectation-maximization (EM) algorithm introduced in [Dempster, Laird, and Rubin 1977] (see also [McLachlan and Krishnan 1997] and [Moon 1996] for more recent and detailed accounts on the EM algorithm).

A notation that will be frequently used below concerns the expectation with respect to the distribution of a certain random vector, let us say \(z \), which we will denote by \(E_z \{ \cdot \} \). When the distribution concerned is conditioned on another random vector, let us say \(y \), we will use the notation \(E_{z|y} \{ \cdot \} \). If we also want to stress the dependence of the distribution (with respect to which the expectation is taken) on a certain parameter vector \(\theta \), then we write \(E_{z|y, \theta} \{ \cdot \} \).

The main result which we will use in the following is Jensen's inequality. It asserts that for any concave function \(h(x) \), where \(x \) is a random vector, the following inequality holds:

\[
 E \{ h(x) \} \leq h \{ E \{ x \} \} \tag{4.9.36}
\]

The proof of (4.9.36) is simple. Let \(d(x) \) denote the plane tangent to \(h(x) \) at the point \(E \{ x \} \). Then

\[
 E \{ h(x) \} \leq E \{ d(x) \} = d(E \{ x \}) = h(E \{ x \}) \tag{4.9.37}
\]

which proves (4.9.36). The inequality in (4.9.37) follows from the concavity of \(h(x) \), the first equality follows from the fact that \(d(x) \) is a linear function of \(x \), and the second equality follows from the fact that \(d(x) \) is tangent (and hence equal) to \(h(x) \) at the point \(E \{ x \} \).

Remark: We note in passing that, despite its simplicity, Jensen’s inequality is a powerful analysis tool. As a simple illustration of this fact, consider a scalar random variable \(x \) with a discrete probability distribution:

\[
 \Pr\{ x = x_k \} = p_k, \quad k = 1, \ldots, M
\]

Then, using (4.9.36) and the fact that the logarithm is a concave function we obtain (assuming \(x_k > 0 \))

\[
 E \{ \ln(x) \} = \sum_{k=1}^{M} p_k \ln(x_k) \leq \ln |E \{ x \}| = \ln \left[\sum_{k=1}^{M} p_k x_k \right]
\]
Chapter 4 Parametric Methods for Line Spectra

or, equivalently,

\[
\sum_{k=1}^{M} p_k x_k \geq \prod_{k=1}^{M} x_k^{p_k} \quad \text{(for } x_k > 0 \text{ and } \sum_{k=1}^{M} p_k = 1) \tag{4.9.38}
\]

For \(p_k = 1/M \), (4.9.38) reduces to the well-known inequality between the arithmetic and geometric means:

\[
\frac{1}{M} \sum_{k=1}^{M} x_k \geq \left(\prod_{k=1}^{M} x_k \right)^{1/M}
\]

which is so easily obtained in the present framework.

After these preparations, we turn our attention to the main question of finding a majorizing function for (4.9.35). Let \(z \) be a random vector whose probability density function conditioned on \(y \) is completely determined by \(\theta \), and let

\[
g_i(\theta) = f(\theta^i) - E_{z|y,\theta^i} \left\{ \ln \left[\frac{p(y, z, \theta)}{p(y, z, \theta^i)} \right] \right\} \tag{4.9.39}
\]

Clearly \(g_i(\theta) \) satisfies:

\[
g_i(\theta^i) = f(\theta^i) \tag{4.9.40}
\]

Furthermore, it follows from Jensen’s inequality (4.9.36), the concavity of the function \(\ln(\cdot) \), and Bayes’ rule for conditional probabilities that:

\[
g_i(\theta) \geq f(\theta^i) - \ln \left[E_{z|y,\theta^i} \left\{ \frac{p(y, z, \theta)}{p(y, z, \theta^i)} \right\} \right]
= f(\theta^i) - \ln \left[E_{z|y,\theta^i} \left\{ \frac{p(y, z, \theta)}{p(z|y,\theta^i)p(y,\theta^i)} \right\} \right]
= f(\theta^i) - \ln \left[\frac{1}{p(y,\theta^i)} \int_{p(y,\theta)} p(y, z, \theta) \, dz \right]
= f(\theta^i) + \ln \left[\frac{p(y, \theta)}{p(y, \theta^i)} \right]
= f(\theta^i) + [f(\theta) - f(\theta^i)] = f(\theta) \tag{4.9.41}
\]

which shows that the function \(g_i(\theta) \) in (4.9.39) also satisfies the key majorization condition (4.9.28). Usually, \(z \) is called the \textit{unobserved data} (to distinguish it from the observed data vector \(y \)), and the combination \((z, y)\) is called the \textit{complete data} while \(y \) is called the \textit{incomplete data}.

It follows from (4.9.40) and (4.9.41), along with the discussion in the previous subsection about the majorization approach, that the following algorithm \textit{will}
monotonically reduce the negative log-likelihood function at each iteration:

The Expectation-Maximization (EM) Algorithm

\[
\theta^0 = \text{given} \tag{4.9.42}
\]

For \(i = 0, 1, 2, \ldots \):

Expectation step: Evaluate \(E_{z|y, \theta^i} \{ \ln p(y, z, \theta) \} \equiv \mathcal{F}_i(\theta) \)

Maximization step: Compute \(\theta^{i+1} = \arg \max_{\theta} \mathcal{F}_i(\theta) \)

This is the **EM algorithm** in a nutshell.

An important aspect of the EM algorithm, which must be considered in every application, is the choice of the unobserved data vector \(z \). This choice should be done such that the maximization step of (4.9.42) is "easy" or, in any case, much easier than the maximization of the likelihood function. In general, doing so is not an easy task. In addition, the evaluation of the conditional expectation in (4.9.42) may also be rather challenging. Somewhat paradoxically, these difficulties associated with the EM algorithm may have been a cause for its considerable popularity. Indeed, the detailed derivation of the EM algorithm for a particular application is a more challenging research problem (and hence more appealing to many researchers) than, for instance, the derivation of a cyclic minimizer (which also possesses the key property (4.9.24) of the EM algorithm).

4.9.6 Frequency-selective ESPRIT-based Method

In several applications of spectral analysis, the user is interested only in the components lying in a small frequency band of the spectrum. A **frequency-selective** method deals precisely with this kind of spectral analysis: it estimates the parameters of only those sinusoidal components in the data which lie in a pre-specified band of the spectrum with as little interference as possible from the out-of-band components and in a computationally efficient way. To be more specific, let us consider the sinusoidal data model in (4.1.1):

\[
y(t) = \sum_{k=1}^{\bar{n}} \beta_k e^{i\omega_k t} + e(t); \quad \beta_k = \alpha_k e^{i\varphi_k}, \quad t = 0, \ldots, N - 1 \tag{4.9.43}
\]

In some applications, (see, e.g., [McKelvey and Viberg 2001; Stoica, Sandgren, Selén, Vanhamme, and Van Huffel 2003] and the references therein) it would be computationally too intensive to estimate the parameters of all components in (4.9.43). For instance, this is the case when \(\bar{n} \) takes on values close to \(N \) or when \(\bar{n} \ll N \) but we have many sets of data to process. In such applications, because of computational and other reasons (see points (i) and (ii) below for details), we focus on only those components of (4.9.43) that are of direct interest to us. Let us assume that the components of interest lie in a pre-specified frequency band comprised by the following Fourier frequencies:

\[
\left\{ \frac{2\pi}{N} k_1, \frac{2\pi}{N} k_2, \ldots, \frac{2\pi}{N} k_M \right\} \tag{4.9.44}
\]
where \(\{k_1, \ldots, k_M\} \) are \(M \) given (typically consecutive) integers. We assume that the number of components of (4.9.43) lying in (4.9.44), which we denote by

\[n \leq \bar{n} \] (4.9.45)

is given. If \(n \) is \textit{a priori} unknown then it could be estimated from the data by the methods described in Appendix C.

Our problem is to estimate the parameters of the \(n \) components of (4.9.43) that lie in the frequency band in (4.9.44). Furthermore, we want to find a solution to this frequency-selective estimation problem that has the following properties:

(i) \textit{It is computationally efficient}. In particular, the computational complexity of such a solution should be comparable with that of a standard ESPRIT method for a sinusoidal model with \(n \) components.

(ii) \textit{It is statistically accurate}. To be more specific about this aspect we will split the discussion in two parts. From a theoretical standpoint, estimating \(n < \bar{n} \) components of (4.9.43) (in the presence of the remaining components and noise) cannot produce more accurate estimates than estimating all \(\bar{n} \) components. However, for a good frequency-selective method the degradation of theoretical statistical accuracy should not be significant. On the other hand, from a practical standpoint, a sound frequency-selective method may give better performance than a non-frequency-selective counterpart that deals with all \(\bar{n} \) components of (4.9.43). This is so because some components of (4.9.43) that do not belong to (4.9.44) may not be well-described by a sinusoidal model; consequently, treating such components as interference and eliminating them from the model may improve the estimation accuracy of the components of interest.

In this complement, following [McKelvey and Viberg 2001] and [Stoica, Sandgren, Selén, Vanhamme, and Van Huffel 2003], we present a \textit{frequency-selective ESPRIT-based} (FRES-ESPRIT) method that possesses the above two desirable features. The following notation will be frequently used in the following:

\[
w_k = e^{i2\pi k} \quad k = 0, 1, \ldots, N - 1
\] (4.9.46)

\[u_k = [w_k, \ldots, w_k^{m}]^T\] (4.9.47)

\[v_k = [1, w_k, \ldots, w_k^{N-1}]^T\] (4.9.48)

\[y = [y(0), \ldots, y(N - 1)]^T\] (4.9.49)

\[Y_k = v_k^* y \quad k = 0, 1, \ldots, N - 1\] (4.9.50)

\[e = [e(0), \ldots, e(N - 1)]^T\] (4.9.51)

\[E_k = v_k^* e \quad k = 0, 1, \ldots, N - 1\] (4.9.52)

\[a(\omega_k) = [e^{i\omega_k}, \ldots, e^{im\omega_k}]^T\] (4.9.53)

\[b(\omega_k) = [1, e^{i\omega_k}, \ldots, e^{i(N-1)\omega_k}]^T\] (4.9.54)

Hereafter, \(m \) is a \textit{user parameter} whose choice will be discussed later on. Note that \(\{Y_k\} \) is the FFT of the data.
First, we show that the following key equation involving the FFT sequence \(\{Y_k\} \) holds true:

\[
Y_k = \begin{bmatrix}
\beta_1 v_k^* b(\omega_1) \\
\vdots \\
\beta_n v_k^* b(\omega_n)
\end{bmatrix} + \Gamma u_k + u_k E_k \tag{4.9.55}
\]

where \(\Gamma \) is an \(m \times m \) matrix defined in equation (4.9.61) below (as will become clear shortly, the definition of \(\Gamma \) has no importance for what follows, and hence it is not repeated here).

To prove (4.9.55), we first write the data vector \(y \) as

\[
y = \sum_{\ell=1}^{n} \beta_\ell b(\omega_\ell) + e \tag{4.9.56}
\]

Next, we note that (for \(\ell = 1, \ldots, m \)):

\[
w_k^p [v_k^* b(\omega)] = \sum_{t=0}^{N-1} e^{i(\omega - \frac{2\pi}{N} t)k} e^{i \frac{2\pi}{N} kp}
\]

\[
= e^{i\omega^p} \sum_{t=0}^{N-1} e^{i(\omega - \frac{2\pi}{N} t)(t-p)}
\]

\[
= e^{i\omega^p} [v_k^* b(\omega)] + e^{i\omega^p} \left[\sum_{t=0}^{p-1} e^{i\omega(t-p)} e^{-i \frac{2\pi}{N} k(t-p)} \right. - \left. \sum_{t=N}^{N+p-1} e^{i\omega(t-p)} e^{-i \frac{2\pi}{N} k(t-p)} \right]
\]

\[
= e^{i\omega^p} [v_k^* b(\omega)] + e^{i\omega^p} \sum_{t=1}^{p} \left[e^{-i\omega^p} e^{i \frac{2\pi}{N} kl} - e^{i\omega(N-t)} e^{i \frac{2\pi}{N} kl} \right]
\]

\[
= e^{i\omega^p} [v_k^* b(\omega)] + \sum_{t=1}^{p} e^{i\omega(p-t)} (1 - e^{i\omega N}) w_k^t \tag{4.9.57}
\]

Let (for \(\ell = 1, \ldots, m \)):

\[
\gamma^*_\ell(\omega) = (1 - e^{i\omega N}) \begin{bmatrix}
e^{i\omega(p-1)}, e^{i\omega(p-2)}, \ldots, e^{i\omega}, 1, 0, \ldots, 0\end{bmatrix} \quad (1 \times m) \tag{4.9.58}
\]

Using (4.9.58) we can rewrite (4.9.57) in the following more compact form (for \(\ell = 1, \ldots, m \)):

\[
w_k^p [v_k^* b(\omega)] = e^{i\omega^p} [v_k^* b(\omega)] + \gamma^*_\ell(\omega) u_k \tag{4.9.59}
\]

or, equivalently,

\[
u_k [v_k^* b(\omega)] = a(\omega) [v_k^* b(\omega)] + \begin{bmatrix}
\gamma^*_1(\omega) \\
\vdots \\
\gamma^*_m(\omega)
\end{bmatrix} u_k \tag{4.9.60}
\]

\[Section 4.9\quad Complements\quad 187\]
From (4.9.56) and (4.9.60) it follows that
\[u_k Y_k = \sum_{\ell=1}^{n} \beta_{\ell} u_k \left[v_{b}(\omega_{\ell}) \right] + u_k E_k \]
\[= [a(\omega_1), \ldots, a(\omega_n)] \left[\begin{array}{c} \beta_{1} v_{b}(\omega_1) \\ \vdots \\ \beta_{n} v_{b}(\omega_n) \end{array} \right] + \left\{ \sum_{\ell=1}^{n} \beta_{\ell} \left[\begin{array}{c} \gamma_{1}(\omega_{\ell}) \\ \vdots \\ \gamma_{n}(\omega_{\ell}) \end{array} \right] \right\} u_k + u_k E_k \]
(4.9.61)
which proves (4.9.55).

In the following we let \(\{\omega_k\}_{k=1}^{n} \) denote the frequencies of interest, i.e., those frequencies of (4.9.43) that lie in (4.9.44). To separate the terms in (4.9.55) corresponding to the components of interest from those associated with the nuisance components, we use the notation
\[A = [a(\omega_1), \ldots, a(\omega_n)] \]
(4.9.62)
\[x_k = \left[\begin{array}{c} \beta_{1} v_{b}(\omega_1) \\ \vdots \\ \beta_{n} v_{b}(\omega_n) \end{array} \right] \]
(4.9.63)
for the components of interest, and similarly \(\tilde{A} \) and \(\tilde{x}_k \) for the other components. Finally, to write the equation (4.9.55) for \(k = k_1, \ldots, k_M \) in a compact matrix form we need the following additional notation:
\[Y = [u_{k_1} Y_{k_1}, \ldots, u_{k_M} Y_{k_M}], \quad (m \times M) \]
(4.9.64)
\[E = [u_{k_1} E_{k_1}, \ldots, u_{k_M} E_{k_M}], \quad (m \times M) \]
(4.9.65)
\[U = [u_{k_1}, \ldots, u_{k_M}], \quad (m \times M) \]
(4.9.66)
\[X = [x_{k_1}, \ldots, x_{k_M}], \quad (n \times M) \]
(4.9.67)
and similarly for \(\tilde{X} \). Using this notation, we can write (4.9.55) (for \(k = k_1, \ldots, k_M \)) as follows:
\[Y = AX + \Gamma U + \tilde{A} \tilde{X} + E \]
(4.9.68)

Next we assume that
\[M \geq n + m \]
(4.9.69)
which can be satisfied by choosing the user parameter \(m \) appropriately. Under (4.9.69) (in fact only \(M \geq m \) is required for this part), the orthogonal projection matrix onto the null space of \(U \) is given by (see Appendix A):
\[\Pi_{U}^{\perp} = I - U^{*} (UU^{*})^{-1} U \]
(4.9.70)
We will eliminate the second term in (4.9.68) by post-multiplying (4.9.68) with \(\Pi_{U}^{\perp} \) (see below). However, before doing so we make the following observations about the third and fourth terms in (4.9.68):
(a) The elements of the noise term E in (4.9.68) are much smaller than the elements of AX. In effect, it can be shown that $E_k = O\left(N^{1/2}\right)$ (stochastically), whereas the order of the elements of X is typically $O\left(N\right)$.

(b) Assuming that the out-of-band components are not much stronger than the components of interest, and that the frequencies of the former are not too close to the interval of interest in (4.9.44), the elements of \hat{X} are also much smaller than the elements of X.

(c) To understand what happens in the case that the assumption made in (b) above does not hold, let us consider a generic out-of-band component (ω, β). The part of y corresponding to this component can be written as $v_k^* \beta(\omega)$. Hence, the corresponding part in $u_k Y_k$ is given by $\beta u_k [v_k^* \beta(\omega)]$ and, consequently, the part of Y due to this generic component is

$$
\beta U \begin{bmatrix}
 v_{k_1}^* \beta(\omega) & 0 \\
 \vdots & \ddots \\
 0 & v_{k_M}^* \beta(\omega)
\end{bmatrix}
$$

Even if ω is relatively close to the band of interest, (4.9.44), we may expect that $v_k^* \beta(\omega)$ does not vary significantly for $k \in [k_1, k_M]$ (in other words, the “spectral tail” of the out-of-band component may well have a small dynamic range in the interval of interest). As a consequence, the matrix in (4.9.71) will be approximately proportional to U and hence it will be attenuated via the post-multiplication of it by Π_U (see below). A similar argument shows that the noise term in (4.9.68) is also attenuated by post-multiplying (4.9.68) with Π_U.

It follows from the above discussion and (4.9.68) that

$$
Y \Pi_U^\dagger \simeq AX \Pi_U^\dagger
$$

This equation resembles equation (4.7.7) on which the standard ESPRIT method is based, provided that

$$
\text{rank} \left(X \Pi_U^\dagger \right) = n
$$

(similarly to rank(C) = n for (4.7.7)). In the following we prove that (4.9.73) holds under (4.9.69) and the regularity condition that $e^{jN \omega k} \neq 1$ (for $k = 1, \ldots, n$).

To prove (4.9.73) we first note that rank(Π_U^\dagger) = $M - m$, which implies that $M \geq m + n$ (i.e., (4.9.69)) is a necessary condition for (4.9.73) to hold.

Next we show that (4.9.73) is equivalent to

$$
\text{rank} \left(\begin{bmatrix} X \\ U \end{bmatrix} \right) = m + n
$$

To verify this equivalence let us decompose X additively as follows:

$$
X = X \Pi_U + X \Pi_U^\dagger = X U^* (U U^*)^{-1} U + X V^* V
$$
where the $M \times (M - m)$ matrix V^* comprises a unitary basis of $\mathcal{N}(U)$; hence, $UV^* = 0$ and $VV^* = I$. Now, the matrix in (4.9.74) has the same rank as

$$
\begin{bmatrix}
I & -XU^* (UU^*)^{-1} \\
0 & I
\end{bmatrix}
\begin{bmatrix}
X \\
U
\end{bmatrix}
=
\begin{bmatrix}
XV^*V \\
UV
\end{bmatrix}
$$

(4.9.76)

(we used (4.9.75) to obtain (4.9.76)), which, in turn, has the same rank as

$$
\begin{bmatrix}
XV^*V \\
U
\end{bmatrix}
\begin{bmatrix}
V^*VX^* & 0 \\
0 & UU^*
\end{bmatrix}
=
\begin{bmatrix}
XV^*VX^* & 0 \\
0 & UU^*
\end{bmatrix}
$$

(4.9.77)

However, $\text{rank}(UU^*) = m$. Hence, (4.9.74) holds if and only if $\text{rank}(XV^*VX^*) = n$

As

$$
\text{rank}(XV^*VX^*) = \text{rank}(X\Pi_k^T X^*) = \text{rank}(X\Pi_k^T)
$$

the equivalence between (4.9.73) and (4.9.74) is proven.

It follows from the equivalence shown above and the definition of X and U that we want to prove that

$$
\text{rank}
\begin{bmatrix}
v_k^* b(\omega_1) & \cdots & v_k^* b(\omega_1) \\
\vdots & \ddots & \vdots \\
v_k^* b(\omega_n) & \cdots & v_k^* b(\omega_n) \\
u_k & \cdots & u_k
\end{bmatrix}_{(n+m) \times M}
= n + m
$$

(4.9.78)

As

$$
v_k^* b(\omega) = \sum_{t=0}^{N-1} e^{i(t-\frac{2\pi}{N} k t)} = \frac{1 - e^{iN(\omega - \frac{2\pi}{N} k)}}{1 - e^{i(\omega - \frac{2\pi}{N} k)}},
$$

we can rewrite the matrix in (4.9.78) as follows:

$$
\begin{bmatrix}
1 - e^{iN\omega_1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 \\
1 - e^{iN\omega_n} & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
w_k & \cdots & w_k \\
w_k - e^{i\omega_1} & \cdots & w_k - e^{i\omega_1} \\
\vdots & \ddots & \vdots \\
w_k - e^{i\omega_n} & \cdots & w_k - e^{i\omega_n} \\
w_k & \cdots & w_k
\end{bmatrix}
$$

(4.9.79)

Because, by assumption, $1 - e^{iN\omega_k} \neq 0$ (for $k = 1, \ldots, n$), it follows that (4.9.78) holds if and only if the second matrix in (4.9.79) has full row rank (under
Section 4.9 Complements 191

(4.9.69), which holds true if and only if we cannot find some numbers \(\{ \rho_k \}_{k=1}^{m+n} \) (not all zero) such that

\[
\frac{\rho_1 z}{z - e^{i\omega_1}} + \cdots + \frac{\rho_n z}{z - e^{i\omega_n}} + \rho_{n+1} z + \cdots + \rho_{n+m} z^m
\]

is equal to zero at \(z = w_{k_1}, \ldots, z = w_{k_M} \). However, (4.9.80) can only have \(m + n - 1 < M \) zeroes of the above form. With this observation, the proof of (4.9.73) is concluded.

To make use of (4.9.72) and (4.9.73) in an ESPRIT-like approach we also assume that

\[
m \geq n \tag{4.9.81}
\]

(which is an easily satisfied condition). Then, it follows from (4.9.72) and (4.9.73) that the effective rank of the “data” matrix \(Y \Pi_{\hat{U}} \) is \(n \), and that

\[
\hat{S} \simeq A \hat{C} \tag{4.9.82}
\]

where \(\hat{C} \) is an \(n \times n \) nonsingular transformation matrix, and

\[
\hat{S} = \text{the } m \times n \text{ matrix whose columns are the left singular vectors of } Y \Pi_{\hat{U}} \text{ associated with the } n \text{ largest singular values.} \tag{4.9.83}
\]

Equation (4.9.82) is very similar to (4.7.7), and hence it can be used in an ESPRIT-like approach to estimate the frequencies \(\{ \omega_k \}_{k=1}^n \). Following the frequency estimation step, the amplitudes \(\{ \beta_k \}_{k=1}^n \) can be estimated, for instance, as described in [McKelvey and Viberg 2001; Stoica, Sandgren, Selén, Vanhamme, and Van Huffel 2003].

An implementation detail that we would like to address, at least briefly, is the choice of \(m \). We recommend choosing \(m \) as the integer part of \(M/2 \):

\[
m = \lfloor M/2 \rfloor \tag{4.9.84}
\]

provided that \(\lfloor M/2 \rfloor \in [n, M - n] \) to satisfy the assumptions in (4.9.69) and (4.9.81). To motivate the above choice of \(m \) we refer to the matrix equation (4.9.72) that lies at the basis of the proposed estimation approach. Previous experience with ESPRIT, MUSIC and other similar approaches has shown that their accuracy increases as the number of independent equations in (4.9.72) (and its counterparts) increases. The matrix \(Y \Pi_{\hat{U}} \) in (4.9.72) is \(m \times M \) and its rank is generically equal to

\[
\min\{ \text{rank}(Y), \text{rank}(\Pi_{\hat{U}}) \} = \min(m, M - m) \tag{4.9.85}
\]
Evidently the above rank determines the aforementioned number of linearly independent equations in (4.9.72). Hence, for enhanced estimation accuracy we should maximize (4.9.85) with respect to m: the solution is clearly given by (4.9.84).

To end this complement we show that, interestingly, the proposed FRES-ESPRIT method with $M = N$ is equivalent to the standard ESPRIT method. For $M = N$ we have that

$$[b_1, \ldots, b_N] \triangleq \begin{bmatrix} w_1 & \cdots & w_N \\ w_1^2 & \cdots & w_N^2 \\ \vdots & \ddots & \vdots \\ w_1^N & \cdots & w_N^N \end{bmatrix} = \begin{bmatrix} U \\ \bar{U} \end{bmatrix} \{ m \} N-m \quad (4.9.86)$$

where U is as defined before (with $M = N$) and \bar{U} is defined via (4.9.86). Note that:

$$UU^* = NI; \quad \bar{U} \bar{U}^* = NI; \quad \bar{U}^*U + \bar{U}^* \bar{U} = NI \quad (4.9.87)$$

Hence

$$\Pi_{\bar{U}} = I - \frac{1}{N} U^* U = \frac{1}{N} \bar{U}^* \bar{U} \quad (4.9.88)$$

Also, note that (for $p = 1, \ldots, m$):

$$w_p^p Y_k = \sum_{t=0}^{N-1} y(t)e^{-j \frac{2\pi}{N} k(t-p)}$$

$$= \sum_{t=0}^{p-1} y(t)w_k^{p-t} + \sum_{t=p}^{N-1} y(t)w_k^{N+p-t}$$

$$= [y(p-1), \ldots, y(0), 0, \ldots, 0] \begin{bmatrix} w_k \\ w_k^m \\ \vdots \\ w_k^N \end{bmatrix} + [0, \ldots, 0, y(N-1), \ldots, y(p)] \begin{bmatrix} w_k \\ w_k^m \\ \vdots \\ w_k^N \end{bmatrix}$$

$$\triangleq \mu_k^* u_k + \psi_p^* b_k \quad (4.9.89)$$

where u_k and b_k are as defined before (see (4.9.47) and (4.9.86)). Consequently, for $M = N$, the “data” matrix $Y_{\Pi_{\bar{U}}}$ used in the FRES-ESPRIT method can be written as (cf. (4.9.86)–(4.9.89)):

$$[u_1 Y_1, \ldots, u_N Y_N]_{\Pi_{\bar{U}}} = \begin{bmatrix} \mu_1^* \\ \vdots \\ \mu_m^* \end{bmatrix} u_1, \ldots, u_N + \begin{bmatrix} \psi_1^* \\ \vdots \\ \psi_m^* \end{bmatrix} b_1, \ldots, b_N \end{bmatrix} \bar{U}^* \bar{U} \cdot \frac{1}{N}$$

$$= \begin{bmatrix} \mu_1^* \\ \vdots \\ \mu_m^* \end{bmatrix} U + \begin{bmatrix} \psi_1^* \\ \vdots \\ \psi_m^* \end{bmatrix} \begin{bmatrix} U \\ \bar{U} \end{bmatrix} \bar{U}^* \bar{U} \cdot \frac{1}{N}$$

$$= \begin{bmatrix} \psi_1^* \\ \vdots \\ \psi_m^* \end{bmatrix} \begin{bmatrix} 0 \\ U \end{bmatrix} = \begin{bmatrix} y(N-m) & \cdots & y(1) \\ y(N-m+1) & \cdots & y(2) \\ \vdots & \ddots & \vdots \\ y(N-1) & \cdots & y(m) \end{bmatrix} \bar{U} \quad (4.9.90)$$
It follows from (4.9.90) that the \(n \) principal (or dominant) left singular vectors of \(YU^T \) are equal to the \(n \) principal eigenvectors of the following matrix (obtained by post-multiplying the right-hand side of (4.9.90) with its conjugate transpose and using the fact that \(UU^* = NI \) from (4.9.87)):

\[
\begin{bmatrix}
y(N - m) & \cdots & y(1) \\
\vdots & \ddots & \vdots \\
y(N - 1) & \cdots & y(m)
\end{bmatrix}
\begin{bmatrix}
y^*(N - m) & \cdots & y^*(N - 1) \\
\vdots & \ddots & \vdots \\
y^*(1) & \cdots & y^*(m)
\end{bmatrix}
\]

\[
= \sum_{t=1}^{N-m} \begin{bmatrix} y(t) \\ \vdots \\ y(t + m - 1) \end{bmatrix}
\begin{bmatrix} y^*(t), \ldots, y^*(t + m - 1) \end{bmatrix}
\tag{4.9.91}
\]

which is precisely the type of sample covariance matrix used in the standard ESPRIT method (compare with (4.5.14); the difference between (4.9.91) and (4.5.14) is due to some notational changes made in this complement, such as in the definition of the matrix \(A \)).

4.9.7 A Useful Result for Two-Dimensional (2D) Sinusoidal Signals

For a noise-free 1D sinusoidal signal,

\[
y(t) = \sum_{k=1}^{n} \beta_k e^{i\omega_k t}, \quad t = 0, 1, 2, \ldots \tag{4.9.92}
\]

a data vector of length \(m \) can be written as

\[
\begin{bmatrix} y(0) \\ y(1) \\ \vdots \\ y(m - 1) \end{bmatrix} = \begin{bmatrix} 1 & \cdots & 1 \\ e^{i\omega_1} & \cdots & e^{i\omega_n} \\ \vdots & \ddots & \vdots \\ e^{i(m-1)\omega_1} & \cdots & e^{i(m-1)\omega_n} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = A\beta \tag{4.9.93}
\]

The matrix \(A \) introduced above is the complex conjugate of the one in (4.2.4). In this complement we prefer to work with the type of \(A \) matrix in (4.9.93), to simplify the notation, but note that the following discussion applies without change to the complex conjugate of the above \(A \) as well (or, to its extension to 2D sinusoidal signals).

Let \(\{c_k\}_{k=1}^{n} \) be uniquely defined via the equation:

\[
1 + c_1 z + \cdots + c_n z^n = \prod_{k=1}^{n} (1 - ze^{-i\omega_k})
\tag{4.9.94}
\]

Then, it can be readily checked (see (4.5.21)) that the matrix

\[
C^* = \begin{bmatrix} 1 & c_1 & \cdots & c_n & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 1 & c_1 & \cdots & c_n \end{bmatrix}, \quad (m - n) \times m
\tag{4.9.95}
\]
Chapter 4 Parametric Methods for Line Spectra

satisfies

\[C^* A = 0 \] \hspace{1cm} (4.9.96)

(to verify (4.9.96) it is enough to observe from (4.9.94) that \(1 + c_1 e^{i\omega_k} + \cdots + c_n e^{i\omega_k} = 0 \) for \(k = 1, \ldots, n \)). Furthermore, as \(\text{rank}(C) = m - n \) and \(\dim[\mathcal{N}(A^*)] = m - n \) too, it follows from (4.9.96) that

\[C \] is a basis for the null space of \(A^*, \mathcal{N}(A^*) \) \hspace{1cm} (4.9.97)

The matrix \(C \) plays an important role in the derivation and analysis of several frequency estimators, see, e.g., Section 4.5, [Bresler and Macovski 1986], and [Stoica and Sharman 1990].

In this complement we will extend the result (4.9.97) to 2D sinusoidal signals. The derivation of a result similar to (4.9.97) for such signals is a rather more difficult problem than in the 1D case. The solution that we will present was introduced in [Clark and Scharf 1994] (see also [Clark, Eldén, and Stoica 1997]). Using the extended result we can derive parameter estimation methods for 2D sinusoidal signals in much the same manner as for 1D signals (see the cited papers and Section 4.5).

A noise-free 2D sinusoidal signal is described by the equation (compare with (4.9.92)):

\[y(t, \bar{t}) = \sum_{k=1}^{n} \beta_k e^{i\omega_k t} e^{i\omega_k \bar{t}}, \quad t, \bar{t} = 0, 1, 2, \ldots \] \hspace{1cm} (4.9.98)

Let

\[\gamma_k = e^{i\omega_k}, \quad \lambda_k = e^{i\bar{\omega}_k} \] \hspace{1cm} (4.9.99)

Using this notation allows us to write (4.9.98) in a more compact form,

\[y(t, \bar{t}) = \sum_{k=1}^{n} \beta_k \gamma_k^t \lambda_k^{\bar{t}} \] \hspace{1cm} (4.9.100)

Moreover, equation (4.9.100) (unlike (4.9.98)) also covers the case of damped (2D) sinusoidal signals, for which

\[\gamma_k = e^{\mu_k + i\omega_k}, \quad \lambda_k = e^{\bar{\mu}_k + i\bar{\omega}_k} \] \hspace{1cm} (4.9.101)

with \(\{\mu_k, \bar{\mu}_k\} \) being the damping parameters (\(\mu_k, \bar{\mu}_k \leq 0 \)).
The following notation will be frequently used in this complement:

\[g_t = \begin{bmatrix} \gamma_1 & \cdots & \gamma_n \end{bmatrix} \] \hspace{1cm} (4.9.102)

\[\Gamma = \begin{bmatrix} \gamma_1 & & \\ & \ddots & \\ & & \gamma_n \end{bmatrix} \] \hspace{1cm} (4.9.103)

\[\Lambda = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_n \end{bmatrix} \] \hspace{1cm} (4.9.104)

\[\beta = [\beta_1 \ldots \beta_n]^T \] \hspace{1cm} (4.9.105)

\[A_L = \begin{bmatrix} 1 & \cdots & 1 \\ \lambda_1 & \cdots & \lambda_n \\ \vdots & \ddots & \vdots \\ \lambda_{L-1} & \cdots & \lambda_{L-1} \end{bmatrix} \] for \(L \geq n \) \hspace{1cm} (4.9.106)

Using (4.9.102), (4.9.104), and (4.9.105) we can write:

\[y(t, \bar{t}) = g_t^* \Lambda^{\bar{t}} \beta \] \hspace{1cm} (4.9.107)

Hence, similarly to (4.9.93), we can write the \(m\bar{m} \times 1 \) data vector obtained from (4.9.98) for \(t = 0, \ldots, m-1 \) and \(\bar{t} = 0, \ldots, \bar{m}-1 \) as:

\[
\begin{bmatrix}
 y(0, 0) \\
 \vdots \\
 y(0, \bar{m}-1) \\
 \vdots \\
 y(m-1, 0) \\
 \vdots \\
 y(m-1, \bar{m}-1)
\end{bmatrix}
= \begin{bmatrix}
 g_0^* \Lambda^0 \\
 \vdots \\
 g_{\bar{m}-1}^* \Lambda^0 \\
\end{bmatrix}
\beta \overset{\Delta}{=} A \beta \hspace{1cm} (4.9.108)
\]

The matrix \(A \) defined above, \(i.e., \)

\[
A = \begin{bmatrix}
 g_0^* \Lambda^0 \\
 \vdots \\
 g_{\bar{m}-1}^* \Lambda^0 \\
\end{bmatrix}, \hspace{1cm} (m\bar{m} \times n) \hspace{1cm} (4.9.109)
\]
plays the same role for 2D sinusoidal signals as the matrix A in (4.9.93) for 1D
signals. Therefore, it is the null space of (4.9.109) that we want to characterize.
More precisely, we want to find a linearly parameterized basis for the null space of the matrix A^* in (4.9.109), similar to the basis C for A^* in (4.9.93) (see (4.9.97)).

Note that using (4.9.103) we can also write $y(t, \ell)$ as:

$$y(t, \ell) = [\lambda_1^T \ldots \lambda_n^T] \Gamma^T \beta$$

This means that A can also be written as follows:

$$A = \begin{bmatrix} A_m \Gamma^0 \\ \vdots \\ A_{\tilde{m}} \Gamma^{m-1} \end{bmatrix}$$

Similarly to (4.9.94), let us define the parameters $\{c_k\}_{k=1}^{n}$ uniquely via the equation

$$1 + c_1 z + \cdots + c_n z^n = \prod_{k=1}^{n} \left(1 - \frac{z}{\lambda_k} \right)$$

Note that there is a one-to-one mapping between $\{c_k\}$ and $\{\lambda_k\}$ ($\lambda_k \neq 0$). In
particular, we can obtain $\{\lambda_k\}$ uniquely from $\{c_k\}$ (see [STOICA AND SHARMA 1990] for more details on this aspect in the case of $\{\lambda_k = e^{i\omega_k}\}$). Consequently, we
can see the introduction of $\{c_k\}$ as a new parameterization of the problem, which
replaces the parameterization via $\{\lambda_k\}$. Using $\{c_k\}$ we build the following matrix,
similarly to (4.9.95), assuming $\tilde{m} > n$:

$$C^* = \begin{bmatrix} 1 & c_1 & \cdots & c_n & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 1 & \cdots & c_n \end{bmatrix}, \quad (\tilde{m} - n) \times \tilde{m}$$

and note that (cf. (4.9.96))

$$C^* A_{\tilde{m}} = 0$$

It follows from (4.9.111) and (4.9.114) that

$$\begin{bmatrix} C^* \\ 0 \end{bmatrix} A = 0$$

Hence, we have found $(m\tilde{m} - mn)$ vectors of the sought basis for $\mathcal{N}(A^*)$. It remains
to find $(m - 1)n$ additional (linearly independent) vectors of this basis (note that
$\dim[\mathcal{N}(A^*)] = m\tilde{m} - n$). To find the remaining vectors we need an approach which
is rather different from that used so far.
Let us assume that
\[\lambda_k \neq \lambda_p \text{ for } k \neq p \]
(4.9.116)
and let the vector
\[b^* = [b_1, \ldots, b_n] \]
be defined via the linear (interpolation) equation
\[b^* A_n = [\gamma_1, \ldots, \gamma_n] \]
(4.9.117)
(with \(A_n \) as defined in (4.9.106)). Under (4.9.116) and for given \(\{\lambda_k\} \) there exists a one-to-one map between \(\{b_k\} \) and \(\{\gamma_k\} \), and hence we can view the use of \(\{b_k\} \) as a reparameterization of the problem (note that if (4.9.116) does not hold, i.e., \(\lambda_k = \lambda_p \), then, for identifiability reasons, we must have \(\gamma_k \neq \gamma_p \), and therefore no vector \(b \) that satisfies (4.9.117) can exist). From (4.9.117) we obtain easily
\[b^* A_n \Gamma^t = [\gamma_1, \ldots, \gamma_n] \Gamma^t = g_{t+1}^* \]
and hence (see also (4.9.109) and (4.9.111))
\[b^* \begin{bmatrix} g_t^* \Lambda^0 \\ \vdots \\ g_{t+1}^* \Lambda^{n-1} \end{bmatrix} = b^* A_n \Gamma^t = g_{t+1}^* \]
(4.9.118)
Next, we assume that
\[\bar{m} \geq 2n - 1 \]
(4.9.119)
which is a weak condition (typically we have \(m, \bar{m} \gg n \)). Under (4.9.119) we can write (making use of (4.9.118)):
\[
\begin{bmatrix}
 b^* & 0 \\
 \vdots & \vdots \\
 0 & B^* \\
\end{bmatrix}
\begin{bmatrix}
 g_t^* \Lambda^0 \\
 \vdots \\
 g_{t+1}^* \Lambda^{n-1} \\
\end{bmatrix} = 0
\]
(4.9.120)
where
\[
B^* = \begin{bmatrix}
 b_1 & b_2 & \cdots & b_n & 0 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
 0 & b_1 & b_2 & \cdots & b_n & 0 \\
\end{bmatrix} \quad (n \times \bar{m})
\]
Note that, indeed, we need \(\bar{m} \geq 2n - 1 \) to be able to write (4.9.120) (if \(\bar{m} > 2n - 1 \) then the rightmost \(\bar{m} - 2n - 1 \) columns of \(B^* \) are zeroes). Combining (4.9.115) and (4.9.120) yields the following matrix whose rows lie in the left null space of \(A \):
\[
\begin{bmatrix}
 D & I & I & 0 \\
 \vdots & \vdots & \vdots & \vdots \\
 0 & D & I & C^* \\
\end{bmatrix}
\]
(4.9.121)
where

\[D = \begin{bmatrix} C^* \\ B^* \end{bmatrix} = \begin{bmatrix} 1 & c_1 & \cdots & c_n & 0 \\ \vdots & \ddots & \cdots & \vdots & \vdots \\ 0 & b_1 & b_2 & \cdots & b_n \\ \vdots & \ddots & \cdots & \vdots & \vdots \\ 0 & 0 & b_1 & b_2 & \cdots & b_n \end{bmatrix} \begin{bmatrix} \tilde{m} - n \\ \vdots \\ n \end{bmatrix} \]

\[I = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \\ -1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & -1 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} \tilde{m} - n \\ \vdots \\ n \end{bmatrix} \]

The matrix in (4.9.121) is of dimension \([(m - 1)\tilde{m} + (\tilde{m} - n)] \times n\), that is \((m\tilde{m} - n) \times n\) (i.e., it has full row rank, as \(c_n \neq 0\)). Consequently, the rows of (4.9.121) form a linearly parameterized basis for the null space of \(A\). We remind the reader that, under (4.9.116), there is a one-to-one map between \(\{\lambda_k, \gamma_k\}\) and the basis parameters \(\{c_k, b_k\}\) (see (4.9.112) and (4.9.117)). Hence, we can think of estimating \(\{c_k, b_k\}\) in lieu of \(\{\lambda_k, \gamma_k\}\), at least in a first stage, and when doing so the linear dependence of (4.9.121) on the unknown parameters comes in quite handy. As a simple example of such an estimation method based on (4.9.121), note that the modified MUSIC procedure outlined in Section 4.5 can be easily extended to the case of 2D signals making use of (4.9.121).

Compared with the basis matrix for the 1D case (see (4.9.95)), the null space basis (4.9.121) in the 2D case is apparently much more complicated. In addition, the above 2D basis result depends on the condition (4.9.116); if (4.9.116) is even approximately violated (i.e., if there exist \(\lambda_k\) and \(\lambda_p\) with \(k \neq p\) such that \(\lambda_k \approx \lambda_p\)) then the mapping \(\{\gamma_k\} \leftrightarrow \{b_k\}\) may become ill-conditioned, which may result in a deterioration of the estimation accuracy.

Finally, we remark on the fact that for damped sinusoids, the parameterization via \(\{b_k\}\) and \(\{c_k\}\) is parsimonious. However, for undamped sinusoidal signals the parameterization via \(\{\omega_k, \tilde{\omega}_k\}\) contains \(2n\) real-valued unknowns, whereas the one based on \(\{b_k, c_k\}\) has \(4n\) unknowns, or \(3n\) unknowns if a certain conjugate symmetry property of \(\{b_k\}\) is exploited (see, e.g., [STOICA AND SHARMAN 1990]); hence in such a case the use of \(\{b_k\}\) and, in particular, \(\{c_k\}\) leads to an overparameterized problem, which may also result in a (slight) accuracy degradation. The previous criticism of the result (4.9.121) is, however, minor and in fact (4.9.121) is the only known basis for \(N(A^*)\).

4.10 EXERCISES

Exercise 4.1: Speed Measurement by a Doppler Radar as a Frequency Determination Problem
Assume that a radar system transmits a sinusoidal signal towards an object. For the sake of simplicity, further assume that the object moves along a trajectory parallel to the wave propagation direction, at a constant velocity \(v \). Let \(\alpha e^{i\omega t} \) denote the signal emitted by the radar. Show that the backscattered signal, measured by the radar system after reflection off the object, is given by:

\[
s(t) = \beta e^{i(\omega - \omega^D)t} + e(t)
\]

where \(e(t) \) is measurement noise, \(\omega^D \) is the so-called Doppler frequency,

\[
\omega^D = \frac{2\omega v}{c}
\]

and

\[
\beta = \mu e^{-2i\omega r/c}
\]

Here \(c \) denotes the speed of wave propagation, \(r \) is the object range, and \(\mu \) is an attenuation coefficient.

Conclude from (4.10.1) that the problem of speed measurement can be reduced to one of frequency determination. The latter problem can be solved by using the methods of this chapter.

Exercise 4.2: ACS of Sinusoids with Random Amplitudes or Nonuniform Phases

In some applications, it is not reasonable to assume that the amplitudes of the sinusoidal terms are fixed or that their phases are uniformly distributed. Examples are fast fading in mobile telecommunications (where the amplitudes vary) or sinusoids that have been tracked, so that their phase is random, near zero, but not uniformly distributed. We derive the ACS for such cases.

Let \(x(t) = \alpha e^{i(\omega t + \varphi)} \), where \(\alpha \) and \(\varphi \) are statistically independent random variables and \(\omega_0 \) is a constant. Assume that \(\alpha \) has mean \(\bar{\alpha} \) and variance \(\sigma_\alpha^2 \).

(a) If \(\varphi \) is uniformly distributed on \([0, 2\pi]\), find \(E\{x(t)\} \) and \(r_x(k) \). Show also that if \(\alpha \) is constant, the expression for \(r_x(k) \) reduces to equation (4.1.5).

(b) If \(\varphi \) is not uniformly distributed on \([0, 2\pi]\), express \(E\{x(t)\} \) in terms of the probability density function \(p(\varphi) \). Find sufficient conditions on \(p(\varphi) \) such that \(x(t) \) is zero mean, find \(r_x(k) \) in this case, and give an example of such a \(p(\varphi) \).

Exercise 4.3: A Nonergodic Sinusoidal Signal

As shown in Complement 4.9.1, the signal

\[
x(t) = \alpha e^{i(\omega t + \varphi)}
\]

with \(\alpha \) and \(\omega \) being nonrandom constants and \(\varphi \) being uniformly distributed on \([0, 2\pi]\), is second–order ergodic in the sense that the mean and covariances determined from an (infinitely long) temporal realization of the signal coincide with the mean and covariances obtained from an ensemble of (infinitely many) realizations. In the present exercise, assume that \(\alpha \) and \(\omega \) are independent random variables, with \(\omega \) being uniformly distributed on \([0, 2\pi]\); the initial–phase variable \(\varphi \) may be
arbitrarily distributed (in particular it can be nonrandom). Show that in such a case,
\[
E \{ x(t)x^*(t-k) \} = \begin{cases}
E \{ \alpha^2 \} & \text{for } k = 0 \\
0 & \text{for } k \neq 0
\end{cases} \tag{4.10.2}
\]
Also, show that the covariances obtained by “temporal averaging” differ from those given, and hence deduce that the signal is not ergodic. Comment on the behavior of such a signal over the ensemble of realizations and in each realization, respectively.

Exercise 4.4: AR Model–Based Frequency Estimation

Consider the following noisy sinusoidal signal:
\[
y(t) = x(t) + e(t)
\]
where \(x(t) = \alpha e^{i(\omega_0 t + \varphi)} \) (with \(\alpha > 0 \) and \(\varphi \) uniformly distributed on \([0, 2\pi])\), and where \(e(t) \) is white noise with zero mean and unit variance. An AR model of order \(n \geq 1 \) is fitted to \(\{ y(t) \} \) using the Yule–Walker or LS method. Assuming the limiting case of an infinitely long data sample, the AR coefficients are given by the solution to (3.4.4). Show that the PSD, corresponding to the AR model determined from (3.4.4), has a global peak at \(\omega = \omega_0 \). Conclude that AR modeling can be used in this case to determine the sinusoidal frequency, in spite of the fact that \(\{ y(t) \} \) does not satisfy an AR equation of finite order (in the case of multiple sinusoids, the AR frequency estimates are biased). Regarding the estimation of the signal power, however, show that the height of the global peak of the AR spectrum does not directly provide an “estimate” of \(\alpha^2 \).

Exercise 4.5: An ARMA Model–Based Derivation of the Pisarenko Method

Let \(R \) denote the covariance matrix (4.2.7) with \(m = n + 1 \), and let \(g \) be the eigenvector of \(R \) associated with its minimum eigenvalue. The Pisarenko method determines the signal frequencies by exploiting the fact that
\[
a^*(\omega)g = 0 \quad \text{for } \omega = \omega_k, \; k = 1, \ldots, n \tag{4.10.3}
\]
(cf. (4.5.13) and (4.5.17)). Derive the property (4.10.3) directly from the ARMA model equation (4.2.3).

Exercise 4.6: Frequency Estimation when Some Frequencies are Known

Assume that \(y(t) \) is known to have \(p \) sinusoidal components at known frequencies \(\{ \tilde{\omega}_k \}_{k=1}^p \) (but with unknown amplitudes and phases), and \(n - p \) other sinusoidal components whose frequencies are unknown. Develop a modification of the HOYW method to estimate the unknown frequencies from measurements \(\{ y(t) \}_{t=1}^N \), without estimating the known frequencies.

Exercise 4.7: A Combined HOYW–ESPRIT Method for the MA Noise Case

The HOYW method, presented in Section 4.4 for the white noise case, is based on the matrix \(\Gamma \) in (4.2.8). Let us assume that the noise sequence \(\{ e(t) \} \) in
Section 4.10 Exercises

(4.1.1) is known to be an MA process of order \(m \), and that \(m \) is given. A simple way to handle such a colored noise in the HOYW method consists of modifying the expression (4.2.8) of \(\Gamma \) as follows:

\[
\hat{\Gamma} = E \left\{ \begin{bmatrix} y(t - L - 1 - m) \\
\vdots \\
y(t - L - M - m) \end{bmatrix} \begin{bmatrix} y^*(t), \ldots, y^*(t - L) \end{bmatrix} \right\} \quad (4.10.4)
\]

Derive an expression for \(\hat{\Gamma} \) similar to the one for \(\Gamma \) in (4.2.8). Furthermore, make use of that expression in an ESPRIT-like method to estimate the frequencies \(f_k \), instead of using it in an HOYW-like method (see Section 4.4). Discuss the advantage of the so-obtained HOYW-ESPRIT method over the HOYW method based on \(\hat{\Gamma} \). Assuming that the noise is white (i.e., \(m = 0 \)) and hence that ESPRIT is directly applicable, would you prefer using HOYW-ESPRIT (with \(m = 0 \)) in lieu of ESPRIT? Why or why not?

Exercise 4.8: Chebyshev Inequality and the Convergence of Sample Covariances

Let \(x \) be a random variable with finite mean \(\mu \) and variance \(\sigma^2 \). Show that, for any positive constant \(c \), the so-called Chebyshev inequality holds:

\[
\Pr(|x - \mu| \geq c\sigma) \leq \frac{1}{c^2} \quad (4.10.5)
\]

Use (4.10.5) to show that if a sample covariance lag \(\hat{\gamma}_N \) (estimated from \(N \) data samples) converges to the true value \(\gamma \) in the mean square sense, i.e.,

\[
\lim_{N \to \infty} E \{ |\hat{\gamma}_N - \gamma|^2 \} = 0 \quad (4.10.6)
\]

then \(\hat{\gamma}_N \) also converges to \(\gamma \) in probability:

\[
\lim_{N \to \infty} \Pr(|\hat{\gamma}_N - \gamma| \neq 0) = 0 \quad (4.10.7)
\]

For sinusoidal signals, the mean square convergence of \(\{\hat{\gamma}_N(k)\} \) to \(\{\gamma(k)\} \), as \(N \to \infty \), has been proven in Complement 4.9.1. (In this exercise, we omit the argument \(k \) in \(\hat{\gamma}_N(k) \) and \(\gamma(k) \), for notational simplicity.) Additionally, discuss the use of (4.10.5) to set bounds (which hold with a specified probability) on an arbitrary random variable with given mean and variance. Comment on the conservatism of the bounds obtained from (4.10.5) by comparing them with the bounds corresponding to a Gaussian random variable.

Exercise 4.9: More about the Forward–Backward Approach

The sample covariance matrix in (4.8.3), used by the forward–backward approach, is often a better estimate of the theoretical covariance matrix than \(\hat{R} \) is (as argued in Section 4.8). Another advantage of (4.8.3) is that the forward–backward sample covariance is always numerically better conditioned than the usual (forward–only) sample covariance matrix \(\hat{R} \). To explain this statement, let \(\hat{R} \) be a Hermitian
matrix (not necessarily a Toeplitz one, as the R in \eqref{eq:4.2.7}). The “condition number” of R is defined as
\[
\text{cond}(R) = \frac{\lambda_{\max}(R)}{\lambda_{\min}(R)}
\]
where $\lambda_{\max}(R)$ and $\lambda_{\min}(R)$ are the maximum and minimum eigenvalues of R, respectively. The numerical errors that affect many algebraic operations on R, such as inversion, eigendecomposition and so on, are essentially proportional to $\text{cond}(R)$. Hence, the smaller $\text{cond}(R)$ the better. (See Appendix A for details on this aspect.)

Next, let U be a unitary matrix (the J in \eqref{eq:4.8.3} is a special case of such a matrix). Observe that the forward–backward covariance in equation \eqref{eq:4.8.3} is of the form $R + U^* R^T U$. Prove that
\[
\text{cond}(R) \geq \text{cond}(R + U^* R^T U) \quad (4.10.8)
\]
for any unitary matrix U. We note that the result \eqref{eq:4.10.8} applies to any Hermitian matrix R and unitary matrix U, and thus is valid in more general cases than the forward–backward approach in Section 4.8, in which R is Toeplitz and $U = J$.

Exercise 4.10: ESPRIT and Min–Norm Under the Same Umbrella

ESPRIT and Min–Norm methods are seemingly quite different from one another, and hence it might seem unlikely that there is any strong relationship between them. It is the goal of this exercise to show that in fact ESPRIT and Min–Norm are quite related to each other. We will see that ESPRIT and Min–Norm are members of a well-defined class of frequency estimates.

Consider the equation
\[
\tilde{S}_2 \Psi = \tilde{S}_1 \quad (4.10.9)
\]
where \tilde{S}_1 and \tilde{S}_2 are as defined in Section 4.7. The $(m-1) \times (m-1)$ matrix Ψ in \eqref{eq:4.10.9} is the unknown. First show that the asymptotic counterpart of \eqref{eq:4.10.9},
\[
S_2^* \Psi = S_1^* \quad (4.10.10)
\]
has the property that any of its solutions Ψ has n eigenvalues equal to $\{e^{-i\omega_k}\}_{k=1}^n$. This property, along with the fact that there is an infinite number of matrices Ψ satisfying \eqref{eq:4.10.9} (see Section A.8 in Appendix A), imply that \eqref{eq:4.10.9} generates a class of frequency estimators with an infinite number of members.

As a second task, show that ESPRIT and Min–Norm belong to this class of estimators. In other words, prove that there is a solution of \eqref{eq:4.10.9} whose nonzero eigenvalues have exactly the same arguments as the eigenvalues of the ESPRIT matrix ϕ in \eqref{eq:4.7.12}, and also that there is another solution of \eqref{eq:4.10.9} whose eigenvalues are equal to the roots of the Min–Norm polynomial in \eqref{eq:4.6.3}. For more details on the topic of this exercise, see [HUA AND SARKAR 1990].

Exercise 4.11: Yet Another Relationship between ESPRIT and Min–Norm
Section 4.10 Exercises 203

Let the vector \([\hat{\rho}^T, 1]^T\) be defined similarly to the Min–Norm vector \([1, \tilde{g}^T]^T\) (see (4.6.1)), with the only difference that we now constrain the last element to be equal to one. Hence, \(\hat{\rho}\) is the minimum-norm solution to (see (4.6.5)):

\[\hat{\rho}^* \begin{bmatrix} \hat{\rho} \\ 1 \end{bmatrix} = 0 \]

Use the Min–Norm vector \(\hat{\rho}\) to build the following matrix

\[\hat{\phi} = \hat{\rho}^* \begin{bmatrix} I_{m-1} & \hat{S}^* \\ -\hat{\rho}^* & \hat{S} \end{bmatrix} (n \times n) \]

Prove the somewhat curious fact that \(\hat{\phi}\) above is equal to the ESPRIT matrix, \(\hat{\phi}\), in (4.7.12).

COMPUTER EXERCISES

Tools for Frequency Estimation:

The text web site www.prenhall.com/stoica contains the following MATLAB functions for use in computing frequency estimates and estimating the number of sinusoidal terms. In the first four functions, \(y\) is the data vector and \(n\) is the desired number of frequency estimates. The remaining variables are described below.

- \(w=hoyw(y,n,L,M)\)
 The HOYW estimator given in the box on page 159; \(L\) and \(M\) are the matrix dimensions as in (4.4.8).

- \(w=music(y,n,m)\)
 The Root MUSIC estimator given by (4.5.12); \(m\) is the dimension of \(a(\omega)\). This function also implements the Pisarenko method by setting \(m = n + 1\).

- \(w=minnorm(y,n,m)\)
 The Root Min–Norm estimator given by (4.6.3); \(m\) is the dimension of \(a(\omega)\).

- \(w=esprit(y,n,m)\)
 The ESPRIT estimator given by (4.7.12); \(m\) is the size of the square matrix \(\hat{R}\) there, and \(S_1\) and \(S_2\) are chosen as in equations (4.7.5) and (4.7.6).

- \(order=sinorder(mvec,sig2,N,nu)\)
 Computes the AIC, AICc, GIC, and BIC model order selections for sinusoidal parameter estimation problems (see Appendix C for details on the derivations of these methods). Here, \(mvec\) is a vector of candidate sinusoidal model orders, \(sig2\) is the vector of estimated residual variances corresponding to the model orders in \(mvec\), \(N\) is the length of the observed data vector, and \(nu\) is a parameter in the GIC method. The 4-element output vector \(order\) contains the selected model orders obtained from AIC, AICc, GIC, and BIC, respectively.
Exercise C4.12: Resolution Properties of Subspace Methods for Estimation of Line Spectra

In this exercise we test and compare the resolution properties of four subspace methods, Min-Norm, MUSIC, ESPRIT, and HOYW.

Generate realizations of the sinusoidal signal

\[y(t) = 10 \sin(0.24\pi t + \varphi_1) + 5 \sin(0.26\pi t + \varphi_2) + e(t), \quad t = 1, \ldots, N \]

where \(N = 64 \), \(e(t) \) is Gaussian white noise with variance \(\sigma^2 \), and where \(\varphi_1, \varphi_2 \) are independent random variables each uniformly distributed on \([-\pi, \pi]\).

Generate 50 Monte-Carlo realizations of \(y(t) \), and present the results from these experiments. The results of frequency estimation can be presented comparing the sample means and variances of the frequency estimates from the various estimators.

(a) Find the exact ACS for \(y(t) \). Compute the “true” frequency estimates from the four methods, for \(n = 4 \) and various choices of the order \(m \geq 5 \) (and corresponding choices of \(M \) and \(L \) for HOYW). Which method(s) are able to resolve the two sinusoids, and for what values of \(m \) (or \(M \) and \(L \))?

(b) Consider now \(N = 64 \), and set \(\sigma^2 = 0 \); this corresponds to the finite data length but infinite SNR case. Compute frequency estimates for the four techniques again using \(n = 4 \) and various choices of \(m, M \) and \(L \). Which method(s) are reliably able to resolve the sinusoids? Explain why.

(c) Obtain frequency estimates from the four methods when \(N = 64 \) and \(\sigma^2 = 1 \). Use \(n = 4 \), and experiment with different choices of \(m, M \) and \(L \) to see the effect on estimation accuracy (e.g., try \(m = 5, 8, \) and 12 for MUSIC, Min-Norm and ESPRIT, and try \(L = M = 4, 8, \) and 12 for HOYW). Which method(s) give reliable “super-resolution” estimation of the sinusoids? Is it possible to resolve the two sinusoids in the signal? Discuss how the choices of \(m, M \) and \(L \) influence the resolution properties. Which method appears to have the best resolution?

You may want to experiment further by changing the SNR and the relative amplitudes of the sinusoids to gain a better understanding of the differences between the methods.

(d) Compare the estimation results with the AR and ARMA results obtained in Exercise C3.18 in Chapter 3. What are the major differences between the techniques? Which method(s) do you prefer for this problem?

Exercise C4.13: Model Order Selection for Sinusoidal Signals

In this exercise we examine four methods for model order selection for sinusoidal signals. As discussed in Appendix C, several important model order selection rules have the following general form (see (C.8.1)-(C.8.2)):

\[-2 \ln p_n(y, \hat{\theta}^n) + \eta(r, N)r \] (4.10.11)
Section 4.10 Exercises 205

with different penalty coefficients \(\eta(r, N) \) for the different methods:

- AIC: \(\eta(r, N) = 2 \)
- \(AIC_c: \eta(r, N) = \frac{N}{N - r - 1} \)
- GIC: \(\eta(r, N) = \nu \) (e.g., \(\nu = 4 \))
- BIC: \(\eta(r, N) = \ln N \)

Here, \(N \) is the length of the observed data vector \(y \) and for sinusoidal signals \(r \) is given by (see Appendix C):

- \(r = 3n + 1 \) for AIC, \(AIC_c \), and GIC
- \(r = 5n + 1 \) for BIC

where \(n \) is the number of sinusoids in the model. The term \(\ln p_n(y, \hat{\theta}^n) \) is the log-likelihood of the observed data vector \(y \) given the maximum-likelihood (ML) estimate of the parameter vector \(\theta \) for a model order of \(n \); it is given by (cf. (C.2.7)–(C.2.8) in Appendix C):

\[
-2 \ln p_n(y, \hat{\theta}^n) = N \hat{\sigma}^2_n + \text{constant} \tag{4.10.13}
\]

where

\[
\hat{\sigma}^2_n = \frac{1}{N} \sum_{t=1}^{N} \left| y(t) - \sum_{k=1}^{n} \hat{\alpha}_k e^{i(\hat{\omega}_k t + \hat{\phi}_k)} \right|^2 \tag{4.10.14}
\]

The selected model order is the value of \(n \) that minimizes (4.10.11). The order selection rules above, while derived for ML estimates of \(\theta \), can be used even with approximate ML estimates of \(\theta \), albeit with some loss of performance.

Well-Separated Sinusoids:

(a) Generate 100 realizations of

\[
y(t) = 10 \sin[2\pi f_0 t + \varphi_1] + 5 \sin[2\pi (f_0 + \Delta f) t + \varphi_2] + e(t), \quad t = 1, \ldots, N
\]

for \(f_0 = 0.24, \Delta f = 3/N, \) and \(N = 128 \). Here, \(e(t) \) is real-valued white noise with variance \(\sigma^2 \). For each realization, generate \(\varphi_1 \) and \(\varphi_2 \) as random variables uniformly distributed on \([0, 2\pi]\).

(b) Set \(\sigma^2 = 10 \). For each realization, estimate the frequencies of \(n = 1, \ldots, 10 \) real-valued sinusoidal components using ESPRIT, and estimate the amplitudes and phases using the second equation in (4.3.8) where \(\hat{\omega} \) is the vector of ESPRIT frequency estimates. Note that you will need to use two complex exponentials to model each real-valued sinusoid, so the number of frequencies to estimate with ESPRIT will be \(2, 4, \ldots, 20 \); however, the frequency estimates will be in symmetric pairs. Use \(m = 40 \) as the covariance matrix size in ESPRIT.

(c) Find the model orders that minimize AIC, \(AIC_c \), GIC (with \(\nu = 4 \)), and BIC. For each of the four order selection methods, plot a histogram of the selected orders for the 100 realizations. Comment on their relative performance.
(d) Repeat the above experiment using $\sigma^2 = 1$ and $\sigma^2 = 0.1$, and comment on the performance of the order selection methods as a function of SNR.

Closely-Spaced Sinusoids:
Generate 100 realizations of $y(t)$ as above, but this time using $\Delta f = 0.5/N$. Repeat the experiments above. In addition, compare the relative performance of the order selection methods for well-separated versus closely-spaced sinusoidal signals.

Exercise C4.14: Line Spectral Methods applied to Measured Data
Apply the Min-Norm, MUSIC, ESPRIT, and HOYW frequency estimators to the data in the files `sunspotdata.mat` and `lynxdata.mat` (use both the original `lynx` data and the logarithmically transformed data as in Exercise C2.23). These files can be obtained from the text web site `www.prenhall.com/stoica`. Try to answer the following questions:

(a) Is the sinusoidal model appropriate for the data sets under study?
(b) Suggest how to choose the number of sinusoids in the model (see Exercise C4.13).
(c) What periodicities can you find in the two data sets?

Compare the results you obtain here to the AR(MA) and nonparametric spectral estimation results you obtained in Exercises C2.23 and C3.20.
CHAPTER 5

Filter Bank Methods

5.1 INTRODUCTION

The problem of estimating the PSD function $\phi(\omega)$ of a signal from a finite number of observations N is ill posed from a statistical standpoint, unless we make some appropriate assumptions on $\phi(\omega)$. More precisely, without any assumption on the PSD we are required to estimate an infinite number of independent values $\{\phi(\omega)\}_{\omega=-\pi}^{\omega=\pi}$ from a finite number of samples. Evidently, we cannot do that in a consistent manner. In order to overcome this problem, we can either

Parameterize $\{\phi(\omega)\}$ by means of a finite-dimensional model

or

Smooth the set $\{\phi(\omega)\}_{\omega=-\pi}^{\omega=\pi}$ by assuming that $\phi(\omega)$ is constant (or nearly constant) over the band $[\omega - \beta \pi, \omega + \beta \pi]$, for some given $\beta \ll 1$. (5.1.2)

The approach based on (5.1.1) leads to the parametric spectral methods of Chapters 3 and 4, for which the estimation of $\{\phi(\omega)\}$ is reduced to the problem of estimating a number of parameters that is usually much smaller than the data length N.

The other approach to PSD estimation, (5.1.2), leads to the methods to be described in this chapter. The nonparametric methods of Chapter 2 are also (implicitly) based on (5.1.2), as shown in Section 5.2. The approach (5.1.2) should, of course, be used for PSD estimation when we do not have enough information about the studied signal to be able to describe it (and its PSD) by a simple model (such as the ARMA equation in Chapter 3 or the equation of superimposed sinusoidal signals in Chapter 4). On one hand, this implies that the methods derived from (5.1.2) can be used in cases where those based on (5.1.1) cannot. On the other hand, we should expect to pay some price in using (5.1.2) over (5.1.1). Under the assumption in (5.1.2), $\phi(\omega)$ is described by $2\pi / 2\pi \beta = 1 / \beta$ values. In order to estimate these values from the available data in a consistent manner, we must require

\footnote{This statement should be interpreted with some care. One can certainly use, for instance, an ARMA spectral model even if one does not know that the studied signal is really an ARMA signal. However, in such a case one does not only have to estimate the model parameters but must also face the rather difficult task of determining the structure of the parametric model used (for example, the orders of the ARMA model). The nonparametric approach to PSD estimation does not require any structure determination step.}

...
Chapter 5 Filter Bank Methods

that $1/\beta < N$ or

$$N\beta > 1$$ \hspace{1cm} (5.1.3)

As β increases, the achievable statistical accuracy of the estimates of $\{\phi(\omega)\}$ should increase (because the number of PSD values estimated from the given N data samples decreases) but the resolution decreases (because $\phi(\omega)$ is assumed to be constant on a larger interval). This tradeoff between statistical variability and resolution is the price paid for the generality of the methods derived from (5.1.2). We already met this tradeoff in our discussion of the periodogram–based methods in Chapter 2. Note from (5.1.3) that the resolution threshold β of the methods based on (5.1.2) can be lowered down to $1/N$ only if we are going to accept a significant statistical variability for our spectral estimates (because for $\beta = 1/N$ we will have to estimate N spectral values from the available N data samples). The parametric (or model–based) approach embodied in (5.1.1) describes the PSD by a number of parameters that is often much smaller than N, and yet it may achieve better resolution (i.e., a resolution threshold less than $1/N$) compared to the approach derived from (5.1.2).

When taking the approach (5.1.2) to PSD estimation, we are basically following the “definition” (1.1.1) of the spectral estimation problem, which we restate here (in abbreviated form) for easy reference:

From a finite–length data sequence, estimate how the power is distributed over narrow spectral bands. \hspace{1cm} (5.1.4)

There is an implicit assumption in (5.1.4) that the power is (nearly) constant over “narrow spectral bands”, which is a restatement of (5.1.2).

The most natural implementation of the approach to spectral estimation resulting from (5.1.2) and (5.1.4) is depicted in Figure 5.1. The bandpass filter in this figure, which sweeps through the frequency interval of interest, can be viewed as a bank of (bandpass) filters. This observation motivates the name of filter bank approach given to the PSD estimation scheme sketched in Figure 5.1. Depending on the bandpass filter chosen, we may obtain various filter bank methods of spectral estimation. Even for a given bandpass filter, we may implement the scheme of Figure 5.1 in different ways, which leads to an even richer class of methods. Examples of bandpass filters that can be used in the scheme of Figure 5.1, as well as specific ways in which they may be implemented, are given in the remainder of this chapter. First, however, we discuss a few more aspects regarding the scheme in Figure 5.1.

As a mathematical motivation of the filter bank approach (FBA) to spectral
Assume that:

(i) \(\phi(\omega) \) is (nearly) constant over the filter passband;

(ii) The filter gain is (nearly) one over the passband and (nearly) zero outside the passband; and

(iii) The power of the filtered signal is consistently estimated. \((5.1.5) \)

Then:

The PSD estimate, \(\hat{\phi}_{FB}(\omega) \), obtained with the filter bank approach, is a good approximation of \(\phi(\omega) \).

Let \(H(\omega) \) denote the transfer function of the bandpass filter, and let \(2\pi/\beta \) denote its bandwidth. Then by using the formula (1.4.9) and the assumptions (iii), (ii) and (i) (in that order), we can write

\[
\hat{\phi}_{FB}(\omega) \simeq \frac{1}{2\pi/\beta} \int_{-\pi}^{\pi} |H(\psi)|^2 \phi(\psi) \, d\psi \\
\simeq \frac{1}{2\pi/\beta} \int_{-\omega+\beta \pi}^{\omega-\beta \pi} \phi(\psi) \, d\psi \simeq \frac{1}{2\pi/\beta} 2\pi/\beta \phi(\omega) = \phi(\omega)
\]

(5.1.6)

where \(\omega \) denotes the center frequency of the bandpass filter. This is the result which we set out to prove.

If all three assumptions in (5.1.5) could be satisfied, then the FBA methods would produce spectral estimates with high resolution and low statistical variability. Unfortunately, these assumptions contain conflicting requirements that cannot be met simultaneously. In high-resolution applications, assumption (i) can be satisfied...
if we use a filter with a very sharp passband. According to the time–bandwidth product result (2.6.5), such a filter has a very long impulse response. This implies that we may be able to get only a few samples of the filtered signal (sometimes only one sample, see Section 5.2!). Hence, assumption (iii) cannot be met. In order to satisfy (iii), we need to average many samples of the filtered signal and, therefore, should consider a bandpass filter with a relatively short impulse response and hence a not too narrow passband. Assumption (i) may then be violated or, in other words, the resolution may be sacrificed.

The above discussion has brought once more to light the compromise between resolution and statistical variability and the fact that the resolution is limited by the sample length. These are the critical issues for any PSD estimation method based on the approach (5.1.2), such as those of Chapter 2 and the ones discussed in the following sections. The previous two issues will always surface within the nonparametric approach to spectral estimation, in many different ways depending on the specific method at hand.

5.2 FILTER BANK INTERPRETATION OF THE PERIODOGRAM

The value of the basic periodogram estimator (2.2.1) at a given frequency, say \(\tilde{\omega} \), can be expressed as

\[
\hat{\phi}_p(\tilde{\omega}) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\tilde{\omega}t} \right|^2 = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{i\tilde{\omega}(N-t)} \right|^2 \\
= \frac{1}{N} \left| \sum_{k=0}^{N-1} h_k y(N - k) \right|^2
\]

(5.2.1)

where \(\beta = 1/N \) and

\[h_k = \frac{1}{N} e^{i\tilde{\omega}k} \quad k = 0, \ldots, N - 1 \]

(5.2.2)

The truncated convolution sum that appears in (5.2.1) can be written as the usual convolution sum associated with a linear causal system, if the weighting sequence in (5.2.2) is padded with zeroes:

\[y_F(N) = \sum_{k=0}^{\infty} h_k y(N - k) \]

(5.2.3)

with

\[h_k = \begin{cases}
 e^{i\tilde{\omega}k}/N & \text{for } k = 0, \ldots, N - 1 \\
 0 & \text{otherwise}
\end{cases} \]

(5.2.4)

The transfer function (or the frequency response) of the linear filter corresponding to \(\{h_k\} \) in (5.2.4) is readily evaluated:

\[H(\omega) = \sum_{k=0}^{\infty} h_k e^{-i\omega k} = \frac{1}{N} \sum_{k=0}^{N-1} e^{i(\tilde{\omega}-\omega)k} = \frac{1}{N} \frac{e^{iN(\tilde{\omega}-\omega)} - 1}{e^{i(\tilde{\omega}-\omega)} - 1} \]
Section 5.2 Filter Bank Interpretation of the Periodogram 211

which gives

\[
H(\omega) = \frac{1}{N} \sin\left[\frac{N(\tilde{\omega} - \omega)}{2}\right] e^{i(N-1)(\tilde{\omega} - \omega)/2} \tag{5.2.5}
\]

Figure 5.2 shows \(|H(\omega)|\) as a function of \(\Delta \omega = \tilde{\omega} - \omega\), for \(N = 50\). It can be seen that \(H(\omega)\) in (5.2.5) is the transfer function of a bandpass filter with center frequency equal to \(\tilde{\omega}\). The 3dB bandwidth of this filter can be shown to be approximately \(2\pi/N\) radians per sampling interval, or \(1/N\) cycles per sampling interval. In fact, by comparing (5.2.5) to (2.4.17) we see that \(H(\omega)\) resembles the DTFT of the rectangular window, the only differences being the phase term (due to the time offset) and the window lengths ((\(2N - 1\)) in (2.4.17) versus \(N\) in (5.2.5)).

\[\begin{array}{c}
\begin{array}{c}
\text{Figure 5.2. The magnitude of the frequency response of the bandpass filter } H(\omega) \\
\text{in (5.2.5), associated with the periodogram } (N = 50), \text{ plotted as a function of } \\
(\tilde{\omega} - \omega).
\end{array}
\end{array}\]

Thus, we have proven the following filter bank interpretation of the basic periodogram.

The periodogram \(\hat{\phi}_p(\omega)\) can be exactly obtained by the FBA in Figure 5.1, where the bandpass filter’s frequency response is given by (5.2.5), its bandwidth is \(1/N\) cycles per sampling interval, and the power calculation is done from a single sample of the filtered signal. \(\text{(5.2.6)}\)

This interpretation of \(\hat{\phi}_p(\omega)\) highlights a conclusion that is reached, in a different way, in Chapter 2: the unmodified periodogram sacrifices statistical accuracy for resolution. Indeed, \(\hat{\phi}_p(\omega)\) uses a bandpass filter with the smallest bandwidth afforded by a time aperture of length \(N\). In this way, it achieves a good resolution.
Chapter 5 Filter Bank Methods

Figure 5.3. The relationship between the PSDs of the original signal $y(t)$ and the demodulated signal $\hat{y}(t)$.

(see assumption (i) in (5.1.5)). The consequence of doing so is that only one (filtered) data sample is obtained for the power calculation stage, which explains the erratic fluctuations of $\hat{p}(\omega)$ (owing to violation of assumption (iii) in (5.1.5)).

As explained in Chapter 2, the modified periodogram methods (Bartlett, Welch and Daniell) reduce the variance of the periodogram at the expense of increasing the bias (or, equivalently, worsening the resolution). The FBA interpretation of these modified methods provides an interesting explanation of their behavior. In the filter bank context, the basic idea behind all of these modified periodograms is to improve the power calculation stage which is done so poorly within the unmodified periodogram.

The Bartlett and Welch methods split the available sample in several stretches which are separately (bandpass) filtered. In principle, the larger the number of stretches, the more samples are averaged in the power calculation stage and the smaller the variance of the estimated PSD, but the worse the resolution (owing to the inability to design an appropriately narrow bandpass filter for a small aperture stretch).

The Daniell method, on the other hand, does not split the sample of observations but processes it as a whole. This method improves the “power calculation” in a different way. For each value of ω to be estimated, a number of different bandpass filters are employed, each with center frequency near ω. Each bandpass filter yields only one sample of the filtered signal, but as there are several bandpass filters we may get enough information for the power calculation stage. As the number of filters used increases, the variance of the estimated PSD decreases but the resolution becomes worse (since $\phi(\omega)$ is implicitly assumed to be constant over a wider and wider frequency interval centered on the current ω and approximately equal to the union of the filters’ passbands).

5.3 REFINED FILTER BANK METHOD

The bandpass filter used in the periodogram is nothing but one of many possible choices. Since the periodogram was not designed as a filter bank method, we may wonder whether we could not find other better choices of the bandpass filter. In this section, we present a refined filter bank (RFB) approach to spectral estimation. Such an approach was introduced in [Thomson 1982] and was further developed in [Mullis and Scharf 1991] (more recent references on this approach include [Bronze 1992; Onn and Steinhardt 1993; Riedel and Sidorenko 1995]).

For the discussion that follows, it is convenient to use a baseband filter in the
Section 5.3 Refined Filter Bank Method

filter bank approach of Figure 5.1, in lieu of the bandpass filter. Let $H_{BF}(\omega)$ denote the frequency response of the bandpass filter with center frequency $\hat{\omega}$ (say), and let the baseband filter be defined by:

$$H(\omega) = H_{BF}(\omega + \hat{\omega})$$ \hspace{1cm} (5.3.1)

(the center frequency of $H(\omega)$ is equal to zero). If the input to the FBA scheme is also modified in the following way,

$$y(t) \rightarrow \tilde{y}(t) = e^{-i\hat{\omega}t}y(t)$$ \hspace{1cm} (5.3.2)

then, according to the complex (de)modulation formula (1.4.11), the output of the scheme is left unchanged by the translation in (5.3.1) of the passband down to baseband. In order to help interpret the transformations above, we depict in Figure 5.3 the type of PSD translation implied by the demodulation process in (5.3.2). It is clearly seen from this figure that the problem of isolating the band around $\hat{\omega}$ by bandpass filtering becomes one of baseband filtering. The modified FBA scheme is shown in Figure 5.4. The baseband filter design problem is the subject of the next subsection.

5.3.1 Slepian Baseband Filters

In the following, we address the problem of designing a finite impulse response (FIR) baseband filter which passes the baseband

$$[-\beta \pi, \beta \pi]$$ \hspace{1cm} (5.3.3)

as undistorted as possible, and which attenuates the frequencies outside baseband as much as possible. Let

$$h = [h_0 \ldots h_{N-1}]^*$$ \hspace{1cm} (5.3.4)

denote the impulse response of such a filter, and let

$$H(\omega) = \sum_{k=0}^{N-1} h_k e^{-i\omega k} = h^* a(\omega)$$

![Diagram of PSD estimation process](image)

Figure 5.4. The modified filter bank approach to PSD estimation.
(where $a(\omega) = [1\ e^{-i\omega} \ldots e^{-i(N-1)\omega}]^T$) be the corresponding frequency response. The two design objectives can be turned into mathematical specifications in the following way. Let the input to the filter be white noise of unit variance. Then the power of the output is:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 d\omega = \sum_{k=0}^{N-1} \sum_{p=0}^{N-1} h_k h_p^* \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i\omega(p-k)} d\omega \right\} = \sum_{k=0}^{N-1} \sum_{p=0}^{N-1} h_k h_p^* \delta_{k,p} = h^* h$$

We note in passing that equation (5.3.5) above can be recognized as the Parseval’s theorem (1.2.6). The part of the total power, (5.3.5), that lies in the baseband is given by

$$\frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} |H(\omega)|^2 d\omega = h^* \left\{ \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} a(\omega)a^*(\omega)d\omega \right\} h \triangleq h^* \Gamma h$$

The k, p element of the $N \times N$ matrix Γ defined in (5.3.6) is given by

$$\Gamma_{k,p} = \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} e^{-i(k-p)\omega} d\omega = \frac{\sin [(k-p)\beta\pi]}{(k-p)\pi}$$

which, using the sinc function, can be written as

$$\Gamma_{k,p} = \beta \text{sinc}[(k-p)\beta\pi] \triangleq \gamma_{|k-p|}$$

Note that the matrix Γ is symmetric and Toeplitz. Also, note that this matrix has already been encountered in the window design example in Section 2.6.3. In fact, as we will shortly see, the window design strategy in that example is quite similar to the baseband filter design method employed here.

Since the filter h must be such that the power of the filtered signal in the baseband is as large as possible relative to the total power, we are led to the following optimization problem:

$$\max_h h^* \Gamma h \quad \text{subject to} \quad h^* h = 1$$

The solution to the problem above is given in Result R13 in Appendix A: the maximizing h is equal to the eigenvector of Γ corresponding to its maximum eigenvalue. Hence, we have proven the following result.

The impulse response h of the “most selective” baseband filter (according to the design objectives in (5.3.9)) is given by the dominant eigenvector of Γ, and is called the first Slepian sequence.
Section 5.3 Refined Filter Bank Method

The matrix Γ played a key role in the foregoing derivation. In what follows, we look in more detail at the eigenstructure of Γ. In particular, we provide an intuitive explanation as to why the first dominant eigenvector of Γ behaves like a baseband filter. We also show that, depending on the relation between β and N, the next dominant eigenvectors of Γ might also be used as baseband filters. Our discussion of these aspects will be partly heuristic. Note that the eigenvectors of Γ are called the Slepian sequences [Slepian 1964] (as already indicated in (5.3.10)). We denote these eigenvectors by $\{s_k\}_{k=1}^N$.

Remark: The Slepian sequences should not be computed by the eigendecomposition of Γ. Numerically more efficient and reliable ways for computing these sequences exist (see, e.g., [Slepian 1964]), for instance as solutions to some differential equations or as eigenvectors of certain tridiagonal matrices.

The theoretical eigenanalysis of Γ is a difficult problem in the case of finite N. (Of course, the eigenvectors and eigenvalues of Γ may always be computed, for given β and N; here we are interested in establishing theoretical expressions for Γ’s eigenelements.) For N sufficiently large, however, “reasonable approximations” to the eigenelements of Γ can be derived. Let $a(\omega)$ be defined as before:

$$a(\omega) = [1 \ e^{-i\omega} \ \ldots \ e^{-i(N-1)\omega}]^T \quad (5.3.11)$$

Assume that β is chosen larger than $1/N$, and define

$$K = N\beta \geq 1 \quad (5.3.12)$$

(To simplify the discussion, K and N are assumed to be even integers in what follows.) With these preparations and assuming that N is large, we can approximate the integral in (5.3.6) and write Γ as

$$\Gamma \approx \frac{1}{2\pi} \sum_{p=-K/2}^{K/2-1} a\left(\frac{2\pi}{N}p\right) a^*\left(\frac{2\pi}{N}p\right) \frac{2\pi}{N} \quad (5.3.13)$$

The vectors $\{a(\frac{2\pi}{N}p)/\sqrt{N}\}_{p=-\frac{N}{2}+1}^{\frac{N}{2}}$, part of which appears in (5.3.13), can be readily shown to form an orthonormal set:

$$\frac{1}{N} a^*\left(\frac{2\pi}{N}p\right) a\left(\frac{2\pi}{N}s\right) = \frac{1}{N} \sum_{k=0}^{N-1} e^{i\frac{2\pi}{N}(p-s)k} = \begin{cases} \frac{1}{N} & s = p \\ \frac{e^{i2\pi(p-s)} - 1}{e^{i\frac{2\pi}{N}(p-s)} - 1} & s \neq p \end{cases} \quad (5.3.14)$$
The eigenvectors of the matrix on the right hand side of equation (5.3.13), Γ_0, are therefore given by \(\{ a \left(\frac{2\pi p}{N} \right) / \sqrt{N} \}_{p=-N/2+1}^{N/2} \), with eigenvalues of 1 (with multiplicity K) and 0 (with multiplicity $N - K$). The eigenvectors corresponding to the eigenvalues equal to one are \(\{ a \left(\frac{2\pi p}{N} \right) / \sqrt{N} \}_{p=-K/2+1}^{K/2} \). By paralleling the calculations in (5.2.3)–(5.2.5), it is not hard to show that each of these dominant eigenvectors of Γ_0 is the impulse response of a narrow bandpass filter with bandwidth equal to about $1/N$ and center frequency $2\pi p/N$; the set of these filters therefore covers the interval $[-\beta \pi, \beta \pi]$.

Now, the elements of Γ approach those of Γ_0 as N increases; more precisely, $||\Gamma||_{i,j} - ||\Gamma_0||_{i,j} = O(1/N)$ for sufficiently large N. However, this does not mean that $||\Gamma - \Gamma_0|| \to 0$, as $N \to \infty$, for any reasonable matrix norm, because Γ and Γ_0 are $(N \times N)$ matrices. Consequently, the eigenelements of Γ do not necessarily converge to the eigenelements of Γ_0 as $N \to \infty$. However, based on the previous analysis, we can at least expect that the eigenelements of Γ are “too different” from those of Γ_0. This observation of the theoretical analysis, backed up with empirical evidence from the computation of the eigenelements of Γ in specific cases, leads us to conclude the following.

The matrix Γ has K eigenvalues close to one and $(N - K)$ eigenvalues close to zero, provided N is large enough, where K is given by the “time–bandwidth” product (5.3.12). The dominant eigenvectors corresponding to the K largest eigenvalues form a set of orthogonal impulse responses of K bandpass filters that approximately cover the baseband $[-\beta \pi, \beta \pi]$.

(5.3.15)

As we argue in the next subsections, in some situations (specified there) we may want to use the whole set of K Slepian baseband filters, not only the dominant Slepian filter in this set.

5.3.2 RFB Method for High–Resolution Spectral Analysis

Assume that the spectral analysis problem dealt with is one in which it is important to achieve the maximum resolution afforded by the approach at hand (such a problem appears, for instance, in the case of PSD’s with closely spaced peaks). Then we set

\[
\beta = 1/N \iff K = 1
\]

(5.3.16)

(Note that we cannot set β to a value less than $1/N$ since that choice would lead to $K < 1$, which is meaningless; the fact that we must choose $\beta \geq 1/N$ is one of the many facets of the $1/N$–resolution limit of the nonparametric spectral estimation.)

Since $K = 1$, we can only use the first Slepian sequence as a bandpass filter

\[
h = s_1
\]

(5.3.17)

The way in which the RFB scheme based on (5.3.17) works is described in the following.
Section 5.3 Refined Filter Bank Method

217

First, note from (5.3.5), (5.3.9) and (5.3.16) that

\[1 = h^*h = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 d\omega \approx \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} |H(\omega)|^2 d\omega \]

\[\approx \beta |H(0)|^2 = \frac{1}{N} |H(0)|^2 \] (5.3.18)

Hence, under the (idealizing) assumption that \(H(\omega) \) is different from zero only in the baseband where it takes a constant value, we have

\[|H(0)|^2 \approx N \] (5.3.19)

Next, consider the sample at the filter’s output obtained by the convolution of the whole input sequence \(\{\hat{y}(t)\}_{t=1}^{N} \) with the filter impulse response \(\{h_k\} \):

\[x \triangleq \sum_{k=0}^{N-1} h_k \hat{y}(N-k) = \sum_{t=1}^{N} h_{N-t} \hat{y}(t) \] (5.3.20)

The power of \(x \) should be approximately equal to the PSD value \(\phi(\bar{\omega}) \), which is confirmed by the following calculation:

\[E\{ |x|^2 \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\omega)|^2 \phi_\hat{y}(\omega) d\omega \]

\[\approx \frac{N}{2\pi} \int_{-\beta\pi}^{\beta\pi} \phi_\hat{y}(\omega) d\omega = \frac{N}{2\pi} \int_{-\beta\pi}^{\beta\pi} \phi_\hat{y}(\omega + \bar{\omega}) d\omega \]

\[\approx \frac{N}{2\pi} \phi_\hat{y}(\bar{\omega}) \times 2\pi \beta = N\beta \phi_\hat{y}(\bar{\omega}) = \phi_\hat{y}(\bar{\omega}) \] (5.3.21)

The second “equality” above follows from the properties of \(H(\omega) \) (see, also, (5.3.19)), the third from the complex demodulation formula (1.4.11), and the fourth from the assumption that \(\phi_\hat{y}(\omega) \) is nearly constant over the passband considered.

In view of (5.3.21), the PSD estimation problem reduces to estimating the power of the filtered signal. Since only one sample, \(x \), of that signal is available, the obvious estimate for the signal power is \(|x|^2 \). This leads to the following estimate of \(\phi(\omega) \):

\[\hat{\phi}(\omega) = \left| \sum_{t=1}^{N} h_{N-t} \hat{y}(t)e^{-j\omega t} \right|^2 \] (5.3.22)

where \(\{h_k\} \) is given by the first Slepian sequence (see (5.3.17)). The reason we did not divide (5.3.22) by the filter bandwidth is that \(|H(0)|^2 \approx N \) by (5.3.19), which differs from assumption (ii) in (5.1.5).

The spectral estimate (5.3.22) is recognized to be a windowed periodogram with temporal window \(\{h_{N-k}\} \). For large values of \(N \), it follows from the analysis in the previous section that \(h \) can be expected to be reasonably close to the vector \([1 \ldots 1]^T/\sqrt{N} \). When inserting the latter vector in (5.3.22), we get the unwindowed
periodogram. Hence, we reach the conclusion that for N large enough, the RFB estimate (5.3.22) will behave not too differently from the unmodified periodogram (which is quite natural in view of the fact that we wanted a high-resolution spectral estimator, and the basic periodogram is known to be such an estimator).

Remark: We warn the reader, once again, that the above discussion is heuristic. As explained before (see the discussion related to (5.3.15)), as N increases, each h_k may be expected to be “reasonably close” but not necessarily converge to $1/\sqrt{N}$. In addition, even if $\{h_k\}$ in (5.3.22) converges to $1/\sqrt{N}$ as $N \to \infty$, the function in (5.3.22) may not converge to $\hat{\phi}_p(\omega)$ if the convergence rate of $\{h_k\}$ is too slow (note that the number of $\{h_k\}$ in (5.3.22) is equal to N). Hence $\hat{\phi}(\omega)$ in (5.3.22) and the periodogram $\hat{\phi}_p(\omega)$ may differ from one another even for large values of N.

In any case, even though the two estimators $\hat{\phi}(\omega)$ in (5.3.22) and $\hat{\phi}_p(\omega)$ generally give different PSD values, they both base the power calculation stage of the FBA scheme on only a single sample. Hence, similarly to $\hat{\phi}_p(\omega)$, the RFB estimate (5.3.22) is expected to exhibit erratic fluctuations. The next subsection discusses a way in which the variance of the RFB spectral estimate can be reduced, at the expense of reducing the resolution of this estimate.

5.3.3 RFB Method for Statistically Stable Spectral Analysis

The FBA interpretation of the modified periodogram methods, as explained in Section 5.2, highlighted two approaches to reduce the statistical variability of the spectral estimate (5.3.22). The first approach consists of splitting the available sample $\{y(t)\}_{t=1}^N$ into a number of subsequences, computing (5.3.22) for each stretch, and then averaging the so-obtained values. The problem with this way of proceeding is that the values taken by (5.3.22) for different subsequences are not guaranteed to be statistically independent. In fact, if the subsequences overlap then those values may be strongly correlated. The consequence of this fact is that one can never be sure of the “exact” reduction of variance that is achieved by averaging, in a given situation.

The second approach to reduce the variance consists of using several bandpass filters, in lieu of only one, which operate on the whole data sample [THOMSON 1982]. This approach aims at producing statistically independent samples for the power calculation stage. When this is achieved the variance is reduced K times, where K is the number of samples averaged (which equals the number of bandpass filters used).

In the following, we focus on this second approach which appears particularly suitable for the RFB method. We set β to some value larger than $1/N$, which gives (cf. (5.3.12))

$$K = N/\beta > 1$$ \hspace{1cm} (5.3.23)

The larger β (i.e., the lower the resolution), the larger K and hence the larger the reduction in variance that can be achieved. By using the result (5.3.15), we define
Section 5.3 Refined Filter Bank Method 219

\[h_p = [h_{p,0} \ldots h_{p,N-1}]^* = s_p, \quad (p = 1, \ldots, K) \]

(5.3.24)

Here \(h_p \) denotes the impulse response vector of the \(p \)th filter, and \(s_p \) is the \(p \)th dominant Slepian sequence. Note that \(s_p \) is real-valued (see Result R12 in Appendix A), and thus so is \(h_p \). According to the discussion leading to (5.3.15), the set of filters (5.3.24) covers the baseband \([-\beta \pi, \beta \pi]\), with each of these filters passing (roughly speaking) \((1/K)\)th of this baseband. Let \(x_p \) be defined similarly to \(x \) in (5.3.20), but now for the \(p \)th filter:

\[x_p = \sum_{k=0}^{N-1} h_{p,k} \tilde{y}(N-k) = \sum_{t=1}^{N} h_{p,N-t} \tilde{y}(t) \]

(5.3.25)

The calculation (5.3.21) applies to \(\{x_p\} \) in exactly the same way, and hence

\[E \{ |x_p|^2 \} \simeq \phi_g(\tilde{\omega}), \quad p = 1, \ldots, K \]

(5.3.26)

In addition, a straightforward calculation gives

\[
E \{ x_p x_k^* \} = E \left\{ \left[\sum_{t=0}^{N-1} h_{p,t} \tilde{y}(N-t) \right] \left[\sum_{s=0}^{N-1} h_{k,s}^* \tilde{y}^*(N-s) \right] \right\} \\
= \sum_{t=0}^{N-1} \sum_{s=0}^{N-1} h_{p,t} h_{k,s}^* r(\tilde{\omega}) e^{i(s-t)\tilde{\omega}} d\omega \\
= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{t=0}^{N-1} \sum_{s=0}^{N-1} h_{p,t} h_{k,s}^* \phi_\tilde{y}(\omega) e^{i(s-t)\omega} d\omega \\
= \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} H_p(\omega) H_k^*(\omega) \phi_\tilde{y}(\omega) d\omega \\
\simeq \phi_g(0) h_p^* h_k \left[\frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} a(\omega) a^*(\omega) d\omega \right] h_k \\
= \phi_g(\tilde{\omega}) h_p^* \Gamma h_k = 0 \quad \text{for } k \neq p
\]

(5.3.27)

Thus, the random variables \(x_p \) and \(x_k \) (for \(p \neq k \)) are approximately uncorrelated under the assumptions made. This implies, at least under the assumption that the \(\{x_k\} \) are Gaussian, that \(|x_p|^2 \) and \(|x_k|^2 \) are statistically independent (for \(p \neq k \)).

According to the calculations above, \(\{|x_p|^2\}_{p=1}^{K} \) can approximately be considered to be independent random variables all with the same mean \(\phi_g(\tilde{\omega}) \). Then, we can estimate \(\phi_g(\tilde{\omega}) \) by the following average of \(\{|x_p|^2\} \):

\[
\hat{\phi}(\omega) = \frac{1}{K} \sum_{p=1}^{K} \left| \sum_{t=1}^{N} h_{p,N-t} \tilde{y}(t) e^{-i \omega t} \right|^2
\]

(5.3.28)
We may suspect that the random variables \(|x_p|^2\) have not only the same mean, but also the same variance (this can, in fact, be readily shown under the Gaussian hypothesis). Whenever this is true, the variance of the average in (5.3.28) is \(K\) times smaller than the variance of each of the variables averaged. The above findings are summarized in the following.

If the resolution threshold \(\beta\) is increased \(K\) times from \(\beta = 1/N\) (the lowest value) to \(\beta = K/N\), then the variance of the RFB estimate in (5.3.22) may be reduced by a factor \(K\) by constructing the spectral estimate as in (5.3.28), where the \(p\)th baseband filter’s impulse response \(\{h_{p,t}\}_{t=0}^{N-1}\) is given by the \(p\)th dominant Slepian sequence \((p = 1, \ldots, K)\).

The RFB spectral estimator (5.3.28) can be given two interpretations. First, arguments similar with those following equation (5.3.22) suggest that for large \(N\) the RFB estimate (5.3.28) behaves similarly to the Daniell method of periodogram averaging. For small or medium-sized values of \(N\), the RFB and Daniell methods behave differently. In such a case, we can relate (5.3.28) to the class of multiwindow spectral estimators [Thomson 1982]. Indeed, the RFB estimate (5.3.28) can be interpreted as the average of \(K\) windowed periodograms, where the \(p\)th periodogram is computed from the raw data sequence \(y(t)\) windowed with the \(p\)th dominant Slepian sequence. Note that since the Slepian sequences are given by the eigenvectors of the real Toeplitz matrix \(\Gamma\), they must be either symmetric: \(h_{p,N-t} = h_{p,t-1}\); or skew-symmetric: \(h_{p,N-t} = -h_{p,t-1}\) (see Result R25 in Appendix A). This means that (5.3.28) can alternatively be written as

\[
\hat{\phi}(\omega) = \frac{1}{K} \sum_{p=1}^{K} \left| \sum_{t=1}^{N} h_{p,t-1} y(t) e^{-i\omega t} \right|^2
\]

This form of the RFB estimate makes its interpretation as a multiwindow spectrum estimator more direct.

For a second interpretation of the RFB estimate (5.3.28), consider the follow-
Section 5.3 Refined Filter Bank Method

ing (Daniell-type) spectrally smoothed periodogram estimator of $\hat{\phi}(\omega)$:

$$
\hat{\phi}(\omega) = \frac{1}{2\pi\beta} \int_{\omega-\beta \pi}^{\omega+\beta \pi} \hat{\phi}_p(\omega) d\omega = \frac{1}{2\pi\beta} \int_{-\beta \pi}^{\beta \pi} \hat{\phi}_p(\omega + \hat{\omega}) d\omega
$$

$$
= \frac{1}{2\pi\beta} \int_{-\beta \pi}^{\beta \pi} \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i(\omega + \hat{\omega})t} \right|^2 d\omega
$$

$$
= \frac{1}{2\pi K} \int_{-\beta \pi}^{\beta \pi} \sum_{t=1}^{N} \sum_{s=1}^{N} \hat{y}(t)\hat{y}^*(s)e^{-i\omega t}e^{i\omega s} d\omega
$$

$$
= \frac{1}{K} [\hat{y}^*(1) \ldots \hat{y}^*(N)]
\begin{bmatrix}
\frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} e^{i\omega s} ds
\vdots
\frac{1}{2\pi} \int_{-\beta \pi}^{\beta \pi} e^{i(N-1)\omega} d\omega
\end{bmatrix}
\begin{bmatrix}
\hat{y}(1) \\
\vdots \\
\hat{y}(N)
\end{bmatrix}
$$

$$
= \frac{1}{K} [\hat{y}^*(1) \ldots \hat{y}^*(N)] \Gamma
\begin{bmatrix}
\hat{y}(1) \\
\vdots \\
\hat{y}(N)
\end{bmatrix}
$$

(5.3.31)

where we made use of the fact that Γ is real-valued. It follows from the result (5.3.15) that Γ can be approximated by the rank-K matrix:

$$
\Gamma \approx \sum_{p=1}^{K} s_p^s h_p^T = \sum_{p=1}^{K} h_p h_p^T
$$

(5.3.32)

Inserting (5.3.32) into (5.3.31) and using the fact that the Slepian sequences $s_p = h_p$ are real-valued leads to the following PSD estimator:

$$
\hat{\phi}(\omega) \approx \frac{1}{K} \sum_{p=1}^{K} \sum_{t=1}^{N} h_p h_p^T \hat{y}(t)
$$

(5.3.33)

which is precisely the RFB estimator (5.3.30). Hence, the RFB estimate of the PSD can also be interpreted as a reduced-rank smoothed periodogram.

We might think of using the full-rank smoothed periodogram (5.3.31) as an estimator for PSD, in lieu of the reduced-rank smoothed periodogram (5.3.33) which coincides with the RFB estimate. However, from a theoretical standpoint we have no strong reason to do so. Moreover, from a practical standpoint we have clear reasons against such an idea. We can explain this briefly as follows. The K dominant eigenvectors of Γ can be precomputed with satisfactory numerical accuracy. Then, evaluation of (5.3.33) can be done by using an FFT algorithm in approximately $\frac{1}{2}KN\log_2 N = \frac{1}{2}\beta N^2 \log_2 N$ flops. On the other hand, a direct evaluation of (5.3.31) would require N^2 flops for each value of ω, which leads to a prohibitively large total computational burden. A computationally efficient evaluation of (5.3.31) would require some factorization of Γ to be performed, such as the
Chapter 5 Filter Bank Methods

The eigendecomposition of Γ. However, Γ is an extremely ill-conditioned matrix (recall that $N - K = N(1 - \beta)$ of its eigenvalues are close to zero), which means that such a complete factorization cannot easily be performed with satisfactory numerical accuracy. In any case even if we were able to precompute the eigendecomposition of Γ, evaluation of (5.3.31) would require $\frac{1}{2}N^2 \log_2 N$ flops, which is still larger by a factor of $1/\beta$ than what is required for (5.3.33).

5.4 CAPON METHOD

The periodogram was previously shown to be a filter bank approach which uses a bandpass filter whose impulse response vector is given by the standard Fourier transform vector (i.e., $[1, e^{-i\omega}, \ldots, e^{-i(N-1)/2}]^T$). In the periodogram approach there is no attempt to purposely design the bandpass filter to achieve some desired characteristics (see, however, Section 5.5). The RFB method, on the other hand, uses a bandpass filter specifically designed to be "as selective as possible" for a white noise input (see (5.3.5) and the discussion preceding it). The RFB's filter is still data independent in the sense that it does not adapt to the processed data in any way. Presumably, it might be valuable to take the data properties into consideration when designing the bandpass filter. In other words, the filter should be designed to be "as selective as possible" (according to a criterion to be specified) not for a fictitious white noise input, but for the input consisting of the studied data themselves. This is the basic idea behind the Capon method, which is an FBA procedure based on a data-dependent bandpass filter [Capon 1969; Lacoss 1971].

5.4.1 Derivation of the Capon Method

The Capon method (CM), in contrast to the RFB estimator (5.3.28), uses only one bandpass filter for computing one estimated spectrum value. This suggests that if the CM is to provide statistically stable spectral estimates, then it should make use of the other approach which affords this: splitting the raw sample into subsequences and averaging the results obtained from each subsequence. Indeed, as we shall see the Capon method is essentially based on this second approach.

Consider a filter with a finite impulse response of length m, denoted by

$$h = [h_0 \ h_1 \ldots h_m]^*$$

(5.4.1)

where m is a positive integer that is unspecified for the moment. The output of the filter at time t, when the input is the raw data sequence $\{y(t)\}$, is given by

$$y_F(t) = \sum_{k=0}^{m} h_k y(t - k)$$

$$= h^* \begin{bmatrix} y(t) \\ y(t - 1) \\ \vdots \\ y(t - m) \end{bmatrix}$$

(5.4.2)

Let R denote the covariance matrix of the data vector in (5.4.2). Then the power
of the filter output can be written as:

$$E \{ |y_F(t)|^2 \} = h^* R h$$

(5.4.3)

where, according to the definition above,

$$R = E \left\{ \begin{bmatrix} y(t) \\ \vdots \\ y(t-m) \end{bmatrix} [g^*(t) \ldots g^*(t-m)] \right\}$$

(5.4.4)

The response of the filter (5.4.2) to a sinusoidal component of frequency \(\omega \) (say) is determined by the filter’s frequency response:

$$H(\omega) = \sum_{k=0}^{m} h_k e^{-i\omega k} = h^* a(\omega)$$

(5.4.5)

where

$$a(\omega) = [1 \ e^{-i\omega} \ldots e^{-im\omega}]^T$$

(5.4.6)

If we want to make the filter as selective as possible for a frequency band around the current value \(\omega \), then we may think of minimizing the total power in (5.4.3) subject to the constraint that the filter passes the frequency \(\omega \) undistorted. This idea leads to the following optimization problem:

$$\min_{h} h^* R h \quad \text{subject to} \quad h^* a(\omega) = 1$$

(5.4.7)

The solution to (5.4.7) is given in Result R35 in Appendix A:

$$h = R^{-1} a(\omega)/a^*(\omega)R^{-1} a(\omega)$$

(5.4.8)

Inserting (5.4.8) into (5.4.3) gives

$$E \{ |y_F(t)|^2 \} = 1/a^* (\omega) R^{-1} a(\omega)$$

(5.4.9)

This is the power of \(y(t) \) in a passband centered on \(\omega \). Then, assuming that the (idealized) conditions (i) and (ii) in (5.1.5) hold, we can approximately determine the value of the PSD of \(y(t) \) at the passband’s center frequency as

$$\phi(\omega) \simeq \frac{E \{ |y_F(t)|^2 \}}{\beta} = \frac{1}{\beta a^* (\omega) R^{-1} a(\omega)}$$

(5.4.10)

where \(\beta \) denotes the frequency bandwidth of the filter given by (5.4.8). The division by \(\beta \), as above, is sometimes omitted in the literature, but it is required to complete the FBA scheme in Figure 5.1. Note that since the bandpass filter (5.4.8) is data dependent, its bandwidth \(\beta \) is not necessarily data independent, nor is it necessarily frequency independent. Hence, the division by \(\beta \) in (5.4.10) may not represent a
simple scaling of $E \{ |y_F(t)|^2 \}$, but it may change the shape of this quantity as a function of ω.

There are various possibilities for determining the bandwidth β, depending on the degree of precision we are aiming for. The simplest possibility is to set

$$\beta = 1/(m + 1) \quad (5.4.11)$$

This choice is motivated by the time–bandwidth product result (2.6.5), which says that for a filter whose temporal aperture is equal to $(m + 1)$, the bandwidth should roughly be given by $1/(m + 1)$. By inserting (5.4.11) in (5.4.10), we obtain

$$\phi(\omega) \simeq \frac{(m + 1)}{a^*(\omega) R^{-1}a(\omega)} \quad (5.4.12)$$

Note that if $y(t)$ is white noise of variance σ^2, (5.4.12) takes the correct value: $\phi(\omega) = \sigma^2$. In the general case, however, (5.4.11) gives only a rough indication of the filter’s bandwidth, as the time–bandwidth product result does not apply exactly to the present situation (see the conditions under which (2.6.5) has been derived).

An often more exact expression for β can be obtained as follows [Lagunas, Santamaria, Gasull, and Moreno 1986]. The (equivalent) bandwidth of a bandpass filter can be defined as the support of the rectangle centered on ω (the filter’s center frequency) that concentrates the whole energy in the filter’s frequency response. According to this definition, β can be assumed to satisfy:

$$\int_{-\pi}^{\pi} |H(\psi)|^2 d\psi = |H(\omega)|^2 2\pi \beta \quad (5.4.13)$$

Since in the present case $H(\omega) = 1$ (see (5.4.7)), we obtain from (5.4.13):

$$\beta = \frac{1}{2\pi} \int_{-\pi}^{\pi} |h^* a(\psi)|^2 d\psi = h^* \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} a(\psi) a^*(\psi) d\psi \right] h \quad (5.4.14)$$

The (k,p) element of the central matrix in the above quadratic form is given by

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-i\psi(k-p)} d\psi = \delta_{k,p} \quad (5.4.15)$$

With this observation and (5.4.8), (5.4.14) leads to

$$\beta = h^* h = \frac{a^*(\omega) R^{-2} a(\omega)}{[a^*(\omega) R^{-1} a(\omega)]^2} \quad (5.4.16)$$

Note that this expression of the bandwidth is both data and frequency dependent (as was alluded to previously). Inserting (5.4.16) in (5.4.10) gives

$$\phi(\omega) \simeq \frac{a^*(\omega) R^{-1} a(\omega)}{a^*(\omega) R^{-2} a(\omega)} \quad (5.4.17)$$

Remark: The expression for β in (5.4.16) is based on the assumption that most of the area under the curve of $|H(\psi)|^2 = |h^* a(\psi)|^2$ (for $\psi \in [-\pi, \pi]$) is located...
around the center frequency ω. This assumption is often true, but not always true. For instance, consider a data sequence $\{y(t)\}$ consisting of a number of sinusoidal components with frequencies $\{\omega_k\}$ in noise with small power. Then the Capon filter (5.4.8) with center frequency ω will likely place nulls at $\{\psi = \omega_k\}$ to annihilate the strong sinusoidal components in the data, but will pay little attention to the weak noise component. The consequence is that $|H(\psi)|^2$ will be nearly zero at $\{\psi = \omega_k\}$, and one at $\psi = \omega$ (by (5.4.7)), but may take rather large values at other frequencies (see, for example, the numerical examples in [Li AND STOICA 1996a], which demonstrate this behavior of the Capon filter). In such a case, the formula (5.4.16) may significantly overestimate the “true” bandwidth, and hence the spectral formula (5.4.17) may significantly underestimate the PSD $\phi(\omega)$.

In the derivations above, the true data covariance matrix R has been assumed available. In order to turn the previous PSD formulas into practical spectral estimation algorithms, we must replace R in these formulas by a sample estimate, for instance by

$$\hat{R} = \frac{1}{N-m} \sum_{t=m+1}^{N} \begin{bmatrix} y(t) \\ \vdots \\ y(t-m) \end{bmatrix} \begin{bmatrix} y^*(t) & \ldots & y^*(t-m) \end{bmatrix}$$

(5.4.18)

Doing so, we obtain the following two spectral estimators corresponding to (5.4.12) and (5.4.17), respectively:

CM–Version 1:

$$\hat{\phi}(\omega) = \frac{m + 1}{a^*(\omega) \hat{R}^{-1} a(\omega)}$$

(5.4.19)

CM–Version 2:

$$\hat{\phi}(\omega) = \frac{a^*(\omega) \hat{R}^{-1} a(\omega)}{a^*(\omega) \hat{R}^{-2} a(\omega)}$$

(5.4.20)

There is an implicit assumption in both (5.4.19) and (5.4.20) that \hat{R}^{-1} exists. This assumption sets a limit on the maximum value that can be chosen for m:

$$m < N/2$$

(5.4.21)

(Observe that $\text{rank}(\hat{R}) \leq N - m$, which is less than $\text{dim}(\hat{R}) = m + 1$ if (5.4.21) is violated.) The inequality (5.4.21) is important since it sets a limit on the resolution achievable by the Capon method. Indeed, since the Capon method is based on a bandpass filter with impulse response’s aperture equal to m, we may expect its resolution threshold to be on the order of $1/m > 2/N$ (with the inequality following from (5.4.21)).

As m is decreased, we can expect the resolution of Capon method to become worse (cf. the previous discussion). On the other hand, the accuracy with which \hat{R} is determined increases with decreasing m (since more outer products are averaged.
The main consequence of the increased accuracy of \hat{R} is to statistically stabilize the spectral estimate (5.4.19) or (5.4.20). Hence, the choice of m should be done with the ubiquitous tradeoff between resolution and statistical accuracy in mind. It is interesting to note that for the Capon method both the filter design and power calculation stages are data dependent. The accuracy of both these stages may worsen if m is chosen too large. In applications, the maximum value that can be chosen for m might also be limited from considerations of computational complexity.

Empirical studies have shown that the ability of the Capon method to resolve fine details of a PSD, such as closely spaced peaks, is superior to the corresponding performance of the periodogram–based methods. This superiority may be attributed to the higher statistical stability of Capon method, as explained next. For m smaller than $N/2$ (see (5.4.21)), we may expect the Capon method to possess worse resolution but better statistical accuracy compared with the unwindowed or “mildly windowed” periodogram method. It should be stressed that the notion of “resolution” refers to the ability of the theoretically averaged spectral estimate $E\{\hat{\phi}(\omega)\}$ to resolve fine details in the true PSD $\phi(\omega)$. This resolution is roughly inversely proportional to the window’s length or the bandpass filter impulse response’s aperture. The “resolving power” corresponding to the estimate $\hat{\phi}(\omega)$ is more difficult to quantify, but — of course — it is what interests the most. It should be clear that the resolving power of $\hat{\phi}(\omega)$ depends not only on the bias of this estimate (i.e., on $E\{\hat{\phi}(\omega)\}$), but also on its variance. A spectral estimator with low bias–based resolution but high statistical accuracy may be better able to resolve finer details in a studied PSD than can a high resolution/low accuracy estimator. Since the periodogram may achieve better bias–based resolution than the Capon method, the higher (empirically observed) “resolving power” of the latter should be due to a better statistical accuracy (i.e., a lower variance).

In the context of the previous discussion, it is interesting to note that the Blackman–Tukey periodogram with a Bartlett window of length $2m + 1$, which is given by (see (2.5.1)):

$$\hat{\phi}_{BT}(\omega) = \sum_{k=-m}^{m} \frac{(m + 1 - |k|)}{m + 1} \hat{r}(k)e^{-i\omega k}$$

can be written in a form that bears some resemblance with the form (5.4.19) of the CM–Version 1 estimator. A straightforward calculation gives

$$\hat{\phi}_{BT}(\omega) = \sum_{t=0}^{m} \sum_{s=0}^{m} \hat{r}(t-s)e^{-i\omega(t-s)}/(m + 1)$$

$$= \frac{1}{m + 1} a^*(\omega)\hat{R}a(\omega)$$

where $a(\omega)$ is as defined in (5.4.6), and \hat{R} is the Hermitian Toeplitz sample covari-
 ance matrix

\[
\hat{R} = \begin{bmatrix}
\hat{r}(0) & \hat{r}(1) & \cdots & \hat{r}(m) \\
\hat{r}^*(1) & \hat{r}(0) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \hat{r}(1) \\
\hat{r}^*(m) & \cdots & \hat{r}^*(1) & \hat{r}(0)
\end{bmatrix}
\]

Comparing the above expression for \(\hat{\phi}_{BT}(\omega)\) with (5.4.19), it is seen that the CM–Version 1 can be obtained from Blackman–Tukey estimator by replacing \(\hat{R}\) in the Blackman–Tukey estimator with \(\hat{R}^{-1}\), and then inverting the so–obtained quadratic form. Below we provide a brief explanation as to why this replacement and inversion make sense. That is, if we ignore for a moment the technically sound filter bank derivation of the Capon method, then why should the above way of obtaining CM–Version 1 from the Blackman–Tukey method provide a reasonable spectral estimator? We begin by noting that (cf. Section 1.3.2):

\[
\lim_{m \to \infty} E \left\{ \frac{1}{m+1} \left| \sum_{t=0}^{m} y(t)e^{-j\omega t} \right|^2 \right\} = \phi(\omega)
\]

However, a simple calculation shows that

\[
E \left\{ \frac{1}{m+1} \left| \sum_{t=0}^{m} y(t)e^{-j\omega t} \right|^2 \right\} = \frac{1}{m+1} \frac{1}{m+1} \sum_{t=0}^{m} \sum_{s=0}^{m} r(t-s)e^{-j\omega t}e^{j\omega s} = \frac{1}{m+1} a^*(\omega)Ra(\omega)
\]

Hence,

\[
\lim_{m \to \infty} \frac{1}{m+1} a^*(\omega)Ra(\omega) = \phi(\omega) \quad (5.4.24)
\]

Similarly, one can show that

\[
\lim_{m \to \infty} \frac{1}{m+1} a^*(\omega)R^{-1}a(\omega) = \phi^{-1}(\omega) \quad (5.4.25)
\]

(see, e.g., [HANNAN AND WAHLBERG 1989]). Comparing (5.4.24) with (5.4.25) provides the explanation we were looking for. Observe that the CM–Version 1 estimator is a finite–sample approximation to equation (5.4.25), whereas the Blackman–Tukey estimator is a finite–sample approximation to equation (5.4.24).

The Capon method has also been compared with the AR method of spectral estimation (see Section 3.2). It has been empirically observed that the CM–Version 1 possesses less variance but worse resolution than the AR spectral estimator. This may be explained by making use of the relationship that exists between the CM–Version 1 and AR spectral estimators; see the next subsection (and also [BURG 1972]). The CM–Version 2 spectral estimator is less well studied and hence its properties are not so well understood. In the following subsection, we also relate the CM–Version 2 to the AR spectral estimator. In the case of CM–Version 2, the relationship is more involved, hence leaving less room for intuitive explanations.
5.4.2 Relationship between Capon and AR Methods

The AR method of spectral estimation has been described in Chapter 3. In the following we consider the covariance matrix estimate in (5.4.18). The AR method corresponding to this sample covariance matrix is the LS method discussed in Section 3.4.2. Let us denote the matrix \hat{R} in (5.4.18) by \hat{R}_{m+1} and its principal lower-right $k \times k$ block by \hat{R}_k ($k = 1, \ldots, m + 1$), as shown below:

$$
\hat{R} =
\begin{bmatrix}
\hat{R}_{m+1} & m + 1 \\
\hat{R}_k & k \\
m + 1 & 1 \\
k & 1
\end{bmatrix}
$$

(5.4.26)

With this notation, the coefficient vector θ_k and the residual power σ_k^2 of the kth-order AR model fitted to the data $\{y(t)\}$ are obtained as the solutions to the following matrix equation (refer to (3.4.6)):

$$
\hat{R}_{k+1} \begin{bmatrix} 1 \\ \hat{\theta}_k^c \end{bmatrix} = \begin{bmatrix} \sigma_k^2 \\ 0 \end{bmatrix}
$$

(5.4.27)

(the complex conjugate in (5.4.27) appears owing to the fact that \hat{R}_k above is equal to the complex conjugate of the sample covariance matrix used in Chapter 3). The nested structure of (5.4.26) along with the defining equation (5.4.27) imply:

$$
\hat{R}_{m+1} \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & \vdots & \cdots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 1 \\
\hat{\theta}_m^c & \hat{\theta}_{m-1}^c & \hat{\theta}_1^c & 1
\end{bmatrix} = \begin{bmatrix} \sigma_m^2 & x & \cdots & x \\ 0 & \sigma_{m-1}^2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & x \\ 0 & \cdots & 0 & \sigma_0^2
\end{bmatrix}
$$

(5.4.28)
Section 5.4 Capon Method

where “x” stands for undetermined elements. Let

\[
\mathbf{H} = \begin{bmatrix}
1 & 0 & \ldots & 0 & 0 \\
1 & & & & \\
\vdots & & & & \\
\vdots & & & & \\
\hat{\theta}_m^c & \hat{\theta}_{m-1}^c & \cdots & 1
\end{bmatrix}
\]

(5.4.29)

It follows from (5.4.28) that

\[
\mathbf{H}^* \mathbf{R}_{m+1} \mathbf{H} = \begin{bmatrix}
\hat{\sigma}_m^2 & x & \ldots & x \\
\hat{\sigma}_{m-1}^2 & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots & x \\
\hat{\sigma}_0^2
\end{bmatrix}
\]

(5.4.30)

(\text{where, once more, } x \text{ denotes undetermined elements). Since } \mathbf{H}^* \mathbf{R}_{m+1} \mathbf{H} \text{ is a Hermitian matrix, the elements designated by “x” in (5.4.30) must be equal to zero. Hence, we have proven the following result which is essential in establishing a relation between the AR and Capon methods of spectral estimation (this result extends the one in Exercise 3.7 to the non-Toeplitz covariance case).}

The parameters \(\{\hat{\theta}_k, \hat{\sigma}_k^2\}\) of the AR models of orders \(k = 1, 2, \ldots, m\) determine the following factorization of the inverse (sample) covariance matrix:

\[
\mathbf{R}_{m+1}^{-1} = \mathbf{H} \hat{\Sigma}^{-1} \mathbf{H}^* ; \quad \hat{\Sigma} = \begin{bmatrix}
\hat{\sigma}_m^2 & 0 \\
\hat{\sigma}_{m-1}^2 & \ddots \\
0 & \ddots & \ddots \\
\hat{\sigma}_0^2
\end{bmatrix}
\]

(5.4.31)

Let

\[
\hat{A}_k(\omega) = [1 \quad e^{-i\omega} \ldots e^{-ik\omega}] \begin{bmatrix}
1 \\
\hat{\theta}_k
\end{bmatrix}
\]

(5.4.32)

denote the polynomial corresponding to the \(k\)th–order AR model, and let

\[
\hat{\phi}_k^{\text{AR}}(\omega) = \frac{\hat{\sigma}_k^2}{|\hat{A}_k(\omega)|^2}
\]

(5.4.33)

denote its associated PSD (see Chapter 3). It is readily verified that

\[
a^*(\omega) \mathbf{H} = [1 \quad e^{i\omega} \ldots e^{im\omega}] \\
\begin{bmatrix}
1 & 0 & \ldots & 0 & 0 \\
1 & & & & \\
\vdots & & & & \\
\hat{\theta}_m^c & \hat{\theta}_{m-1}^c & \cdots & 1
\end{bmatrix}
\]

\[
= [\hat{A}_m^*(\omega), e^{i\omega} \hat{A}_{m-1}^*(\omega), \ldots, e^{im\omega} \hat{A}_0^*(\omega)]
\]

(5.4.34)
It follows from (5.4.31) and (5.4.34) that the quadratic form in the denominator of the CM–Version 1 spectral estimator can be written as

\[a^*(\omega) R^{-1} a(\omega) = a^*(\omega) \hat{H} \Sigma^{-1} \hat{H}^* a(\omega) = \sum_{k=0}^{m} |\hat{A}_k(\omega)|^2 / \hat{\sigma}_k^2 = \sum_{k=0}^{m} 1 / \hat{\phi}_k^{AR}(\omega) \]

(5.4.35)

which leads at once to the following result:

\[\hat{\phi}_{CM-1}(\omega) = \frac{1}{m+1} \sum_{k=0}^{m} 1 / \hat{\phi}_k^{AR}(\omega) \]

(5.4.36)

This is the desired relation between the CM–Version 1 and the AR spectral estimates. This relation says that the inverse of the CM–Version 1 spectral estimator can be obtained by averaging the inverse estimated AR spectra of orders from 0 to \(m \). In view of the averaging operation in (5.4.36), it is not difficult to understand why the CM–Version 1 possesses less statistical variability than the AR estimator. Moreover, the fact that the CM–Version 1 has also been found to have worse resolution and bias properties than the AR spectral estimate should be due to the presence of low-order AR models in (5.4.36).

Next, consider the CM–Version 2. The previous analysis of CM–Version 1 already provides a relation between the numerator in the spectral estimate corresponding to CM–Version 2, (5.4.20), and the AR spectra. In order to obtain a similar expression for the denominator in (5.4.20), some preparations are required. The (sample) covariance matrix \(\hat{R} \) can be used to define \(m+1 \) AR models of order \(m \), depending on which coefficient of the AR equation

\[\hat{a}_0 y(t) + \hat{a}_1 y(t-1) + \ldots + \hat{a}_m y(t-m) = \text{residuals} \]

(5.4.37)

we choose to set to one. The AR model \(\{\hat{\theta}_m, \hat{\sigma}_m^2\} \) used in the previous analysis corresponds to setting \(\hat{a}_0 = 1 \) in (5.4.37). However, in principle, any other AR coefficient in (5.4.37) may be normalized to one. The \(m \)th–order LS AR model obtained by setting \(\hat{a}_k = 1 \) in (5.4.37) is denoted by \(\{\hat{\mu}_k = \text{coefficient vector and } \hat{\gamma}_k = \text{residual variance}\} \), and is given by the solution to the following linear system of equations (compare with (5.4.27)):

\[\hat{R}_{m+1} \hat{\mu}_k = \hat{\gamma}_k \]

(5.4.38)

where the \((k+1) \)st component of \(\hat{\mu}_k \) is equal to one \((k = 0, \ldots, m) \), and where \(u_k \) stands for the \((k+1) \)st column of the \((m+1) \times (m+1) \) identity matrix:

\[u_k = \begin{bmatrix} 0 \ldots 0 \\ 1 \\ 0 \ldots 0 \end{bmatrix}^T \]

(5.4.39)

Evidently, \([1 \hat{\theta}_m]^T \hat{\mu}_0 \) and \(\hat{\sigma}_m^2 = \hat{\gamma}_0 \).
Section 5.5 Filter Bank Reinterpretation of the Periodogram

Similarly to (5.4.32) and (5.4.33), the (estimated) PSD corresponding to the kth mth-order AR model given by (5.4.38) is obtained as

$$\hat{\phi}^\text{AR}(m)(\omega) = \frac{\hat{\gamma}_k}{|\hat{a}^*(\omega)\hat{\mu}_k|^2}$$

(5.4.40)

It is shown in the following calculation that the denominator in (5.4.20) can be expressed as a (weighted) average of the AR spectra in (5.4.40):

$$\sum_{k=0}^{m} \frac{1}{\hat{\gamma}_k \hat{\phi}_k}(\omega) = \sum_{k=0}^{m} \frac{|\hat{a}^*(\omega)\hat{\mu}_k|^2}{\hat{\gamma}_k} = a^*(\omega) \left[\sum_{k=0}^{m} \hat{\mu}_k \hat{\mu}_k^T \right] a(\omega)$$

$$= a^*(\omega) \hat{R}^{-1} \left[\sum_{k=0}^{m} u_k u_k^T \right] \hat{R}^{-1} a(\omega) = a^*(\omega) \hat{R}^{-1} a(\omega)$$

(5.4.41)

Combining (5.4.35) and (5.4.41) gives

$$\hat{\phi}_\text{CM–2}(\omega) = \frac{\sum_{k=0}^{m} 1/\hat{\phi}_k(\omega)}{\sum_{k=0}^{m} 1/\hat{\gamma}_k \hat{\phi}_k(\omega)}$$

(5.4.42)

The above relation appears to be more involved, and hence more difficult to interpret, than the similar relation (5.4.36) corresponding to CM–Version 1. Nevertheless, since (5.4.42) is still obtained by averaging various AR spectra, we may expect that the CM–Version 2 estimator, like the CM–Version 1 estimator, is more statistically stable but has poorer resolution than the AR spectral estimator.

5.5 FILTER BANK REINTERPRETATION OF THE PERIODOGRAM

As we saw in Section 5.2, the basic periodogram spectral estimator can be interpreted as an FBA method with a preimposed bandpass filter (whose impulse response is equal to the Fourier transform vector). In contrast, RFB and Capon are FBA methods based on designed bandpass filters. The filter used in the RFB method is data independent, whereas it is a function of the data covariances in the Capon method. The use of a data-dependent bandpass filter, such as in the Capon method, is intuitively appealing but it also leads to the following drawback: since we need to consistently estimate the filter impulse response, the temporal aperture of the filter should be chosen (much) smaller than the sample length, which sets a rather hard limit on the achievable spectral resolution. In addition, it appears that any other filter design methodology, except the one originally suggested by Capon, will most likely lead to a problem (such as an eigenanalysis) that should be solved for each value of the center frequency; which — of course — would be a rather prohibitive computational task. With these difficulties of the data-dependent design in mind, we may content ourselves with a “well-designed” data-independent filter. The purpose of this section is to show that the basic periodogram and the Daniell method can be interpreted as FBA methods based on well-designed data-independent filters, similar to the RFB method. As we will see, the bandpass filters
used by the aforementioned periodogram methods are obtained by combining the design procedures employed in the RFB and Capon methods.

The following result is required (see R35 in Appendix A for a proof). Let R, H, A and C be matrices of dimensions $(m \times m)$, $(m \times K)$, $(m \times n)$ and $(K \times n)$, respectively. Assume that R is positive definite and A has full column rank equal to n (hence, $m \geq n$). Then the solution to the following quadratic optimization problem with linear constraints:

$$\min_H (H^*RH) \quad \text{subject to} \quad H^*A = C$$

is given by

$$H = R^{-1}A(A^*R^{-1}A)^{-1}C^* \quad (5.5.1)$$

We can now proceed to derive our “new” FBA-based spectral estimation method (as we will see below, it turns out that this method is not really new!). We would like this method to possess a facility for compromising between the bias and variance of the estimated PSD. As explained in the previous sections of this chapter, there are two main ways of doing this within the FBA: we either (i) use a bandpass filter with temporal aperture less than N, obtain the allowed number of samples of the filtered signal and then calculate the power from these samples; or (ii) use a set of K bandpass filters with length-N impulse responses, that cover a band centered on the current frequency value, obtain one sample of the filtered signals for each filter in the set and calculate the power by averaging these K samples. As argued in Section 5.3, approach (ii) may be more effective than (i) in reducing the variance of the estimated PSD, while keeping the bias low. In the sequel, we follow approach (ii).

Let $\beta \geq 1/N$ be the prespecified (desired) resolution and let K be defined by equation (5.3.12): $K = \beta N$. According to the time–bandwidth product result, a bandpass filter with a length-N impulse response may be expected to have a bandwidth on the order of $1/N$ (but not less). Hence, we can cover the preimposed passband

$$[\tilde{\omega} - \beta \pi, \tilde{\omega} + \beta \pi] \quad (5.5.2)$$

(here $\tilde{\omega}$ stands for the current frequency value) by using $2\pi \beta/(2\pi/N) = K$ filters, which pass essentially nonoverlapping $1/N$–length frequency bands in the interval (5.5.2). The requirement that the filters’ passbands are (nearly) nonoverlapping is a key condition for variance reduction. In order to see this, let x_p denote the sample obtained at the output of the pth filter:

$$x_p = \sum_{k=0}^{N-1} h_{p,k} y(N-k) = \sum_{t=1}^{N} h_{p,N-t} y(t) \quad (5.5.3)$$

Here $\{h_{p,k}\}_{k=0}^{N-1}$ is the pth filter’s impulse response. The associated frequency response is denoted by $H_p(\omega)$. Note that in the present case we consider bandpass filters operating on the raw data, in lieu of baseband filters operating on demodulated data (as in RFB). Assume that the center–frequency gain of each filter is normalized so that

$$H_p(\tilde{\omega}) = 1, \quad p = 1, \ldots, K \quad (5.5.4)$$
Then, we can write

\[E \{ |x_p|^2 \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |H_p(\omega)|^2 \phi(\omega) d\omega \]

\[\simeq \frac{1}{2\pi} \int_{-\pi/2}^{\pi/2} \phi(\omega) d\omega \simeq \frac{2\pi}{2\pi} \phi(\hat{\omega}) = \frac{1}{N} \phi(\hat{\omega}) \quad (5.5.5) \]

The second “equality” in (5.5.5) follows from (5.5.4) and the assumed bandpass characteristics of \(H_p(\omega) \), and the third equality results from the assumption that \(\phi(\omega) \) is approximately constant over the passband. (Note that the angular frequency passband of \(H_p(\omega) \) is \(2\pi/N \), as explained before.) In view of (5.5.5), we can estimate \(\phi(\hat{\omega}) \) by averaging over the squared magnitudes of the filtered samples \(\{x_p\}_{p=1}^{K} \). By doing so, we may achieve a reduction in variance by a factor \(K \), provided \(\{x_p\}_{p=1}^{K} \) are statistically independent (see Section 5.3 for details). Under the assumption that the filters \(\{H_p(\omega)\} \) pass essentially nonoverlapping frequency bands, we readily get (compare (5.3.27)):

\[E \{ x_p x_k^* \} = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_p(\omega) H_k^*(\omega) \phi(\omega) d\omega \geq 0 \quad (5.5.6) \]

which implies that the random variables \(\{ |x_p|^2 \} \) are independent at least under the Gaussian hypothesis. Without the previous assumption on \(\{H_p(\omega)\} \), the filtered samples \(\{x_p\} \) may be strongly correlated and, therefore, a reduction in variance by a factor \(K \) cannot be guaranteed.

The conclusion from the previous (more or less heuristic) discussion is summarized in the following.

If the passbands of the filters used to cover the prespecified interval (5.5.2) do not overlap, then by using all filters’ output samples — as contrasted to using the output sample of only one filter — we achieve a reduction in the variance of the estimated PSD by a factor equal to the number of filters. The maximum number of such filters that can be found is given by \(K = \beta N \). \((5.5.7) \)

By using the insights provided by the above discussion, as summarized in (5.5.7), we can now approach the bandpass filters design problem. We sample the frequency axis as in the FFT (as almost any practical implementation of a spectral estimation method does):

\[\hat{\omega}_s = \frac{2\pi}{N} s \quad s = 0, \ldots, N - 1 \quad (5.5.8) \]

The frequency samples that fall within the passband (5.5.2) are readily seen to be the following:

\[\frac{2\pi}{N} (s + p) \quad p = -K/2, \ldots, 0, \ldots, K/2 - 1 \quad (5.5.9) \]

(to simplify the discussion we assume that \(K \) is an even integer). Let

\[H = [h_1 \ldots h_K] \quad (N \times K) \quad (5.5.10) \]
Chapter 5 Filter Bank Methods

denote the matrix whose pth column is equal to the impulse response vector corresponding to the pth bandpass filter. We assume that the input to the filters is white noise (as in RFB) and design the filters so as to minimize the output power under the constraint that each filter passes undistorted one (and only one) of the frequencies in (5.5.9) (as in Capon). These design objectives lead to the following optimization problem:

$$\min_H (H^* H) \text{ subject to } H^* A = I$$

(5.5.11)

where $A = \left[a \left(\frac{2\pi}{N} (s - \frac{K}{2}) \right), \ldots, a \left(\frac{2\pi}{N} (s + \frac{K}{2} - 1) \right) \right]$

and where $a(\omega) = [1, e^{-i\omega}, \ldots, e^{-i(N-1)\omega}]^T$. Note that the constraint in (5.5.11) guarantees that each frequency in the passband (5.5.9) is passed undistorted by one filter in the set, and it is annihilated by all the other $(K-1)$ filters. In particular, observe that (5.5.11) implies (5.5.4).

The solution to (5.5.11) follows at once from the result (5.5.1): the minimizing H matrix is given by

$$H = A (A^* A)^{-1}$$

(5.5.12)

However, the columns in A are orthogonal

$$A^* A = NI$$

(see (4.3.15)); therefore, (5.5.12) simplifies to

$$H = \frac{1}{N} A$$

(5.5.13)

which is the solution of the filter design problem previously formulated.

By using (5.5.13) in (5.5.3), we get

$$|x_p|^2 = \frac{1}{N^2} \left| \sum_{t=1}^{N} e^{i(N-t)\frac{2\pi}{N}(s+p)} y(t) \right|^2$$

$$= \frac{1}{N^2} \left| \sum_{t=1}^{N} y(t) e^{-i\frac{2\pi}{N}(s+p)t} \right|^2$$

$$= \frac{1}{N} \phi_p \left(\frac{2\pi}{N} (s+p) \right) \quad p = -K/2, \ldots, K/2 - 1$$

(5.5.14)

where the dependence of $|x_p|^2$ on s (and hence on $\tilde{\omega}_s$) is omitted to simplify the notation, and where $\phi_p(\omega)$ is the standard periodogram. Finally, (5.5.14) along with (5.5.5) lead to the following FBA spectral estimator:

$$\hat{\phi} \left(\frac{2\pi}{N} s \right) = \frac{1}{K} \sum_{p = -K/2}^{K/2-1} N |x_p|^2 = \frac{1}{K} \sum_{l = -K/2}^{s+K/2-1} \phi_p \left(\frac{2\pi}{N} l \right)$$

(5.5.15)
which coincides with the Daniell periodogram estimator (2.7.16). Furthermore, for
$K = 1$ (i.e., $\beta = 1/N$, which is the choice suitable for “high-resolution” applications), (5.5.15) reduces to the unmodified periodogram. Recall also that the RFB method in Section 5.3, for large data lengths, is expected to have similar performance to the Daniell method for $K > 1$ and to the basic periodogram for $K = 1$. Hence, in the family of nonparametric spectral estimation methods the periodograms “are doing well”.

5.6 COMPLEMENTS

5.6.1 Another Relationship between the Capon and AR Methods

The relationship between the AR and Capon spectra established in Section 5.4.2 involves all AR spectral models of orders 0 through m. Another interesting relationship, which involves the AR spectrum of order m alone, is presented in this complement.

Let $\theta = [\hat{a}_0 \ \hat{a}_1 \ldots \hat{a}_m]^T$ (with $\hat{a}_0 = 1$) denote the vector of the coefficients of the mth-order AR model fitted to the data sample covariances, and let $\hat{\sigma}^2$ denote the corresponding residual variance (see Chapter 3 and (5.4.27)). Then the mth-order AR spectrum is given by:

$$\hat{\phi}_{AR}(\omega) = \frac{\hat{\sigma}^2}{|\hat{a}^*(\omega)\hat{\theta}|^2} = \frac{\hat{\sigma}^2}{|\sum_{k=0}^{m} \hat{a}_k e^{-i\omega k}|^2} \quad (5.6.1)$$

By a simple calculation, $\hat{\phi}_{AR}(\omega)$ above can be rewritten in the following form:

$$\hat{\phi}_{AR}(\omega) = \sum_{s=-m}^{m} \hat{\rho}(s) e^{i\omega s} \quad (5.6.2)$$

where

$$\hat{\rho}(s) = \sum_{k=0}^{m-s} \hat{a}_k \hat{a}_{k+s}^* = \hat{\rho}^*(s), \quad s = 0, \ldots, m. \quad (5.6.3)$$

To show this, note that

$$\left| \sum_{k=0}^{m} \hat{a}_k e^{-i\omega k} \right|^2 = \sum_{k=0}^{m} \sum_{p=0}^{m} \hat{a}_k \hat{a}_p^* e^{-i\omega (k-p)} = \sum_{k=0}^{m} \sum_{s=k-m}^{k} \hat{a}_k \hat{a}_{k-s}^* e^{-i\omega s}$$

$$= \sum_{k=0}^{m} \sum_{s=-m}^{m} \hat{a}_k \hat{a}_{k-s}^* e^{-i\omega s} = \sum_{s=-m}^{m} \sum_{k=0}^{m} \hat{a}_k \hat{a}_{k+s}^* e^{i\omega s}$$

$$= \sum_{s=-m}^{m-s} \sum_{k=0}^{m} \hat{a}_k \hat{a}_{k+s}^* e^{i\omega s}$$

and (5.6.2)–(5.6.3) immediately follows.
Next, assume that the (sample) covariance matrix \(\hat{R} \) is Toeplitz. (We note in passing that this is a minor restriction for the temporal spectral estimation problem of this chapter, but it may be quite a restrictive assumption for the spatial problem of the next chapter.) Then the Capon spectrum in equation (5.4.19) (with the factor \(m + 1 \) omitted, for convenience) can be written as:

\[
\hat{\phi}_{CM}(\omega) = \frac{\hat{\sigma}^2}{\sum_{s=-m}^{m} \hat{\mu}(s)e^{i\omega s}} \tag{5.6.4}
\]

where

\[
\hat{\mu}(s) = \sum_{k=0}^{m-s} (m + 1 - 2k - s)\hat{a}_k \hat{a}^*_{k+s} = \hat{\mu}^*(-s), \quad s = 0, \ldots, m \tag{5.6.5}
\]

To prove (5.6.4) we make use of the Gohberg–Semencul (GS) formula derived in Complement 3.9.4, which is repeated here for convenience:

\[
\begin{align*}
\hat{\sigma}^2\hat{R}^{-1} &= 1 \begin{bmatrix} 1 & \cdots & \cdots & 0 \end{bmatrix} - \hat{a}_1^* \begin{bmatrix} \hat{a}_1 \cdots \cdots \hat{a}_m \end{bmatrix} \begin{bmatrix} 1 & \cdots & \cdots & \hat{a}_m \end{bmatrix} \\
&= \begin{bmatrix} 0 & \cdots & \cdots & 0 \\ \hat{a}_m \cdots \cdots \hat{a}_1 \end{bmatrix} - \hat{a}_m^* \begin{bmatrix} \hat{a}_m \cdots \cdots \hat{a}_1 \end{bmatrix} \end{align*}
\]

(The above formula is in fact the complex conjugate of the GS formula in Complement 3.9.4 because the matrix \(\hat{R} \) above is the complex conjugate of the one considered in Chapter 3).

For the sake of convenience, let \(\hat{a}_k = 0 \) for \(k \notin [0, m] \). By making use of this convention, and of the GS formula, we obtain:

\[
f(\omega) \triangleq \hat{\sigma}^2 a^*(\omega)\hat{R}^{-1}a(\omega) = \sum_{p=0}^{m} \left\{ \left| \sum_{k=0}^{m} \hat{a}_{k-p}e^{-i\omega k} \right|^2 - \left| \sum_{k=0}^{m} \hat{a}_{m+1-k-p}e^{-i\omega k} \right|^2 \right\} = \sum_{p=0}^{m} \sum_{k=0}^{m} \sum_{\ell=0}^{m} (\hat{a}_{k-p}\hat{a}_{\ell-p} - \hat{a}_{m+1-k-p}\hat{a}_{m+1-\ell-p})e^{i\omega(\ell-k)}
\]

\[
= \sum_{\ell=0}^{m} \sum_{p=0}^{m} \sum_{s=\ell-m}^{\ell} (\hat{a}_{\ell-s-p}\hat{a}_{\ell-p} - \hat{a}_{m+1-\ell+s+p}\hat{a}_{m+1+p-\ell})e^{i\omega s} \tag{5.6.6}
\]
Section 5.6 Complements

where the last equality has been obtained by the substitution $s = \ell - k$. Next, make the substitution $j = \ell - p$ in (5.6.6) to obtain:

$$f(\omega) = \sum_{\ell=0}^{m} \sum_{j=\ell-m}^{\ell} \sum_{s=\ell-m}^{\ell} (\hat{a}_{j-s} \hat{a}_{j}^* - \hat{a}_{m+1-j} \hat{a}_{m+1+s-j}^*) e^{i\omega s} \quad (5.6.7)$$

Since $\hat{a}_{j-s} = 0$ and $\hat{a}_{m+1+s-j}^* = 0$ for $s > j$, we can extend the summation over s in (5.6.7) up to $s = m$. Furthermore, the summand in (5.6.7) is zero for $j < 0$, and hence we can truncate the summation over j to the interval $[0, \ell]$. These two observations yield:

$$f(\omega) = \sum_{\ell=0}^{m} \sum_{j=0}^{m} (\hat{a}_{j-s} \hat{a}_{j}^* - \hat{a}_{m+1-j} \hat{a}_{m+1+s-j}^*) e^{i\omega s} \quad (5.6.8)$$

Next, decompose $f(\omega)$ additively as follows:

$$f(\omega) = T_1(\omega) + T_2(\omega)$$

where

$$T_1(\omega) = \sum_{\ell=0}^{m} \sum_{j=0}^{m} \sum_{s=0}^{\ell} (\hat{a}_{j-s} \hat{a}_{j}^* - \hat{a}_{m+1-j} \hat{a}_{m+1+s-j}^*) e^{i\omega s}$$

$$T_2(\omega) = \sum_{\ell=0}^{m} \sum_{j=0}^{m} \sum_{s=\ell-m}^{\ell-1} (\hat{a}_{j-s} \hat{a}_{j}^* - \hat{a}_{m+1-j} \hat{a}_{m+1+s-j}^*) e^{i\omega s}$$

(The term in T_2 corresponding to $\ell = m$ is zero.) Let

$$\hat{\mu}(s) \triangleq \sum_{\ell=0}^{m} \sum_{j=0}^{m} (\hat{a}_{j-s} \hat{a}_{j}^* - \hat{a}_{m+1-j} \hat{a}_{m+1+s-j}^*) \quad (5.6.9)$$

By using this notation, we can write $T_1(\omega)$ as

$$T_1(\omega) = \sum_{s=0}^{m} \hat{\mu}(s) e^{i\omega s}$$

Since $f(\omega)$ is real-valued for any $\omega \in [-\pi, \pi]$, we must also have

$$T_2(\omega) = \sum_{s=-1}^{m} \hat{\mu}^*(-s) e^{i\omega s}$$

As the summand in (5.6.9) does not depend on ℓ, we readily obtain

$$\hat{\mu}(s) = \sum_{j=0}^{m} (m + 1 - j) (\hat{a}_{j-s} \hat{a}_{j}^* - \hat{a}_{m+1-j} \hat{a}_{m+1+s-j}^*)$$

$$= \sum_{k=0}^{m-s} (m + 1 - k - s) \hat{a}_{k}^* \hat{a}_{k+s} - \sum_{k=1}^{m} k \hat{a}_{k}^* \hat{a}_{k+s}$$

$$= \sum_{k=0}^{m-s} (m + 1 - 2k - s) \hat{a}_{k}^* \hat{a}_{k+s}$$
which coincides with (5.6.5). Thus, the proof of (5.6.4) is concluded.

Remark: The reader may wonder what happens with the formulas derived above if the AR model parameters are calculated by using the same sample covariance matrix as in the Capon estimator. In such a case, the parameters \(\{ \hat{a}_k \} \) in (5.6.1) and in the GS formula above should be replaced by \(\{ \hat{a}_k^* \} \) (see (5.4.27)). Consequently both (5.6.2)–(5.6.3) and (5.6.4)–(5.6.5) continue to hold but with \(\{ \hat{a}_k \} \) replaced by \(\{ \hat{a}_k^* \} \) (and \(\{ \hat{a}_k \} \) replaced by \(\{ \hat{a}_k^* \} \), of course).

By comparing (5.6.2) and (5.6.4) we see that the reciprocals of both \(\hat{\phi}_{AR}(\omega) \) and \(\hat{\phi}_{CM}(\omega) \) have the form of a Blackman–Tukey spectral estimate associated with the “covariance sequences” \(\{ \hat{\rho}(s) \} \) and \(\{ \hat{\mu}(s) \} \), respectively. The only difference between \(\hat{\phi}_{AR}(\omega) \) and \(\hat{\phi}_{CM}(\omega) \) is that the sequence \(\{ \hat{\mu}(s) \} \) corresponding to \(\hat{\phi}_{CM}(\omega) \) is a “linearly tapered” version of the sequence \(\{ \hat{\rho}(s) \} \) corresponding to \(\hat{\phi}_{AR}(\omega) \). Similar to the interpretation in Section 5.4.2, the previous observation can be used to intuitively understand why the Capon spectral estimates are smoother and have poorer resolution than the AR estimates of the same order. (For more details on this aspect and other aspects related to the discussion in this complement, see [MUSICUS 1985].)

We remark in passing that the name “covariance sequence” given, for example, to \(\{ \hat{\rho}(s) \} \) is not coincidental: \(\{ \hat{\rho}(s) \} \) are so-called sample inverse covariances associated with \(\hat{\rho} \) and they can be shown to possess a number of interesting and useful properties (see, e.g., [CLEVELAND 1972; BHANSALI 1980]).

The formula (5.6.4) can be used for the computation of \(\hat{\phi}_{CM}(\omega) \), as we now show. Assuming that \(\hat{\rho} \) is already available, we can use the Levinson–Durbin algorithm to compute \(\{ \hat{a}_k \} \) and \(\hat{\sigma}^2 \), and then \(\{ \hat{\mu}(s) \} \) in \(O(m^2) \) flops. Then (5.6.4) can be evaluated at \(M \) Fourier frequencies (say) by using the FFT. The resulting total computational burden is on the order of \(O(m^2 + M \log_2 M) \) flops. For commonly encountered values of \(m \) and \(M \), this is about \(m \) times smaller than the burden associated with the eigendecomposition–based computational procedure of Exercise 5.5. Note, however, that the latter algorithm can be applied to a general \(\hat{\rho} \) matrix, whereas the one derived in this complement is limited to Toeplitz covariance matrices. Finally, note that the extension of the results in this complement to two–dimensional (2D) signals can be found in [JAKOBSSON, MARPLE, AND STOICA 2000].

5.6.2 Multiwindow Interpretation of Daniell and Blackman–Tukey Periodograms

As stated in Exercise 5.1, the Bartlett and Welch periodograms can be cast into the multiwindow framework of Section 5.3.3. In other words, they can be written in the following form (see (5.7.1))

\[
\hat{\phi}(\omega) = \frac{1}{K} \sum_{p=1}^{K} \left| \sum_{t=1}^{N} w_{p,t} y(t) e^{-i\omega t} \right|^2
\]

(5.6.10)

for certain temporal (or data) windows \(\{ w_{p,t} \} \) (also called tapers). Here, \(K \) denotes the number of windows used by the method in question.
In this complement we show that the Daniell periodogram, as well as the
Blackman–Tukey periodogram with some commonly-used lag windows, can also
be interpreted as multiwindow methods. Unlike the approximate multiwindow
interpretation of a spectrally smoothed periodogram described in Section 5.3.3 (see
equations (5.3.31)–(5.3.33) there), the multiwindow interpretations presented in
this complement are exact. More details on the topic of this complement can
be found in [McCloud, Scharf, and Mullis 1999], where it is also shown
that the Blackman–Tukey periodogram with any “good” window can be cast in a
multiwindow framework, but only approximately.

We begin by writing (5.6.10) as a quadratic form in the data sequence. Let
\[z(\omega) = \begin{bmatrix} y(1)e^{-i\omega} \\ \vdots \\ y(N)e^{-iN\omega} \end{bmatrix}, \quad (N \times 1) \]

\[W = \begin{bmatrix} w_{1,1} & \cdots & w_{1,N} \\ \vdots & \ddots & \vdots \\ w_{K,1} & \cdots & w_{K,N} \end{bmatrix}, \quad (K \times N) \]

and let \([x]_p\) denote the \(p\)th element of a vector \(x\). Using this notation we can rewrite
(5.6.10) in the desired form:

\[\hat{\phi}(\omega) = \frac{1}{K} \sum_{p=1}^{K} |[Wz(\omega)]_p|^2 \]
or

\[\hat{\phi}(\omega) = \frac{1}{K} z^*(\omega)W^*Wz(\omega) \tag{5.6.11} \]

which is a quadratic form in \(z(\omega)\). The rank of the matrix \(W^*W\) is less than or
equal to \(K\); typically, \(\text{rank}(W^*W) = K \ll N\).

Next we turn our attention to the Daniell periodogram (see (2.7.16)):

\[\hat{\phi}_D(\omega) = \frac{1}{2J+1} \sum_{j=-J}^{J} \hat{\phi}_p \left(\omega + j \frac{2\pi}{N} \right) \tag{5.6.12} \]

where \(\hat{\phi}_p(\omega)\) is the standard periodogram given in (2.2.1):

\[\hat{\phi}_p(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-i\omega t} \right|^2 \]

Letting

\[a_j^* = \left[e^{-i\frac{2\pi}{N}j}, e^{-i\frac{2\pi}{N}(2j)}, \ldots, e^{-i\frac{2\pi}{N}(Nj)} \right] \tag{5.6.13} \]
we can write

\[\hat{\phi}_p \left(\omega + j \frac{2\pi}{N} \right) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-j\omega t} e^{-j\frac{2\pi}{N} (jt)} \right|^2 \]

\[= \frac{1}{N} \left| a_j^* z(\omega) \right|^2 = \frac{1}{N} z^*(\omega) a_j a_j^* z(\omega) \quad (5.6.14) \]

which implies that

\[\hat{\phi}_D(\omega) = \frac{1}{N(2J + 1)} z^*(\omega) W_D^* W_D z(\omega) \quad (5.6.15) \]

where

\[W_D = [a_{-J}, \ldots, a_0, \ldots, a_J]^* \quad (2J + 1) \times N \quad (5.6.16) \]

This establishes the fact that the Daniell periodogram can be interpreted as a multiwindow method using \(K = 2J + 1 \) tapers given by (5.6.16). Similarly to the tapers used by the seemingly more elaborate RFB approach, the Daniell periodogram tapers can also be motivated using a sound design methodology (see Section 5.5).

In the remaining part of this supplement we consider the Blackman–Tukey periodogram in (2.5.1) with a window of length \(M = N \):

\[\hat{\phi}_{BT}(\omega) = \sum_{k=-(N-1)}^{N-1} w(k) \hat{r}(k) e^{-j\omega k} \quad (5.6.17) \]

A commonly-used class of windows, including the Hanning and Hamming windows in Table 2.1, is described by the equation:

\[w(k) = \alpha + \beta \cos(\Delta k) = \left(\alpha + \frac{\beta}{2} e^{j\Delta k} + \frac{\beta}{2} e^{-j\Delta k} \right) \quad (5.6.18) \]

for various parameters \(\alpha, \beta, \) and \(\Delta \). Inserting (5.6.18) into (5.6.17) yields:

\[\hat{\phi}_{BT}(\omega) = \sum_{k=-(N-1)}^{N-1} \left(\alpha + \frac{\beta}{2} e^{j\Delta k} + \frac{\beta}{2} e^{-j\Delta k} \right) \hat{r}(k) e^{-j\omega k} \]

\[= \alpha \hat{\phi}_p(\omega) + \frac{\beta}{2} \hat{\phi}_p(\omega - \Delta) + \frac{\beta}{2} \hat{\phi}_p(\omega + \Delta) \quad (5.6.19) \]

where \(\hat{\phi}_p(\omega) \) is the standard periodogram given by (2.2.1) or, equivalently, by (2.2.2):

\[\hat{\phi}_p(\omega) = \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-j\omega k} \]

Comparing (5.6.19) with (5.6.12) (as well as (5.6.14)–(5.6.16)) allows us to rewrite \(\hat{\phi}_{BT}(\omega) \) in the following form:

\[\hat{\phi}_{BT}(\omega) = \frac{1}{N} z^*(\omega) W_{BT}^* W_{BT} z(\omega) \quad (5.6.20) \]
where

$$W_{BT} = \left[\sqrt{\frac{2}{\pi}} a_{-\Delta}, \sqrt{\alpha} a_0, \sqrt{\frac{2}{\pi}} a_{\Delta} \right]^*, \quad (3 \times N) \quad (5.6.21)$$

for \(\alpha, \beta \geq 0 \) and where \(a_{\Delta} \) is given by (similarly to \(a_j \) in (5.6.13))

$$a_{\Delta}^* = [e^{-i\Delta}, \ldots, e^{-i\Delta N}]$$

Hence, we conclude that the Blackman–Tukey periodogram with a Hamming or Hanning window (or any other window having the form of (5.6.18)) can be interpreted as a multiwindow method using \(K = 3 \) tapers given by (5.6.21). Similarly, \(\hat{\phi}_{BT}(\omega) \) using the Blackman window in Table 2.1 can be shown to be equivalent to a multiwindow method with \(K = 7 \) tapers.

Interestingly, as a byproduct of the analysis in this complement, we note from (5.6.19) that the Blackman–Tukey periodogram with a window of the form in (5.6.18) can be very efficiently computed from the values of the standard periodogram. Since the Blackman window has a form similar to (5.6.18), \(\hat{\phi}_{BT}(\omega) \) using the Blackman window can be similarly implemented in an efficient way. This way of computing \(\hat{\phi}_{BT}(\omega) \) is faster than the method outlined in Complement 2.8.2 for a general lag window.

5.6.3 Capon Method for Exponentially Damped Sinusoidal Signals

The signals which are dealt with in some applications of spectral analysis, such as in magnetic resonance spectroscopy, consist of a sum of exponentially damped sinusoidal components, (or damped sinusoids, for short), instead of the pure sinusoids as in (4.1.1). Such signals are described by the equation

$$y(t) = \sum_{k=1}^{n} \beta_k e^{(\rho_k + i\omega_k)t} + e(t), \quad t = 1, \ldots, N \quad (5.6.22)$$

where \(\beta_k \) and \(\omega_k \) are the amplitude and frequency of the \(k \)th component (as in Chapter 4), and \(\rho_k < 0 \) is the so-called damping parameter. The (noise-free) signal in (5.6.22) is nonstationary and hence it does not have a power spectral density. However, it possesses an amplitude spectrum that is defined as follows:

$$|\beta(\rho, \omega)| = \begin{cases} |eta_k|, & \text{for } \omega = \omega_k, \rho = \rho_k \quad (k = 1, \ldots, n) \\ 0, & \text{elsewhere} \end{cases} \quad (5.6.23)$$

Furthermore, because an exponentially damped sinusoid satisfies the finite energy condition in (1.2.1), the (noise-free) signal in (5.6.22) also possesses an energy spectrum. Similarly to (5.6.23), we can define the energy spectrum of the damped sinusoidal signal in (5.6.22) as a 2D function of \((\rho, \omega)\) that consists of \(n \) pulses at \(\{\rho_k, \omega_k\} \), where the height of the function at each of these points is equal to the energy of the corresponding component. The energy of a generic component with parameters \((\beta, \rho, \omega)\) is given by

$$\sum_{t=1}^{N} |\beta e^{(\rho + i\omega)t}|^2 = |\beta|^2 e^{2\rho} \sum_{t=0}^{N-1} e^{2\omega t} = |\beta|^2 e^{2\rho} \frac{1 - e^{2\omega N}}{1 - e^{2\rho}} \quad (5.6.24)$$
It follows from (5.6.24) and the above discussion that the energy spectrum can be expressed as a function of the amplitude spectrum in (5.6.23) via the formula:

$$E(\rho, \omega) = |\beta(\rho, \omega)|^2 L(\rho)$$ \hspace{1cm} (5.6.25)

where

$$L(\rho) = e^{2\rho} \frac{1 - e^{2\rho N}}{1 - e^{2\rho}}$$ \hspace{1cm} (5.6.26)

The amplitude spectrum, and hence the energy spectrum, of the signal in (5.6.22) can be estimated by using an extension of the Capon method that is introduced in Section 5.4. To develop this extension, we consider the following data vector

$$\tilde{y}(t) = [y(t), y(t+1), \ldots, y(t+m)]$$ \hspace{1cm} (5.6.27)

in lieu of the data vector used in (5.4.2). First we explain why, in the case of damped sinusoidal signals, the use of (5.6.27) is preferable to that of

$$[y(t), y(t-1), \ldots, y(t-m)]^T$$ \hspace{1cm} (5.6.28)

(as is used in (5.4.2)). Let h denote the coefficient vector of the Capon FIR filter as in (5.4.1). Then, the output of the filter using the data vector in (5.6.27) is given by:

$$\tilde{y}_F(t) = h^T \tilde{y}(t) = h^T \begin{bmatrix} y(t) \\ \vdots \\ y(t+m) \end{bmatrix}, \hspace{1cm} t = 1, \ldots, N - m$$ \hspace{1cm} (5.6.29)

Hence, when performing the filtering operation as in (5.6.29), we lose m samples from the end of the data string. Because the SNR of those samples is typically rather low (owing to the damping of the signal components), the data loss is not significant. In contrast, the use of (5.4.2) leads to a loss of m data samples from the beginning of the data string (since (5.4.2) can be computed for $t = m + 1, \ldots, N$), where the SNR is higher. Hence, in the case of damped sinusoidal signals we should indeed prefer (5.6.29) to (5.4.2).

Next, we derive Capon-like estimates of the amplitude and energy spectra of (5.6.22). Let

$$\hat{R} = \frac{1}{N - m} \sum_{t=1}^{N-m} \tilde{y}(t)\tilde{y}^*(t)$$ \hspace{1cm} (5.6.30)

denote the sample covariance matrix of the data vector in (5.6.27). Then the sample variance of the filter output can be written as:

$$\frac{1}{N - m} \sum_{t=1}^{N-m} |\tilde{y}_F(t)|^2 = h^* \hat{R}h$$ \hspace{1cm} (5.6.31)

By definition, the Capon filter minimizes (5.6.31) under the constraint that the filter passes, without distortion, a generic damped sinusoid with parameters (β, ρ, ω).

$$\hat{R} = \frac{1}{N - m} \sum_{t=1}^{N-m} \tilde{y}(t)\tilde{y}^*(t)$$ \hspace{1cm} (5.6.30)

Then the sample variance of the filter output can be written as:

$$\frac{1}{N - m} \sum_{t=1}^{N-m} |\tilde{y}_F(t)|^2 = h^* \hat{R}h$$ \hspace{1cm} (5.6.31)

By definition, the Capon filter minimizes (5.6.31) under the constraint that the filter passes, without distortion, a generic damped sinusoid with parameters (β, ρ, ω).

$$\hat{R} = \frac{1}{N - m} \sum_{t=1}^{N-m} \tilde{y}(t)\tilde{y}^*(t)$$ \hspace{1cm} (5.6.30)

Then the sample variance of the filter output can be written as:

$$\frac{1}{N - m} \sum_{t=1}^{N-m} |\tilde{y}_F(t)|^2 = h^* \hat{R}h$$ \hspace{1cm} (5.6.31)

By definition, the Capon filter minimizes (5.6.31) under the constraint that the filter passes, without distortion, a generic damped sinusoid with parameters (β, ρ, ω).
The filter output corresponding to such a generic component is given by
\[
h^* \begin{bmatrix}
\beta e^{(\rho+i\omega)t} \\
\beta e^{(\rho+i\omega)(t+1)} \\
\vdots \\
\beta e^{(\rho+i\omega)(t+m)}
\end{bmatrix}
= h^* \begin{bmatrix}
1 \\
e^{\rho+i\omega} \\
\vdots \\
e^{(\rho+i\omega)m}
\end{bmatrix}
\begin{bmatrix}
\beta e^{(\rho+i\omega)t}
\end{bmatrix}
\] (5.6.32)

Hence, the distortionless filtering constraint can be expressed as
\[
h^* a(\rho, \omega) = 1
\] (5.6.33)

where
\[
a(\rho, \omega) = \left[1, e^{\rho+i\omega}, \ldots, e^{(\rho+i\omega)m}\right]^T
\] (5.6.34)

The minimizer of the quadratic function in (5.6.31) under the linear constraint (5.6.33) is given by the familiar formula (see (5.4.7)–(5.4.8)):
\[
h(\rho, \omega) = \frac{\hat{R}^{-1} a(\rho, \omega)}{a^*(\rho, \omega) \hat{R}^{-1} a(\rho, \omega)}
\] (5.6.35)

where we have stressed, via notation, the dependence of \(h \) on both \(\rho \) and \(\omega \).

The output of the filter in (5.6.35) due to a possible (generic) damped sinusoid in the signal with parameters \((\beta, \rho, \omega)\), is given by (cf. (5.6.32) or (5.6.33)):
\[
h^*(\rho, \omega) \tilde{y}(t) = \beta e^{(\rho+i\omega)t} + e_F(t), \quad t = 1, \ldots, N - m
\] (5.6.36)

where \(e_F(t) \) denotes the filter output due to noise and to any other signal components. For given \((\rho, \omega)\), the least-squares estimate of \(\beta \) in (5.6.36) is (see, e.g., Result R32 in Appendix A):
\[
\hat{\beta}(\rho, \omega) = \sum_{t=1}^{N-m} \frac{h^*(\rho, \omega) \tilde{y}(t)e^{(\rho-i\omega)t}}{\sum_{t=1}^{N-m} e^{2\rho t}}
\] (5.6.37)

Let \(\tilde{L}(\rho) \) be defined similarly to \(L(\rho) \) in (5.6.26), but with \(N \) replaced by \(N - m \), and let
\[
\tilde{Y}(\rho, \omega) = \frac{1}{\tilde{L}(\rho)} \sum_{t=1}^{N-m} \tilde{y}(t)e^{(\rho-i\omega)t}
\] (5.6.38)

It follows from (5.6.37), along with (5.6.25), that Capon-like estimates of the amplitude spectrum and energy spectrum of the signal in (5.6.22) can be obtained,
respectively, as:

\[|\hat{\beta}(\rho, \omega)| = |h^*(\rho, \omega)\tilde{Y}(\rho, \omega)| \]

(5.6.39)

and

\[\hat{E}(\rho, \omega) = |\hat{\beta}(\rho, \omega)|^2 L(\rho) \]

(5.6.40)

Remark: We could have estimated the amplitude, \(\beta \), of a generic component with parameters \((\beta, \rho, \omega)\) directly from the unfiltered data samples \(\{y(t)\}_{t=1}^N \). However, the use of the Capon filtered data in (5.6.36) usually leads to enhanced performance. The main reason for this performance gain lies in the fact that the SNR corresponding to the generic component in the filtered data is typically much higher than in the raw data, owing to the good rejection properties of the Capon filter. This higher SNR leads to more accurate amplitude estimates, in spite of the loss of \(m \) data samples in the filtering operation in (5.6.36).

Finally, we note that the sample Capon energy or amplitude spectrum can be used to estimate the signal parameters \(\{\beta_k, \rho_k, \omega_k\} \) in a standard manner. Specifically, we compute either \(|\hat{\beta}(\rho, \omega)|\) or \(\hat{E}(\rho, \omega)\) at the points of a fine grid covering the region of interest in the two-dimensional \((\rho, \omega)\) plane, and obtain estimates of \((\rho_k, \omega_k)\) as the locations of the \(n\) largest spectral peaks; estimates of \(\beta_k\) can then be derived from (5.6.37) with \((\rho, \omega)\) replaced by the estimated values of \((\rho_k, \omega_k)\). There is empirical evidence that the use of \(\hat{E}(\rho, \omega)\) in general leads to (slightly) more accurate signal parameter estimates than the use of \(|\hat{\beta}(\rho, \omega)|\) (see [STOICA AND SUNDIN 2001]). For more details on the topic of this complement, including the computation of the two-dimensional spectra in (5.6.39) and (5.6.40), we refer the reader to [STOICA AND SUNDIN 2001].

5.6.4 Amplitude and Phase Estimation Method (APES)

The design idea behind the Capon filter is based on the following two principles, as discussed in Section 5.4:

(a) the sinusoid with frequency \(\omega \) (currently considered in the analysis) passes through the filter in a distortionless manner; and

(b) any other frequencies in the data (corresponding, e.g., to other sinusoidal components in the signal or to noise) are suppressed by the filter as much as possible.

The output of the filter whose input is a sinusoid with frequency \(\omega \), \(\{\beta e^{i\omega t}\} \), is given by (assuming forward filtering, as in (5.4.2)):

\[
h^* \begin{bmatrix}
e^{i\omega t} \\
e^{i\omega(t-1)} \\
\vdots \\
e^{i\omega(t-m)}
\end{bmatrix} \beta = \left(h^* \begin{bmatrix} 1 \\
e^{-i\omega} \\
\vdots \\
e^{-i\omega m}
\end{bmatrix} \right) \beta e^{i\omega t}
\]

(5.6.41)
For backward filtering, as used in Complement 5.6.3, a similar result can be derived. It follows from (5.6.41) that the design objective in (a) above can be expressed mathematically via the following linear constraint on h:

$$h^*a(\omega) = 1$$ \hspace{1cm} (5.6.42)

where

$$a(\omega) = [1, e^{-i\omega}, \ldots, e^{-i\omega_m}]^T$$ \hspace{1cm} (5.6.43)

(see (5.4.5)–(5.4.7)). Regarding the second design objective, its statement in (b) above is sufficiently general to allow several different mathematical formulations. The Capon method is based on the idea that the goal in (b) is achieved if the power at the filter output is minimized (see (5.4.7)). In this complement, another way to formulate (b) mathematically is described.

At a given frequency ω, let us choose h such that the filter output, $\{h^*\tilde{y}(t)\}$, where

$$\tilde{y}(t) = [y(t), y(t-1), \ldots, y(t-m)]^T$$

is as close as possible in a least-squares (LS) sense to a sinusoid with frequency ω and constant amplitude β. Mathematically, we obtain both h and β, for a given ω, by minimizing the LS criterion:

$$\min_{h, \beta} \frac{1}{N-m} \sum_{t=m+1}^{N} \left|h^*\tilde{y}(t) - \beta e^{i\omega t}\right|^2 \text{ subject to } h^*a(\omega) = 1$$ \hspace{1cm} (5.6.44)

Note that the estimation of the amplitude and phase (i.e., $|\beta|$ and $\text{arg}(\beta)$) of the sinusoid with frequency ω is an intrinsic part of the method based on (5.6.44). This observation motives the name of Amplitude and Phase Estimation (APES) given to the method described by (5.6.44).

Because (5.6.44) is a linearly constrained quadratic problem, we should be able to find its solution in closed form. Let

$$g(\omega) = \frac{1}{N-m} \sum_{t=m+1}^{N} \tilde{y}(t)e^{-i\omega t}$$ \hspace{1cm} (5.6.45)

Then, a straightforward calculation shows that the criterion function in (5.6.44) can be rewritten as:

$$\frac{1}{N-m} \sum_{t=m+1}^{N} \left|h^*\tilde{y}(t) - \beta e^{i\omega t}\right|^2 = h^*\tilde{R}h - \beta^*h^*g(\omega) - \beta\tilde{g}^*(\omega)h + |\beta|^2$$

$$= |\beta - h^*g(\omega)|^2 + h^*\tilde{R}h - |h^*g(\omega)|^2$$

$$= |\beta - h^*g(\omega)|^2 + h^*\left[\tilde{R} - g(\omega)g^*(\omega)\right]h$$ \hspace{1cm} (5.6.46)
where

\[\hat{R} = \frac{1}{N - m} \sum_{t=m+1}^{N} \bar{y}(t)\bar{y}^*(t) \]

(5.6.47)

(see (5.4.18)). The minimization of (5.6.46) with respect to \(\beta \) is immediate:

\[\beta(\omega) = h^*g(\omega) \]

(5.6.48)

Inserting (5.6.48) into (5.6.46) yields the following problem whose solution will determine the filter coefficient vector:

\[\min_h h^* \hat{Q}(\omega) h \quad \text{subject to} \quad h^*a(\omega) = 1 \]

(5.6.49)

where

\[\hat{Q}(\omega) = \hat{R} - g(\omega)g^*(\omega) \]

(5.6.50)

As (5.6.49) has the same form as the Capon filter design problem (see (5.4.7)), the solution to (5.6.49) is readily derived (compare with (5.4.8)):

\[h(\omega) = \frac{\hat{Q}^{-1}(\omega)a(\omega)}{a^*(\omega)\hat{Q}^{-1}(\omega)a(\omega)} \]

(5.6.51)

A direct implementation of (5.6.51) would require the inversion of the matrix \(\hat{Q}(\omega) \) for each value of \(\omega \in [0, 2\pi] \) considered. To avoid such an intensive computational task, we can use the matrix inversion lemma (Result R27 in Appendix A) to express the inverse in (5.6.51) as follows:

\[\hat{Q}^{-1}(\omega) = \left[\hat{R} - g(\omega)g^*(\omega) \right]^{-1} = \hat{R}^{-1} + \frac{\hat{R}^{-1}g(\omega)g^*(\omega)\hat{R}^{-1}}{1 - g^*(\omega)\hat{R}^{-1}g(\omega)} \]

(5.6.52)

Inserting (5.6.52) into (5.6.51) yields the following expression for the APES filter:

\[h(\omega) = \frac{\left[1 - g^*(\omega)\hat{R}^{-1}g(\omega) \right] \hat{R}^{-1}a(\omega) + \left[g^*(\omega)\hat{R}^{-1}a(\omega) \right] \hat{R}^{-1}g(\omega)}{\left[1 - g^*(\omega)\hat{R}^{-1}g(\omega) \right] a^*(\omega)\hat{R}^{-1}a(\omega) + \left| a^*(\omega)\hat{R}^{-1}a(\omega) \right|^2} \]

(5.6.53)

From (5.6.48) and (5.6.53) we obtain the following formula for the APES estimate of the (complex) amplitude spectrum (see Complement 5.6.3 for a definition of the amplitude spectrum):

\[\beta(\omega) = \frac{a^*(\omega)\hat{R}^{-1}g(\omega)}{\left[1 - g^*(\omega)\hat{R}^{-1}g(\omega) \right] a^*(\omega)\hat{R}^{-1}a(\omega) + \left| a^*(\omega)\hat{R}^{-1}a(\omega) \right|^2} \]

(5.6.54)

Compared with the Capon estimate of the amplitude spectrum given by

\[\beta(\omega) = \frac{a^*(\omega)\hat{R}^{-1}g(\omega)}{a^*(\omega)\hat{R}^{-1}a(\omega)} \]

(5.6.55)
Section 5.6 Complements

we see that the APES estimate in (5.6.54) is more computationally involved, but not by much.

Remark: Our discussion has focused on the estimation of the amplitude spectrum. If the power spectrum is what we want to estimate, then we can use the APES filter, (5.6.53), in the PSD estimation approach described in Section 5.4, or we can simply take $|\beta(\omega)|^2$ (along with a possible scaling) as an estimate of the PSD.

The above derivation of APES is adapted from [Stoica, Li, and Li 1999]. The original derivation of APES, provided in [Li and Stoica 1996a], was different: it was based on an approximate maximum likelihood approach. We refer the reader to [Li and Stoica 1996a] for the original derivation of APES as well as many other details on this approach to spectral analysis.

We end this complement with a brief comparison of Capon and APES from a performance standpoint. Extensive empirical and analytical studies of these two methods (see, e.g., [Larsson, Li, and Stoica 2003] and its references) have shown that Capon has a (slightly) higher resolution than APES and also that the Capon estimates of the frequencies of a multicomponent sinusoidal signal in noise are more accurate than the APES estimates. On the other hand, for a given set of frequency estimates $\{\hat{\omega}_k\}$ in the vicinity of the true frequencies, the APES estimates of the amplitudes $\{\hat{\beta}_k\}$ are much more accurate than the Capon estimates; the Capon estimates are always biased towards zero, sometimes significantly so. This suggests that, at least for spectral line analysis, a better method than both Capon and APES can be obtained by combining them in the following way:

- Estimate the frequencies $\{\hat{\omega}_k\}$ as the locations of the dominant peaks of the Capon spectrum.
- Estimate the amplitudes $\{\hat{\beta}_k\}$ using the APES formula (5.6.54) evaluated at the frequency estimates obtained in the previous step.

The above combined Capon-APES (CAPES) method was introduced in [Jakobsson and Stoica 2000].

5.6.5 Amplitude and Phase Estimation Method for Gapped Data (GAPES)

In some applications of spectral analysis the data sequence has gaps, owing to the failure of a measuring device, or owing to the impossibility to perform measurements for some periods of time (such as in astronomy). In this complement we will present an extension of the Amplitude and Phase Estimation (APES) method, outlined in Complement 5.6.4, to gapped-data sequences. Gapped-data sequences are evenly sampled data strings that contain unknown samples which are usually, but not always, clustered together in groups of reasonable size. We will use the acronym GAPES to designate the extended approach.

Most of the available methods for the spectral analysis of gapped data perform (either implicitly or explicitly) an interpolation of the missing data, followed by a standard full-data spectral analysis. The data interpolation step is critical and it cannot be completed without making (sometimes hidden) assumptions on the data sequence. For example, one such assumption is that the data is bandlimited with a
known cutoff frequency. Intuitively, these assumptions can be viewed as attempts to add extra “information” to the spectral analysis problem, which might be able to compensate for the lost information due to the missing data samples. The problem with these assumptions, though, is that they are not generally easy to check in applications, either a priori or a posteriori. The GAPES approach presented here is based on the sole assumption that the spectral content of the missing data is similar to that of the available data. This assumption is very natural, and one could argue that it introduces no restriction at all.

We begin the derivation of GAPES by rewriting the APES least-squares fitting criterion (see equation (5.6.44) in Complement 5.6.4) in a form that is more convenient for the discussion here. Specifically, we use the notation $h(\omega)$ and $\beta(\omega)$ to stress the dependence on ω of both the APES filter and the amplitude spectrum. Also, we note that in applications the frequency variable is usually sampled as follows:

$$
\omega_k = \frac{2\pi k}{K}, \quad k = 1, \ldots, K
$$

(5.6.56)

where K is an integer (much) larger than N. Making use of the above notation and (5.6.56) we rewrite the APES criterion as follows:

$$
\min \sum_{k=1}^{K} \sum_{t=m+1}^{N} \left| h^*(\omega_k)\tilde{y}(t) - \beta(\omega_k)e^{i\omega_k t} \right|^2
$$

subject to $h^*(\omega_k)\alpha(\omega_k) = 1$ for $k = 1, \ldots, K$

(5.6.57)

Evidently, the minimization of the criterion in (5.6.57) with respect to $\{h(\omega_k)\}$ and $\{\beta(\omega_k)\}$ reduces to the minimization of the inner sum in (5.6.57) for each k. Hence, in the full-data case the problem in (5.6.57) is equivalent to the standard APES problem in equation (5.6.44) in Complement 5.6.4. However, in the gapped data case the form of the APES criterion in (5.6.57) turns out to be more convenient than that in (5.6.44), as we will see below.

To continue, we need some additional notation. Let

$y_a =$ the vector containing the available samples in \{y(t)\}_{t=1}^{N}$

$y_u =$ the vector containing the unavailable samples in \{y(t)\}_{t=1}^{N}$

The main idea behind the GAPES approach is to minimize (5.6.57) with respect to both $\{h(\omega_k)\}$ and $\{\beta(\omega_k)\}$ as well as with respect to y_u. Such a formulation of the gapped-data problem is appealing, because it leads to:

(i) an analysis filter bank $\{h(\omega_k)\}$ for which the filtered sequence is as close as possible in a LS sense to the (possible) sinusoidal component in the data that has frequency ω_k, which is the main design goal in the filter bank approach to spectral analysis; and

(ii) an estimate of the missing samples in y_u whose spectral content mimics the spectral content of the available data as much as possible in the LS sense of (5.6.57).
The criterion in (5.6.57) is a quartic function of the unknowns \(\{ h(\omega_k) \} \), \(\{ \beta(\omega_k) \} \), and \(y_u \). Consequently, in general, its minimization requires the use of an iterative algorithm; that is, a closed-form solution is unlikely to exist. The GAPES method uses a cyclic minimizer to minimize the criterion in (5.6.57) (see Complement 4.9.5 for a general description of cyclic minimizers). A step-by-step description of GAPES is as follows:

The GAPES Algorithm

Step 0. Obtain initial estimates of \(\{ h(\omega_k) \} \) and \(\{ \beta(\omega_k) \} \).

Step 1. Use the most recent estimates of \(\{ h(\omega_k) \} \) and \(\{ \beta(\omega_k) \} \) to estimate \(y_u \) via the minimization of (5.6.57).

Step 2. Use the most recent estimate of \(y_u \) to estimate \(\{ h(\omega_k) \} \) and \(\{ \beta(\omega_k) \} \) via the minimization of (5.6.57).

Step 3. Check the convergence of the iteration, e.g., by checking whether the relative change of the criterion between two consecutive iterations is smaller than a pre-assigned value. If no, then go to Step 1. If yes, then we have a final amplitude spectrum estimate given by \(\{ \hat{\beta}(\omega_k) \}_{k=1}^K \). If desired, this estimate can be transformed into a power spectrum estimate as explained in Complement 5.6.4.

To reduce the computational burden of the above algorithm we can run it with a value of \(K \) that is not much larger than \(N \) (e.g., \(K \geq 2N \)). After the iterations are terminated, the final spectral estimate can be evaluated on a (much) finer frequency grid, if desired.

A cyclic minimizer reduces the criterion function at each iteration (see the discussion in Complement 4.9.5). Furthermore, in the present case this reduction is strict because the solutions to the minimization problems with respect to \(y_u \) and to \(\{ h(\omega_k), \beta(\omega_k) \} \) in Steps 1 and 2 are unique under weak conditions. Combining this observation with the fact that the criterion in (5.6.57) is bounded from below by zero, we can conclude that the GAPES algorithm converges to a minimum point of (5.6.57). This minimum may be a local or global minimum, depending in part on the quality of the initial estimates of \(\{ h(\omega_k), \beta(\omega_k) \} \) used in Step 0. The initialization step, as well as the remaining steps in the GAPES algorithm, are discussed in more detail below.

Step 0. A simple way to obtain initial estimates of \(\{ h(\omega_k), \beta(\omega_k) \} \) is to apply APES to the full-data sequence with \(y_u = 0 \). This way of initializing GAPES can be interpreted as permuting Step 1 with Step 2 in the algorithm and initializing the algorithm in Step 0 with \(y_u = 0 \).

A more elaborate initialization scheme consists of using only the available data samples to build the sample covariance matrix \(\hat{R} \) in (5.6.47) needed in APES. Provided that there are enough samples so that the resulting \(\hat{R} \) matrix is nonsingular, this initialization scheme usually gives more accurate estimates of \(\{ h(\omega_k), \beta(\omega_k) \} \) than the ones obtained by setting \(y_u = 0 \) (see [STOICA, LARSSON, AND LI 2000] for details).

Step 1. We want to find the solution \(\hat{y}_u \) to the problem:

\[
\min_{y_u} \sum_{k=1}^K \sum_{t=m+1}^N \left| \hat{h}^*(\omega_k)\hat{y}(t) - \hat{\beta}(\omega_k)e^{j\omega_k t} \right|^2
\]

(5.6.58)
where \(\hat{y}(t) = [y(t), y(t-1), \ldots, y(t-m)]^T \). We will show that the above minimization problem is quadratic in \(y_u \) (for given \(\hat{h}(\omega_k) \) and \(\hat{j}(\omega_k) \)), and thus admits a closed-form solution.

Let \(\hat{h}^*(\omega_k) = [h_{0,k}, h_{1,k}, \ldots, h_{m,k}] \) and define

\[
H_k = \begin{bmatrix}
 h_{0,k} & h_{1,k} & \cdots & h_{m,k} & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & h_{0,k} & h_{1,k} & \cdots & h_{m,k}
\end{bmatrix}, \quad (N - m) \times N
\]

\[
\mu_k = \hat{j}(\omega_k) \begin{bmatrix}
 e^{j\omega_k N} \\
 \vdots \\
 e^{j\omega_k (m+1)}
\end{bmatrix}, \quad (N - m) \times 1
\]

Using this notation we can write the quadratic criterion in (5.6.58) as

\[
\sum_{k=1}^{K} \left\| H_k \begin{bmatrix}
 y(N) \\
 \vdots \\
 y(1)
\end{bmatrix} - \mu_k \right\|^2
\]

Next, we define the matrices \(A_k \) and \(U_k \) via the following equality:

\[
H_k \begin{bmatrix}
 y(N) \\
 \vdots \\
 y(1)
\end{bmatrix} = A_k y_a + U_k y_u
\]

With this notation, the criterion in (5.6.59) becomes:

\[
\sum_{k=1}^{K} \|U_k y_u - (\mu_k - A_k y_a)\|^2
\]

The minimizer of (5.6.61) with respect to \(y_u \) is readily found to be (see Result R32 in Appendix A):

\[
\hat{y}_u = \left[\sum_{k=1}^{K} U_k^* U_k \right]^{-1} \left[\sum_{k=1}^{K} U_k^* (\mu_k - A_k y_a) \right]
\]

The inverse matrix above exists under weak conditions; for details, see [Stoica, Larsson, and Li 2000].

Step 2. The solution to this step can be computed by applying the APES algorithm in Complement 5.6.4 to the data sequence made from \(y_a \) and \(\hat{y}_u \).

The description of the GAPES algorithm in now complete. Numerical experience with this algorithm, reported in [Stoica, Larsson, and Li 2000], suggests that GAPES has good performance, particularly for data consisting of a mixture of sinusoidal signals superimposed in noise.
5.6.6 Extensions of Filter Bank Approaches to Two-Dimensional Signals

The following filter bank approaches for one-dimensional (1D) signals were discussed so far in this chapter and its complements:

- the periodogram,
- the refined filter bank method,
- the Capon method, and
- the APES method

In this complement we will explain briefly how the above nonparametric spectral analysis methods can be extended to the case of two-dimensional (2D) signals. In the process, we also provide new interpretations for some of these methods, which are particularly useful when we want very simple (although somewhat heuristic) derivations of the methods in question. We will in turn discuss the extension of each of the methods listed above. Note that 2D spectral analysis finds applications in image processing, synthetic aperture radar imagery, and so forth. See [Larsson, Li, and Stoica 2003] for a review that covers the 2D methods discussed in this complement, and their application to synthetic aperture radar. The 2D extension of some parametric methods for spectral line analysis is discussed in Complement 4.9.7.

Periodogram

The 1D periodogram can be obtained by a least-squares (LS) fitting of the data \{y(t)\} to a generic 1D sinusoidal sequence \{βe^{iωt}\}:

\[
\min_β \sum_{t=1}^{N} |y(t) - βe^{iωt}|^2
\]

(5.6.63)

The solution to (5.6.63) is readily found to be

\[
β(ω) = \frac{1}{N} \sum_{t=1}^{N} y(t)e^{-iωt}
\]

(5.6.64)

The squared modulus of (5.6.64) (scaled by \(N\); see Section 5.2) gives the 1D periodogram

\[
\frac{1}{N} \left| \sum_{t=1}^{N} y(t)e^{-iωt} \right|^2
\]

(5.6.65)

In the 2D case, let \{y(t, \tilde{t})\} (for \(t = 1, \ldots, N\) and \(\tilde{t} = 1, \ldots, \tilde{N}\)) denote the available data matrix, and let \{βe^{i(ωt+\tilde{ω}\tilde{t})}\} denote a generic 2D sinusoid. The LS fit of the data to the generic sinusoid, that is:

\[
\min_β \sum_{t=1}^{N} \sum_{\tilde{t}=1}^{\tilde{N}} |y(t, \tilde{t}) - βe^{i(ωt+\tilde{ω}\tilde{t})}|^2 \iff \min_β \sum_{t=1}^{N} \sum_{\tilde{t}=1}^{\tilde{N}} |y(t, \tilde{t})e^{-i(ωt+\tilde{ω}\tilde{t})} - β|^2
\]

(5.6.66)
has the following solution:

\[
\beta(\omega, \tilde{\omega}) = \frac{1}{NN} \sum_{t=1}^{N} \sum_{\tilde{t}=1}^{\tilde{N}} y(t, \tilde{t}) e^{-i(\omega t + \tilde{\omega} \tilde{t})} \tag{5.6.67}
\]

Similarly to the 1D case, the scaled squared magnitude of (5.6.67) yields the 2D periodogram

\[
\frac{1}{NN} \left| \sum_{t=1}^{N} \sum_{\tilde{t}=1}^{\tilde{N}} y(t, \tilde{t}) e^{-i(\omega t + \tilde{\omega} \tilde{t})} \right|^2 \tag{5.6.68}
\]

which can be efficiently computed by means of a 2D FFT algorithm as described below.

The 2D FFT algorithm computes the 2D DTFT of a sequence \(\{y(t, \tilde{t})\}\) (for \(t = 1, \ldots, N; \tilde{t} = 1, \ldots, \tilde{N}\)) on a grid of frequency values defined by

\[
\omega_k = \frac{2\pi k}{N}, \quad k = 0, \ldots, N - 1
\]

\[
\tilde{\omega}_\ell = \frac{2\pi \ell}{\tilde{N}}, \quad \ell = 0, \ldots, \tilde{N} - 1
\]

The 2D FFT algorithm achieves computational efficiency by making use of the 1D FFT described in Section 2.3. Let

\[
Y(k, \ell) = \sum_{t=1}^{N} \sum_{\tilde{t}=1}^{\tilde{N}} y(t, \tilde{t}) e^{-i\left(\frac{2\pi k}{N} t + \frac{2\pi \ell}{\tilde{N}} \tilde{t}\right)}
\]

\[
= \sum_{t=1}^{N} e^{-i\frac{2\pi k}{N} t} \sum_{\tilde{t}=1}^{\tilde{N}} y(t, \tilde{t}) e^{-i\frac{2\pi \ell}{\tilde{N}} \tilde{t}} \tag{5.6.69}
\]

\[
= \sum_{t=1}^{N} V_t(\ell) e^{-i\frac{2\pi k}{N} t} \tag{5.6.70}
\]

For each \(t = 1, \ldots, N\), the sequence \(\{V_t(\ell)\}_{\ell=0}^{\tilde{N}-1}\) defined in (5.6.69) can be efficiently computed using a 1D FFT of length \(\tilde{N}\) (cf. Section 2.3). In addition, for each \(\ell = 0, \ldots, \tilde{N} - 1\), the sum in (5.6.70) can be efficiently computed using a 1D FFT of length \(N\). If \(N\) is a power of two, an \(N\)-point 1D FFT requires \(\frac{N}{2} \log_2 N\) flops. Thus, if \(N\) and \(\tilde{N}\) are powers of two, then the number of operations needed to compute \(\{Y(k, \ell)\}\) is

\[
N \tilde{N} \log_2 \tilde{N} + N \tilde{N} \log_2 N = \frac{N\tilde{N}}{2} \log_2 (N\tilde{N}) \text{ flops} \tag{5.6.71}
\]

If \(N\) or \(\tilde{N}\) is not a power of two, zero padding can be used.
Refined Filter Bank (RFB) Method

Similarly to the 1D case (see (5.3.30) or (5.7.1)), the 2D RFB method can be implemented as a multiwindowed periodogram (cf. (5.6.68)):

$$\frac{1}{K} \sum_{p=1}^{K} \sum_{i=1}^{N} \sum_{\bar{i}=1}^{\bar{N}} w_p(t, \bar{t}) \, y(t, \bar{t}) \, e^{-i(\omega t + \bar{\omega} \bar{t})}$$

(5.6.72)

where \(\{w_p(t, \bar{t})\}_{p=1}^{K} \) are the 2D Slepian data windows (or tapers). The problem left is to derive 2D extensions of the 1D Slepian tapers discussed in Section 5.3.1.

The frequency response of a 2D taper \(\{w(t, \bar{t})\} \) is given by

$$\sum_{t=1}^{N} \sum_{\bar{t}=1}^{\bar{N}} w(t, \bar{t}) e^{-i(\omega t + \bar{\omega} \bar{t})}$$

(5.6.73)

Let us define the matrices

$$W = \begin{bmatrix} w(1, 1) & \cdots & w(1, \bar{N}) \\ \vdots & \ddots & \vdots \\ w(N, 1) & \cdots & w(N, \bar{N}) \end{bmatrix}$$

$$B = \begin{bmatrix} e^{-i(\omega + \bar{\omega})} & \cdots & e^{-i(\omega + \bar{\omega} \bar{N})} \\ \vdots & \ddots & \vdots \\ e^{-i(\omega N + \bar{\omega})} & \cdots & e^{-i(\omega N + \bar{\omega} \bar{N})} \end{bmatrix}$$

and let \(\text{vec}(\cdot) \) denote the vectorization operator which stacks the columns of its matrix argument into a single vector. Also, let

$$a(\omega) = \begin{bmatrix} e^{-i\omega} \\ \vdots \\ e^{-iN\omega} \end{bmatrix}, \quad \bar{a}(\bar{\omega}) = \begin{bmatrix} e^{-i\bar{\omega}} \\ \vdots \\ e^{-i\bar{N}\bar{\omega}} \end{bmatrix}$$

(5.6.74)

and let the symbol \(\otimes \) denote the Kronecker matrix product: the Kronecker product of two matrices, \(X \) of size \(m \times n \) and \(Y \) of size \(\bar{m} \times \bar{n} \), is an \(m\bar{m} \times n\bar{n} \) matrix whose \((i, j)\) block of size \(\bar{m} \times \bar{n} \) is given by \(X_{ij} \cdot Y \), for \(i = 1, \ldots, m \) and \(j = 1, \ldots, n \), where \(X_{ij} \) denotes the \((i, j)\)th element of \(X \) (see, e.g., [HORN AND JOHNSON 1985] for the properties of \(\otimes \)). Finally, let

$$w = \text{vec}(W)$$

$$= [w(1, 1), \ldots, w(N, 1)] \cdots [w(1, \bar{N}), \ldots, w(N, \bar{N})]^T$$

(5.6.75)

and

$$b(\omega, \bar{\omega}) = \text{vec}(B)$$

$$= [e^{-i(\omega + \bar{\omega})}, \ldots, e^{-i(\omega N + \bar{\omega})}] \cdots [e^{-i(\omega + \bar{\omega} \bar{N})}, \ldots, e^{-i(\omega N + \bar{\omega} \bar{N})}]^T$$

$$= \bar{a}(\bar{\omega}) \otimes a(\omega)$$

(5.6.76)
(the last equality in (5.6.76) follows from the definition of \otimes). Using (5.6.75) and (5.6.76), we can write (5.6.73) as

$$w^* b(\omega, \bar{\omega}) \quad (5.6.77)$$

which is similar to the expression $h^* a(\omega)$ for the 1D frequency response in Section 5.3.1. Hence, the analysis in Section 5.3.1 carries over to the 2D case, with the only difference that now the matrix Γ is given by

$$\Gamma_{2D} = \Gamma_{1D} \otimes \Gamma_{1D} \quad (5.6.78)$$

where we have used the fact that $(A \otimes B)(C \otimes D) = AC \otimes BD$ for any conformable matrices (see, e.g., [Horn and Johnson 1985]). Hence,

$$\Gamma_{2D} = \Gamma_{1D} \otimes \Gamma_{1D} \quad (5.6.78)$$

where

$$\Gamma_{1D} = \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} a(\omega) a^*(\omega) d\omega, \quad \Gamma_{1D} = \frac{1}{2\pi} \int_{-\beta\pi}^{\beta\pi} \tilde{a}(\tilde{\omega}) \tilde{a}^*(\tilde{\omega}) d\tilde{\omega} \quad (5.6.79)$$

The above Kronecker product expression of Γ_{2D} implies that (see [Horn and Johnson 1985]):

(a) The eigenvalues of Γ_{2D} are equal to the products of the eigenvalues of Γ_{1D} and Γ_{1D}.

(b) The eigenvectors of Γ_{2D} are given by the Kronecker products of the eigenvectors of Γ_{1D} and Γ_{1D}.

The conclusion is that the computation of 2D Slepian tapers can be reduced to the computation of 1D Slepian tapers. We refer the reader to Section 5.3.1, and the references cited there, for details on 1D Slepian taper computation.

Capon and APES Methods

In the 1D case we can obtain the Capon and APES methods by a weighted LS fit of the data vectors $\{\tilde{y}(t)\}$, where

$$\tilde{y}(t) = [y(t), y(t-1), \ldots, y(t-m)]^T \quad (5.6.80)$$

to the vectors corresponding to a generic sinusoidal signal with frequency ω. Specifically, consider the LS problem:

$$\min_{\tilde{y}} \sum_{t=m+1}^{N} [\tilde{y}(t) - a(\omega) \beta e^{i\omega t}]^* W^{-1} [\tilde{y}(t) - a(\omega) \beta e^{i\omega t}] \quad (5.6.81)$$
where W^{-1} is a weighting matrix which is yet to be specified, and where
\[a(\omega) = [1, e^{-i\omega}, \ldots, e^{-im\omega}]^T \] (5.6.82)

Note that the definition of $a(\omega)$ in (5.6.82) differs from that of $a(\omega)$ in (5.6.74). The solution to (5.6.81) is given by
\[\beta(\omega) = \frac{a^*(\omega)W^{-1}g(\omega)}{a^*(\omega)W^{-1}a(\omega)} \] (5.6.83)

where
\[g(\omega) = \frac{1}{N-m} \sum_{t=m+1}^{N} \tilde{y}(t)e^{-i\omega t} \] (5.6.84)

For
\[W = \hat{R} \hat{\Omega}^{-1} \sum_{t=m+1}^{N} \tilde{y}(t)\tilde{y}^*(t) \] (5.6.85)

the weighted LS estimate of the amplitude spectrum in (5.6.83) reduces to the Capon method (see equation (5.6.55) in Complement 5.6.4), whereas for
\[W = \hat{R} - g(\omega)g^*(\omega) \hat{\Omega} \] (5.6.86)
equation (5.6.83) gives the APES method (see equations (5.6.48), (5.6.49), and (5.6.51) in Complement 5.6.4).

The extension of the above derivation to the 2D case is straightforward. By analogy with the 1D data vector in (5.6.80), let
\[\begin{bmatrix} y(t-k, \bar{t}-\bar{k}) \end{bmatrix} = \begin{bmatrix} y(t, \bar{t}) & \cdots & y(t, \bar{t}-\bar{m}) \\ \vdots & & \vdots \\ y(t-m, \bar{t}) & \cdots & y(t-m, \bar{t}-\bar{m}) \end{bmatrix} \] (5.6.87)

be the 2D data matrix, and let
\[\tilde{y}(t, \bar{t}) = \text{vec} \left(\begin{bmatrix} y(t-k, \bar{t}-\bar{k}) \end{bmatrix} \right) = \begin{bmatrix} y(t, \bar{t}) & \cdots & y(t, \bar{t}-\bar{m}) & \cdots & y(t, \bar{t}-\bar{m}) \\ \vdots & & \vdots & & \vdots \\ y(t-m, \bar{t}) & \cdots & y(t-m, \bar{t}-\bar{m}) \end{bmatrix}^T \] (5.6.88)

Our goal is to fit the data matrix in (5.6.87) to the matrix corresponding to a generic 2D sinusoid with frequency pair $(\omega, \bar{\omega})$, that is:
\[\begin{bmatrix} e^{i(\omega t+\bar{\omega} \bar{t})} & \cdots & e^{i(\omega t+\bar{\omega}(\bar{t}-\bar{m}))} \\ \vdots & & \vdots \\ e^{i(\omega(t-m)+\bar{\omega} \bar{t})} & \cdots & e^{i(\omega(t-m)+\bar{\omega}(\bar{t}-\bar{m}))} \end{bmatrix} \] (5.6.89)

Similarly to (5.6.88), let us vectorize (5.6.89):
\[\text{vec} \left(\begin{bmatrix} e^{i(\omega t+\bar{\omega} \bar{t})} & \cdots & e^{i(\omega t+\bar{\omega}(\bar{t}-\bar{m}))} \end{bmatrix} \right) = \beta e^{i(\omega t+\bar{\omega} \bar{t})} \text{vec} \left(\begin{bmatrix} e^{-i(\omega k+\bar{\omega} \bar{k})} \end{bmatrix} \right) = \beta e^{i(\omega t+\bar{\omega} \bar{t})} \bar{a}(\bar{\omega}) \otimes a(\omega) \] (5.6.90)
As in (5.6.76), let
\[
 b(\omega, \bar{\omega}) = a(\omega) \odot a(\omega), \quad (m + 1)(\bar{m} + 1) \times 1 \tag{5.6.91}
\]

We deduce from (5.6.88)–(5.6.91) that the 2D counterpart of the 1D weighted LS fitting problem in (5.6.81) is the following:
\[
 \min_\beta \sum_{t=m+1}^{N} \sum_{\bar{t}=m+1}^{N} \left[\hat{y}(t, \bar{t}) - \beta e^{i(\omega t + \bar{\omega} \bar{t})} b(\omega, \bar{\omega}) \right]^* W^{-1} \cdot \left[\hat{y}(t, \bar{t}) - \beta e^{i(\omega t + \bar{\omega} \bar{t})} b(\omega, \bar{\omega}) \right] \tag{5.6.92}
\]

The solution to (5.6.92) is given by:
\[
 \beta(\omega, \bar{\omega}) = \frac{b^*(\omega, \bar{\omega}) W^{-1} g(\omega, \bar{\omega})}{b^*(\omega, \bar{\omega}) W^{-1} b(\omega, \bar{\omega})} \tag{5.6.93}
\]

where
\[
 g(\omega, \bar{\omega}) = \frac{1}{(N - m)(N - \bar{m})} \sum_{t=m+1}^{N} \sum_{\bar{t}=m+1}^{N} \hat{y}(t, \bar{t}) e^{-i(\omega t + \bar{\omega} \bar{t})} \tag{5.6.94}
\]

The 2D Capon method is given by (5.6.93) with
\[
 W = \frac{1}{(N - m)(N - \bar{m})} \sum_{t=m+1}^{N} \sum_{\bar{t}=m+1}^{N} \hat{y}(t, \bar{t}) \hat{y}^*(t, \bar{t}) \triangleq \hat{R} \tag{5.6.95}
\]
whereas the 2D APES method is given by (5.6.93) with
\[
 W = \hat{R} - g(\omega, \bar{\omega}) g^*(\omega, \bar{\omega}) \triangleq \hat{Q}(\omega, \bar{\omega}) \tag{5.6.96}
\]

Note that \(g(\omega, \bar{\omega}) \) in (5.6.94) can be efficiently evaluated using a 2D FFT algorithm. However, an efficient implementation of the 2D spectral estimate in (5.6.93) is not so direct. A naive implementation may be rather time consuming owing to the large dimensions of the vectors and matrices involved, as well as the need to evaluate \(\beta(\omega, \bar{\omega}) \) on a 2D frequency grid. We refer the reader to [LARSSON, LI, AND STOICA 2003] and the references therein for a discussion of computationally efficient implementations of 2D Capon and 2D APES spectral estimation methods.
5.7 EXERCISES

Exercise 5.1: Multiwindow Interpretation of Bartlett and Welch Methods

Equation (5.3.30) allows us to interpret the RFB method as a multiwindow (or multitaper) approach. Indeed, according to equation (5.3.30), we can write the RFB spectral estimator as:

$$\hat{\phi}(\omega) = \frac{1}{K} \sum_{p=1}^{K} \sum_{t=1}^{N} w_{p,t}y(t)e^{-i\omega t}$$

(5.7.1)

where K is the number of data windows (or tapers), and where in the case of RFB the $w_{p,t}$ are obtained from the pth dominant Slepian sequence ($p = 1, \ldots, K$).

Show that the Bartlett and Welch methods can also be cast into the previous multiwindow framework. Make use of the multiwindow interpretation of these methods to compare them with one another and with the RFB approach.

Exercise 5.2: An Alternative Statistically Stable RFB Estimate

In Section 5.3.3 we developed a statistically stable RFB spectral estimator using a bank of narrow bandpass filters. In Section 5.4 we derived the Capon method, which employs a shorter filter length than the RFB. In this exercise we derive the RFB analog of the Capon approach and show its correspondence with the Welch and Blackman–Tukey estimators.

As an alternative technique to the filter in (5.3.4), consider a passband filter of shorter length:

$$h = [h_0, \ldots, h_m]^*$$

(5.7.2)

for some $m < N$. The optimal h will be the first Slepian sequence in (5.3.10) found using a Γ matrix of size $m \times m$. In this case, the filtered output

$$y_F(t) = \sum_{k=0}^{m} h_k \tilde{y}(t - k)$$

(5.7.3)

(with $\tilde{y}(t) = y(t)e^{-i\omega t}$) can be computed for $t = m + 1, \ldots, N$. The resulting RFB spectral estimate is given by

$$\hat{\phi}(\omega) = \frac{1}{N - m} \sum_{t=m+1}^{N} |y_F(t)|^2$$

(5.7.4)

(a) Show that the estimator in (5.7.4) is an unbiased estimate of $\phi(\omega)$, under the standard assumptions considered in this chapter.

(b) Show that $\hat{\phi}(\omega)$ can be written as

$$\hat{\phi}(\omega) = \frac{1}{m + 1} h^*(\omega)\hat{R} h(\omega)$$

(5.7.5)

where \hat{R} is an $(m + 1) \times (m + 1)$ Hermitian (but not Toeplitz) estimate of the covariance matrix of $y(t)$. Find the corresponding filter $h(\omega)$.
(c) Compare (5.7.5) with the Blackman–Tukey estimate in equation (5.4.22). Discuss how the two compare when \(N \) is large.

(d) Interpret \(\hat{\phi}(\omega) \) as a Welch–type estimator. What is the overlap parameter \(K \) in the corresponding Welch method?

Exercise 5.3: Another Derivation of the Capon FIR Filter

The Capon FIR filter design problem can be restated as follows:

\[
\min_h \frac{h^* R h}{|h^* a(\omega)|^2} \quad (5.7.6)
\]

Make use of the Cauchy–Schwartz inequality (Result R22 in Appendix A) to obtain a simple proof of the fact that \(h \) given by (5.4.8) is a solution to the optimization problem above.

Exercise 5.4: The Capon Filter is a Matched Filter

Compare the Capon filter design problem (5.4.7) with the following classical matched filter design.

- Filter: A causal FIR filter with an \((m + 1)\)-dimensional impulse response vector denoted by \(h \).
- Signal–in–noise model: \(y(t) = \alpha e^{i \omega t} + \varepsilon(t) \), which gives the following expression for the input vector to the filter:

\[
z(t) = \alpha a(\omega) e^{i \omega t} + e(t) \quad (5.7.7)
\]

where \(a(\omega) \) is as defined in (5.4.6), \(\alpha e^{i \omega t} \) is a sinusoidal signal,

\[
z(t) = [y(t), y(t-1), \ldots, y(t-m)]^T
\]

and \(e(t) \) is a possibly colored noise vector defined similarly to \(z(t) \). The signal and noise terms above are assumed to be uncorrelated.

- Design goal: Maximize the signal–to–noise ratio in the filter’s output,

\[
\max_h |h^* a(\omega)|^2 / h^* Q h \quad (5.7.8)
\]

where \(Q \) is the noise covariance matrix.

Show that the Capon filter is identical to the matched filter which solves the above design problem. The adjective “matched” attached to the above filter is motivated by the fact that the filter impulse response vector \(h \) depends on, and hence is “matched to”, the signal term in (5.7.7).

Exercise 5.5: Computation of the Capon Spectrum

The Capon spectral estimators are defined in equations (5.4.19) and (5.4.20). The bulk of the computation of either estimator consists in the evaluation of an expression of the form \(a^*(\omega) Q a(\omega) \), where \(Q \) is a given positive definite matrix, at
a number of points on the frequency axis. Let these evaluation points be given by
\{\omega_k = 2\pi k/M\}^{M-1}_{k=0}
for some sufficiently large \(M\) value (which we assume to be a power of two). The direct evaluation of \(a^*(\omega_k)Qa(\omega_k)\), for \(k = 0, \ldots, M - 1\), would require \(\mathcal{O}(Mm^2)\) flops. Show that an evaluation based on the eigendecomposition of \(Q\) and the use of FFT is usually much more efficient computationally.

Exercise 5.6: A Relationship between the Capon Method and MUSIC (Pseudo)Spectra

Assume that the covariance matrix \(R\), entering the Capon spectrum formula, has the expression (4.2.7) in the frequency estimation application. Then, show that

\[
\lim_{\sigma^2 \to 0} (\sigma^2 R^{-1}) = I - A(A^* A)^{-1} A^*
\]

(5.7.9)

Conclude that the limiting (for \(N \gg 1\)) Capon and MUSIC (pseudo)spectra, associated with the frequency estimation data, are close to one another, provided that all signal–to–noise ratios are large enough.

Exercise 5.7: A Capon–like Implementation of MUSIC

The Capon and MUSIC (pseudo)spectra, as the data length \(N\) increases, are given by the functions in equations (5.4.12) and (4.5.13), respectively. Recall that the columns of the matrix \(G\) in (4.5.13) are equal to the \((m \times n)\) eigenvectors corresponding to the smallest eigenvalues of the covariance matrix \(R\) in (5.4.12).

Consider the following Capon–like pseudospectrum:

\[
g_k(\omega) = a^*(\omega)R^{-k}a(\omega)\lambda_k
\]

(5.7.10)

where \(\lambda\) is the minimum eigenvalue of \(R\); the covariance matrix \(R\) is assumed to have the form (4.2.7) postulated by MUSIC. Show that, under this assumption,

\[
\lim_{k \to \infty} g_k(\omega) = a^*(\omega)GG^*a(\omega) = (4.5.13)
\]

(5.7.11)

(where the convergence is uniform in \(\omega\)). Explain why the convergence in (5.7.11) may be slow in difficult scenarios, such as those with closely spaced frequencies, and hence the use of (5.7.10) with a large \(k\) to approximate the MUSIC pseudospectrum may be computationally inefficient. However, the use of (5.7.10) for frequency estimation has a potential advantage over MUSIC that may outweigh its computational inefficiency. Find and comment on that advantage.

Exercise 5.8: Capon Estimate of the Parameters of a Single Sine Wave

Assume that the data under study consists of a sinusoidal signal observed in white noise. In such a case, the covariance matrix \(R\) is given by (cf. (4.2.7)):

\[
R = \alpha^2a(\omega_0)a(\omega_0)^* + \sigma^2I, \quad (m \times m)
\]

where \(\omega_0\) denotes the true frequency value. Show that the limiting (as \(N \to \infty\)) Capon spectrum (5.4.12) peaks at \(\omega = \omega_0\). Derive the height of the peak and show
that it is not equal to α^2 (as might have been expected) but is given by a function of $\alpha^2, m, \text{ and } \sigma^2$. Conclude that the Capon method can be used to obtain a consistent estimate of the frequency of a single sinusoidal signal in white noise (but not of the signal power).

We note that, for two or more sinusoidal signals, the Capon frequency estimates are inconsistent. Hence the Capon frequency estimator behaves somewhat similarly to the AR frequency estimation method in this respect; see Exercise 4.4.

Exercise 5.9: An Alternative Derivation of the Relationship between the Capon and AR Methods

Make use of the equation (3.9.17) relating R_{m+1} to R_m to obtain a simple proof of the formula (5.4.36) relating the Capon and AR spectral estimators.

COMPUTER EXERCISES

Tools for Filter Bank Spectral Estimation:

The text web site www.prenhall.com/stoica contains the following MATLAB functions for use in computing filter bank spectral estimates.

- **h=slepian(N,K,J)**
 Returns the first J Slepian sequences given N and K as defined in Section 5.3; h is an $N \times J$ matrix whose ith column gives the ith Slepian sequence.

- **phi=rfb(y,K,L)**
 The RFB spectral estimator. The vector y is the input data vector, L controls the frequency sample spacing of the output, and the output vector $\phi = \hat{\phi}(\omega_k)$ where $\omega_k = \frac{2\pi k}{L}$. For $K = 1$, this function implements the high resolution RFB method in equation (5.3.22), and for $K > 1$ it implements the statistically stable RFB method.

- **phi=capon(y,m,L)**
 The CM Version-1 spectral estimator in equation (5.4.19); y, L, and ϕ are as for the RFB spectral estimator, and m is the size of the square matrix \hat{R}.

Exercise C5.10: Slepian Window Sequences

We consider the Slepian window sequences for both $K = 1$ (high resolution) and $K = 4$ (lower resolution, higher statistical stability) and compare them with classical window sequences.

(a) Evaluate and plot the first 8 Slepian window sequences and their Fourier transforms for $K = 1$ and 4 and for $N = 32, 64, \text{ and } 128$ (and perhaps other values, too). Qualitatively describe the filter passbands of these first 8 Slepian sequences for $K = 1$ and $K = 4$. Which act as lowpass filters and which act as “other” types of filters?

(b) In this chapter we showed that for “large N” and $K = 1$, the first Slepian sequence is “reasonably close to” the rectangular window; compare the first
Slepian sequence and its Fourier transform for $N = 32, 64, \text{ and } 128$ to the rectangular window and its Fourier transform. How do they compare as a function of N? Based on this comparison, how do you expect the high resolution RFB PSD estimator to perform relative to the periodogram?

Exercise C5.11: Resolution of Refined Filter Bank Methods

We will compare the resolving power of the RFB spectral estimator with $K = 1$ to that of the periodogram. To do so we look at the spectral estimates of sequences which are made up of two sinusoids in noise, and where we vary the frequency difference.

Generate the sequences

$$y_\alpha(t) = 10 \sin(0.2 \cdot 2\pi t) + 5 \sin((0.2 + \alpha/N)2\pi t)$$

for various values of α near 1. Compare the resolving ability of the RFB power spectral estimate for $K = 1$ and of the periodogram for both $N = 32$ and $N = 128$. Discuss your results in relation to the theoretical comparisons between the two estimators. Do the results echo the theoretical predictions based on the analysis of Slepian sequences?

Exercise C5.12: The Statistically Stable RFB Power Spectral Estimator

In this exercise we will compare the RFB power spectral estimator when $K = 4$ to the Blackman-Tukey and Daniell estimators. We will use the narrowband and broadband processes considered in Exercise C2.22.

Broadband ARMA Process:

(a) Generate 50 realizations of the broadband ARMA process in Exercise C2.22, using $N = 256$. Estimate the spectrum using:

- The RFB method with $K = 4$.
- The Blackman-Tukey method with an appropriate window (such as the Bartlett window) and window length M. Choose M to obtain similar performance to the RFB method (you can select an appropriate value of M off-line and verify it in your experiments).
- The Daniell method with $N = 8N$ and an appropriate choice of J. Choose J to obtain similar performance to the RFB method (you can select J off-line and verify it in your experiments).

(b) Evaluate the relative performance of the three estimators in terms of bias and variance. Are the comparisons in agreement with the theoretical predictions?

Narrowband ARMA Process: Repeat parts (a) and (b) above using 50 realizations (with $N = 256$) of the narrowband ARMA process in Exercise C2.22.

Exercise C5.13: The Capon Method
In this exercise we compare the Capon method to the RFB and AR methods. Consider the sinusoidal data sequence in equation (2.9.20) from Exercise C2.19, with \(N = 64 \).

(a) We first compare the data filters corresponding to a RFB method (in which the filter is data independent) with the filter corresponding to the CM Version–1 method using both \(m = N/4 \) and \(m = N/2 - 1 \); we choose the Slepian RFB method with \(K = 1 \) and \(K = 4 \) for this comparison. For two estimation frequencies, \(\omega = 0 \) and \(\omega = 2\pi \cdot 0.1 \), plot the frequency response of the five filters (1 for \(K = 1 \) and 4 for \(K = 4 \)) shown in the first block of Figure 5.1 for the two RFB methods, and also plot the response of the two Capon filters (one for each value of \(m \); see (5.4.5) and (5.4.8)). What are their characteristic features in relation to the data? Based on these plots, discuss how data dependence can improve spectral estimation performance.

(b) Compare the two Capon estimators with the RFB estimator for both \(K = 1 \) and \(K = 4 \). Generate 50 Monte–Carlo realizations of the data and overlay plots of the 50 spectral estimates for each estimator. Discuss the similarities and differences between the RFB and Capon estimators.

(c) Compare Capon and Least Squares AR spectral estimates, again by generating 50 Monte–Carlo realizations of the data and overlaying plots of the 50 spectral estimates. Use \(m = 8, 16, \) and \(30 \) for both the Capon method and the AR model order. How do the two methods compare in terms of resolution and variance? What are your main summarizing conclusions? Explain your results in terms of the data characteristics.
CHAPTER 6
Spatial Methods

6.1 INTRODUCTION

In this chapter, we consider the problem of locating \(n \) radiating sources by using an array of \(m \) passive sensors, as shown in Figure 6.1. The emitted energy from the sources may for example be acoustic, electromagnetic, and so on, and the receiving sensors may be any transducers that convert the received energy to electrical signals. Examples of sensors include electromagnetic antennas, hydrophones, and seismometers. This type of problem finds applications in radar and sonar systems, communications, astrophysics, biomedical research, seismology, underwater surveillance (also called passive listening) and many other fields. This problem basically consists of determining how the "energy" is distributed over space (which may be air, water or the earth), with the source positions representing points in space with high concentrations of energy. Hence, it can be named a spatial spectral estimation problem. This name is also motivated by the fact that there are close ties between the source location problem and the problem of temporal spectral estimation treated in Chapters 1–5. In fact, as we will see, almost any of the methods encountered in the previous chapters may be used to derive a solution for the source location problem.

The emphasis in this chapter will be on developing a model for the output signal of the receiving sensor array. When this model is derived, the source location problem is turned into a parameter estimation problem that is quite similar to the temporal–frequency finding application discussed in Chapter 4. Hence, as we shall see, most of the methods developed for frequency estimation can be used to solve the spatial problem of source location.

The sources in Figure 6.1 generate a wave field that travels through space and is sampled, in both space and time, by the sensor array. By making analogy with temporal sampling, we may expect that the spatial sampling done by the array provides more and more information on the incoming waves as the array’s aperture increases. The array’s aperture is the space occupied by the array, as measured in units of signal wavelength. It is then no surprise that an array of sensors may provide significantly enhanced location performance as compared to the use of a single antenna (which was the system used in the early applications of the source location problem.)

The development of the array model in the next section is based on a number of simplifying assumptions. Some of these assumptions, which have a more general character, are listed below. The sources are assumed to be situated in the far field of the array. Furthermore, we assume that both the sources and the sensors in the array are in the same plane and that the sources are point emitters. In addition, it is assumed that the propagation medium is homogeneous (i.e., not dispersive) so
that the waves arriving at the array can be considered to be planar. Under these assumptions, the only parameter that characterizes the source locations is the so-called angle of arrival, or direction of arrival (DOA); the DOA will be formally defined later on.

The above assumptions may be relaxed at the expense of significantly complicating the array model. Note that in the general case of a near-field source and a three-dimensional array, three parameters are required to define the position of one source, for instance the azimuth, elevation and range. Nevertheless, if the assumption of planar waves is maintained then we can treat the case of several unknown parameters per source without complicating the model too much. However, in order to keep the discussion as simple as possible, we will only consider the case of one parameter per source.

In this chapter, it is also assumed that the number of sources n is known. The selection of n, when it is unknown, is a problem of significant importance for many applications, which is often referred to as the detection problem. For solutions to the detection problem (which is analogous to the problem of order selection in signal modeling), the reader is referred to [Wax and Kailath 1985; Fuchs 1988; Viberg, Ottersten, and Kailath 1991; Fuchs 1992] and Appendix C.

Finally, it is assumed that the sensors in the array can be modeled as linear (time-invariant) systems; and that their transfer characteristics as well as their locations are known. In short, we say that the array is assumed to be calibrated.

Figure 6.1. The setup of the source location problem.
6.2 ARRAY MODEL

We begin by considering the case of a single source. Once we establish a model of the array for this case, the general model for the multiple source case is simply obtained by the superposition principle.

Suppose that a single waveform impinges upon the array and let $x(t)$ denote the value of the signal waveform as measured at some reference point, at time t. The “reference point” may be one of the sensors in the array, or any other point placed near enough to the array so that the previously made assumption of planar wave propagation holds true. The physical signals received by the array are continuous time waveforms and hence t is a continuous variable here, unless otherwise stated.

Let τ_k denote the time needed for the wave to travel from the reference point to sensor k ($k = 1, \ldots, m$). Then the output of sensor k can be written as

$$y_k(t) = \bar{h}_k(t) * x(t - \tau_k) + \bar{e}_k(t)$$ \hspace{1cm} (6.2.1)

where $\bar{h}_k(t)$ is the impulse response of the kth sensor, “\ast” denotes the convolution operation, and $\bar{e}_k(t)$ is an additive noise. The noise may enter in equation (6.2.1) either as “thermal noise” generated by the sensor’s circuitry, as “random background radiation” impinging on the array, or in other ways. In (6.2.1), $\bar{h}_k(t)$ is assumed known and the “input” signal $x(t)$ as well as the delay τ_k are unknown.

The parameters characterizing the source location enter in (6.2.1) through f_k. Hence, the source location problem is basically one of time-delay estimation for the unknown input case.

The model equation (6.2.1) can be simplified significantly if the signals are assumed to be narrowband. In order to show how this can be done, a number of preliminaries are required.

Let $X(\omega)$ denote the Fourier transform of the (continuous–time) signal $x(t)$:

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-i\omega t} dt$$ \hspace{1cm} (6.2.2)

(which is assumed to exist and be finite for all $\omega \in (-\infty, \infty)$). The inverse transform, which expresses $x(t)$ as a linear functional of $X(\omega)$, is given by

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} d\omega$$ \hspace{1cm} (6.2.3)

Similarly, we define the transfer function $\bar{H}_k(\omega)$ of the kth sensor as the Fourier transform of $\bar{h}_k(t)$. In addition, let $\bar{Y}_k(\omega)$ and $\bar{E}_k(\omega)$ denote the Fourier transforms of the signal $\bar{y}_k(t)$ and noise $\bar{e}_k(t)$ in (6.2.1). By using this notation and the properties of the Fourier transform, $\bar{Y}_k(\omega)$ can be written as

$$\bar{Y}_k(\omega) = \bar{H}_k(\omega)X(\omega)e^{-i\omega\tau_k} + \bar{E}_k(\omega)$$ \hspace{1cm} (6.2.4)

For a general class of physical signals, such as carrier modulated signals encountered in communications, the energy spectral density of $x(t)$ has the form shown in Figure 6.2. There, ω_c denotes the center (or carrier) frequency which is usually the center of the frequency band occupied by the signal (hence its name). A signal having an
energy spectrum of the form depicted in Figure 6.2 is called a bandpass signal (by
direct analogy with the notion of bandpass filters).

For now, we assume that the received signal $x(t)$ is bandpass. It is clear from
Figure 6.2 that the spectrum of such a signal is completely defined by the spectrum
of a corresponding baseband (or lowpass) signal. The baseband spectrum, say
$|S(\omega)|^2$, corresponding to the one in Figure 6.2, is displayed in Figure 6.3. Let $s(t)$
denote the baseband signal associated with $x(t)$. The process of obtaining $x(t)$ from
$s(t)$ is called modulation, whereas the inverse process is named demodulation. In
the following we make a number of comments on the modulation and demodulation
processes, which — while not being strictly relevant to the source location problem
— may be helpful in clarifying some claims in the text.

$$|S(\omega)|^2$$

Figure 6.3. The baseband spectrum that gives rise to the bandpass spectrum in
Figure 6.2.

6.2.1 The Modulation–Transmission–Demodulation Process

The physical signal $x(t)$ is real–valued and hence its spectrum $|X(\omega)|^2$ should be
even (i.e., symmetric about $\omega = 0$; see, for instance, Figure 6.2). On the other
hand, the spectrum of the demodulated signal $s(t)$ may not be even (as indicated
in Figure 6.3) and hence \(s(t) \) may be complex-valued. The way in which this may happen is explained as follows. The transmitted signal is, of course, obtained by modulating a real-valued signal. Hence, in the spectrum of the transmitted signal the baseband spectrum is symmetric about \(\omega = \omega_c \). The characteristics of the transmission channel (or the propagation medium), however, most often are asymmetric about \(\omega = \omega_c \). This results in a received bandpass signal with an associated baseband spectrum that is not even. Hence, the demodulated received signal is complex-valued. This observation supports a claim made in Chapter 1 that complex-valued signals are not uncommon in spectral estimation problems.

The Modulation Process: If \(s(t) \) is multiplied by \(e^{j\omega_c t} \), then the Fourier transform of \(s(t) \) is translated in frequency to the right by \(\omega_c \) (assumed to be positive), as is verified by

\[
\int_{-\infty}^{\infty} s(t)e^{j\omega t} e^{-j\omega_c t} d\omega = \int_{-\infty}^{\infty} s(t)e^{-j(\omega - \omega_c)t} d\omega = S(\omega - \omega_c)
\]

(6.2.5)

The above formula describes the essence of the so-called complex modulation process. An analogous formula for random discrete-time signals is given by equation (1.4.11) in Chapter 1. The output of the complex modulation process is always complex-valued (hence the name of this form of modulation). If the modulated signal is real-valued, as \(x(t) \) is, then it must have an even spectrum. In such a case the translation of \(S(\omega) \) to the right by \(\omega_c \), as in (6.2.5), must be accompanied by a translation to the left (also by \(\omega_c \)) of the folded and complex-conjugated baseband spectrum. This process results in the following expression for \(X(\omega) \):

\[
X(\omega) = S(\omega - \omega_c) + S^*(-(\omega + \omega_c))
\]

(6.2.6)

It is readily verified that in the time domain, the real modulation process leading to (6.2.6) corresponds to taking the real part of the complex-modulated signal \(s(t)e^{j\omega_c t} \):

\[
x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} [S(\omega - \omega_c) + S^*(-\omega - \omega_c)]e^{j\omega t} d\omega
= \frac{1}{2\pi} \int_{-\infty}^{\infty} S(\omega - \omega_c)e^{j(\omega - \omega_c)t} e^{j\omega_c t} d\omega
+ \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} S(-\omega - \omega_c)e^{-j(\omega + \omega_c)t} e^{j\omega_c t} d\omega \right]^*
= s(t)e^{j\omega_c t} + [s(t)e^{j\omega_c t}]^*
\]

which gives

\[
x(t) = 2\text{Re}[s(t)e^{j\omega_c t}]
\]

(6.2.7)

or

\[
x(t) = 2\alpha(t) \cos(\omega_c t + \varphi(t))
\]

(6.2.8)
where $\alpha(t)$ and $\varphi(t)$ are the amplitude and phase of $s(t)$, respectively:

$$s(t) = \alpha(t)e^{i\varphi(t)}$$

If we let $s_I(t)$ and $s_Q(t)$ denote the real and imaginary parts of $s(t)$, then we can also write (6.2.7) as

$$x(t) = 2[s_I(t) \cos(\omega_c t) - s_Q(t) \sin(\omega_c t)]$$

(6.2.9)

We note in passing the following terminology associated with the equivalent time-domain representations (6.2.7)–(6.2.9) of a bandpass signal: $s(t)$ is called the complex envelope of $x(t)$; and $s_I(t)$ and $s_Q(t)$ are said to be the in-phase and quadrature components of $x(t)$.

The Demodulation Process: A calculation similar to (6.2.5) shows that the Fourier transform of $x(t)e^{-i\omega_c t}$ is given by

$$[S(\omega) + S^*(-\omega - 2\omega_c)]e^{-i\omega_c t}$$

which is simply $X(\omega)$ translated in frequency to the left by ω_c. The baseband (or lowpass) signal $s(t)$ can then be obtained by filtering $x(t)e^{-i\omega_c t}$ with a baseband (or lowpass) filter whose bandwidth is matched to that of $S(\omega)$. The hardware implementation of the demodulation process is presented later on, in block form, in Figure 6.4.

6.2.2 Derivation of the Model Equation

Given the background of the previous subsection, we return to equation (6.2.4) describing the output of sensor k. Since $x(t)$ is assumed to be a bandpass signal, $X(\omega)$ is given by (6.2.6) which, when inserted in (6.2.4), leads to

$$\tilde{Y}_k(\omega) = H_k(\omega)[S(\omega - \omega_c) + S^*(-\omega - \omega_c)]e^{-i\omega_c \tau_k} + \tilde{E}_k(\omega)$$

(6.2.10)

Let $\tilde{y}_k(t)$ denote the demodulated signal:

$$\tilde{y}_k(t) = \tilde{y}_k(t)e^{-i\omega_c t}$$

It follows from (6.2.10) and the previous discussion on the demodulation process that the Fourier transform of $\tilde{y}_k(t)$ is given by

$$\tilde{Y}_k(\omega) = H_k(\omega + \omega_c)[S(\omega) + S^*(-\omega - 2\omega_c)]e^{-i(\omega + \omega_c) \tau_k} + \tilde{E}_k(\omega + \omega_c)$$

(6.2.11)

When $\tilde{y}_k(t)$ is passed through a lowpass filter with bandwidth matched to $S(\omega)$, in the filter output (say, $\tilde{y}_k(t)$) the component in (6.2.11) centered at $\omega = -2\omega_c$ is eliminated along with all the other frequency components that fall in the stopband of the lowpass filter. Hence, we obtain:

$$Y_k(\omega) = H_k(\omega + \omega_c)S(\omega)e^{-i(\omega + \omega_c) \tau_k} + E_k(\omega + \omega_c)$$

(6.2.12)
where $H_k(\omega + \omega_c)$ and $E_k(\omega + \omega_c)$ denote the parts of $\hat{H}_k(\omega + \omega_c)$ and $\hat{E}_k(\omega + \omega_c)$ that fall within the lowpass filter’s passband, Ω, and where the frequency ω is restricted to Ω.

We now make the following key assumption.

The received signals are narrowband, so that $|S(\omega)|$ decreases rapidly with increasing $|\omega|$.

(6.2.13)

Under the assumption above, (6.2.12) reduces (in an approximate way) to the following equation:

$$Y_k(\omega) = H_k(\omega_c)S(\omega)e^{-i\omega_c \tau_k} + E_k(\omega + \omega_c)$$ for $\omega \in \Omega$

(6.2.14)

Because $H_k(\omega_c)$ must be different from zero, the sensor transfer function $\hat{H}_k(\omega)$ should pass frequencies near $\omega = \omega_c$ (as expected, since ω_c is the center frequency of the received signal). Also note that we do not replace $E_k(\omega + \omega_c)$ in (6.2.14) by $E_k(\omega_c)$ since this term might not be (nearly) constant over the signal bandwidth (for instance, this would be the case when the noise term in (6.2.12) contains a narrowband interference with the same center frequency as the signal).

Remark: It is sometimes claimed that (6.2.12) can be reduced to (6.2.14) even if the signals are broadband but the sensors in the array are narrowband with center frequency $\omega = \omega_c$. Under such an assumption, $|H_k(\omega + \omega_c)|$ goes quickly to zero as $|\omega|$ increases and hence (6.2.12) becomes

$$Y_k(\omega) = H_k(\omega + \omega_c)S(0)e^{-i\omega_c \tau_k} + E_k(\omega + \omega_c)$$

(6.2.15)

which apparently is different from (6.2.14). In order to obtain (6.2.14) from (6.2.12) under the previous conditions, we need to make some additional assumptions. Hence, if we further assume that the sensor frequency response is flat over the passband (so that $H_k(\omega + \omega_c) = H_k(\omega_c)$) and that the signal spectrum varies over the sensor passband (so that $S(\omega)$ differs quite a bit from $S(0)$ over the passband in question) then we can still obtain (6.2.14) from (6.2.12).

The model of the array is derived in a straightforward manner from equation (6.2.14). The time-domain counterpart of (6.2.14) is the following:

$$y_k(t) = H_k(\omega_c)e^{-i\omega_c \tau_k}s(t) + e_k(t)$$

(6.2.16)

where $y_k(t)$ and $e_k(t)$ are the inverse Fourier transforms of the corresponding terms in (6.2.14) (by a slight abuse of notation, $e_k(t)$ is associated with $E_k(\omega + \omega_c)$, not $E_k(\omega)$).

The hardware implementation required to obtain $\{y_k(t)\}$, as defined above, is indicated in Figure 6.4. Note that the scheme in Figure 6.4 generates samples of the real and imaginary components of $y_k(t)$. These samples are paired in the digital machine following the analog scheme of Figure 6.4 to obtain samples of the complex-valued signal $y_k(t)$. (We stress once more that all physical analog signals are real-valued.) Note that the continuous-time signal in (6.2.16) is bandlimited: according to (6.2.14) (and the related discussion), $Y_k(\omega)$ is approximately equal to
zero for \(\omega \notin \Omega \). Here \(\Omega \) is the support of \(S(\omega) \) (recall that the filter bandwidth is matched to the signal bandwidth), and hence it is a narrow interval. Consequently we can sample (6.2.16) with a rather low sampling frequency.

The sampled version of \(\{ y_k(t) \} \) is used by the “digital processing equipment” for the purpose of DOA estimation. Of course, the digital form of \(\{ y_k(t) \} \) satisfies an equation directly analogous to (6.2.16). In fact, to avoid a complication of notation by the introduction of a new discrete–time variable, from here on we consider that \(t \) in equation (6.2.16) takes discrete values

\[
t = 1, 2, \ldots, N
\]

(6.2.17)

(as usual, we choose the sampling period as the unit of the time axis). We remark once again that the scheme in Figure 6.4 samples the baseband signal, which may be done using lower sampling rates compared to those needed for the bandpass signal (see also [Proakis, Rader, Ling, and Nikias 1992]).

Figure 6.4. A simplified block diagram of the analog processing in a receiving array element.

Next, we introduce the so-called array transfer vector (or direction vector):

\[
a(\theta) = [H_1(\omega_c)e^{-i\omega_c \tau_1} \ldots H_m(\omega_c)e^{-i\omega_c \tau_m}]^T
\]

(6.2.18)

Here, \(\theta \) denotes the source’s direction of arrival which is the parameter of interest in our problem. Note that since the transfer characteristics and positions of the sensors in the array are assumed to be known, the vector in (6.2.18) is a function of \(\theta \) only, as indicated by notation (this fact will be illustrated shortly by means of a particular form of array). By making use of (6.2.18), we can write equation (6.2.16) as

\[
y(t) = a(\theta)s(t) + e(t)
\]

(6.2.19)

where

\[
y(t) = [y_1(t) \ldots y_m(t)]^T \\
e(t) = [e_1(t) \ldots e_m(t)]^T
\]
denote the array’s output vector and the additive noise vector, respectively. It should be noted that θ enters in (6.2.18) not only through $\{\tau_k\}$ but also through $\{H_k(\omega_c)\}$. In some cases, the sensors may be considered to be omnidirectional over the DOA range of interest, and then $\{H_k(\omega_c)\}_{k=1}^m$ are independent of θ. Sometimes, the sensors may also be assumed to be identical. Then by redefining the signal $(H(\omega_c)s(t))$ is redefined as $s(t)$ and selecting the first sensor as the reference point, the expression (6.2.18) can be simplified to the following form:

\[
a(\theta) = \left[1, e^{-i\omega_c \tau_2}, \ldots, e^{-i\omega_c \tau_m} \right]^T
\]

(6.2.20)

The extension of equation (6.2.19) to the case of multiple sources is straightforward. Since the sensors in the array were assumed to be linear elements, a direct application of the superposition principle leads to the following model of the array.

\[
\begin{align*}
y(t) &= \left[a(\theta_1) \ldots a(\theta_n)\right] \begin{bmatrix} s_1(t) \\ \vdots \\ s_n(t) \end{bmatrix} + e(t) \triangleq As(t) + e(t) \\
\theta_k &= \text{the DOA of the } k\text{th source} \\
s_k(t) &= \text{the signal corresponding to the } k\text{th source}
\end{align*}
\]

(6.2.21)

It is interesting to note that the above model equation mainly relies on the narrowband assumption (6.2.13). The planar wave assumption made in the introductory part of this chapter has not been used so far. This assumption is to be used when deriving the explicit dependence of $\{\tau_k\}$ as a function of θ, as is illustrated in the following for an array with a special geometry.

Uniform Linear Array: Consider the array of m identical sensors uniformly spaced on a line, depicted in Figure 6.5. Such an array is commonly referred to as a uniform linear array (ULA). Let d denote the distance between two consecutive sensors, and let θ denote the DOA of the signal illuminating the array, as measured (counterclockwise) with respect to the normal to the line of sensors. Then, under the planar wave hypothesis and the assumption that the first sensor in the array is chosen as the reference point, we find that

\[
\tau_k = (k-1) \frac{d \sin \theta}{c} \quad \text{for } \theta \in [-90^\circ, 90^\circ]
\]

(6.2.22)

where c is the propagation velocity of the impinging waveform (for example, the speed of light in the case of electromagnetic waves). Inserting (6.2.22) into (6.2.20) gives

\[
a(\theta) = \left[1, e^{-i\omega_c d \sin \theta/c}, \ldots, e^{-i(m-1)\omega_c d \sin \theta/c} \right]^T
\]

(6.2.23)

The restriction of θ to lie in the interval $[-90^\circ, 90^\circ]$ is a limitation of ULAs: two sources at locations symmetric with respect to the array line yield identical sets of delays $\{\tau_k\}$ and hence cannot be distinguished from one another. In practice
this ambiguity of ULAs is eliminated by using sensors that only pass signals whose DOAs are in $[-90^\circ, 90^\circ]$.

Let λ denote the signal wavelength:

$$\lambda = \frac{c}{f_c}, \quad f_c = \frac{\omega_c}{2\pi} \quad (6.2.24)$$

(which is the distance traveled by the waveform in one period of the carrier). Define

$$f_s = f_c \frac{d \sin \theta}{c} = \frac{d \sin \theta}{\lambda} \quad (6.2.25)$$

and

$$\omega_s = 2\pi f_s = \omega_c \frac{d \sin \theta}{c} \quad (6.2.26)$$

With this notation, the transfer vector (6.2.23) can be rewritten as:

$$a(\theta) = [1, e^{-i\omega_s}, \ldots, e^{-i(m-1)\omega_s}]^T \quad (6.2.27)$$

This is a Vandermonde vector which is completely analogous with the vector made from the uniform samples of the sinusoidal signal $\{e^{-i\omega_s t}\}$. Let us explore this analogy a bit further.

First, by the above analogy, ω_s is called the spatial frequency.

Second, if we were to sample a continuous–time sinusoidal signal with frequency ω_c, then, in order to avoid aliasing effects, the sampling frequency f_0 should satisfy (by the Shannon sampling theorem):

$$f_0 \geq 2f_c \quad (6.2.28)$$
or, equivalently,

$$T_0 \leq \frac{T_c}{2}$$ \hspace{1cm} (6.2.29)

where T_0 is the sampling period and T_c is the period of the continuous-time sinusoidal signal. Now, in the ULA case considered in this example, we see from (6.2.27) that the vector $a(\theta)$ is uniquely defined (i.e., there is no “spatial aliasing”) if and only if ω_s is constrained as follows:

$$|\omega_s| \leq \pi$$ \hspace{1cm} (6.2.30)

However, (6.2.30) is equivalent to

$$|f_s| \leq \frac{1}{2} \iff d|\sin \theta| \leq \frac{1}{2}$$ \hspace{1cm} (6.2.31)

Note that the above condition on d depends on θ. In particular, for a broadside source (i.e., a source with $\theta = 0^\circ$), (6.2.31) imposes no constraint on d. However, in general we have no knowledge about the DOA of the source signal. Consequently, we would like (6.2.31) to hold for any θ, which leads to the following condition on d:

$$d \leq \frac{\lambda}{2}$$ \hspace{1cm} (6.2.32)

Since we may think of the ULA as performing a uniform spatial sampling of the wavefront, equation (6.2.32) simply says that the (spatial) sampling period d should be smaller than half of the signal wavelength. By analogy with (6.2.29), this result may be interpreted as a spatial Shannon sampling theorem.

Equipped with the array model (6.2.21) derived previously, we can reduce the problem of DOA finding to that of estimating the parameters $\{\theta_k\}$ in (6.2.21). As there is a direct analogy between (6.2.21) and the model (4.2.6) for sinusoidal signals in noise, we may expect that most of the methods developed in Chapter 4 for (temporal) frequency estimation can also be used for DOA estimation. This is shown to be the case in the following sections, which briefly review the most important DOA finding methods.

6.3 NONPARAMETRIC METHODS

The methods to be described in this section do not make any assumption on the covariance structure of the data. As such, they may be considered to be “nonparametric”. On the other hand, they assume that the functional form of the array’s transfer vector $a(\theta)$ is known. Can we then still categorize them as “nonparametric methods”? The array performs a spatial sampling of the incoming wavefront, which is analogous to the temporal sampling done by the tapped-delay line implementation of a (temporal) finite impulse response (FIR) filter, see Figure 6.6. Thus, assuming that the form of $a(\theta)$ is available is no more restrictive than making the same assumption for $a(\omega)$ in Figure 6.6a. In conclusion, the functional form of $a(\theta)$ characterizes the array as a spatial sampling device, and assuming it is known
Figure 6.6. Analogy between temporal sampling and filtering and the corresponding (spatial) operations performed by an array of sensors.
Section 6.3 Nonparametric Methods

should not be considered to be parametric (or model–based) information. As already mentioned, an array for which the functional form of \(a(\theta) \) is known is said to be calibrated.

Figure 6.6 also makes an analogy between temporal FIR filtering and spatial filtering using an array of sensors. In what follows, we comment briefly on this analogy since it is of interest for the nonparametric approach to DOA finding. In the time series case, a FIR filter is defined by the relation

\[
y_F(t) = \sum_{k=0}^{m-1} h_k u(t - k) \triangleq h^*y(t)
\]

where \(\{h_k\} \) are the filter weights, \(u(t) \) is the input to the filter and

\[
\begin{align*}
h &= [h_0 \ldots h_{m-1}]^* \\
y(t) &= [u(t) \ldots u(t - m + 1)]^T
\end{align*}
\]

Similarly, we can use the spatial samples \(\{y_k(t)\}_{k=1}^m \) obtained with a sensor array to define a spatial filter:

\[
y_F(t) = h^*y(t)
\]

A temporal filter can be made to enhance or attenuate some selected frequency bands by appropriately choosing the vector \(h \). More precisely, since the filter output for a sinusoidal input \(u(t) \) is given by

\[
y_F(t) = [h^*a(\omega)]u(t)
\]

(where \(a(\omega) \) is as defined, for instance, in Figure 6.6), then by selecting \(h \) so that \(h^*a(\omega) \) is large (small) we can enhance (attenuate) the power of \(y_F(t) \) at frequency \(\omega \).

In direct analogy with (6.3.5), the (noise–free) spatially filtered output (as in (6.3.4)) of an array illuminated by a narrowband wavefront with complex envelope \(s(t) \) and DOA equal to \(\theta \) is given by (cf. (6.2.19)):

\[
y_F(t) = [h^*a(\theta)]s(t)
\]

This equation clearly shows that the spatial filter can be selected to enhance (attenuate) the signals coming from a given direction \(\theta \), by making \(h^*a(\theta) \) in (6.3.6) large (small). This observation lies at the basis of the DOA finding methods to be described in this section. All of these methods can be derived by using the filter bank approach of Chapter 5. More specifically, assume that a filter \(h \) has been found such that

(i) It passes undistorted the signals with a given DOA \(\theta \); and
(ii) It attenuates all the other DOAs different from \(\theta \) as much as possible.

\[
(i) \quad \text{It passes undistorted the signals with a given DOA } \theta; \quad \text{and} \]

\[
(ii) \quad \text{It attenuates all the other DOAs different from } \theta \text{ as much as possible.}
\]
Then, the power of the spatially filtered signal in (6.3.4),

\[E \{ |y_F(t)|^2 \} = h^*Rh, \quad R = E \{ y(t)y^*(t) \} \]

(6.3.8)

should give a good indication of the energy coming from direction \(\theta \). (Note that \(\theta \) enters in (6.3.8) via \(h \).) Hence, \(h^*Rh \) should peak at the DOAs of the sources located in the array’s viewing field when evaluated over the DOA range of interest. This fact may be exploited for the purpose of DOA finding. Depending on the specific way in which the (loose) design objectives in (6.3.7) are formulated, the above approach can lead to different DOA estimation methods. In the following, we present spatial extensions of the periodogram and Capon techniques. The RFB method of Chapter 5 may also be extended to the spatial processing case, provided the array’s geometry is such that the transfer vector \(a(\theta + \alpha) \) can be factored as

\[a(\theta + \alpha) = D(\theta)a(\alpha) \]

(6.3.9)

where \(D \) is a unitary (possibly diagonal) matrix. Without such a property, the RFB spatial filter should be computed, for each \(\theta \), by solving an \(m \times m \) eigendecomposition problem, which would be computationally prohibitive in most applications. Since it is not \textit{a priori} obvious that an arbitrary array satisfies (6.3.9), we do not consider the RFB approach in what follows.\(^1\) Finally, we remark that a spatial filter satisfying the design objectives in (6.3.7) can be viewed as forming a (reception) beam in the direction \(\theta \), as pictorially indicated in Figure 6.7. Because of this interpretation, the methods resulting from this approach to the DOA finding problem, in particular the method of the next subsection, are called \textit{beamforming methods} [Van Veen and Buckley 1988; Johnson and Dudgeon 1992].

6.3.1 Beamforming

In view of (6.3.6), condition (i) of the filter design problem (6.3.7) can be formulated as:

\[h^*a(\theta) = 1 \]

(6.3.10)

In what follows, we assume that the transfer vector \(a(\theta) \) has been normalized so that

\[a^*(\theta)a(\theta) = m \]

(6.3.11)

Note that in the case of an array with identical sensors, the condition (6.3.11) is automatically met (cf. (6.2.20)).

Regarding condition (ii) in (6.3.7), if \(y(t) \) in (6.3.8) were spatially white with \(R = I \), then we would obtain the following expression for the power of the filtered signal:

\[E \{ |y_F(t)|^2 \} = h^*h \]

(6.3.12)

which is different from zero for every \(\theta \) (note that we cannot have \(h = 0 \), because of condition (6.3.10)). This fact indicates that a spatially white signal in the array output can be considered as impinging on the array with equal power from all

\(^1\)Referring back to Chapter 5 may prove useful for understanding these comments on RFB and for several other discussions in this section.
Figure 6.7. The response magnitude $|h^*a(\theta)|$, versus θ, of a spatial filter (or beamformer). Here, $h = a(\theta_0)$, where $\theta_0 = 25^\circ$ is the DOA of interest; the array is a 10–element ULA with $d = \lambda/2$.

directions θ (in the same manner as a temporally white signal in the array output contains equal power in all frequency bands). We deduce from this observation that a natural mathematical formulation of condition (ii) would be to require that h minimizes the power in (6.3.12). Hence, we are led to the following design problem:

$$\min_h h^*h \quad \text{subject to} \quad h^*a(\theta) = 1$$ \hspace{1cm} (6.3.13)

As (6.3.13) is a special case of the optimization problem (5.4.7) in Chapter 5, we obtain the solution to (6.3.13) from (5.4.8) as:

$$h = a(\theta)/a^*(\theta)a(\theta)$$ \hspace{1cm} (6.3.14)

By making use of (6.3.11), (6.3.14) reduces to

$$h = a(\theta)/m$$ \hspace{1cm} (6.3.15)

which, when inserted in (6.3.8), gives

$$E \left\{ |y_F(t)|^2 \right\} = a^*(\theta)Ra(\theta)/m^2$$ \hspace{1cm} (6.3.16)

The theoretical covariance matrix R in (6.3.16) cannot be (exactly) determined from the available finite sample $\{y(t)\}_{t=1}^N$ and hence it must be replaced by some
estimate, such as

$$\hat{R} = \frac{1}{N} \sum_{t=1}^{N} y(t)y^*(t)$$ \hspace{1cm} (6.3.17)

By doing so and omitting the factor $1/m^2$ in (6.3.16), which has no influence on the DOA estimates, we obtain the beamforming method which determines the DOAs as summarized in the next box.

The beamforming DOA estimates are given by the locations of the n highest peaks of the function

$$a^*(\theta)\hat{R}a(\theta)$$ \hspace{1cm} (6.3.18)

When the estimated spatial spectrum in (6.3.18) is compared to the expression derived in Section 5.4 for the Blackman–Tukey periodogram, it is seen that *beamforming is a direct (spatial) extension of the periodogram*. In fact, the function in (6.3.18) may be thought of as being obtained by averaging the “spatial periodograms”

$$|a^*(\theta)y(t)|^2$$ \hspace{1cm} (6.3.19)

over the set of available “snapshots” ($t = 1, \ldots, N$).

The connection established in the previous paragraph, between beamforming and the (averaged) periodogram, suggests that the *resolution properties* of the beamforming method are analogous to those of the periodogram method. In fact, by an analysis similar to that in Chapters 2 and 5 it can be shown that the *beamwidth*\(^2\) of the spatial filter used by beamforming is approximately equal to the inverse of the array’s aperture (as measured in signal wavelengths). This sets a limit on the resolution achievable with beamforming, as indicated below (see Exercise 6.2):

Beamforming DOA resolution limit

$$\approx \text{wavelength} / \text{array “length”}$$ \hspace{1cm} (6.3.20)

Next, we note that as N increases, the sample spatial spectrum in (6.3.18) converges (under mild conditions) to (6.3.16), uniformly in θ. Hence the beamforming estimates of the DOAs converge to the n maximum points of (6.3.16), as N tends to infinity. *If the array model (6.2.21) holds* (it has not been used so far!), *the noise $e(t)$ is spatially white and has the same power σ^2 in all sensors*, and *if there is only one source* (with DOA denoted by θ_0, for convenience), then R in (6.3.16) is given by

$$R = a(\theta_0)a^*(\theta_0)P + \sigma^2I$$ \hspace{1cm} (6.3.21)

where $P = E\{|s(t)|^2\}$ denotes the signal power. Hence,

$$a^*(\theta)Ra(\theta) = |a^*(\theta)a(\theta_0)|^2P + a^*(\theta)a(\theta)\sigma^2$$

$$\leq |a^*(\theta)a(\theta)||a^*(\theta_0)a(\theta_0)|P + \sigma^2a^*(\theta)a(\theta)$$

$$= m(mP + \sigma^2)$$ \hspace{1cm} (6.3.22)

\(^2\)The beamwidth is the spatial counterpart of the temporal notion of bandwidth associated with a bandpass filter.
Section 6.3 Nonparametric Methods

where the inequality follows from the Cauchy–Schwartz lemma (see Result R22 in Appendix A) and the last equality from (6.3.11). The upper bound in (6.3.22) is achieved for \(a(\theta) = a(\theta_0) \) which, under mild conditions, implies \(\theta = \theta_0 \). In conclusion, the beamforming DOA estimate is consistent under the previous assumptions \((n = 1, \text{ etc.})\). In the general case of multiple sources, however, the DOA estimates obtained with beamforming are inconsistent. The (asymptotic) bias of these estimates may be significant if the sources are strongly correlated or closely spaced.

As explained above, beamforming is the spatial analog of the Blackman–Tukey periodogram (with a certain covariance estimate) and the Bartlett periodogram (if we interpret the \(m \)-dimensional snapshots in (6.3.19) as “subsamples” of the available “sample” \([y^T(1), \ldots, y^T(N)]^T\)). Note, however, that the value of \(m \) in the periodogram methods can be chosen by the user, whereas in the beamforming method \(m \) is fixed. This difference might seem small at first, but it has a significant impact on the consistency properties of beamforming. More precisely, it can be shown that, for instance, the Bartlett periodogram estimates of temporal frequencies are consistent under the model (4.2.7), provided that \(m \) increases without bound as the number of samples \(N \) tends to infinity (e.g., we can set \(m = N \), which yields the unmodified periodogram). For beamforming, on the other hand, the value of \(m \) (i.e., the number of array elements) is limited by physical considerations. This prevents beamforming from providing consistent DOA estimates in the multiple signal case. An additional difficulty is that in the spatial scenario the signals can be correlated with one another, whereas they are always uncorrelated in the temporal frequency estimation case. Explaining why this is so and completing a consistency analysis of the beamforming DOA estimates is left as an exercise for the reader.

Now, if the model (6.2.21) holds, if the minimum DOA separation is larger than the array beamwidth (which implies that \(m \) is sufficiently large), if the signals are uncorrelated, and if the noise is spatially white, then it is readily seen that the multiple–source spectrum (6.3.16) decouples (approximately) in \(n \) single–source spectra; this means that beamforming may provide reasonably accurate DOA estimates in such a case. In fact, in this case beamforming can be shown to provide an approximation to the nonlinear LS DOA estimation method discussed in Section 6.4.1; see the remark in that section.

6.3.2 Capon Method

The derivation of the Capon method for array signal processing is entirely analogous with the derivation of the Capon method for the time series data case developed in Section 5.4 [Capon 1969; Lacoss 1971]. The Capon spatial filter design problem is the following:

\[
\min_h h^* R_h \quad \text{subject to} \quad h^* a(\theta) = 1
\]

\(6.3.23\)

\[3\]The unmodified periodogram in an inconsistent estimator for continuous PSDs (as shown in Chapter 2). However, as asserted above, the plain periodogram estimates of discrete (or line) PSDs are consistent. Showing this is left as an exercise to the reader. (Make use of the covariance matrix model (4.2.7) with \(m \rightarrow \infty \), and the fact that the Fourier (or Vandermonde) vectors, at different frequencies, become orthogonal to one another as their dimension increases.)
Chapter 6 Spatial Methods

Hence, objective (i) in the general design problem (6.3.7) is ensured by constraining the filter exactly as in the beamforming approach (see (6.3.10)). Objective (ii) in (6.3.7), however, is accomplished in a more sound way: by requiring the filter to minimize the output power, when fed with the actual array data \(\{y(t)\} \). Hence, in the Capon approach, objective (ii) is formulated in a “data–dependent” way, whereas it is formulated independently of the data in the beamforming method. As a consequence, the goal of the Capon filter steered to a certain direction \(\theta \) is to attenuate any other signal that \(\text{actually impinges on the array} \) from a DOA \(\neq \theta \), whereas the beamforming filter pays uniform attention to \(\text{all other DOAs} \neq \theta \), even though there might be no incoming signal for many of those DOAs.

The solution to (6.3.23), as derived in Section 5.4, is given by

\[
h = \frac{R^{-1}a(\theta)}{a^*(\theta)R^{-1}a(\theta)} \tag{6.3.24}
\]

which, when inserted in the output power formula (6.3.8), leads to

\[
E \{ |y_F(t)|^2 \} = \frac{1}{a^*(\theta)R^{-1}a(\theta)} \tag{6.3.25}
\]

It only remains to replace \(R \) in (6.3.25) by a sample estimate, such as \(\hat{R} \) in (6.3.17), to obtain the Capon DOA estimator.

The Capon DOA estimates are obtained as the locations of the \(n \) largest peaks of the following function:

\[
\frac{1}{a^*(\theta)R^{-1}a(\theta)} \tag{6.3.26}
\]

There is an implicit assumption in (6.3.26) that \(\hat{R}^{-1} \) exists, but this can be ensured under weak conditions (in particular, \(\hat{R}^{-1} \) exists with probability 1 if \(N \geq m \) and if the noise term has a positive definite spatial covariance matrix). Note that the “spatial spectrum” in (6.3.26) corresponds to the “CM–Version 1” PSD in the time series case (see equation (5.4.12) in Section 5.4). A Capon spatial spectrum similar to the “CM–Version 2” PSD formula (see (5.4.17)) might also be derived, but it appears to be more complicated than the time series formula if the array is not a ULA.

Capon DOA estimation has been empirically found to possess superior performance as compared with beamforming. The common advantage of these two nonparametric methods is that they do not assume anything about the statistical properties of the data and, therefore, they can be used in situations where we lack information about these properties. On the other hand, in the cases where such information is available, for example in the form of a covariance model of the data, a nonparametric approach does not give the performance that one can achieve with a parametric (model–based) approach. The parametric approach to DOA estimation is the subject of the next section.
6.4 PARAMETRIC METHODS

In this section, we postulate the array model (6.2.21). Furthermore, the noise $e(t)$ is assumed to be spatially white with components having identical variance:

$$E \{ e(t) e^*(t) \} = \sigma^2 I$$

(6.4.1)

In addition, the signal covariance matrix

$$P = E \{ s(t) s^*(t) \}$$

(6.4.2)

is assumed to be nonsingular (but not necessarily diagonal; hence the signals may be (partially) correlated). When the signals are fully correlated, so that P is singular, they are said to be coherent. Finally, we assume that the signals and the noise are uncorrelated with one another.

Under the previous assumptions, the theoretical covariance matrix of the array output vector is given by

$$R = E \{ y(t) y^*(t) \} = APA^* + \sigma^2 I$$

(6.4.3)

There is a direct analogy between the array models above, (6.2.21) and (6.4.3), and the corresponding models encountered in our discussion of the sinusoids–in–noise case in Chapter 4. More specifically, the “nonlinear regression” model (6.2.21) of the array is analogous to (4.2.6), and the array covariance model (6.4.3) is much the same as (4.2.7). The consequence of these analogies is that all methods introduced in Chapter 4 for frequency estimation can also be used for DOA estimation without any essential modification. In the following, we briefly review these methods with a view of pointing out any differences from the frequency estimation application. When the assumed array model is a good representation of reality, the parametric DOA estimation methods reviewed in the sequel provide highly accurate DOA estimates, even in adverse situations (such as low SNR scenarios). As our main thrust in this text has been the understanding of the basic ideas behind the presented spectral estimation methodologies, we do not dwell on the details of the analysis required to establish the statistical properties of the DOA estimators discussed in the following; see, however, Appendix B for a discussion on the Cramér–Rao bound and the best accuracy achievable in DOA estimation problems. Such analysis details are available in [Stoica and Nehorai 1989a; Stoica and Nehorai 1990; Stoica and Sharman 1990; Stoica and Nehorai 1991; Vibe r and Ottersten 1991; Rao and Hari 1993]. For reviews of many of the recent advances in spatial spectral analysis, the reader can consult [Pillai 1989], [Ottersten, Viberg, Stoica, and Nehorai 1993], and [Van Trees 2002].

6.4.1 Nonlinear Least Squares Method

This method determines the unknown DOAs as the minimizing elements of the following function

$$f = \frac{1}{N} \sum_{t=1}^{N} \| y(t) - As(t) \|^2$$

(6.4.4)
Minimization with respect to \(\{s(t)\} \) gives (see Result R32 in Appendix A)

\[
s(t) = (A^* A)^{-1} A^* y(t) \quad t = 1, \ldots, N
\]

(6.4.5)

By inserting (6.4.5) into (6.4.4), we get the following concentrated nonlinear least squares (LS) criterion:

\[
f = \frac{1}{N} \sum_{t=1}^{N} \| \{I - A(A^* A)^{-1} A^*\} y(t) \|^2
\]

\[
= \frac{1}{N} \sum_{t=1}^{N} y^*(t) [I - A(A^* A)^{-1} A^*] y(t)
\]

\[
= \text{tr}\{[I - A(A^* A)^{-1} A^*]\hat{R}\}
\]

(6.4.6)

The second equality in (6.4.6) follows from the fact that the matrix \(I - A(A^* A)^{-1} A^* \) is idempotent (it is the orthogonal projector onto \(\mathcal{N}(A^*) \)), and the third from the properties of the trace operator (see Result R8 in Appendix A). It follows from (6.4.6) that the nonlinear LS DOA estimates are given by

\[
\{\hat{\theta}_k\} = \arg \max \{\theta_k\} \text{tr}[A(A^* A)^{-1} A^* \hat{R}]
\]

(6.4.7)

Remark: Similar to the frequency estimation case, it can be shown that beamforming provides an approximate solution to the previous nonlinear LS problem whenever the DOAs are known to be well separated. To see this, let us assume that we restrict the search for the maximizers of (6.4.7) to a set of well-separated DOAs (according to the \textit{a priori} information that the true DOAs belong to this set.) In such a set, \(A^* A \approx m I \) under weak conditions, and hence the function in (6.4.7) can approximately be written as:

\[
\text{tr} \left[A(A^* A)^{-1} A^* \hat{R} \right] \approx \frac{1}{m} \sum_{k=1}^{n} a^*(\theta_k) \hat{R} a(\theta_k)
\]

Paralleling the discussion following equation (4.3.16) in Chapter 4 we can show that the beamforming DOA estimates maximize the right-hand side of the above equation over the set under consideration. With this observation, the proof of the fact that the computationally efficient beamforming method provides an approximate solution to (6.4.7) in scenarios with well-separated DOAs is concluded.

One difference between (6.4.7) and the corresponding optimization problem in the frequency estimation application (see (4.3.8) in Section 4.3) lies in the fact that in the frequency estimation application only one “snapshot” of data is available, in contrast to the \(N \) snapshots available in the DOA estimation application. Another, more important difference is that for non–ULA cases the matrix \(A \) in (6.4.7) does not have the Vandermonde structure of the corresponding matrix in (4.3.8). As a consequence, several of the algorithms used to (approximately) solve the frequency estimation problem (such as the one in [Kumaresan, Scharf, and Shaw 1986] and [Bresler and Macovski 1986]) are no longer applicable to solving (6.4.7) unless the array is a ULA.
6.4.2 Yule–Walker Method

The matrix Σ, which lies at the basis of the Yule–Walker method (see Section 4.4), can be constructed from any block of R in (6.4.3) that does not include diagonal elements. To be more precise, partition the array model (6.2.21) into the following two nonoverlapping parts:

$$y(t) = \begin{bmatrix} \tilde{y}(t) \\ \hat{y}(t) \end{bmatrix} = \begin{bmatrix} \hat{A} \\ \hat{A} \end{bmatrix} s(t) + \begin{bmatrix} \tilde{e}(t) \\ \hat{e}(t) \end{bmatrix}$$ (6.4.8)

Since $\tilde{e}(t)$ and $\hat{e}(t)$ are uncorrelated (by assumption), we have

$$\Sigma \triangleq E \{ \tilde{y}(t)\tilde{y}^*(t) \} = \hat{A}P\hat{A}^*$$ (6.4.9)

which is assumed to be of dimension $M \times L$ (with $M + L = m$). For

$$M > n, \quad L > n$$ (6.4.10)

(which cannot hold unless $m > 2n$), the rank of Σ is equal to n (under weak conditions) and the $(L - n)$-dimensional null space of this matrix contains complete information about the DOAs. To see this, let G be an $L \times (L - n)$ matrix whose columns form a basis of $\mathcal{N}(\Sigma)$ (G can be obtained from the SVD of Σ; see Result R15 in Appendix A). Then we have $\Sigma G = 0$, which implies (using the fact that $\text{rank}(\hat{A}P) = n$):

$$\hat{A}^* G = 0$$

This observation can be used, in the manner of Sections 4.4 (YW) and 4.5 (MUSIC), to estimate the DOAs from a sample estimate of Σ such as

$$\hat{\Sigma} = \frac{1}{N} \sum_{t=1}^{N} \tilde{y}(t)\tilde{y}^*(t)$$ (6.4.11)

Unlike all the other methods discussed in the following, the Yule–Walker method does not impose the rather stringent condition (6.4.1). The Yule–Walker method requires only that $E \{ \tilde{e}(t)\hat{e}^*(t) \} = 0$, which is a much weaker assumption. This is a distinct advantage of the Yule–Walker method (see [VIBERG, STOICA, AND OTTERSTEN 1995] for details). Its relative drawback is that it can only be used if $m > 2n$ (all the other methods require only that $m > n$); in general, it has been found to provide accurate DOA estimates only in those applications involving large-aperture arrays.

Interestingly enough, whenever the condition (6.4.1) holds (i.e., the noise at the array output is spatially white) we can use a modification of the above technique that does not require that $m > 2n$ [FUCHS 1996]. To see this, let

$$\hat{\Sigma} \triangleq E \{ y(t)\tilde{y}^*(t) \} = R \begin{bmatrix} 0 \\ I_L \end{bmatrix} (m \times L)$$
where \(\tilde{y}(t) \) is as defined in (6.4.8); hence \(\tilde{\Gamma} \) is made from the last \(L \) columns of \(R \). By making use of the expression (6.4.3) for \(R \), we obtain

\[
\tilde{\Gamma} = AP\tilde{A}^* + \sigma^2 \begin{bmatrix} 0 \\ I_L \end{bmatrix}
\]

(6.4.12)

Because the noise terms in \(y(t) \) and \(\tilde{y}(t) \) are correlated, the noise is still present in \(\tilde{\Gamma} \) (as can be seen from (6.4.12)), and hence \(\tilde{\Gamma} \) is not really a YW matrix. Nevertheless, \(\tilde{\Gamma} \) has a property similar to that of the YW matrix \(\Gamma \) above, as we now show.

First observe that

\[
\tilde{\Gamma}^*\tilde{\Gamma} = \tilde{A}(2\sigma^2P + PA^*AP)\tilde{A}^* + \sigma^4I
\]

The matrix \(2\sigma^2P + PA^*AP \) is readily shown to be nonsingular if and only if \(P \) is nonsingular. As \(\tilde{\Gamma}^*\tilde{\Gamma} \) has the same form as \(R \) in (6.4.3), we conclude that (for \(m \geq L > n \)) the \(L \times (L - n) \) matrix \(\tilde{G} \), whose columns are the eigenvectors of \(\tilde{\Gamma}^*\tilde{\Gamma} \) that correspond to the multiple minimum eigenvalue of \(\sigma^4 \), satisfies

\[
\tilde{A}^*\tilde{G} = 0
\]

(6.4.13)

The columns of \(\tilde{G} \) are also equal to the \((L - n)\) right singular vectors of \(\tilde{\Gamma} \) corresponding to the multiple minimum singular value of \(\sigma^2 \). For numerical precision reasons \(\tilde{G} \) should be computed from the singular vectors of \(\tilde{\Gamma} \) rather than from the eigenvectors of \(\tilde{\Gamma}^*\tilde{\Gamma} \) (see Section A.8.2).

Because (6.4.13) has the same form as \(\tilde{A}^*G = 0 \), we can use (6.4.13) for subspace–based DOA estimation in exactly the same way as we used \(\tilde{A}^*G = 0 \) (see equation (4.5.6) and the discussion following it in Chapter 4). Note that for the method based on \(\tilde{\Gamma} \) to be usable, we require only that

\[
m \geq L > n
\]

instead of the more restrictive conditions \(\{m - L > n, \ L > n\} \) (see (6.4.10)) required in the YW method based on \(\Gamma \). Observe that (6.4.14) can always be satisfied if \(m > n \), whereas (6.4.10) requires that \(m > 2n \). Finally, note that \(\Gamma \) is made from the first \(m - L \) rows of \(\tilde{\Gamma} \), and hence \(\Gamma \) contains “less information” than \(\tilde{\Gamma} \); this provides a quick intuitive explanation why the method based on \(\tilde{\Gamma} \) requires more sensors to be applicable than does the method based on \(\Gamma \).

6.4.3 Pisarenko and MUSIC Methods

The MUSIC algorithm (with Pisarenko as a special case), developed in Section 4.5 for the frequency estimation application, can be used without modification for DOA estimation [BIENVENU 1979; SCHMIDT 1979; BARABELL 1983]. There are only minor differences between the DOA and the frequency estimation applications of MUSIC, as pointed out below.

First, in the spatial application we can choose between the Spectral and Root MUSIC estimators only in the case of a ULA. For most of the other array geometries, only Spectral MUSIC is applicable.

Second, the standard MUSIC algorithm (4.5.15) breaks down in the case of coherent signals, as in that case the rank condition (4.5.1) no longer holds. (Such
Section 6.4 Parametric Methods

285

a situation cannot happen in the frequency estimation application, because P is always (diagonal and) nonsingular there.) However, the modified MUSIC algorithm (outlined at the end of Section 4.5) can be used when the signals are coherent provided that the array is uniform and linear. This is so because the property (4.5.23), on which the modified MUSIC algorithm is based, continues to hold even if P is singular (see Exercise 6.14).

6.4.4 Min–Norm Method

There is no essential difference between the use of the Min–Norm method for frequency estimation and for DOA finding in the noncoherent case. As for MUSIC, in the DOA estimation application the Min–Norm method should not be used in scenarios with coherent signals, and the Root Min–Norm algorithm can only be used in the ULA case [KUMARESAN AND TUFTS 1983]. In addition, the key property that the true DOAs are asymptotically the unique solutions of the Min–Norm estimation problem holds in the ULA case (see Complement 6.5.1) but not necessarily for other array geometries.

6.4.5 ESPRIT Method

In the ULA case, ESPRIT can be used for DOA estimation exactly as it is for frequency estimation (see Section 4.7). In the non–ULA case ESPRIT can be used only in certain situations. More precisely, and unlike the other algorithms in this section, ESPRIT can be used for DOA finding only if the array at hand contains two identical subarrays which are displaced by a known displacement vector [ROY AND KAILATH 1989; STOICA AND NEHORAI 1991]. Mathematically, this condition can be formulated as follows. Let \tilde{m} denote the number of sensors in the two twin subarrays, and let A_1 and A_2 denote the sub–matrices of A corresponding to these subarrays. Since the sensors in the array are arbitrarily numbered, there is no restriction to assume that A_1 is made from the first \tilde{m} rows in A and A_2 from the last \tilde{m}:

$$A_1 = [I_{\tilde{m}} \ 0]A \quad (\tilde{m} \times n)$$

$$A_2 = [0 \ \ I_{\tilde{m}}]A \quad (\tilde{m} \times n)$$

(here $I_{\tilde{m}}$ denotes the $\tilde{m} \times \tilde{m}$ identity matrix). Note that the two subarrays overlap if $\tilde{m} > m/2$; otherwise, they might not overlap. If the array is purposely built to meet ESPRIT’s subarray condition, then normally $\tilde{m} = m/2$ and the two subarrays are nonoverlapping.

Mathematically, the ESPRIT requirement means that

$$A_2 = A_1 D$$

(6.4.17)

where

$$D = \begin{bmatrix}
 e^{-i\omega_c \tau(\theta_1)} & 0 & & \\
 0 & \ddots & & \\
 & & 0 & e^{-i\omega_c \tau(\theta_n)}
\end{bmatrix}$$

(6.4.18)
Chapter 6 Spatial Methods

and where \(\tau(\theta) \) denotes the time needed by a wavefront impinging upon the array from the direction \(\theta \) to travel between (the “reference points” of) the two twin subarrays. If the angle of arrival \(\theta \) is measured with respect to the perpendicular of the line between the subarrays’ center points, then a calculation similar to the one that led to (6.2.22) shows that:

\[
\tau(\theta) = \frac{d \sin(\theta)}{c} \tag{6.4.19}
\]

where \(d \) is the distance between the two subarrays. Hence, estimates of the DOAs can readily be derived from estimates of the diagonal elements of \(D \) in (6.4.18).

Equations (6.4.17) and (6.4.18) are basically equivalent to (4.7.3) and (4.7.4) in Section 4.7, and hence the ESPRIT DOA estimation method is analogous to the ESPRIT frequency estimator.

The ESPRIT DOA estimation method, like the ESPRIT frequency estimator, determines the DOA estimates by solving an \(n \times n \) eigenvalue problem. There is no search involved, in contrast to the previous methods; in addition, there is no problem of separating the “signal DOAs” from the “noise DOAs”, once again in contrast to the Yule–Walker, MUSIC and Min–Norm methods. However, unlike these other methods, ESPRIT can only be used with the special array configuration described earlier. In particular, this requirement limits the number of resolvable sources at \(n < m \) (as both \(A_1 \) and \(A_2 \) must have full column rank). Note that the two subarrays do not need to be calibrated although they need to be identical, and ESPRIT may be sensitive to differences between the two subarrays in the same way as Yule–Walker, MUSIC, and Min–Norm are sensitive to imperfections in array calibration. Finally, note that similar to the other DOA finding algorithms presented in this section (with the exception of the NLS method), ESPRIT is not usable in the case of coherent signals.

6.5 COMPLEMENTS

6.5.1 On the Minimum Norm Constraint

As explained in Section 6.4.4 the Root Min–Norm (temporal) frequency estimator, introduced in Section 4.6, can without modification be used for DOA estimation with a uniform linear array. Using the definitions and notation in Section 4.6, let \(\hat{g} = [\hat{g}_1 \ldots \hat{g}_{m-1}]^T \) denote the vector in \(\mathcal{R}(\hat{G}) \) that has first element equal to one and minimum Euclidean norm. Then, the Root Min–Norm DOA estimates are obtained from the roots of the polynomial

\[
\hat{g}(z) = 1 + \hat{g}_1 z^{-1} + \cdots + \hat{g}_{m-1} z^{-(m-1)} \tag{6.5.1}
\]

which are located nearest the unit circle. (See the description of Min–Norm in Section 4.6.) As \(N \) increases, the polynomial in (6.5.1) approaches

\[
g(z) = 1 + g_1 z^{-1} + \cdots + g_{m-1} z^{-(m-1)} \tag{6.5.2}
\]

where \(g = [g_1 \ldots g_{m-1}]^T \) is the minimum–norm vector in \(\mathcal{R}(G) \). In this complement we show that (6.5.2) has \(n \) zeroes at \(\{e^{-i\omega_k}\}_{k=1}^n \) (the so-called “signal zeroes”) and \((m - n - 1) \) extraneous zeroes situated strictly inside the unit circle.
Section 6.5 Complements

(287)

(The latter are normally called "noise zeroes"); here \(\{\omega_k\}_{k=1}^{n}\) are either temporal frequencies, or spatial frequencies as in (6.2.27).

Let \(g = [1, g_1, \ldots, g_{m-1}]^T \in \mathcal{R}(G)\). Then (4.2.4) and (4.5.6) imply that

\[
a^*(\omega_k) \begin{bmatrix} 1 \\ g_1 \\ \vdots \\ g_{m-1} \end{bmatrix} = 0 \quad \iff \quad 1 + g_1 e^{i\omega_k} + \cdots + g_{m-1} e^{i(m-1)\omega_k} = 0 \quad \text{for } k = 1, \ldots, n \quad (6.5.3)
\]

Hence, any polynomial \(g(z)\) whose coefficient vector belongs to \(\mathcal{R}(G)\) must have zeroes at \(\{e^{-i\omega_k}\}_{k=1}^{n}\), and thus it can be factored as:

\[
g(z) = g_s(z)g_n(z) \quad (6.5.4)
\]

where

\[
g_s(z) = \prod_{k=1}^{n} (1 - e^{-i\omega_k}z^{-1})
\]

The \((m-n-1)\)-degree polynomial \(g_n(z)\) in (6.5.4) contains the noise zeroes, and at this point is arbitrary. (As the coefficients of \(g_n(z)\) vary, the vectors made from the corresponding coefficients of \(g(z)\) span \(\mathcal{R}(G)\).)

Next, assume that \(g\) satisfies the minimum norm constraint:

\[
\sum_{k=0}^{m-1} |g_k|^2 = \min \quad (g_0 \neq 1) \quad (6.5.5)
\]

By using Parseval’s theorem (see (1.2.6)), we can rewrite (6.5.5) as follows:

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} |g(\omega)|^2 \, d\omega = \min \quad \iff \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} |g_n(\omega)|^2 \, |g_s(\omega)|^2 \, d\omega = \min
\]

(where, by convention, \(g(\omega) = g(z)\big|_{z=e^{i\omega}}\)). Since \(g_s(z)\) in (6.5.4) is fixed, the minimization in (6.5.6) is over \(g_n(z)\).

To proceed, some additional notation is required. Let

\[
g_n(z) = 1 + \alpha_1 z^{-1} + \cdots + \alpha_{m-n-1} z^{-(m-n-1)}
\]

and let \(y(t)\) be a signal whose PSD is equal to \(|g_s(\omega)|^2\); hence, \(y(t)\) is an \(n\)th-order MA process. By making use of (1.3.9) and (1.4.9), along with the above notation, we can write (6.5.6) in the following equivalent form:

\[
\min_{\{\alpha_k\}} \mathbb{E} \left\{ |y(t) + \alpha_1 y(t-1) + \cdots + \alpha_{m-n-1} y(t-m+n+1)|^2 \right\} \quad (6.5.7)
\]

The minimizing coefficients \(\{\alpha_k\}\) are given by the solution to a Yule–Walker system of equations similar to (3.4.6). (To show this, parallel the calculation leading to (3.4.8) and (3.4.12).) Since the covariance matrix, of any finite dimension, associated with a moving average signal is positive definite, it follows that:
The coefficients \(\{\alpha_k\} \) and hence \(\{g_k\} \), are uniquely determined by the minimum norm constraint.

The polynomial \(g_n(z) \) whose coefficients are obtained from (6.5.7) has all its zeroes strictly inside the unit circle (cf. Exercise 3.8).

which was to be proven.

Thus, the choice of \(\hat{g} \) in the Min–Norm algorithm makes it possible to separate the signal zeroes from the noise zeroes, at least for data samples that are sufficiently long. (For small or medium-sized samples, it might happen that noise zeroes get closer to the unit circle than signal zeroes, which would lead to spurious frequency or DOA estimates.)

As a final remark, note from (6.5.6) that there is little reason for \(g_n(z) \) to have zeroes in the sectors where the signal zeroes are present (since the integrand in (6.5.6) is already quite small for \(\omega \) values close to \(\{\omega_k\}_{k=1}^n \)). Hence, we can expect the extraneous zeroes to be more–or–less uniformly distributed inside the unit circle, in sectors which do not contain signal zeroes (see, e.g., [KUMARESAN 1983]).

For more details on the topic of this complement, see [TUFTS AND KUMARESAN 1982; KUMARESAN 1983].

6.5.2 NLS Direction-of-Arrival Estimation for a Constant-Modulus Signal

The NLS estimation of the DOA of a single signal impinging on an array of sensors is obtained by minimizing the criterion (6.4.4) with \(n = 1 \),

\[
\sum_{t=1}^{N} \|y(t) - a(\theta)s(t)\|^2
\]

(6.5.8)

with respect to \(\{s(t)\}_{t=1}^{N} \) and \(\theta \). The result is obtained from equation (6.4.7), which for \(n = 1 \) reduces to:

\[
\hat{\theta} = \arg \max_{\theta} a^*(\theta)\hat{R}a(\theta) = \arg \max_{\theta} \sum_{t=1}^{N} |a^*(\theta)y(t)|^2
\]

(6.5.9)

This, of course, is nothing but the beamforming DOA estimate for \(n = 1 \) (see (6.3.18)). Hence, as expected (see the Remark following (6.4.7) and also (4.3.11)), the NLS estimate of the DOA of an arbitrary signal coincides with the beamforming estimate.

In this complement we will solve the NLS direction-of-arrival estimation problem in (6.5.8), under the assumption that \(\{s(t)\} \) is a constant-modulus signal:

\[
s(t) = \alpha e^{i\phi(t)}
\]

(6.5.10)

where \(\alpha > 0 \) denotes the unknown signal amplitude and \(\{\phi(t)\} \) is its unknown phase sequence. We assume \(\alpha > 0 \) to avoid a phase ambiguity in \(\{\phi(t)\} \). Signals of this type are often encountered in communication applications with phase-modulated waveforms.
Section 6.5 Complements

Inserting (6.5.10) in (6.5.8) yields the following criterion which is to be minimized with respect to \(\{ \phi(t) \}_{t=1}^N, \alpha \), and \(\theta \):

\[
\sum_{t=1}^N \left\| y(t) - \alpha e^{i\phi(t)} a(\theta) \right\|^2 = \sum_{t=1}^N \left\{ \|y(t)\|^2 + \alpha^2 \|a(\theta)\|^2 - 2\alpha \text{Re} \left[a^*(\theta)y(t)e^{-i\phi(t)} \right] \right\}
\]
(6.5.11)

It follows from (6.5.11) that the NLS estimate of \(\{ \phi(t) \}_{t=1}^N \) is given by the maximizer of the function:

\[
\text{Re} \left[a^*(\theta)y(t)e^{-i\phi(t)} \right] = \text{Re} \left[|a^*(\theta)y(t)| e^{i \arg(a^*(\theta)y(t))} e^{-i\phi(t)} \right] = |a^*(\theta)y(t)| \cos \left(\arg(a^*(\theta)y(t)) - \phi(t) \right)
\]
(6.5.12)

which is easily seen to be

\[
\hat{\phi}(t) = \arg \left[a^*(\theta)y(t) \right], \quad t = 1, \ldots, N
\]
(6.5.13)

From (6.5.11)–(6.5.13), along with the assumption that \(\|a(\theta)\| \) is constant (which is also used to derive (6.5.9)), we can readily verify that the NLS estimate of \(\theta \) for the constant modulus signal case is given by:

\[
\hat{\theta} = \arg \max_{\theta} \sum_{t=1}^N |a^*(\theta)y(t)|
\]
(6.5.14)

Finally, the NLS estimate of \(\alpha \) is obtained by minimizing (6.5.11) (with \(\{ \phi(t) \} \) and \(\theta \) replaced by (6.5.13) and (6.5.14), respectively):

\[
\hat{\alpha} = \frac{1}{N \|a(\theta)\|^2} \sum_{t=1}^N \left| a^*(\hat{\theta})y(t) \right|
\]
(6.5.15)

Remark: It follows easily from the above derivation that if \(\alpha \) is known (which may be the case when the emitted signal has a known amplitude that is not significantly distorted during propagation), the NLS estimates of \(\theta \) and \(\{ \phi(t) \} \) are still given by (6.5.13) and (6.5.14).

Interestingly, the only difference between the beamformer for an arbitrary signal, (6.5.9), and the beamformer for a constant-modulus signal, (6.5.14), is that the “squaring operation” is missing in the latter. This difference is somewhat analogous to the one pointed out in Complement 4.9.4, even though the models considered there and in this complement are rather different from one another.

For more details on the subject of this complement, see [STOICA AND BESSON 2000] and its references.
Chapter 6 Spatial Methods

6.5.3 Capon Method: Further Insights and Derivations

The spatial filter (or beamformer) used in the beamforming method is data-independent. In contrast, the Capon spatial filter is data-dependent, or data-adaptive; see equation (6.3.24). It is this data-adaptivity that confers to the Capon method better resolution and significantly reduced leakage compared with the beamforming method.

An interesting fact about the Capon method for temporal or spatial spectral analysis is that it can be derived in several ways. The standard derivation is given in Section 6.3.2. This complement presents four additional derivations of the Capon method, which are not as well-known as the standard derivation. Each of the derivations presented here is based on an intuitively appealing design criterion. Collectively, they provide further insights into the features and possible interpretations of the Capon method.

APES-Like Derivation

Let \(\theta \) denote a generic DOA, and consider equation (6.2.19):

\[
y(t) = a(\theta)s(t) + e(t)
\]

that describes the array output, \(y(t) \), as a sum of a possible signal component impinging from the generic DOA \(\theta \) and a term \(e(t) \) that includes noise and any other signals with DOAs different from \(\theta \). Let \(\sigma_s^2 \) denote the power of the signal \(s(t) \) in (6.5.16), which is the main parameter we want to estimate: \(\sigma_s^2 \) as a function of \(\theta \) provides an estimate of the spatial spectrum. Let us estimate the spatial filter vector, \(h \), as well as the signal power, \(\sigma_s^2 \), by solving the following least squares (LS) problem:

\[
\min_{h, \sigma_s^2} E \{ |h^*y(t) - s(t)|^2 \}
\]

Of course, the signal \(s(t) \) in (6.5.17) is not known. However, as we show below, (6.5.17) does not depend on \(s(t) \) but only on its power \(\sigma_s^2 \), so the fact that \(s(t) \) in (6.5.17) is unknown does not pose a problem. Also, note that the vector \(h \) in (6.5.17) is not constrained, as it is in (6.3.24).

Assuming that \(s(t) \) in (6.15) is uncorrelated with the noise-plus-interference term \(e(t) \), we obtain:

\[
E \{ y(t)s^*(t) \} = a(\theta)\sigma_s^2
\]

which implies that

\[
E \{ |h^*y(t) - s(t)|^2 \} = h^*Rh - h^*a(\theta)\sigma_s^2 - a^*(\theta)ha_s^2 + \sigma_s^2
\]

\[
= [h - \sigma_s^2R^{-1}a(\theta)]^* R [h - \sigma_s^2R^{-1}a(\theta)] + \sigma_s^2 [1 - \sigma_s^2a^*(\theta)R^{-1}a(\theta)]
\]

(6.5.19)

Omitting the trivial solution \((h = 0, \sigma_s^2 = 0) \), the minimization of (6.5.19) with
Section 6.5 Complements

respect to h and σ_s^2 yields:

$$h = \frac{R^{-1}a(\theta)}{a^*(\theta)R^{-1}a(\theta)} \quad (6.5.20)$$

$$\sigma_s^2 = \frac{1}{a^*(\theta)R^{-1}a(\theta)} \quad (6.5.21)$$

which coincides with the Capon solution in (6.3.24) and (6.3.25). To obtain σ_s^2 in (6.5.21) we used the fact that the criterion in (6.5.19) should be greater than or equal to zero for any h and σ_s^2.

The LS fitting criterion in (6.5.17) is reminiscent of the APES approach discussed in Complement 5.6.4. The use of APES for array processing is discussed in Complement 6.5.6, under the assumption that $\{s(t)\}$ is an unknown deterministic sequence. Interestingly, using the APES design principle in the above manner, under the assumption that the signal $s(t)$ in (6.5.16) is stochastic, leads to the Capon method.

Inverse-Covariance Fitting Derivation

The covariance matrix of the signal term $a(\theta)s(t)$ in (6.5.16) is given by

$$\sigma_s^2 a(\theta)a^*(\theta) \quad (6.5.22)$$

We can obtain the beamforming method (see Section 6.3.1) by fitting (6.5.22) to R in a least squares sense:

$$\min_{\sigma_s^2} \|R - \sigma_s^2 a(\theta)a^*(\theta)\|^2 = \min_{\sigma_s^2} \left\{ \text{constant} + \sigma_s^4 |a^*(\theta)a(\theta)|^2 - 2 \sigma_s^2 a^*(\theta)Ra(\theta) \right\} \quad (6.5.23)$$

As $a^*(\theta)a(\theta) = m$ (by assumption; see (6.3.11)), it follows from (6.5.23) that the minimizing σ_s^2 is given by:

$$\sigma_s^2 = \frac{1}{m^2} a^*(\theta)Ra(\theta) \quad (6.5.24)$$

which coincides with the beamforming estimate of the power coming from DOA θ (see (6.3.16)).

To obtain the Capon method by following a similar idea to the one above, we fit the pseudoinverse of (6.5.22) to the inverse of R:

$$\min_{\sigma_s^2} \|R^{-1} - [\sigma_s^2 a(\theta)a^*(\theta)]^{\dagger}\|^2 \quad (6.5.25)$$

It is easily verified that the Moore–Penrose pseudoinverse of $\sigma_s^2 a(\theta)a^*(\theta)$ is given by

$$[\sigma_s^2 a(\theta)a^*(\theta)]^{\dagger} = \frac{1}{\sigma_s^2} a(\theta)a^*(\theta) \quad \frac{1}{\sigma_s^2} a(\theta)a^*(\theta) \quad (6.5.26)$$
This follows, for instance, from (A.8.8) and the fact that

\[
\sigma_s^2 a(\theta) a^*(\theta) = [\sigma_s^2 \|a(\theta)\|^2] \begin{bmatrix} a(\theta) \\ \|a(\theta)\| \end{bmatrix} \begin{bmatrix} a^*(\theta) \\ \|a(\theta)\| \end{bmatrix}^* \triangleq \sigma uv^* \quad (6.5.27)
\]

is the singular value decomposition (SVD) of \(\sigma_s^2 a(\theta) a^*(\theta)\). Inserting (6.5.26) into (6.5.25) leads to the problem

\[
\min_{\sigma_s^2} \left\| R^{-1} - \frac{1}{\sigma_s^2} \frac{a(\theta) a^*(\theta)}{m^2} \right\|^2 \quad (6.5.28)
\]

whose solution, by analogy with (6.5.23)–(6.5.24), is given by the Capon estimate of the signal power:

\[
\sigma_s^2 = \frac{1}{a^*(\theta) R^{-1} a(\theta)} \quad (6.5.29)
\]

It is worth noting that in the present covariance fitting-based derivation, the signal power \(\sigma_s^2\) is estimated directly without the need to first obtain an intermediate spatial filter \(h\). The remaining two derivations of the Capon method are of the same type.

Weighted Covariance Fitting Derivation

The least squares criterion in (6.5.23), which yields the beamforming method, does not take into account the fact that the sample estimates of the different elements of the data covariance matrix do not have the same accuracy. It was shown, e.g., in [Ottersten, Stoica, and Roy 1998] (and its references) that the following weighted LS covariance fitting criterion takes the accuracies of the different elements of the sample covariance matrix into account in an optimal manner:

\[
\min_{\sigma_s^2} \left\| R^{-1/2} \left[R - \sigma_s^2 a(\theta) a^*(\theta) \right] R^{-1/2} \right\|^2 \quad (6.5.30)
\]

Here, \(R^{-1/2}\) denotes the Hermitian square root of \(R^{-1}\). By a straightforward calculation, we can rewrite the criterion in (6.5.30) in the following equivalent form:

\[
\left\| I - \sigma_s^2 R^{-1/2} a(\theta) a^* R^{-1/2} \right\|^2 = constant - 2 \sigma_s^4 a^*(\theta) R^{-1} a(\theta) + \sigma_s^4 \left[a^*(\theta) R^{-1} a(\theta) \right]^2 \quad (6.5.31)
\]

The minimization of (6.5.31) with respect to \(\sigma_s^2\) yields:

\[
\sigma_s^2 = \frac{1}{a^*(\theta) R^{-1} a(\theta)}
\]

which coincides with the Capon solution in (6.3.26).
Constrained Covariance Fitting Derivation

The final derivation of the Capon method that we will present is also based on a covariance fitting criterion, but in a manner which is quite different from those in the previous two derivations. Our goal here is still to obtain the signal power by fitting $\sigma_s^2 a(\theta)a^*(\theta)$ to R, but now we explicitly impose the condition that the residual covariance matrix, $R - \sigma_s^2 a(\theta)a^*(\theta)$, should be positive semidefinite, and we “minimize” the approximation (or fitting) error by choosing the maximum possible value of σ_s^2 for which this condition holds. Mathematically, σ_s^2 is the solution to the following constrained covariance fitting problem:

$$\max_{\sigma_s^2} \sigma_s^2 \quad \text{subject to} \quad R - \sigma_s^2 a(\theta)a^*(\theta) \geq 0$$

(6.5.32)

The solution to (6.5.32) can be obtained in the following way, which is a simplified version of the original derivation in [Marzetta 1983]. Let R_1 again denote the Hermitian square root of R_1. Then, the following equivalences can be readily verified:

$$R_1 = \sigma_s^2 a(\theta)a^*(\theta) \quad \text{subject to} \quad R - \sigma_s^2 a(\theta)a^*(\theta) \geq 0$$

(6.5.33)

The third line in equation (6.5.33) follows from the fact that the eigenvalues of the matrix $I - \sigma_s^2 R^{-1/2} a(\theta)a^*(\theta) R^{-1/2}$ are equal to one minus the eigenvalues of $\sigma_s^2 R^{-1/2} a(\theta)a^*(\theta) R^{-1/2}$ (see Result R5 in Appendix A), and the latter eigenvalues are given by $\sigma_s^2 a^*(\theta) R^{-1} a(\theta)$ (which is the trace of the previous matrix) along with $(m - 1)$ zeroes. From (6.5.33) we can see that the Capon spectral estimate is the solution to the problem (6.5.32) as well.

The equivalence between the formulation of the Capon method in (6.5.32) and the standard formulation in Section 6.3.2 can also be shown as follows. The constraint in (6.5.32) is equivalent to the requirement that

$$h^* [R - \sigma_s^2 a(\theta)a^*(\theta)] h \geq 0 \quad \text{for any} \quad h \in \mathbb{C}^{m \times 1}$$

(6.5.34)

which, in turn, is equivalent to

$$h^* [R - \sigma_s^2 a(\theta)a^*(\theta)] h \geq 0$$

for any h such that $h^* a(\theta) = 1$

(6.5.35)

Clearly, (6.5.34) implies (6.5.35). To also show that (6.5.35) implies (6.5.34), let h be such that $h^* a(\theta) = \alpha \neq 0$; then h/α^* satisfies $(h/\alpha^*)^* a(\theta) = 1$ and hence, by the assumption that (6.5.35) holds,

$$\frac{1}{|\alpha|^2} h^* [R - \sigma_s^2 a(\theta)a^*(\theta)] h \geq 0$$
which shows that (6.5.35) implies (6.5.34) for any h satisfying $h^* a(\theta) \neq 0$. Now, if h is such that $h^* a(\theta) = 0$ then

$$h^* \left[R - \sigma^2 a(\theta)a^*(\theta) \right] h = h^* Rh \geq 0$$

because $R > 0$ by assumption. This observation concludes the proof that (6.5.34) is equivalent to (6.5.35).

Using the equivalence of (6.5.34) and (6.5.35), we can rewrite (6.5.34) as follows

$$h^* Rh \geq \sigma^2_s$$

for any h such that $h^* a(\theta) = 1$ \hspace{1cm} (6.5.36)

From (6.5.36) we can see that the solution to (6.5.32) is given by

$$\sigma^2_s = \min_h h^* Rh \quad \text{subject to } h^* a(\theta) = 1$$

which coincides with the standard formulation of the Capon method in (6.3.24).

The formulation of the Capon method in (6.5.32) will be used in Complement 6.5.4 to extend the method to the case where the direction vector $a(\theta)$ is imprecisely known.

6.5.4 Capon Method for Uncertain Direction Vectors

The Capon method has better resolution and much better interference rejection capability (i.e., much lower leakage) than the beamforming method, provided that the direction vector, $a(\theta)$, is accurately known. However, whenever the knowledge of $a(\theta)$ is imprecise, the performance of the Capon method may become worse than that of the beamforming method. To see why this is so, consider a scenario in which the problem is to determine the power coming from a source with DOA assumed to be equal to θ_0. Let us assume that in actuality the true DOA of the source is $\theta_0 + \Delta$. For the Capon beamformer pointed toward θ_0, the source of interest (located at $\theta_0 + \Delta$) will play the role of an interference and will be attenuated. Consequently, the power of the signal of interest will be underestimated; the larger Δ is, the larger the underestimation error. Because steering vector errors are common in applications, it follows that a robust version of the Capon method (i.e., one that is as insensitive to steering vector errors as possible) would be highly desirable.

In this complement we will present an extension of the Capon method to the case of uncertain direction vectors. Specifically, we will assume that the only knowledge we have about $a(\theta)$ is that it belongs to the following uncertainty ellipsoid:

$$(a - \bar{a})^* C^{-1} (a - \bar{a}) \leq 1$$

(6.5.37)

where the vector \bar{a} and the positive definite matrix C are given. Note that both a and \bar{a}, as well as C, usually depend on θ; however, for the sake of notational convenience, we drop the θ dependence of these variables.

In some applications there may be too little available information about the errors in the steering vector to make a competent choice of the full matrix C in (6.5.37). In such cases we may simply set $C = \varepsilon I$, so that (6.5.37) becomes

$$||a - \bar{a}||^2 \leq \varepsilon$$

(6.5.38)
where ε is a positive number. Let a_0 denote the true (and unknown) direction vector, and let $\varepsilon_0 = \|a_0 - \bar{a}\|^2$ where, as before, \bar{a} is the assumed direction vector. Ideally we should choose $\varepsilon = \varepsilon_0$. However, it can be shown that the performance of the robust Capon method remains almost unchanged when ε is varied in a relatively large interval around ε_0 (see [Stoica, Wang, and Li 2003], [Li, Stoica, and Wang 2003]).

As already stated, our goal here is to obtain a robust Capon method that is insensitive to errors in the direction (or steering) vector. We will do so by combining the covariance fitting formulation in (6.5.32) for the standard Capon method with the steering uncertainty set in (6.5.37). Hence, we aim to derive estimates of both σ_s^2 and \bar{a} by solving the following constrained covariance fitting problem:

$$
\begin{align*}
\text{max} \quad & \sigma_s^2 \\
\text{subject to:} \quad & R - \sigma_s^2 \bar{a} \bar{a}^* \geq 0 \\
& (a - \bar{a})^* C^{-1} (a - \bar{a}) \leq 1
\end{align*}
$$

(6.5.39)

To avoid the trivial solution ($a \to 0, \sigma_s^2 \to \infty$), we assume that $a = 0$ does not belong to the uncertainty ellipsoid in (6.5.39), or equivalently that

$$
\bar{a}^* C^{-1} \bar{a} > 1
$$

(6.5.40)

(which is a regularity condition).

Because both σ_s^2 and a are considered to be free parameters in the above fitting problem, there is a scaling ambiguity in the signal covariance term in (6.5.39), in the sense that both (σ_s^2, a) and $(\sigma_s^2/\mu, \mu^{1/2} a)$ for any $\mu > 0$ give the same covariance term $\sigma_s^2 a a^*$. To eliminate this ambiguity we can use the knowledge that the true steering vector satisfies the condition (see (6.3.11)):

$$
a^* a = m
$$

(6.5.41)

However, the constraint in (6.5.41) is non-convex, which makes the combined problem (6.5.39) and (6.5.41) somewhat more difficult to solve than (6.5.39). On the other hand, (6.5.39) (without (6.5.41)) can be quite efficiently solved, as we show below. To take advantage of this fact, we can make use of (6.5.41) to eliminate the scaling ambiguity in the following pragmatic way:

- Obtain the solution $(\tilde{\sigma}_s^2, \tilde{a})$ of (6.5.39).
- Obtain an estimate of a which satisfies (6.5.41) by scaling \tilde{a}:

$$
\hat{a} = \frac{\sqrt{m}}{||\tilde{a}||} \tilde{a}
$$

and a corresponding estimate of σ_s^2 by scaling $\tilde{\sigma}_s^2$ such that the signal covariance term is left unchanged, i.e., $\tilde{\sigma}_s^2 \hat{a} \hat{a}^* = \hat{\sigma}_s^2 \hat{a} \hat{a}^*$, which gives:

$$
\hat{\sigma}_s^2 = \tilde{\sigma}_s^2 \frac{||\tilde{a}||^2}{m}
$$

(6.5.42)
To derive the solution \((\tilde{s}_s^2, \tilde{a}) \) of (6.5.39) we first note that, for any fixed \(a \), the maximizing \(s_s^2 \) is given by

\[
\tilde{s}_s^2 = \frac{1}{a^* R^{-1} a} \tag{6.5.43}
\]

(see equation (6.5.33) in Complement 6.5.3). This simple observation allows us to eliminate \(s_s^2 \) from (6.5.39) and hence reduce (6.5.39) to the following problem:

\[
\min_a a^* R^{-1} a \quad \text{subject to: } (a - \tilde{a})^* C^{-1} (a - \tilde{a}) \leq 1 \tag{6.5.44}
\]

Under the regularity condition in (6.5.40), the solution \(\tilde{a} \) to (6.5.44) will occur on the boundary of the constraint set, and therefore we can reformulate (6.5.44) as the following quadratic problem with a quadratic equality constraint

\[
\min_a a^* R^{-1} a \quad \text{subject to: } (a - \tilde{a})^* C^{-1} (a - \tilde{a}) = 1 \tag{6.5.45}
\]

This problem can be solved efficiently by using the Lagrange multiplier approach, see [Li, Stoica, and Wang 2003]. In the remaining part of this complement we derive the Lagrange multiplier solver in [Li, Stoica, and Wang 2003], but in a more self-contained way.

To simplify the notation, consider (6.5.45) with \(C = \varepsilon I \) as in (6.5.38):

\[
\min_a a^* R^{-1} a \quad \text{subject to: } \|a - \tilde{a}\|^2 = \varepsilon \tag{6.5.46}
\]

(the case of \(C \neq \varepsilon I \) can be similarly treated). Define

\[
x = a - \tilde{a} \tag{6.5.47}
\]

and rewrite (6.5.46) using \(x \) in lieu of \(a \):

\[
\min_x x^* R^{-1} x + x^* R^{-1} \tilde{a} + \tilde{a}^* R^{-1} x \quad \text{subject to: } \|x\|^2 = \varepsilon \tag{6.5.48}
\]

Owing to the constraint in (6.5.48), the \(x \) that solves (6.5.48) is also a solution to the problem:

\[
\min_x [x^* (R^{-1} + \lambda I) x + x^* R^{-1} \tilde{a} + \tilde{a}^* R^{-1} x] \quad \text{subject to: } \|x\|^2 = \varepsilon \tag{6.5.49}
\]

where \(\lambda \) is an arbitrary constant. Let us consider a particular choice of \(\lambda \), which is a solution of the equation:

\[
\tilde{a}^* (I + \lambda R)^{-2} \tilde{a} = \varepsilon \tag{6.5.50}
\]

and which is also such that

\[
R^{-1} + \lambda I > 0 \tag{6.5.51}
\]

Then, the unconstrained minimizer of the function in (6.5.49) is given by

\[
x = - (R^{-1} + \lambda I)^{-1} R^{-1} \tilde{a} = -(I + \lambda R)^{-1} \tilde{a} \tag{6.5.52}
\]

and it satisfies the constraint in (6.5.49) (cf. (6.5.50)). It follows that \(x \) in (6.5.52) with \(\lambda \) given by (6.5.50) and (6.5.51) is the solution to (6.5.49) (and hence to
Section 6.5 Complements 297

Hence, what is left to explain is how to solve (6.5.50) under the condition (6.5.51) in an efficient manner, which we do next.

Let

\[R = U^* U \]

(6.5.53)
denote the eigenvalue decomposition (EVD) of \(R \), where \(U^* U = U U^* = I \) and

\[\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_m \end{bmatrix}; \quad \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \]

(6.5.54)

Also, let

\[b = U^* \tilde{a} \]

(6.5.55)

Using (6.5.53)–(6.5.55) we can rewrite the left-hand side of equation (6.5.50) as:

\[g(\lambda) \triangleq \tilde{a}^* [I + \lambda R]^{-2} \tilde{a} = \tilde{a}^* [U (I + \lambda \Lambda) U^*]^{-2} \tilde{a} \]

\[= b^* (I + \lambda \Lambda)^{-2} b = \sum_{k=1}^{m} \frac{|b_k|^2}{(1 + \lambda \lambda_k)^2} \]

(6.5.56)

where \(b_k \) is the \(k \)th element of the vector \(b \). Note that

\[\sum_{k=1}^{m} |b_k|^2 = ||b||^2 = ||\tilde{a}||^2 > \varepsilon \]

(6.5.57)

(see (6.5.55) and (6.5.40)). It follows from (6.5.56) and (6.5.57) that \(\lambda \) can be a solution of the equation \(g(\lambda) = \varepsilon \) only if

\[(1 + \lambda \lambda_k)^2 > 1 \]

(6.5.58)

for some value of \(k \). At the same time, \(\lambda \) should be such that (see (6.5.51)):

\[R^{-1} + \lambda I > 0 \iff I + \lambda R > 0 \iff 1 + \lambda \lambda_k > 0 \text{ for } k = 1, \ldots, m \]

(6.5.59)

It follows from (6.5.58) and (6.5.59) that \(1 + \lambda \lambda_k > 1 \) for at least one value of \(k \), which implies that

\[\lambda > 0 \]

(6.5.60)

This inequality sets a lower bound on the solution to (6.5.50). To refine this lower bound, and also to obtain an upper bound, first observe that \(g(\lambda) \) is a monotonically decreasing function of \(\lambda \) for \(\lambda > 0 \). Furthermore, for

\[\lambda_L = \frac{||\tilde{a}|| - \sqrt{\varepsilon}}{\lambda_1 \sqrt{\varepsilon}} \]

(6.5.61)

we have that

\[g(\lambda_L) > \frac{1}{(1 + \lambda_L \lambda_1)^2} ||b||^2 = \frac{\varepsilon}{||\tilde{a}||^2 ||\tilde{a}||^2} = \varepsilon \]

(6.5.62)
Similarly, for
\[\lambda_U = \frac{\|\tilde{a}\| - \sqrt{\varepsilon}}{\lambda_m \sqrt{\varepsilon}} \geq \lambda_L \]
(6.5.63)
we can verify that
\[g(\lambda_U) < \frac{1}{(1 + \lambda_U \lambda_m)^2} \|b\|^2 = \varepsilon \]
(6.5.64)

Summarizing the previous facts, it follows that equation (6.5.50) has a unique solution for \(\lambda \) that satisfies (6.5.51), which belongs to the interval \([\lambda_L, \lambda_U]\) \(\subset (0, \infty)\). With this observation, the derivation of the robust version of the Capon method is complete. The following is a step-by-step summary of the Robust Capon algorithm.

The Robust Capon Algorithm

Step 1. Compute the eigendecomposition \(R = U \Lambda U^* \) and set \(b = U^* \tilde{a} \).

Step 2. Solve the equation \(g(\lambda) = \varepsilon \) for \(\lambda \) using, e.g., a Newton method along with the fact that there is a unique solution in the interval \([\lambda_L, \lambda_U]\).

Step 3. Compute (cf. (6.5.47), (6.5.52), (6.5.53)):
\[\tilde{a} = \tilde{a} - U (I + \lambda \Lambda)^{-1} b \]
(6.5.65)
and, finally, compute the power estimate (see (6.5.42) and (6.5.43))
\[\hat{\sigma}_e^2 = \frac{\tilde{a}^* \tilde{a}}{m \tilde{a}^* U \Lambda^{-1} U^* \tilde{a}} \]
(6.5.66)
where, from (6.5.65), \(U^* \tilde{a} = b - (I + \lambda \Lambda)^{-1} b \).

The bulk of the computation in the algorithm involves computing the EVD of \(R \), which requires \(\mathcal{O}(m^3) \) arithmetic operations. Hence, the computational complexity of the above Robust Capon method is comparable to that of the standard Capon method. We refer the reader to [Li, Stoica, and Wang 2003] and also to [Stoica, Wang, and Li 2003] for further computational considerations and insights, as well as many numerical examples illustrating the good performance of the Robust Capon method, including its insensitivity to the choice of \(\varepsilon \) in (6.5.38) or \(C \) in (6.5.37).

6.5.5 Capon Method with Noise Gain Constraint

As explained in Complement 6.5.4, the Capon method performs poorly as a power estimator in the presence of steering vector errors (yet, it may perform fairly well as a DOA estimator, provided that the SNR is reasonably large; see [Cox 1973; Li, Stoica, and Wang 2003] and references therein). The same happens when the number of snapshots, \(N \), is relatively small, such as when \(N \) is equal to or only slightly larger than the number of sensors, \(m \). In fact, there is a close relationship between the cases of steering vector errors and small-sample errors, see e.g. [Feldman and Griffiths 1994]. More precisely, the sampling estimation errors of the covariance matrix can be viewed as steering vector errors in a corresponding theoretical covariance matrix, and vice versa. For example, consider a uniform linear array and assume that the source signals are uncorrelated with one
another. In this case, the theoretical covariance matrix R of the array output is Toeplitz. Assume that the sample covariance matrix \tilde{R} is also Toeplitz. According to the Carathéodory parameterization of Toeplitz matrices (see Complement 4.9.2), we can view \tilde{R} as being the theoretical covariance matrix associated with a fictitious ULA on which uncorrelated signals impinge, but the powers and DOAs of the latter signals are different from those of the actual signals. Hence, the small sample estimation errors in \tilde{R} can be viewed as being due to steering vector errors in a corresponding theoretical covariance matrix.

The robust Capon method (RCM) presented in Complement 6.5.4 significantly outperforms the standard Capon method (CM) in power estimation applications in which the sample length is insufficient for accurate estimation of R, or in which the steering vector is imprecisely known. The RCM was introduced in [Stoica, Wang, and Li 2003; Li, Stoica, and Wang 2003]. An earlier approach, whose goal is also to enhance the performance of CM in the presence of sampling estimation errors or steering vector mismatch, is the so-called diagonal loading approach (see, e.g., [Hudson 1981; Van Trees 2002] and references therein). The main idea of diagonal loading is to replace R in the Capon formula for the spatial filter h, (6.3.24), by the following matrix:

$$R + \lambda I \quad (6.5.67)$$

where the diagonal loading factor $\lambda > 0$ is a user-selected parameter. The so-obtained filter vector h is given by

$$h = \frac{(R + \lambda I)^{-1}a}{a^*(R + \lambda I)^{-1}a} \quad (6.5.68)$$

The use of the diagonally-loaded matrix in (6.5.67) instead of R is the reason for the name of the approach based on (6.5.68). The symbol R in this complement refers to either a theoretical covariance matrix or a sample covariance matrix.

There have been several rules proposed in the literature for choosing the parameter λ in (6.5.68). Most of these rules choose λ in a rather ad-hoc and data-independent manner. As illustrated in [Li, Stoica, and Wang 2003] and its references, a data-independent selection of the diagonal loading factor cannot improve the performance for a reasonably large range of SNR values. Hence, a data-dependent choice of λ is desired.

One commonly-used data-dependent rule selects the diagonal loading factor $\lambda > 0$ that satisfies

$$||h||^2 = \frac{a^*(R + \lambda I)^{-2}a}{a^*(R + \lambda I)^{-2}a} = c \quad (6.5.69)$$

where the constant c must be chosen by the user. Let us explain briefly why choosing λ via (6.5.69) makes sense intuitively. Assume that the array output vector contains a spatially white noise component whose covariance matrix is proportional to I (see (6.4.1)). Then the power at the output of the spatial filter h due to the noise component is $||h||^2$; for this reason $||h||^2$ is sometimes called the (white) noise gain of h. In scenarios with a large number of (possibly closely-spaced) source signals, the Capon spatial filter h in (6.3.24) may run out of “degrees of freedom” and hence may not pay enough attention to the noise in the data (unless the SNR is very
The result is a relatively high noise gain, \(\|h\|^2 \), which may well degrade the accuracy of signal power estimation. To prevent this from happening, it makes sense to limit \(\|h\|^2 \) as in (6.5.69). By doing so we are left with the problem of choosing \(c \). While the choice of \(c \) may be easier than the direct choice of \(\lambda \) in (6.5.68), it is far from trivial, and in fact clear-cut rules for selecting \(c \) are hardly available. In particular, a “too small” value of \(c \) may limit the noise gain unnecessarily, and result in decreased resolution and increased leakage.

In this complement we will show that the spatial filter of the diagonally-loaded Capon method in (6.5.68), (6.5.69) is the solution to the following design problem:

\[
\min_h h^* Rh \quad \text{subject to: } h^* a = 1 \text{ and } \|h\|^2 \leq c
\]

(6.5.70)

Because (6.5.70) is obtained by adding the noise gain constraint \(\|h\|^2 \leq c \) to the standard Capon problem in (6.3.23), we will call the method that follows from (6.5.70) the constrained Capon method (CCM). While the fact that (6.5.68), (6.5.69) is the solution to (6.5.70) is well known from the previous literature (see, e.g., [Hudson 1981]), we present a rigorous and thorough analysis of this solution. As a byproduct, the following analysis also suggests some guidelines for choosing the user parameter \(c \) in (6.5.69). Note that in general \(a, c, \) and \(h \) in (6.5.70) depend on the DOA \(\theta \); to simplify notation we will omit the functional dependence on \(\theta \) here.

It is interesting to observe that the RCM, described in Complement 6.5.4, can also be cast into a diagonal loading framework. To see this, first note from (6.5.47) and (6.5.52) that the steering vector estimate used in the RCM is given by:

\[
a = \hat{a} - (I + \lambda R)^{-1} \hat{a} = (I + \lambda R)^{-1} [(I + \lambda R) - I] \hat{a} = (\frac{1}{\lambda} R^{-1} + I)^{-1} \hat{a}
\]

(6.5.71)

The RCM estimates the signal power by

\[
\frac{1}{a^* R^{-1} a}
\]

(6.5.72)

with \(a \) as given in (6.5.71) above, and hence RCM does not directly use any spatial filter. However, the power estimate in (6.5.72) is equal to \(h^* Rh \), where

\[
h = \frac{R^{-1} a}{a^* R^{-1} a}
\]

(6.5.73)

and hence (6.5.72) can be viewed as being obtained by the (implicit) use of the spatial filter in (6.5.71), (6.5.73). Inserting (6.5.71) into (6.5.73) we obtain:

\[
h = \frac{(R + \frac{1}{\lambda} I)^{-1} a}{a^* [(R + \frac{1}{\lambda} I) R^{-1} (R + \frac{1}{\lambda} I)]^{-1} a}
\]

(6.5.74)

which, except for the scalar in the denominator, has the form in (6.5.68) of the spatial filter used by the diagonal loading approach. Note that the diagonal loading factor, \(1/\lambda \), in (6.5.74) is data-dependent. Furthermore, the selection of \(\lambda \) in the
RCM (see Complement 6.5.4 for details on this aspect) relies entirely on information about the uncertainty set of the steering vector, as defined, for instance, by the sphere with radius $\varepsilon^{1/2}$ in (6.5.38). Such information is more readily available in applications than is information which would help the user select the noise gain constraint c in the CCM. Indeed, in many applications we should be able to make a more competent guess about ε than about c (for all DOAs of interest in the analysis). This appears to be a significant advantage of RCM over CCM, despite the fact that both methods can be interpreted as data-dependent diagonal loading approaches.

Remark: The reader may have noted by now that the CCM problem in (6.5.70) is similar to the combined RCM problem in (6.5.44), (6.5.41) discussed in Complement 6.5.4. This observation has two consequences. First, it follows that the combined RCM design problem in (6.5.44), (6.5.41) could be solved by an algorithm similar to the one presented below for solving the CCM problem; indeed, this is the case as shown in [Li, Stoica, and Wang 2004]. Second, the CCM problem (6.5.70) and the combined RCM problem (6.5.44), (6.5.41) both have two constraints, and are more complicated than the RCM problem (6.5.44), which has only one constraint. Hence, the CCM algorithm described below will be (slightly) more involved computationally than the RCM algorithm outlined in Complement 6.5.4.

We begin the analysis of the CCM problem in (6.5.70) by deriving a feasible range for the user parameter c. Let S denote the set of vectors h that satisfy both constraints in (6.5.70):

$$S = \{ h \mid h^* a = 1 \text{ and } \|h\|^2 \leq c \}$$

(6.5.75)

By the Cauchy-Schwartz inequality (see Result R12 in Appendix A), we have that:

$$1 = |h^* a|^2 \leq \|h\|^2 \|a\|^2 \leq cm \implies c \geq \frac{1}{m}$$

(6.5.76)

where we also used the fact that (by assumption; see (6.3.11))

$$\|a\|^2 = m$$

(6.5.77)

The inequality in (6.5.76) sets a lower bound on c; otherwise, S is empty. To obtain an upper bound we can argue as follows. The vector h used in the CM has the following norm:

$$\|h_{CM}\|^2 = \frac{a^* R^{-2} a}{(a^* R^{-1} a)^2}$$

(6.5.78)

As the noise gain of the CM is typically too high, we should like to choose c so that

$$c < \frac{a^* R^{-2} a}{(a^* R^{-1} a)^2}$$

(6.5.79)

Note that if c does not satisfy (6.5.79), then the CM spatial filter h satisfies both constraints in (6.5.70) and hence it is the solution to the CCM problem. Combining
(6.5.76) and (6.5.79) yields the following interval for c:

$$c \in \left[\frac{1}{m}, \frac{a^* R^{-2} a}{(a^* R^{-1} a)^2} \right]$$

(6.5.80)

Similarly to (6.5.53), let

$$R = U \Lambda U^*$$

(6.5.81)

be the eigenvalue decomposition (EVD) of R, where $U^* U = U U^* = I$ and

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_m \end{bmatrix}; \quad \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$$

(6.5.82)

As

$$\frac{a^* R^{-2} a}{|a^* R^{-1} a|^2} \leq \frac{\|a\|^2 / \lambda_m}{\|(a^i / \lambda_1)^2 \|} = \frac{\lambda_2^2}{m \lambda_m^2}$$

(6.5.83)

it follows from (6.5.79) that c also satisfies:

$$mc < \frac{\lambda_2^2}{\lambda_m^2}$$

(6.5.84)

The above inequality will be useful later on.

Next, let us define the function

$$g(h, \lambda, \mu) = h^* R h + \lambda(\|h\|^2 - c) + \mu(-h^* a - a^* h + 2)$$

(6.5.85)

where $\mu \in \mathbb{R}$ is arbitrary and where

$$\lambda > 0$$

(6.5.86)

Remark: We note in passing that λ and μ are the so-called Lagrange multipliers, and $g(h, \lambda, \mu)$ is the so-called Lagrangian function associated with the CCM problem in (6.5.70); however, to make the following derivation as self-contained as possible, we will not explicitly use any result from Lagrange multiplier theory.

Evidently, by the definition of $g(h, \lambda, \mu)$ we have that:

$$g(h, \lambda, \mu) \leq h^* R h \quad \text{for any } h \in S$$

(6.5.87)

and for any $\mu \in \mathbb{R}$ and $\lambda > 0$. The part of (6.5.85) that depends on h can be written as

$$h^* (R + \lambda I) h - \mu h^* a - \mu a^* h$$

$$= \left[h - \mu (R + \lambda I)^{-1} a \right]^* (R + \lambda I) \left[h - \mu (R + \lambda I)^{-1} a \right]$$

$$- \mu^2 a^* (R + \lambda I)^{-1} a$$

(6.5.88)
Hence, for fixed λ and μ, the *unconstrained minimizer* of $g(h, \lambda, \mu)$ with respect to h is given by:

$$\hat{h}(\lambda, \mu) = \mu(R + \lambda I)^{-1}a$$

(6.5.89)

Let us choose μ such that (6.5.89) satisfies the first constraint in (6.5.70):

$$\hat{h}^*(\lambda, \hat{\mu})a = 1 \iff \hat{\mu} = \frac{1}{a^*(R + \lambda I)^{-1}a}$$

(6.5.90)

(which is always possible, for $\lambda > 0$). Also, let us choose λ so that (6.5.89) also satisfies the second constraint in (6.5.70) *with equality*, i.e.,

$$||\hat{h}(\hat{\lambda}, \hat{\mu})||^2 = c \iff \frac{a^*(R + \hat{\lambda} I)^{-2}a}{[a^*(R + \hat{\lambda} I)^{-1}a]^2} = c$$

(6.5.91)

We will show shortly that the above equation has a unique solution $\hat{\lambda} > 0$ for *any* c satisfying (6.5.80). Before doing so, we remark on the following important fact. Inserting (6.5.90) into (6.5.89), we get the diagonally-loaded version of the Capon method (see (6.5.68)):

$$\hat{h}(\hat{\lambda}, \hat{\mu}) = \frac{(R + \hat{\lambda} I)^{-1}a}{a^*(R + \hat{\lambda} I)^{-1}a}$$

(6.5.92)

As $\hat{\lambda}$ satisfies (6.5.91), the above vector $\hat{h}(\hat{\lambda}, \hat{\mu})$ lies on the boundary of S, and hence (see also (6.5.87)):

$$g(\hat{h}(\hat{\lambda}, \hat{\mu}), \hat{\lambda}, \hat{\mu}) = \hat{h}^*(\hat{\lambda}, \hat{\mu})R\hat{h}(\hat{\lambda}, \hat{\mu}) \leq h^*Rh \quad \text{for any } h \in S$$

(6.5.93)

From (6.5.93) we conclude that (6.5.92) is the (unique) solution to the CCM problem.

It remains to show that, indeed, equation (6.5.91) has a unique solution $\hat{\lambda} > 0$ under (6.5.80), and also to provide a computationally convenient way of finding $\hat{\lambda}$. Towards that end, we use the EVD of R in (6.5.91) (with the hat on $\hat{\lambda}$ omitted, for notational simplicity) to rewrite (6.5.91) as follows:

$$f(\lambda) = c$$

(6.5.94)

where

$$f(\lambda) = \frac{a^*(R + \lambda I)^{-2}a}{[a^*(R + \lambda I)^{-1}a]^2} = \sum_{k=1}^{m} \frac{|b_k|^2}{|\lambda_k + \lambda|^2}$$

(6.5.95)

and where b_k is the kth element of the vector

$$b = U^*a$$

(6.5.96)
Differentiation of (6.5.95) with respect to \(\lambda \) yields:

\[
f'(\lambda) = \left\{ -2 \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^3} \right] \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)} \right]^2 \\
+ 2 \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^2} \right] \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)} \right] \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^2} \right] \right\} \\
\cdot \frac{1}{\left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)} \right]^4} \\
= -2 \left\{ \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^2} \right] \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)} \right] - \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^2} \right]^2 \right\} \\
\cdot \frac{1}{\left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)} \right]^4} \quad (6.5.97)
\]

Making use of the Cauchy–Schwartz inequality once again, we can show that

\[
\left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^2} \right] \leq \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^3/2} \right] \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^{1/2}} \right] \\
< \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)^3} \right] \left[\sum_{k=1}^{m} \frac{|b_k|^2}{(\lambda_k + \lambda)} \right] \quad (6.5.98)
\]

Hence,

\[
f'(\lambda) < 0 \text{ for any } \lambda > 0 \\
\text{(and } \lambda_k \neq \lambda_p \text{ for at least one pair } k \neq p) \quad (6.5.99)
\]

which means that \(f(\lambda) \) is a monotonically strictly decreasing function for \(\lambda > 0 \). Combining this observation with the fact that \(f(0) > c \) (see (6.5.79)) shows that indeed the equation \(f(\lambda) = c \) in (6.5.91) has a unique solution for \(\lambda > 0 \).

For efficiently solving the equation \(f(\lambda) = c \), an upper bound on \(\lambda \) would also be useful. Such a bound can be obtained as follows. A simple calculation shows that

\[
c = f(\lambda) < \frac{||b||^2}{(\lambda_m + \lambda)^2} = \frac{(\lambda_1 + \lambda)^2}{m(\lambda_m + \lambda)^2} \\
\implies mc(\lambda_m + \lambda)^2 < (\lambda_1 + \lambda)^2 \quad (6.5.100)
\]
Section 6.5 Complements

where we used the fact that \(\|b\|^2 = \|a\|^2 = m\). From (6.5.100) we see that \(\lambda\) must satisfy the inequality

\[
\lambda < \frac{\lambda_1 - \sqrt{mc\lambda_m}}{\sqrt{mc} - 1} = \lambda_U
\]

(6.5.101)

Note that both the numerator and the denominator in (6.5.101) are positive; see (6.5.76) and (6.5.84).

The derivation of the constrained Capon method is now complete. The following is a step-by-step summary of the CCM.

The Constrained Capon Algorithm

Step 1. Compute the eigendecomposition \(R = U \Lambda U^*\) and set \(b = U^* a\).

Step 2. Solve the equation \(f(\lambda) = c\) for \(\lambda\), using, e.g., a Newton method along with the fact that there is a unique solution which lies in the interval \((0, \lambda_U)\).

Step 3. Compute the (diagonally-loaded) spatial filter vector

\[
h = \frac{(R + \lambda I)^{-1}a}{a^*(R + \lambda I)^{-1}a} = \frac{U(\Lambda + \lambda I)^{-1}b}{b^*(\Lambda + \lambda I)^{-1}b}
\]

where \(\lambda\) is found in Step 2, and estimate the signal power as \(h^* R h\).

To conclude this complement, we note that the above CCM algorithm is quite similar to the RCM algorithm presented in Complement 6.5.4. The only differences are that the equation for \(\lambda\) associated with the CCM is slightly more complicated, and more importantly, that it is harder to select \(c\) needed in the CCM (for any DOA of interest) than it is to select \(\epsilon\) in the RCM. As we have shown, for CCM one should choose \(c\) in the interval (6.5.80). Note that for \(c = 1/m\) we get \(\lambda \to \infty\) and \(h = a/m\), which is the beamforming method. For \(c = a^* R^{-2} a/(a^* R^{-1} a)^2\) we obtain \(\lambda = 0\) and \(h = h_{CM}\), which is the standard Capon method. Values of \(c\) between these two extremes should be chosen in an application-dependent manner.

6.5.6 Spatial Amplitude and Phase Estimation (APES)

As explained in Section 6.3.2, the Capon method estimates the spatial spectrum by using a spatial filter that passes the signal impinging on the array from direction \(\theta\) in a distortionless manner, and at the same time attenuates signals with DOAs different from \(\theta\) as much as possible. The Capon method for temporal spectral analysis is based on exactly the same idea (see Section 5.4), as is the temporal APES method described in Complement 5.6.4. In this complement we will present an extension of APES that can be used for spatial spectral analysis.

Let \(\theta\) denote a generic DOA and consider the equation (6.2.19),

\[
y(t) = a(\theta) s(t) + e(t), \quad t = 1, \ldots, N
\]

(6.5.102)

that describes the array output, \(y(t)\), as a function of a signal, \(s(t)\), possibly impinging on the array from a DOA equal to \(\theta\), and a term, \(e(t)\), that includes noise along with any other signals whose DOAs are different from \(\theta\). We assume that the array is uniform and linear, in which case \(a(\theta)\) is given by

\[
a(\theta) = \begin{bmatrix} 1, e^{-i\omega_1}, \ldots, e^{-i(m-1)\omega_1} \end{bmatrix}^T
\]

(6.5.103)
where \(m \) denotes the number of sensors in the array, and \(\omega_s = (\omega_d \sin \theta) / c \) is the spatial frequency (see (6.2.26) and (6.2.27)). As we will explain later, the spatial extension of APES presented in this complement appears to perform well only in the case of ULAs. While this is a limitation, it is not a serious one because there are techniques which can be used to approximately transform the direction vector of a general array into the direction vector of a fictitious ULA (see, e.g., [Doron, Doron, and Weiss 1993]). Such a technique performs a relatively simple DOA-independent linear transformation of the array output snapshots; the so-obtained linearly transformed snapshots can then be used as the input to the spatial APES method presented here. See [Abrahamsson, Jakobsson, and Stoica 2004] for details on how to use the spatial APES approach of this complement for arrays that are not uniform and linear.

Let \(\sigma_s^2 \) denote the power of the signal \(s(t) \) in (6.5.102), which is the main parameter we want to estimate; note that the estimated signal power \(\hat{\sigma}_s^2 \), as a function of \(\theta \), provides an estimate of the spatial spectrum. In this complement, we assume that \(s(t) \) is an unknown deterministic sequence, and hence we define \(\sigma_s^2 \) as

\[
\sigma_s^2 = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} |s(t)|^2 \tag{6.5.104}
\]

An important difference between equation (6.5.102) and its temporal counterpart (see, e.g., equation (5.6.81) in Complement 5.6.6) is that in (6.5.102) the signal \(s(t) \) is completely unknown, whereas in the temporal case we had \(s(t) = \beta e^{i \omega t} \) and only the amplitude is unknown. Because of this difference, the use of the APES principle for spatial spectral estimation is somewhat different from its use for temporal spectral estimation.

Remark: We remind the reader that \(\{s(t)\}_{t=1}^{N} \) is assumed to be an unknown deterministic sequence here. The case in which \(\{s(t)\} \) is assumed to be stochastic is considered in Complement 6.5.3. Interestingly, application of the APES principle in the stochastic signal case leads to the (standard) Capon method!

Let \(\tilde{m} < m \) be an integer, and define the following two vectors:

\[
\vec{a}_k = \begin{bmatrix} e^{-i(k-1)\omega_s}, e^{-ik\omega_s}, \ldots, e^{-i(k+\tilde{m}-2)\omega_s} \end{bmatrix}^T \quad (\tilde{m} \times 1) \tag{6.5.105}
\]

\[
\vec{y}_k(t) = [y_k(t), y_{k+1}(t), \ldots, y_{k+\tilde{m}-1}(t)]^T \quad (\tilde{m} \times 1) \tag{6.5.106}
\]

for \(k = 1, \ldots, L \), with

\[
L = m - \tilde{m} + 1 \tag{6.5.107}
\]

In (6.5.106), \(y_k(t) \) denotes the \(k \)th element of \(y(t) \); also, we omit the dependence of \(\vec{a}_k \) on \(\theta \) to simplify notation. The choice of the user parameter \(\tilde{m} \) will be discussed later.

Owing to the assumed ULA structure, the direction subvectors \(\{\vec{a}_k\} \) satisfy the following relations:

\[
\vec{a}_k = e^{-i(k-1)\omega_s} \vec{a}_1, \quad k = 2, \ldots, L \tag{6.5.108}
\]
Consequently, \(\tilde{y}_k(t) \) can be written as (see (6.5.102)):

\[
\tilde{y}_k(t) = \tilde{a}_k s(t) + \tilde{e}_k(t) = e^{-i(k-1)\omega_s} \tilde{a}_1 s(t) + \tilde{e}_k(t)
\]

(6.5.109)

where \(\tilde{e}_k(t) \) is a noise vector defined similarly to \(\tilde{y}_k(t) \). Let \(h \) denote the \((m \times 1)\) coefficient vector of a spatial filter that is applied to \(\{e^{i(k-1)\omega_s} \tilde{y}_k(t)\}_{k=1}^L \). Then it follows from (6.5.109) that \(h \) passes the signal \(s(t) \) in each of these data sets in a distortionless manner if and only if:

\[
h^* \tilde{a}_1 = 1
\]

(6.5.110)

Using the above observations along with the APES principle presented in Complement 5.6.4, we can determine both the spatial filter \(h \) and an estimate of the complex-valued sequence \(\{s(t)\}_{t=1}^N \) (we estimate both amplitude and phase — recall that APES stands for Amplitude and Phase Estimation) by solving the following linearly-constrained least squares (LS) problem:

\[
\min_{h; \{s(t)\}} \sum_{t=1}^N \sum_{k=1}^L |h^* \tilde{y}_k(t) e^{i(k-1)\omega_s} - s(t)|^2 \quad \text{subject to: } h^* \tilde{a}_1 = 1
\]

(6.5.111)

The quadratic criterion in (6.5.111) expresses our desire to make the outputs of the spatial filter, \(\{h^* \tilde{y}_k(t) e^{i(k-1)\omega_s}\}_{k=1}^L \), resemble a signal \(s(t) \) (that is independent of \(k \)) as much as possible, in a least squares sense. Said another way, the above LS criterion expresses our goal to make the filter \(h \) attenuate any signal in \(\{\tilde{y}_k(t) e^{i(k-1)\omega_s}\}_{k=1}^L \), whose DOA is different from \(\theta \), as much as possible. The linear constraint in (6.5.111) forces the spatial filter \(h \) to pass the signal \(s(t) \) undistorted.

To derive a solution to (6.5.111), let

\[
g(t) = \frac{1}{L} \sum_{k=1}^L \tilde{y}_k(t) e^{i(k-1)\omega_s}
\]

(6.5.112)

and observe that

\[
\frac{1}{L} \sum_{k=1}^L \left| h^* \tilde{y}_k(t) e^{i(k-1)\omega_s} - s(t) \right|^2
= |s(t)|^2 + h^* \left[\frac{1}{L} \sum_{k=1}^L \tilde{y}_k(t) \tilde{y}_k^*(t) \right] h - h^* g(t) s^*(t) - g^*(t) h s(t)
= h^* \left[\frac{1}{L} \sum_{k=1}^L \tilde{y}_k(t) \tilde{y}_k^*(t) \right] h - h^* g(t) g^*(t) h + |s(t) - h^* g(t)|^2
\]

(6.5.113)

Hence, the sequence \(\{s(t)\} \) that minimizes (6.5.111), for fixed \(h \), is given by

\[
s(t) = h^* g(t)
\]

(6.5.114)

Inserting (6.5.114) into (6.5.111) (see also (6.5.113)) we obtain the reduced problem:

\[
\min_h h^* \bar{Q} h \quad \text{subject to: } h^* \tilde{a}_1 = 1
\]

(6.5.115)
where
\[\hat{Q} = \hat{R} - \hat{G} \]
\[\hat{R} = \frac{1}{N} \sum_{t=1}^{N} \frac{1}{L} \sum_{k=1}^{L} \hat{y}_k(t)\hat{y}_k^*(t) \]
\[\hat{G} = \frac{1}{N} \sum_{t=1}^{N} g(t)g^*(t) \]

(6.5.116)

The solution to the quadratic problem with linear constraints in (6.5.115) can be obtained by using Result R35 in Appendix A:
\[\hat{h} = \frac{\hat{Q}^{-1}\hat{a}_1}{\hat{a}_1^*\hat{Q}^{-1}\hat{a}_1} \]

(6.5.117)

Using (6.5.117) in (6.5.114) we can obtain an estimate of the signal sequence, which may be of interest in some applications, as well as an estimate of the signal power:
\[\hat{s}_s^2 = \frac{1}{N} \sum_{t=1}^{N} |\hat{s}(t)|^2 = \hat{h}^*\hat{G}\hat{h} \]

(6.5.118)

The above equation, as a function of DOA \(\theta \), provides an estimate of the spatial spectrum.

The matrix \(\hat{Q} \) in (6.5.116) can be rewritten in the following form:
\[\hat{Q} = \frac{1}{N} \sum_{t=1}^{N} \frac{1}{L} \sum_{k=1}^{L} \left[e^{i(k-1)\omega_k}\hat{y}_k(t) - g(t) \right] \left[e^{i(k-1)\omega_k}\hat{y}_k^*(t) - g^*(t) \right]^* \]

(6.5.119)

It follows from (6.5.119) that \(\hat{Q} \) is always positive semidefinite. For \(L = 1 \) (or, equivalently, \(\tilde{m} = m \)) we have \(\hat{Q} = 0 \) because \(g(t) = \hat{y}_1(t) \) for \(t = 1, \ldots, N \). Thus, for \(L = 1 \) (6.5.117) is not valid. This is expected: indeed, for \(L = 1 \) we can make (6.5.111) equal to zero, for any \(h \), by choosing \(\hat{s}(t) = h^*\hat{y}_1(t) \); consequently, the problem of minimizing (6.5.111) with respect to \((h; \{s(t)\}_{t=1}^{N}) \) is underdetermined for \(L = 1 \), and hence an infinite number of solutions exist. To prevent this from happening, we should choose \(L \geq 2 \) (or, equivalently, \(\tilde{m} \geq m - 1 \)). For \(L \geq 2 \) the \((\tilde{m} \times \tilde{m})\) matrix \(\hat{Q} \) is a sum of \(NL \) outer products; if \(NL \geq \tilde{m} \), which is a weak condition, \(\hat{Q} \) is almost surely strictly positive definite and hence nonsingular.

From a performance point of view, it turns out that a good choice of \(\tilde{m} \) is its maximum possible value:
\[\tilde{m} = m - 1 \iff L = 2 \]

(6.5.120)

A numerical study of performance, reported in [Gini and Lombardini 2002], supports the above choice of \(\tilde{m} \), and also suggests that the spatial APES method may outperform the Capon method in both spatial spectrum estimation and DOA.
estimation applications. The APES spatial filter is, however, more difficult to compute than is the Capon spatial filter, owing to the dependence of Q in (6.5.117) on the DOA.

In the remainder of this complement we will explain why the APES method may be expected to outperform the Capon method. In doing so we assume that $m = m - 1$ (and thus $L = 2$) as in (6.5.120). Intuitively, this choice of m provides the APES filter with the maximum possible number of degrees of freedom, and hence it makes sense that it should lead to better resolution and interference rejection capability than would smaller values of m. For $L = 2$ we have

$$g(t) = \frac{1}{2} \left[\tilde{y}_1(t) + e^{j\omega_s} \tilde{y}_2(t) \right]$$

and hence

$$Q = \frac{1}{2N} \sum_{t=1}^{N} \left\{ \frac{1}{4} \left[\tilde{y}_1(t) - e^{j\omega_s} \tilde{y}_2(t) \right] \left[\tilde{y}_1(t) - e^{j\omega_s} \tilde{y}_2(t) \right]^* \right. + \left. \frac{1}{4} \left[e^{j\omega_s} \tilde{y}_2(t) - \tilde{y}_1(t) \right] \left[e^{j\omega_s} \tilde{y}_2(t) - \tilde{y}_1(t) \right]^* \right\}$$

$$= \frac{1}{4N} \sum_{t=1}^{N} \left[\tilde{y}_1(t) - e^{j\omega_s} \tilde{y}_2(t) \right] \left[\tilde{y}_1(t) - e^{j\omega_s} \tilde{y}_2(t) \right]^*$$

It follows that the APES spatial filter is the solution to the problem (see (6.5.115))

$$\min_h \sum_{t=1}^{N} \left| h^* \left[\tilde{y}_1(t) - e^{j\omega_s} \tilde{y}_2(t) \right] \right|^2 \quad \text{subject to: } h^* a_1 = 1$$

and that the APES signal estimate is given by (see (6.5.114))

$$\hat{s}(t) = \frac{1}{2} h^* \left[\tilde{y}_1(t) + e^{j\omega_s} \tilde{y}_2(t) \right]$$

On the other hand, the Capon spatial filter is obtained as the solution to the problem

$$\min_h \sum_{t=1}^{N} \left| h^* y(t) \right|^2 \quad \text{subject to: } h^* a = 1$$

and the Capon signal estimate is given by

$$\hat{s}(t) = h^* y(t)$$

To explain the main differences between the APES and Capon approaches let us assume that, in addition to the signal of interest (SOI) $s(t)$ impinging on the array from the DOA under consideration θ, there is an interference signal $i(t)$ that impinges on the array from another DOA, denoted θ_i. We consider the situation in which only one interference signal is present to simplify the discussion, but the case
of multiple interference signals can be similarly treated. The array output vector in (6.5.102) and the subvectors in (6.5.109) become

\[
y(t) = a(\theta)s(t) + b(\theta_i) i(t) + e(t) \quad (6.5.127)
\]

\[
\tilde{y}_1(t) = \tilde{a}_1(\theta)s(t) + \tilde{b}_1(\theta_i) i(t) + \tilde{e}_1(t) \quad (6.5.128)
\]

\[
\tilde{y}_2(t) = \tilde{a}_2(\theta)s(t) + \tilde{b}_2(\theta_i) i(t) + \tilde{e}_2(t) \quad (6.5.129)
\]

where the quantities \(b, \tilde{b}_1\), and \(\tilde{b}_2\) are defined similarly to \(a, \tilde{a}_1\), and \(\tilde{a}_2\). We have shown the dependence of the various quantities on \(\theta\) and \(\theta_i\) in equations (6.5.127)–(6.5.129), but will drop the DOA dependence in the remainder of the derivation to simplify notation.

For the above scenario, the Capon method is known to have poor performance in either of the following two situations:

(i) The SOI steering vector is imprecisely known, for example owing to pointing or calibration errors.

(ii) The SOI is highly correlated or coherent with the interference, which happens in multipath propagation or smart jamming scenarios.

To explain the difficulty of the Capon method in case (i), let us assume that the true steering vector of the SOI is \(a_0 \neq a\). Then, by design, the Capon filter will be such that \(|h^*a_0| \simeq 0\) (where \(\simeq 0\) denotes a “small” value). Therefore, the SOI, whose steering vector is different from the assumed vector \(a\), is treated as an interference signal and is attenuated or cancelled. As a consequence, the power of the SOI will be significantly underestimated, unless special measures are taken to make the Capon method robust against steering vector errors (see Complements 6.5.4 and 6.5.5).

The performance degradation of the Capon method in case (ii) is also easy to understand. Assume that the interference is coherent with the SOI and hence that \(i(t) = \rho s(t)\) for some nonzero constant \(\rho\). Then (6.5.127) can be rewritten as

\[
y(t) = (a + \rho b)s(t) + e(t) \quad (6.5.130)
\]

which shows that the SOI steering vector is given by \((a + \rho b)\) in lieu of the assumed vector \(a\). Consequently, the Capon filter will by design be such that \(|h^*(a + \rho b)| \simeq 0\), and therefore the SOI will be attenuated or cancelled in the filter output \(h^*y(t)\), as in case (i). In fact, case (ii) can be considered as an extreme example of case (i), in which the SOI steering vector errors can be significant. Modifying the Capon method to work well in the case of coherent multipath signals is thus a more difficult problem than modifying it to be robust to small steering vector errors.

Next, let us consider the APES method in case (ii). From (6.5.128) and (6.5.129), along with (6.5.108), we get

\[
\begin{align*}
\tilde{y}_1(t) - e^{i\omega_i} \tilde{y}_2(t) &= \left(\tilde{a}_1 - e^{i\omega_i} \tilde{a}_2\right) s(t) + \left(\tilde{b}_1 - e^{i\omega_i} \tilde{b}_2\right) i(t) + \left[\tilde{e}_1(t) - e^{i\omega_i} \tilde{e}_2(t)\right] \\
&= \left[1 - e^{i(\omega_j - \omega_i)}\right] \tilde{b}_1 i(t) + \left[\tilde{e}_1(t) - e^{i\omega_i} \tilde{e}_2(t)\right] \\
&= \left[1 - e^{i(\omega_j - \omega_i)}\right] \tilde{b}_1 i(t) + \left[\tilde{e}_1(t) - e^{i\omega_i} \tilde{e}_2(t)\right]
\end{align*}
\]
and
\[\frac{1}{2} \left[\tilde{y}_1(t) + e^{i\omega_s t} \tilde{y}_2(t) \right] = \frac{1}{2} \left(a_1 + e^{i\omega_s} \tilde{a}_2 \right) s(t) + \frac{1}{2} \left(b_1 + e^{i\omega_s} \tilde{b}_2 \right) i(t) + \frac{1}{2} \left[\tilde{e}_1(t) + e^{i\omega_s} \tilde{e}_2(t) \right] \]
\[= a_1 s(t) + \frac{1}{2} \left[1 + e^{i(\omega_s - \omega_i)} \right] b_1 i(t) + \frac{1}{2} \left[\tilde{e}_1(t) + e^{i\omega_s} \tilde{e}_2(t) \right] \]
(6.5.132)

where \(\omega_i = (\omega_c d \sin \theta_i) / c \) denotes the spatial frequency of the interference. It follows from (6.5.131) and the design criterion in (6.5.123) that the APES spatial filter will be such that
\[|1 - e^{i(\omega_s - \omega_i)}| \cdot |h^* \tilde{b}_1| \simeq 0 \]
(6.5.133)
Hence, because the SOI is absent from the data vector in (6.5.131), the APES filter is able to cancel the interference only, despite the fact that the interference and the SOI are coherent. This interference rejection property of the APES filter (i.e., \(|h^* \tilde{b}_1| \simeq 0\)) is precisely what is needed when estimating the SOI from the data in (6.5.132).

To summarize, the APES method circumvents the problem in case (ii) by implicitly eliminating the signal from the data that is used to derive the spatial filter. However, if there is more than one coherent interference in the observed data, then APES also breaks down similarly to the Capon method. The reason is that the vector multiplying \(i(t) \) in (6.5.131) is no longer proportional to the vector multiplying \(i(t) \) in (6.5.132), and hence a filter \(h \) that, by design, cancels the interference \(i(t) \) in (6.5.131) is not guaranteed to have the desirable effect of cancelling \(i(t) \) in (6.5.132); the details are left to the interested reader.

Remark: A similar argument to the one above explains why APES will not work well for non-ULA array geometries, in spite of the fact that it can be extended to such geometries in a relatively straightforward manner. Specifically, for non-ULA geometries, the steering vectors of the interference terms in the data sets used to obtain \(h \) and to estimate \(s(t) \), respectively, are not proportional to one another. As a consequence, the design objective does not provide the APES filter with the desired capability of attenuating the interference terms in the data that is used to estimate \(\{s(t)\} \).

Next consider the APES method in case (i). To simplify the discussion, let us assume that there are no calibration errors but only a pointing error, so that the true spatial frequency of the SOI is \(\omega_s^0 \neq \omega_s \). Then equation (6.5.131) becomes
\[\tilde{y}_1(t) - e^{i\omega_s t} \tilde{y}_2(t) = \left[1 - e^{i(\omega_s - \omega_i)} \right] a_1^0 s(t) + \left[1 - e^{i(\omega_s - \omega_i)} \right] b_1 i(t) + \left[\tilde{e}_1(t) - e^{i\omega_s} \tilde{e}_2(t) \right] \]
(6.5.134)

It follows that in case (i) the APES spatial filter tends to cancel the SOI as well, in addition to cancelling the interference. However, the pointing errors are usually quite small, and therefore the residual term of \(s(t) \) in (6.5.134) is small as well. Hence, the SOI may well pass through the APES filter (i.e., \(|h^* \tilde{a}_1^0|\) may be reasonably close to \(|h^* \tilde{a}_1| = 1\)), because the filter uses most of its degrees of freedom to
cancel the much stronger interference term in (6.5.134). As a consequence, APES is less sensitive to steering vector errors than is the Capon method.

The above discussion also explains why APES can provide better power estimates than the Capon method, even in “ideal” cases in which there are no multipath signals that are coherent with the SOI and no steering vector errors, but the number of snapshots \(N \) is not very large. Indeed, as argued in Complement 6.5.5, the finite-sample effects associated with practical values of \(N \) can be viewed as inducing both correlation among the signals and steering vector errors, to which the APES method is less sensitive than the Capon method as explained above.

We also note that the power of the elements of the noise vector in the data in (6.5.131), that is used to derive the APES filter, is larger than the power of the noise elements in the raw data \(y(t) \) that is used to compute the Capon filter. Somewhat counterintuitively, this is another potential advantage of the APES method over the Capon method. Indeed, the increased noise power in the data used by APES has a regularizing effect on the APES filter, which keeps the filter noise gain down, whereas the Capon filter is known to have a relatively large noise gain that can have a detrimental effect on signal power estimation (see Complement 6.5.5).

On the downside, APES has been found to have a slightly lower resolution than the Capon method (see, e.g., [Jakobsson and Stoica 2000]. Our previous discussion also provides a simple explanation to this result: when the interference and the SOI are closely-spaced (i.e., when \(\omega_s \approx \omega_i \)), the first factor in (6.5.133) becomes rather small, which may allow the second factor to increase somewhat. This explains why the beamwidth of the APES spatial filter may be larger than that of the Capon filter, and hence why APES may have a slightly lower resolution.

6.5.7 The CLEAN Algorithm

The CLEAN algorithm is a semi-parametric method that can be used for spatial spectral estimation. As we will see, this algorithm can be introduced in a non-parametric fashion (see [Högblom 1974]), yet its performance depends heavily on an implicit parametric assumption about the structure of the spatial covariance matrix; thus, CLEAN lies in between the class of nonparametric and parametric approaches, and it can be called a semi-parametric approach.

There is a significant literature about CLEAN and its many applications in diverse areas, including array signal processing, image processing, and astronomy (see, e.g., [Cornwell and Bridle 1996] and its references). Our discussion of CLEAN will focus on its application to spatial spectral analysis and DOA estimation.

First, we present an intuitive motivation of CLEAN. Consider the beamforming spatial spectral estimate in (6.3.18):

\[
\hat{\phi}_1(\theta) = a^*(\theta) \hat{R} a(\theta)
\]
(6.5.135)

where \(a(\theta) \) and \(\hat{R} \) are defined as in Section 6.3.1. Let

\[
\hat{\theta}_1 = \arg \max_{\theta} \hat{\phi}_1(\theta)
\]
(6.5.136)

\[
\hat{\sigma}_1^2 = \frac{1}{m^2} \hat{\phi}_1(\hat{\theta}_1)
\]
(6.5.137)
In words, σ_1^2 is the scaled height of the highest peak of $\hat{\phi}_1(\theta)$, and $\hat{\theta}_1$ is its corresponding DOA (see (6.3.16) and (6.3.18)). As we know, the beamforming method suffers from resolution and leakage problems. However, the dominant peak of the beamforming spectrum, $\hat{\phi}_1(\theta)$, is likely to indicate that there is a source, or possibly several closely-spaced sources, at or in the vicinity of $\hat{\theta}_1$. The covariance matrix of the part of the array output due to a source signal with DOA equal to θ_1 and power equal to σ_1^2 is given by (see, e.g., (6.2.19)):

$$\hat{\sigma}_1^2 a(\hat{\theta}_1) a^*(\hat{\theta}_1)$$ \hspace{1cm} (6.5.138)

Consequently, the expected term in $\hat{\phi}_1(\theta)$ due to (6.5.138) is

$$\sigma_1^2 \left| a^*(\theta) a(\hat{\theta}_1) \right|^2$$ \hspace{1cm} (6.5.139)

We partly eliminate the term (6.5.139) from $\hat{\phi}_1(\theta)$, and hence define a new spectrum

$$\hat{\phi}_2(\theta) = \hat{\phi}_1(\theta) - \rho \sigma_1^2 \left| a^*(\theta) a(\hat{\theta}_1) \right|^2$$ \hspace{1cm} (6.5.140)

where ρ is a user parameter that satisfies

$$\rho \in (0, 1]$$ \hspace{1cm} (6.5.141)

The reason for using a value of $\rho < 1$ in (6.5.140) can be explained as follows.

(a) The assumption that there is a source with parameters $(\sigma_1^2, \hat{\theta}_1)$ corresponding to the maximum peak of the beamforming spectrum, which led to (6.5.140), may not necessarily be true. For example, there may be several sources clustered around θ_1 that were not resolved by the beamforming method. Subtracting only a (small) part of the beamforming response to a source signal with parameters $(\sigma_1^2, \hat{\theta}_1)$ leaves “some power” at and around $\hat{\theta}_1$. Hence, the algorithm will likely return to this DOA region of the beamforming spectrum in future iterations when it may have a better chance to resolve the power around $\hat{\theta}_1$ into its true constituent components.

(b) Even if there is indeed a single source at or close to $\hat{\theta}_1$, the estimation of its parameters may be affected by leakage from other sources; this leakage will be particularly strong when the source signal in question is correlated with other source signals. In such a case, (6.5.139) is a poor estimate of the contribution of the source in question to the beamforming spectrum. By subtracting only a part of (6.5.139) from $\hat{\phi}_1(\theta)$, we give the algorithm a chance to improve the parameter estimates of the source at or close to $\hat{\theta}_1$ in future iterations, similarly to what we said in (a) above.

(c) In both situations above, and possibly in other cases as well, in which (6.5.139) is a poor approximation of the part of the beamforming spectrum that is due to the source(s) at or around $\hat{\theta}_1$, subtracting (6.5.139) from $\hat{\phi}_1(\theta)$ fully (i.e., using $\rho = 1$) may yield a spatial spectrum that takes on negative values at some DOAs (which it should not). Using $\rho < 1$ in (6.5.140) reduces the likelihood that this undesirable event happens too early in the iterative process of the CLEAN algorithm (see below).
Chapter 6 Spatial Methods

The calculation of $\hat{\phi}_2(\theta)$, as in (6.5.140), completes the first iteration of CLEAN. In the second iteration, we proceed similarly but using $\hat{\phi}_2(\theta)$ instead of $\hat{\phi}_1(\theta)$. Hence, we let

$$\hat{\theta}_2 = \arg \max_{\theta} \hat{\phi}_2(\theta)$$ \hspace{1cm} (6.5.142)

$$\hat{\sigma}_2^2 = \frac{1}{m^2} \hat{\phi}_2(\hat{\theta}_2)$$ \hspace{1cm} (6.5.143)

and

$$\hat{\phi}_3(\theta) = \hat{\phi}_2(\theta) - \rho \hat{\sigma}_2^2 \left| a^*(\theta) a(\hat{\theta}_2) \right|^2$$ \hspace{1cm} (6.5.144)

Continuing the iterations in the same manner as above yields the CLEAN algorithm, a compact description of which is as follows:

The CLEAN Algorithm

Initialization:
$$\hat{\phi}_1(\theta) = a^*(\theta) \hat{R}_a(\theta)$$

For $k = 1, 2, \ldots$ do:

$$\hat{\theta}_k = \arg \max_{\theta} \hat{\phi}_k(\theta)$$

$$\hat{\sigma}_k^2 = \frac{1}{m^2} \hat{\phi}_k(\hat{\theta}_k)$$

$$\hat{\phi}_{k+1}(\theta) = \hat{\phi}_k(\theta) - \rho \hat{\sigma}_k^2 \left| a^*(\theta) a(\hat{\theta}_k) \right|^2$$

We continue the iterative process in the CLEAN algorithm until either we complete a prespecified number of iterations or until $\hat{\phi}_k(\theta)$ for some k has become (too) negative at some DOAs (see, e.g., [Högbom 1974; Cornwell and Bridle 1996]).

Regarding the choice of ρ in the CLEAN algorithm, while there are no clear guidelines about how this choice should be made to enhance the performance of the CLEAN algorithm in a given application, $\rho \in [0.1, 0.25]$ is usually recommended (see, e.g., [Högbom 1974; Cornwell and Bridle 1996; Schwarz 1978b]). We will make further comments on the choice of ρ later in this complement.

In the CLEAN literature, the beamforming spectral estimate $\hat{\phi}_1(\theta)$ that forms the starting point of CLEAN is called the “dirty” spectrum due to its mainlobe smearing and sidelobe leakage problems. The discrete spatial spectral estimate $\{\rho \hat{\sigma}_k^2, \hat{\theta}_k\}_{k=1,2,\ldots}$ provided by the algorithm (or a suitably smoothed version of it) is called the “clean” spectrum. The iterative process that yields the “clean” spectrum is, then, called the CLEAN algorithm.

It is interesting to observe that the above derivation of CLEAN is not based on a parametric model of the array output or of its covariance matrix, of the type considered in (6.2.21) or (6.4.3). More precisely, we have not made any assumption that there is a finite number of point source signals impinging on the array, nor
that the noise is spatially white. However, we have used the assumption that the covariance matrix due to a source signal has the form in (6.5.138), which cannot be true unless the signals impinging on the array are uncorrelated with one another. CLEAN is known to have poor performance if this parametric assumption does not hold. Hence, CLEAN is a combined nonparametric-parametric approach, which we call semi-parametric for short.

Next, we present a more formal derivation of the CLEAN algorithm. Consider the following semi-parametric model of the array output covariance matrix

$$R = \sigma_1^2 a(\theta_1) a^*(\theta_1) + \sigma_2^2 a(\theta_2) a^*(\theta_2) + \cdots$$

(6.5.145)

As implied by the previous discussion, this is the covariance model assumed by CLEAN. Let us fit (6.5.145) to the sample covariance matrix \hat{R} in a least squares sense:

$$\min_{\{\sigma^2_k, \theta_k\}} \| \hat{R} - \sigma_1^2 a(\theta_1) a^*(\theta_1) - \sigma_2^2 a(\theta_2) a^*(\theta_2) - \cdots \|^2$$

(6.5.146)

We will show that CLEAN is a sequential algorithm for approximately minimizing the above LS covariance fitting criterion.

We begin by assuming that the initial estimates of $\sigma^2_2, \sigma^2_3, \ldots$ are equal to zero (in which case $\theta_2, \theta_3, \ldots$ are immaterial). Consequently, we obtain an estimate of the pair (σ^2_1, θ_1) by minimizing (6.5.146) with $\sigma^2_2 = \sigma^2_3 = \cdots = 0$:

$$\min_{\sigma^2_1, \theta_1} \| \hat{R} - \sigma_1^2 a(\theta_1) a^*(\theta_1) \|^2$$

(6.5.147)

As shown in Complement 6.5.3, the solution to (6.5.147) is given by

$$\hat{\theta}_1 = \arg \max_{\theta} \hat{\phi}_1(\theta); \quad \hat{\sigma}_1^2 = \frac{1}{m^2} \hat{\phi}_1(\hat{\theta}_1)$$

(6.5.148)

where $\hat{\phi}_1(\theta)$ is as defined previously. We reduce the above power estimate by using $\hat{\rho} \hat{\sigma}_1^2$ in lieu of $\hat{\sigma}_1^2$. The reasons for this reduction are discussed in points (a)–(c) above; in particular, we would like the residual covariance matrix $\hat{R} - \hat{\rho} \hat{\sigma}_1^2 a(\hat{\theta}_1) a^*(\hat{\theta}_1)$ to be positive definite. We will discuss this aspect in more detail after completing the derivation of CLEAN.

Next, we obtain an estimate of the pair (σ^2_2, θ_2) by minimizing (6.5.146) with $\sigma^2_1 = \rho \hat{\sigma}_1^2$, $\theta_1 = \hat{\theta}_1$ and $\sigma^2_3 = \sigma^2_4 = \cdots = 0$:

$$\min_{\sigma^2_2, \theta_2} \| \hat{R} - \rho \hat{\sigma}_1^2 a(\hat{\theta}_1) a^*(\hat{\theta}_1) - \sigma_2^2 a(\theta_2) a^*(\theta_2) \|^2$$

(6.5.149)

The solution to (6.5.149) can be shown to be (similarly to solving (6.5.147)):

$$\hat{\theta}_2 = \arg \max_{\theta} \hat{\phi}_2(\theta); \quad \hat{\sigma}_2^2 = \frac{1}{m^2} \hat{\phi}_2(\hat{\theta}_2)$$

(6.5.150)

where

$$\hat{\phi}_2(\theta) = a^*(\theta) \left[\hat{R} - \rho \hat{\sigma}_1^2 a(\hat{\theta}_1) a^*(\hat{\theta}_1) \right] a(\theta)$$

$$= \hat{\phi}_1(\theta) - \rho \hat{\sigma}_1^2 \left| a^*(\theta) a(\hat{\theta}_1) \right|^2$$

(6.5.151)
Chapter 6 Spatial Methods

Observe that (6.5.148) and (6.5.150) coincide with (6.5.136)–(6.5.137) and (6.5.142)–(6.5.143). Evidently, continuing the above iterative process, for which (6.5.148) and (6.5.150) are the first two steps, leads to the CLEAN algorithm on page 314.

The above derivation of CLEAN sheds some light on the properties of this algorithm. First, note that the LS covariance fitting criterion in (6.5.146) is decreased at each iteration of CLEAN. For instance, consider the first iteration. A straightforward calculation shows that:

\[
\| \hat{R} - \rho \hat{\sigma}_k^2 a(\hat{\theta}_k) a^*(\hat{\theta}_k) \|^2 = \| \hat{R} \|^2 - 2 \rho \hat{\sigma}_k^2 a^*(\hat{\theta}_k) \hat{R} a(\hat{\theta}_k) + m^2 \rho^2 \hat{\sigma}_k^4 = \| \hat{R} \|^2 - \rho (2 - \rho) m^2 \hat{\sigma}_k^4 \quad (6.5.152)
\]

Clearly, (6.5.152) is less than \(\| \hat{R} \|^2 \) for any \(\rho \in (0, 2) \), and the maximum decrease occurs for \(\rho = 1 \) (as expected). A similar calculation shows that the criterion in (6.5.146) monotonically decreases as we continue the iterative process, for any \(\rho \in (0, 2) \), and that at each iteration the maximum decrease occurs for \(\rho = 1 \). As a consequence, we might think of choosing \(\rho = 1 \), but this is not advisable. The reason is that our goal is not only to decrease the fitting criterion (6.5.146) as much and as fast as possible, but also to ensure that the residual covariance matrices remain positive definite for \(k = 1, 2, \ldots \); otherwise, fitting \(\sigma_k^2 a(\theta_{k+1}) a^*(\theta_{k+1}) \) to \(\hat{R}_{k+1} \) would make little statistical sense. By a calculation similar to that in equation (6.5.33) of Complement 6.5.3, it can be shown that the condition \(\hat{R}_{k+1} > 0 \) is equivalent to

\[
\rho < \frac{1}{\hat{\sigma}_k^2 a^*(\hat{\theta}_k) \hat{R}_{k-1}^{-1} a(\hat{\theta}_k)} \quad (6.5.154)
\]

Note that the right-hand side of (6.5.154) is bounded above by one, because by the Cauchy–Schwartz inequality:

\[
\hat{\sigma}_k^2 a^*(\hat{\theta}_k) \hat{R}_{k-1}^{-1} a(\hat{\theta}_k) = \frac{1}{m^2} \left[a^*(\hat{\theta}_k) \hat{R}_k a(\hat{\theta}_k) \right] \left[a^*(\hat{\theta}_k) \hat{R}_k^{-1} a(\hat{\theta}_k) \right] = \frac{1}{m^2} \left\| \hat{R}_k^{1/2} a(\hat{\theta}_k) \right\|^2 \left\| \hat{R}_k^{-1/2} a(\hat{\theta}_k) \right\|^2 \geq \frac{1}{m^2} \left| a^*(\hat{\theta}_k) \hat{R}_k^{1/2} \hat{R}_k^{-1/2} a(\hat{\theta}_k) \right|^2 = \frac{1}{m^2} \left| a^*(\hat{\theta}_k) a(\hat{\theta}_k) \right|^2 = 1
\]

Also note that, depending on the scenario under consideration, satisfaction of the inequality in (6.5.154) for \(k = 1, 2, \ldots \) may require choosing a value for \(\rho \) much less than one. In summary, the above discussion has provided a precise argument for choosing \(\rho < 1 \) (or even \(\rho \ll 1 \)) in the CLEAN algorithm.

The LS covariance fitting derivation of CLEAN also makes the semi-parametric nature of CLEAN more transparent. Specifically, the discussion has shown that
CLEAN fits the semi-parametric covariance model in (6.5.145) to the sample covariance matrix \hat{R}.

Finally, note that although there is a significant literature on CLEAN, its statistical properties are not well understood; in fact, other than the preliminary study of CLEAN reported in [Schwarz 1978b] there appear to be very few statistical studies in the literature. The derivation of CLEAN based on the LS covariance fitting criterion in (6.5.146) may also be useful to understand the statistical properties of CLEAN. However, we will not attempt to provide a statistical analysis of CLEAN in this complement.

6.5.8 Unstructured and Persymmetric ML Estimates of the Covariance Matrix

Let $\{y(t)\}_{t=1,2,...}$ be a sequence of independent and identically distributed (i.i.d.) $m \times 1$ random vectors with mean zero and covariance matrix R. The array output given by equation (6.2.21) is an example of such a sequence, under the assumption that the signal $s(t)$ and the noise $e(t)$ in (6.2.21) are temporally white. Furthermore, let $y(t)$ be circularly Gaussian distributed (see Section B.3 in Appendix B), in which case its probability density function is given by

$$p(y) = \frac{1}{\pi^m |R|} e^{-y^T R^{-1} y} \quad (6.5.155)$$

Assume that N observations of $\{y(t)\}$ are available:

$$\{y(1), \ldots, y(N)\} \quad (6.5.156)$$

Owing to the i.i.d. assumption made on the sequence $\{y(t)\}_{t=1,2,...}$ the probability density function of the sample in (6.5.156) is given by:

$$p(y(1), \ldots, y(N)) = \prod_{t=1}^{N} p(y(t)) = \frac{1}{\pi^m |R|^N} e^{-\sum_{t=1}^{N} y^* R^{-1} y} \quad (6.5.157)$$

The maximum likelihood (ML) estimate of the covariance matrix R, based on the sample in (6.5.156), is given by the maximizer of the likelihood function in (6.5.157) (see Section B.1 in Appendix B) or, equivalently, by the minimizer of the negative log-likelihood function:

$$-\ln p(y(1), \ldots, y(N)) = mN \ln(\pi) + N \ln |R| + \sum_{t=1}^{N} y^* R^{-1} y (6.5.158)$$

The part of (6.5.158) that depends on R is given by (after multiplying by $\frac{1}{N}$)

$$\ln |R| + \frac{1}{N} \sum_{t=1}^{N} y^* R^{-1} y = \ln |R| + \text{tr} \left(R^{-1} \hat{R} \right) \quad (6.5.159)$$

where

$$\hat{R} = \frac{1}{N} \sum_{t=1}^{N} y(t)y^*(t) \quad (m \times m) \quad (6.5.160)$$
In this complement we discuss the minimization of (6.5.159) with respect to R, which yields the ML estimate of R, under either of the following two assumptions:

A: R has no assumed structure

or

B: R is persymmetric

As explained in Section 4.8, R is persymmetric (or centrosymmetric) if and only if

$$JR^T J = R \iff R = \frac{1}{2} \left(R + JR^T J \right) \quad (6.5.161)$$

where J is the so-called reversal matrix defined in (4.8.4).

Remark: If $y(t)$ is the output of an array that is uniform and linear and the source signals are uncorrelated with one another, then the covariance matrix R is Toeplitz, and hence persymmetric.

We will show that the unstructured ML estimate of R, denoted $\hat{R}_{U,ML}$, is given by the standard sample covariance matrix in (6.5.160),

$$\hat{R}_{U,ML} = \hat{R} \quad (6.5.162)$$

whereas the persymmetric ML estimate of R, denoted $\hat{R}_{P,ML}$, is given by

$$\hat{R}_{P,ML} = \frac{1}{2} \left(\hat{R} + J\hat{R}^T J \right) \quad (6.5.163)$$

To prove (6.5.162) we need to show that (see (6.5.159)):

$$\ln |R| + \text{tr} \left(R^{-1} \hat{R} \right) \geq \ln |\hat{R}| + m \quad \text{for any } R > 0 \quad (6.5.164)$$

Let \hat{C} be a square root of \hat{R} (see Definition D12 in Appendix A) and note that

$$\text{tr} \left(R^{-1} \hat{R} \right) = \text{tr} \left(R^{-1} \hat{C} \hat{C}^* \right) = \text{tr} \left(\hat{C}^* R^{-1} \hat{C} \right) \quad (6.5.165)$$

Using (6.5.165) in (6.5.164) we obtain the following series of equivalences:

$$(6.5.164) \iff \text{tr} \left(\hat{C}^* R^{-1} \hat{C} \right) - \ln |R^{-1} \hat{R}| \geq m$$

$$\iff \text{tr} \left(\hat{C}^* R^{-1} \hat{C} \right) - \ln |\hat{C}^* R^{-1} \hat{C}| \geq m$$

$$\iff \sum_{k=1}^{m} (\lambda_k - \ln \lambda_k - 1) \geq 0 \quad (6.5.166)$$

where $\{\lambda_k\}$ are the eigenvalues of the matrix $\hat{C}^* R^{-1} \hat{C}$.

Next we show, with reference to (6.5.166), that
\[f(\lambda) \triangleq \lambda - \ln \lambda - 1 \geq 0 \quad \text{for any } \lambda > 0 \quad (6.5.167) \]
To verify (6.5.167), observe that
\[f'(\lambda) = 1 - \frac{1}{\lambda}, \quad f''(\lambda) = \frac{1}{\lambda^2} \]
Hence, the function \(f(\lambda) \) in (6.5.167) has a unique minimum at \(\lambda = 1 \), and \(f(1) = 0 \); this proves (6.5.167). With this observation, the proof of (6.5.166), and therefore of (6.5.162), is complete.

The proof of (6.5.163) is even simpler. In view of (6.5.161), we have that
\[
\operatorname{tr} \left(R^{-1} \hat{R} \right) = \operatorname{tr} \left[(J\hat{R}^T J)^{-1} \hat{R} \right] = \operatorname{tr} \left(R^{-T} J \hat{R}^T J \right) \\
= \operatorname{tr} \left(R^{-1} J \hat{R}^T J \right) \quad (6.5.168)
\]
Hence, the function to be minimized with respect to \(R \) (under the constraint (6.5.161)) can be written as:
\[
\ln |R| + \operatorname{tr} \left[R^{-1} : \frac{1}{2} \left(\hat{R} + J \hat{R}^T J \right) \right] \quad (6.5.169)
\]
As shown earlier in this complement, the unstructured minimizer of (6.5.169) is given by
\[R = \frac{1}{2} \left(\hat{R} + J \hat{R}^T J \right) \quad (6.5.170) \]
Because (6.5.170) satisfies the persymmetry constraint, by construction, it also gives the constrained minimizer of the negative log-likelihood function, and hence the proof of (6.5.163) is concluded as well.

The reader interested in more details on the topic of this complement, including a comparison of the statistical estimation errors associated with \(\hat{R}_{U,ML} \) and \(\hat{R}_{P,ML} \), can consult [Jansson and Stoica 1999].

6.6 Exercises

Exercise 6.1: Source Localization using a Sensor in Motion

This exercise illustrates how the directions of arrival of planar waves can be determined by using a single moving sensor. Conceptually this problem is related to that of DOA estimation by sensor array methods. Indeed, we can think of a sensor in motion as creating a *synthetic aperture* similar to the one corresponding to a physical array of spatially distributed sensors.

Assume that the sensor has a linear motion with constant speed equal to \(v \). Also, assume that the sources are far field point emitters at fixed locations in the same plane as the sensor. Let \(\theta_k \) denote the \(k \)th DOA parameter (defined as the angle between the direction of wave propagation and the normal to the sensor trajectory). Finally, assume that the sources emit sinusoidal signals \(\{\alpha_k e^{i\omega t}\}_{k=1}^n \) with the same (center) frequency \(\omega \). These signals may be reflections of a probing
sinusoidal signal from different point scatterers of a target, in which case it is not restrictive to assume that they all have the same frequency.

Show that, under the previous assumptions and after elimination of the high-frequency component corresponding to the frequency ω, the sensor output signal can be written as

$$s(t) = \sum_{k=1}^{n} \alpha_k e^{i\omega_k^D t} + e(t)$$

(6.6.1)

where $e(t)$ is measurement noise, and where ω_k^D is the kth Doppler frequency defined by:

$$\omega_k^D = -\frac{v \cdot \omega}{c} \sin \theta_k$$

with c denoting the velocity of signal propagation. Conclude from (6.6.1) that the DOA estimation problem associated with the scenario under consideration can be solved by using the estimation methods discussed in this chapter and in Chapter 4 (provided that the sensor speed v can be accurately determined).

Exercise 6.2: Beamforming Resolution for Uniform Linear Arrays

Consider a ULA comprising m sensors, with inter-element spacing equal to d. Let λ denote the wavelength of the signals impinging on the array. According to the discussion in Chapter 2, the spatial frequency resolution of the beamforming used with the above ULA is given by

$$\Delta f_s = \frac{2}{m} \left(\frac{1}{f_s} \right)$$

(6.6.2)

Make use of the previous observation to show that the DOA resolution of beamforming for signals coming from broadside is

$$\Delta \theta \sim \sin^{-1}(1/L)$$

(6.6.3)

where L is the array's length measured in wavelengths:

$$L = \frac{(m - 1)d}{\lambda}$$

(6.6.4)

Explain how (6.6.3) approximately reduces to (6.3.20), for sufficiently large L.

Next, show that for signals impinging from an arbitrary direction angle θ, the DOA resolution of beamforming is approximately:

$$\Delta \theta \sim \frac{1}{L|\cos \theta|}$$

(6.6.5)

Hence, for signals coming from nearly end-fire directions, the DOA resolution is much worse than what is suggested in (6.3.20).

Exercise 6.3: Beamforming Resolution for Arbitrary Arrays
The beampattern

\[W(\theta) = |a^*(\theta)a(\theta_0)|^2, \quad \text{some } \theta_0 \]

has the same shape as a spectral window: it has a peak at \(\theta = \theta_0 \), is symmetric about that point, and the peak is narrow (for large enough values of \(m \)). Consequently the beamwidth of the array with direction vector \(a(\theta) \) can approximately be derived by using the window bandwidth formula proven in Exercise 2.15:

\[\Delta \theta \approx 2\sqrt{|W(\theta_0)/W''(\theta_0)|} \quad (6.6.6) \]

Now, the array’s beamwidth and the resolution of beamforming are closely related. To see this, consider the case where the array output covariance matrix is given by (6.4.3). Let \(n = 2 \), and assume that \(P = I \) (for simplicity of explanation). The average beamforming spectral function is then given by:

\[a^*(\theta)Ra(\theta) = |a^*(\theta)a(\theta_1)|^2 + |a^*(\theta)a(\theta_2)|^2 + m\sigma^2 \]

which clearly shows that the sources with DOAs \(\theta_1 \) and \(\theta_2 \) are resolvable by beamforming if and only if \(|\theta_1 - \theta_2| \) is larger than the array’s beamwidth. Consequently, we can approximately determine the beamforming resolution by using (6.6.6). Specialize equation (6.6.6) to a ULA and compare to the results obtained in Exercise 6.2.

Exercise 6.4: Beamforming Resolution for L-Shaped Arrays

Consider an \(m \)-element array, with \(m \) odd, shaped as an “L” with element spacing \(d \). Thus, the array elements are located at points \((0,0), (0,d), \ldots, (0,d(m-1)/2)\) and \((d,0), \ldots, (d(m-1)/2,0)\). Using the results in Exercise 6.3, find the DOA resolution of beamforming for signals coming from an angle \(\theta \). What is the minimum and maximum resolution, and for what angles are these extremal resolutions realized? Compare your results with the \(m \)-element ULA case in Exercise 6.2.

Exercise 6.5: Relationship between Beamwidth and Array Element Locations

Consider an \(m \)-element planar array with elements located at \(r_k = [x_k, y_k]^T \) for \(k = 1, \ldots, m \). Assume that the array is centered at the origin, so \(\sum_{k=1}^m r_k = 0 \). Use equation (6.6.6) to show that the array beamwidth at direction \(\theta_0 \) is given by

\[\Delta \theta \approx \sqrt{2} \frac{\lambda}{2\pi} \frac{1}{D(\theta_0)} \quad (6.6.7) \]

where \(D(\theta_0) \) is the root mean square distance of the array elements to the origin in the direction orthogonal to \(\theta_0 \) (see Figure 6.8):

\[D(\theta_0) = \sqrt{\frac{1}{m} \sum_{k=1}^m d_k^2(\theta_0)}, \quad d_k(\theta_0) = x_k \sin \theta_0 - y_k \cos \theta_0 \]
As in Exercise 2.15, the beamwidth approximation in equation (6.6.7) slightly underestimates the true beamwidth; a better approximation is given by:

\[
\Delta \theta \approx 1.15 \sqrt{\frac{\lambda}{2\pi D(\theta_0)}}
\]

(6.6.8)

Figure 6.8. Array element projected distances from the origin for DOA angle \(\theta_0\) (see Exercise 6.5).

Exercise 6.6: Isotropic Arrays

An array whose beamwidth is the same for all directions is said to be *isotropic*. Consider an \(m\)-element planar array with elements located at \(r_k = [x_k, y_k]^T\) for \(k = 1, \ldots, m\) and centered at the origin (\(\sum_{k=1}^{m} r_k = 0\)) as in Exercise 6.5. Show that the array beamwidth (as given by (6.6.7)) is the same for all DOAs if and only if

\[
R^T R = cI_2
\]

(6.6.9)

where

\[
R = \begin{bmatrix}
 x_1 & y_1 \\
 x_2 & y_2 \\
 \vdots & \vdots \\
 x_m & y_m
\end{bmatrix}
\]

and where \(c\) is a positive constant. (See [BAYSAL AND MOSES 2003] for additional details and properties of isotropic arrays.)

Exercise 6.7: Grating Lobes

The results of Exercise 6.2 might suggest that an \(m\)-element ULA can have very high resolution simply by using a large array element spacing \(d\). However,
there is an ambiguity associated with choosing $d > \lambda/2$; this drawback is sometimes referred to as the problem of *grating lobes*. Identify this drawback, and discuss what ambiguities exist as a function of d (refer to the discussion on ULAs in Section 6.2.2).

One potential remedy to this drawback is to use two ULAs: one with m_1 elements and element spacing $d_1 = \lambda/2$, and another with m_2 elements and element spacing d_2. Discuss how to choose m_1, m_2, and d_2 to both avoid ambiguities and increase resolution over a conventional ULA with element spacing $d = \lambda/2$ and $m_1 + m_2$ elements. Consider as an example using a 10-element ULA with $d_2 = 3\lambda/2$ for the second ULA; find m_1 to resolve ambiguities in this array. Finally, discuss any potential drawbacks of the two-array approach.

Exercise 6.8: Beamspace Processing

Consider an array comprising many sensors ($m \gg 1$). Such an array should be able to resolve sources that are quite closely spaced (cf. (6.3.20) and the discussion in Exercise 6.3). There is, however, a price to be paid for the high-resolution performance achieved by using many sensors: the computational burden associated with the elementspace processing (ESP) (i.e., the direct processing of the output of all sensors) may be prohibitively high, and the involved circuitry (A–D converters, etc.) may be quite expensive.

Let B^* be an $\tilde{m} \times m$ matrix with $\tilde{m} < m$, and consider the transformed output vector $B^* y(t)$. The latter vector satisfies the following equation (cf. (6.2.21)):

$$B^* y(t) = B^* As(t) + B^* e(t)$$ \hspace{1cm} (6.6.10)

The transformation matrix B^* above can be interpreted as a *beamformer* or *spatial filter* acting on $y(t)$. Determination of the DOAs of the signals impinging on the array using $B^* y(t)$ is called *beamspace processing* (BSP). Since $\tilde{m} < m$, BSP should have a lower computational burden than ESP. The critical question is then how to choose the beamformer B so as not to significantly degrade the performance achievable by ESP.

Assume that a certain DOA sector is known to contain the source(s) of interest (whose DOAs are designated by the generic variable θ_0). By using this information, design a matrix B^* which passes the signals from direction θ_0 approximately undistorted. Choose B in such a way that the noise in beamspace, $B^* e(t)$, is still spatially white. For a given sector size, discuss the tradeoff between the computational burden associated with BSP and the distorting effect of the beamformer on the desired signals. Finally, use the results of Exercise 6.3 to show that the resolution of beamforming in elementspace and beamspace are nearly the same, under the previous conditions.

Exercise 6.9: Beamspace Processing (cont’d)

In this exercise, for simplicity, we consider the Beamspace Processing (BSP) equation (6.6.10) for the case of a single source ($n = 1$):

$$B^* y(t) = B^* a(\theta) s(t) + B^* e(t)$$ \hspace{1cm} (6.6.11)

The Elementspace Processing (ESP) counterpart of (6.6.11) is (cf. (6.2.19))

$$y(t) = a(\theta) s(t) + e(t)$$ \hspace{1cm} (6.6.12)
Assume that \(\|a(\theta)\|^2 = m \) (see (6.3.11)), and that the \(\bar{m} \times m \) matrix \(B^* \) is unitary (i.e., \(B^*B = I \)). Furthermore, assume that

\[
a(\theta) \in \mathcal{R}(B)
\]

To satisfy (6.6.13) we need knowledge about a DOA sector that contains \(\theta \), which is usually assumed to be available in BSP applications; note that the narrower this sector, the smaller the value we can choose for \(\bar{m} \). As \(\bar{m} \) decreases, the implementation advantages of BSP compared with ESP become more significant. However, the DOA estimation performance achievable by BSP might be expected to decrease as \(\bar{m} \) decreases. As indicated in Exercise 6.8, this is not necessarily the case. In the present exercise we lend further support to the fact that the estimation performances of ESP and BSP can be quite similar to one another, provided that the condition (6.6.13) is satisfied. To be specific, define the array SNR for (6.6.12) as

\[
\frac{E\{\|a(\theta)s(t)\|^2\}}{E\|e(t)\|^2} = \frac{mP}{m\sigma^2} = \frac{P}{\sigma^2}
\]

where \(P \) denotes the power of \(s(t) \). Show that the “array SNR” for the BPS equation, (6.6.11), is \(m/\bar{m} \) times that in (6.6.14). Conclude that this increase in the array SNR associated with BPS may well counterbalance the presumably negative impact on DOA performance caused by the decrease from \(m \) to \(\bar{m} \) in the number of observed output signals.

Exercise 6.10: Beamforming and MUSIC under the Same Umbrella

Define the scalars

\[
Y_t^* = a(\theta)^*y(t), \quad t = 1, \ldots, N.
\]

By using previous notation, we can write the beamforming spatial spectrum in (6.3.18) as follows:

\[
Y^*(\theta)WY(\theta)
\]

where

\[
W = (1/N)I \quad \text{(for beamforming)}
\]

and

\[
Y(\theta) = [Y_1(\theta) \ldots Y_N(\theta)]^T
\]

Show that the MUSIC spatial pseudospectrum

\[
a^*(\theta)\hat{S}\hat{S}^*a(\theta)
\]

(see Sections 4.5 and 6.4.3) can also be put in the form (6.6.15), for a certain “weighting matrix” \(W \). The columns of the matrix \(\hat{S} \) in (6.6.16) are the \(n \) principal eigenvectors of the sample covariance matrix \(\hat{R} \) in (6.3.17).

Exercise 6.11: Subspace Fitting Interpretation of MUSIC

In words, the result (4.5.9) (on which MUSIC for both frequency and DOA estimation is based) says that the direction vectors \(\{a(\theta_k)\} \) belong to the subspace
spanned by the columns of S. Therefore, we can think of estimating the DOAs by choosing θ (a generic DOA variable) so that the distance between $a(\theta)$ and the closest vector in the span of \hat{S} is minimized:

$$\min_{\beta, \theta} \|a(\theta) - \hat{S}\beta\|^2$$

(6.6.17)

where $\| \cdot \|$ denotes the Euclidean vector norm. Note that the dummy vector variable β in (6.6.17) is defined in such a way so that $\hat{S}\beta$ is closest to $a(\theta)$ in Euclidean norm.

Show that the DOA estimation method derived from the subspace fitting criterion (6.6.17) is the same as MUSIC.

Exercise 6.12: Subspace Fitting Interpretation of MUSIC (cont’d.)

The result (4.5.9) can also be invoked to arrive at the following subspace fitting criterion:

$$\min_{B, \theta} \|A(\theta) - \hat{S}B\|^2_F$$

(6.6.18)

where $\| \cdot \|_F$ stands for the Frobenius matrix norm, and θ is now the vector of all DOA parameters. This criterion seems to be a more general version of equation (6.6.17) in Exercise 6.11. Show that the minimization of the multidimensional subspace fitting criterion in (6.6.18), with respect to the DOA vector θ, still leads to the one-dimensional MUSIC method. Hint: It will be useful to refer to the type of result proven in equations (4.3.12)–(4.3.16) in Section 4.3.

Exercise 6.13: Subspace Fitting Interpretation of MUSIC (cont’d.)

The subspace fitting interpretations of the previous two exercises provide some insights into the properties of the MUSIC estimator. Assume, for instance, that two or more source signals are coherent. Make use of the subspace fitting interpretation in Exercise 6.12 to show that MUSIC cannot be expected to yield meaningful results in such a case. Follow the line of your argument explaining why MUSIC fails in the case of coherent signals, to suggest a subspace fitting criterion that works in such a case. Discuss the computational complexity of the method based on the latter criterion.

Exercise 6.14: Modified MUSIC for Coherent Signals

Consider an m–element ULA. Assume that n signals impinge on the array at angles $\{\theta_k\}_{k=1}^n$, and also that some signals are coherent (so that the signal covariance matrix P is singular). Derive a modified MUSIC estimator for this case, analogous to the modified MUSIC frequency estimator in Section 4.5, and show that this method is capable of determining the n DOAs even in the coherent signal case.

COMPUTER EXERCISES

Tools for Array Signal Processing:

The text web site www.prenhall.com/stoica contains the following MATLAB functions for use in DOA estimation.
Chapter 6 Spatial Methods

- \texttt{Y=ula\texttt{data}(\texttt{theta},P,N,sig2,m,d)}
 Generates an $m \times N$ data matrix $Y = [y(1), \ldots, y(N)]$ for a ULA with n sources arriving at angles (in degrees from -90° to 90°) given by the elements of the $n \times 1$ vector \texttt{theta}. The source signals are zero mean Gaussian with covariance matrix $P = E \{s(t)s^*(t)\}$. The noise component is spatially white Gaussian with covariance $\sigma^2 I$, where $\sigma^2 = \text{sig2}$. The element spacing is equal to d in wavelengths.

- \texttt{phi=beam\texttt{form}(\texttt{Y},L,d)}
 Implements the beamforming spatial spectral estimate in equation (6.3.18) for an m–element ULA with sensor spacing d in wavelengths. The $m \times N$ matrix Y is as defined above. The parameter L controls the DOA sampling, and \texttt{phi} is the spatial spectral estimate $\phi = [\hat{\phi}(\theta_1), \ldots, \hat{\phi}(\theta_L)]$ where $\theta_k = -\frac{\pi}{2} + \frac{\pi k}{L}$.

- \texttt{phi=capon\texttt{sp}(\texttt{Y},L,d)}
 Implements the Capon spatial spectral estimator in equation (6.3.26); the input and output parameters are defined as those in \texttt{beam\texttt{form}}.

- \texttt{theta=root\texttt{music\texttt{doa}}(\texttt{Y},n,d)}
 Implements the Root MUSIC method in Section 4.5, adapted for spatial spectral estimation using a ULA. The parameters Y and d are as in \texttt{beam\texttt{form}}. The DOA estimates $[\hat{\theta}_1, \ldots, \hat{\theta}_n]^T$.

- \texttt{theta=esprit\texttt{doa}(\texttt{Y},n,d)}
 Implements the ESPRIT method for a ULA. The parameters Y and d are as in \texttt{beam\texttt{form}}. The DOA estimates $[\hat{\theta}_1, \ldots, \hat{\theta}_n]^T$. The two subarrays for ESPRIT are made from the first $m-1$ and last $m-1$ elements of the array.

Exercise C6.15: Comparison of Spatial Spectral Estimators

Simulate the following scenario. Two signals with wavelength λ impinge on an array of sensors from DOAs $\theta_1 = 0^\circ$ and a θ_2 that will be varied. The signals are mutually uncorrelated complex Gaussian with unit power, so that $P = E \{s(t)s^*(t)\} = I$. The array is a 10–element ULA with element spacing $d = \lambda/2$. The measurements are corrupted by additive complex Gaussian white noise with unit power. A total of $N = 100$ snapshots are collected.

(a) Let $\theta_2 = 15^\circ$. Compare the results of the beamforming, Capon, Root MUSIC, and ESPRIT methods for this example. The results can be shown by plotting the spatial spectrum estimates from beamforming and Capon for 50 Monte–Carlo experiments; for Root MUSIC and ESPRIT, plot vertical lines of equal height located at the DOA estimates from the 50 Monte–Carlo experiments. How do the methods compare? Are the properties of the various estimators analogous to the time series case for two sinusoids in noise?

(b) Repeat for $\theta_2 = 7.5^\circ$.
Exercise C6.16: Performance of Spatial Spectral Estimators for Coherent Source Signals

In this exercise we will see what happens when the source signals are fully correlated (or coherent). Use the same parameters and estimation methods as in Exercise C6.15 with $\theta_2 = 15^\circ$, but with

$$P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Note that the sources are coherent as $\text{rank}(P) = 1$.

Compare the results of the four methods for this case, again by plotting the spatial spectrum and “DOA line spectrum” estimates (as in Exercise C6.15) for 50 Monte–Carlo experiments from each estimator. Which method appears to be the best in this case?

Exercise C6.17: Spatial Spectral Estimators applied to Measured Data

Apply the four DOA estimators from Exercise C6.15 to the real data in the file `submarine.mat`, which can be found at the text web site `www.prenhall.com/stoica`. These data are underwater measurements collected by the Swedish Defense Agency in the Baltic Sea. The 6-element array of hydrophones used in the experiment can be assumed to be a ULA with inter-element spacing equal to 0.9m. The wavelength of the signal is approximately 5.32m. Can you find the “submarine(s)”?

A P P E N D I X A

Linear Algebra and Matrix Analysis Tools

A.1 INTRODUCTION

In this appendix we provide a review of the linear algebra terms and matrix properties used in the text. For the sake of brevity we do not present proofs for all results stated in the following, nor do we discuss related results which are not needed in the previous chapters. For most of the results included, however, we do provide proofs and motivation. The reader interested in finding out more about the topic of this appendix can consult the books [Stewart 1973; Horn and Johnson 1985; Strang 1988; Horn and Johnson 1989; Golub and Van Loan 1989] to which we also refer for the proofs omitted here.

A.2 RANGE SPACE, NULL SPACE, AND MATRIX RANK

Let A be an $m \times n$ matrix with possibly complex–valued elements, $A \in \mathbb{C}^{m \times n}$, and let $(\cdot)^T$ and $(\cdot)^*$ denote the transpose and the conjugate transpose operators, respectively.

Definition D1: The range space of A, also called the column space, is the subspace spanned by (all linear combinations of) the columns of A:

$$\mathcal{R}(A) = \{ \alpha \in \mathbb{C}^{m \times 1} | \alpha = A\beta \quad \text{for} \quad \beta \in \mathbb{C}^{n \times 1} \} \quad (A.2.1)$$

The range space of A^T is usually called the row space of A, for obvious reasons.

Definition D2: The null space of A, also called kernel, is the following subspace:

$$\mathcal{N}(A) = \{ \beta \in \mathbb{C}^{n \times 1} | A\beta = 0 \} \quad (A.2.2)$$

The previous definitions are all that we need to introduce the matrix rank and its basic properties. We return to the range and null subspaces in Section A.4 where we discuss the singular value decomposition. In particular, we derive there some convenient bases and useful projectors associated with the previous matrix subspaces.

Definition D3: The following are equivalent definitions of the rank of A,

$$r \triangleq \text{rank}(A).$$
Section A.2 Range Space, Null Space, and Matrix Rank

(i) \(r \) is equal to the maximum number of linearly independent columns of \(A \). The latter number is by definition the dimension of the \(\mathcal{R}(A) \); hence
\[
 r = \dim \mathcal{R}(A) \quad (A.2.3)
\]

(ii) \(r \) is equal to the maximum number of linearly independent rows of \(A \),
\[
 r = \dim \mathcal{R}(A^T) = \dim \mathcal{R}(A^*) \quad (A.2.4)
\]

(iii) \(r \) is the dimension of the nonzero determinant of maximum size that can be built from the elements of \(A \).

The equivalence between the definitions (i) and (ii) above is an important and pleasing result (without which one should have considered the row rank and column rank of a matrix separately!).

Definition D4: \(A \) is said to be:

- **Rank deficient** whenever \(r < \min(m,n) \).
- **Full column rank** if \(r = n \leq m \).
- **Full row rank** if \(r = m \leq n \)
- **Nonsingular** whenever \(r = m = n \).

Result R1: Premultiplication or postmultiplication of \(A \) by a nonsingular matrix does not change the rank of \(A \).

Proof: This fact directly follows from the definition of \(\text{rank}(A) \) because the aforementioned multiplications do not change the number of linearly independent columns (or rows) of \(A \). \(\blacksquare \)

Result R2: Let \(A \in \mathbb{C}^{m \times n} \) and \(B \in \mathbb{C}^{n \times p} \) be two conformable matrices of rank \(r_A \) and \(r_B \), respectively. Then:
\[
 \text{rank}(AB) \leq \min(r_A, r_B) \quad (A.2.5)
\]

Proof: We can prove the previous assertion by using the definition of the rank once again. Indeed, premultiplication of \(B \) by \(A \) cannot increase the number of linearly independent columns of \(B \), hence \(\text{rank}(AB) \leq r_B \). Similarly, postmultiplication of \(A \) by \(B \) cannot increase the number of linearly independent columns of \(A^T \), which means that \(\text{rank}(AB) \leq r_A \). \(\blacksquare \)
Result R3: Let \(A \in \mathbb{C}^{m \times m} \) be given by
\[
A = \sum_{k=1}^{N} x_k y_k^* \]
where \(x_k, y_k \in \mathbb{C}^{m \times 1} \). Then,
\[
\text{rank}(A) \leq \min(m, N) \]

Proof: Since \(A \) can be rewritten as
\[
A = [x_1 \ldots x_N] \begin{bmatrix} y_1^* \\ \vdots \\ y_N^* \end{bmatrix}
\]
the result follows from R2. \(\blacksquare \)

Result R4: Let \(A \in \mathbb{C}^{m \times n} \) with \(n \leq m \), let \(B \in \mathbb{C}^{n \times p} \), and let
\[
\text{rank}(A) = n \quad (A.2.6)
\]
Then
\[
\text{rank}(AB) = \text{rank}(B) \quad (A.2.7)
\]

Proof: Assumption (A.2.6) implies that \(A \) contains a nonsingular \(n \times n \) submatrix, the post–multiplication of which by \(B \) gives a block of rank equal to \(\text{rank}(B) \) (cf. R1). Hence,
\[
\text{rank}(AB) \geq \text{rank}(B)
\]
However, by R2, \(\text{rank}(AB) \leq \text{rank}(B) \) and hence (A.2.7) follows. \(\blacksquare \)

A.3 EIGENVALUE DECOMPOSITION

Definition D5: We say that the matrix \(A \in \mathbb{C}^{m \times m} \) is Hermitian if \(A^* = A \). In the real–valued case, such an \(A \) is said to be symmetric.

Definition D6: A matrix \(U \in \mathbb{C}^{m \times m} \) is said to be unitary (orthogonal if \(U \) is real–valued) whenever
\[
U^* U = U U^* = I
\]
If \(U \in \mathbb{C}^{m \times n} \), with \(m > n \), is such that \(U^* U = I \) then we say that \(U \) is semiunitary.

Next, we present a number of definitions and results pertaining to the matrix eigenvalue decomposition (EVD), first for general matrices and then for Hermitian ones.
A.3.1 General Matrices

Definition D7: A scalar \(\lambda \in \mathbb{C} \) and a (nonzero) vector \(x \in \mathbb{C}^{m \times 1} \) are an *eigenvalue* and its associated *eigenvector* of a matrix \(A \in \mathbb{C}^{m \times m} \) if

\[
Ax = \lambda x \quad (A.3.1)
\]

In particular, an eigenvalue \(\lambda \) is a solution of the so-called *characteristic equation* of \(A \):

\[
|A - \lambda I| = 0 \quad (A.3.2)
\]

and \(x \) is a vector in \(\mathcal{N}(A - \lambda I) \). The pair \((\lambda, x)\) is called an *eigenpair*.

Observe that if \(\{(\lambda_i, x_i)\}_{i=1}^{p} \) are \(p \) eigenpairs of \(A \) (with \(p \leq m \)) then we can write the defining equations \(Ax_i = \lambda x_i \) \((i = 1, \ldots, p)\) in the following compact form:

\[
AX = XL \quad (A.3.3)
\]

where

\[
X = [x_1 \ldots x_p]
\]

and

\[
L = \begin{bmatrix}
\lambda_1 & 0 \\
0 & \ddots \\
0 & \lambda_p
\end{bmatrix}
\]

Result R5: Let \((\lambda, x)\) be an eigenpair of \(A \in \mathbb{C}^{m \times m} \). If \(B = A + \alpha I \), with \(\alpha \in \mathbb{C} \), then \((\lambda + \alpha, x)\) is an eigenpair of \(B \).

Proof: The result follows from the fact that

\[
Ax = \lambda x \implies (A + \alpha I)x = (\lambda + \alpha)x.
\]

Result R6: The matrices \(A \) and \(B \equiv Q^{-1}AQ \), where \(Q \) is any nonsingular matrix, share the same eigenvalues. (\(B \) is said to be related to \(A \) by a *similarity transformation*).

Proof: Indeed, the equation

\[
|B - \lambda I| = |Q^{-1}(A - \lambda I)Q| = |Q^{-1}||A - \lambda I||Q| = 0
\]

is equivalent to \(|A - \lambda I| = 0\).

In general there is no simple relationship between the elements \(\{A_{ij}\} \) of \(A \) and its eigenvalues \(\{\lambda_k\} \). However, the *trace* of \(A \), which is the sum of the diagonal elements of \(A \), is related in a simple way to the eigenvalues, as described next.

Definition D8: The *trace* of a square matrix \(A \in \mathbb{C}^{m \times m} \) is defined as

\[
\text{tr}(A) = \sum_{i=1}^{m} A_{ii} \quad (A.3.4)
\]
Result R7: If \(\{ \lambda_i \}_{i=1}^{m} \) are the eigenvalues of \(A \in \mathbb{C}^{m \times m} \), then

\[
\text{tr}(A) = \sum_{i=1}^{m} \lambda_i \quad (A.3.5)
\]

Proof: We can write

\[
|\lambda I - A| = \prod_{i=1}^{n} (\lambda - \lambda_i) \quad (A.3.6)
\]

The right hand side of (A.3.6) is a polynomial in \(\lambda \) whose \(\lambda^{n-1} \) coefficient is \(\sum_{i=1}^{n} \lambda_i \). From the definition of the determinant (see, e.g., [Strang 1988]) we find that the left hand side of (A.3.6) is a polynomial whose \(\lambda^{n-1} \) coefficient is \(\sum_{i=1}^{n} A_{ii} = \text{tr}(A) \). This proves the result.

Interestingly, while the matrix product is not commutative, the trace is invariant to commuting the factors in a matrix product, as shown next.

Result R8: Let \(A \in \mathbb{C}^{m \times n} \) and \(B \in \mathbb{C}^{n \times m} \). Then:

\[
\text{tr}(AB) = \text{tr}(BA) \quad (A.3.7)
\]

Proof: A straightforward calculation, based on the definition of \(\text{tr}(\cdot) \) in (A.3.4), shows that

\[
\text{tr}(AB) = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}B_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{m} B_{ji}A_{ij} = \sum_{j=1}^{n} [BA]_{jj} = \text{tr}(BA)
\]

We can also prove (A.3.7) by using Result R7. Along the way we will obtain some other useful results. First we note the following.

Result R9: Let \(A, B \in \mathbb{C}^{m \times m} \) and let \(\alpha \in \mathbb{C} \). Then

\[
|AB| = |A||B| \quad \quad |\alpha A| = \alpha^m |A|
\]

Proof: The identities follow directly from the definition of the determinant; see, e.g., [Strang 1988].

Next we prove the following results.
Result R10: Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$. Then:
\[|I - AB| = |I - BA|. \] (A.3.8)

Proof: It is straightforward to verify that:
\[
\begin{bmatrix}
I & A \\
0 & I
\end{bmatrix}
\begin{bmatrix}
I & -A \\
-B & I
\end{bmatrix}
\begin{bmatrix}
I & 0 \\
B & I
\end{bmatrix}
=
\begin{bmatrix}
I - AB & 0 \\
0 & I
\end{bmatrix}
\] (A.3.9)

and
\[
\begin{bmatrix}
I & 0 \\
B & I
\end{bmatrix}
\begin{bmatrix}
I & -A \\
-B & I
\end{bmatrix}
\begin{bmatrix}
I & A \\
0 & I
\end{bmatrix}
=
\begin{bmatrix}
I & 0 \\
0 & I - BA
\end{bmatrix}
\] (A.3.10)

Because the matrices in the left-hand sides of (A.3.9) and (A.3.10) have the same determinant, equal to $|I - AB|$, it follows that the right-hand sides must also have the same determinant, which concludes the proof.

Result R11: Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times m}$. The nonzero eigenvalues of AB and of BA are identical.

Proof: Let $\lambda \neq 0$ be an eigenvalue of AB. Then,
\[0 = |AB - \lambda I| = \lambda^m |AB/\lambda - I| = \lambda^n |BA/\lambda - I| = \lambda^{m-n} |BA - \lambda I| \]
where the third equality follows from R10. Hence, λ is also an eigenvalue of BA.

We can now obtain R8 as a simple corollary of R11, by using the property (A.3.5) of the trace operator.

A.3.2 Hermitian Matrices

An important property of the class of Hermitian matrices, which does not necessarily hold for general matrices, is the following.

Result R12:
(i) All eigenvalues of $A = A^* \in \mathbb{C}^{m \times m}$ are \textit{real-valued}.
(ii) The m eigenvectors of $A = A^* \in \mathbb{C}^{m \times m}$ form an \textit{orthonormal set}. In other words, the matrix whose columns are the eigenvectors of A is \textit{unitary}.

It follows from (i) and (ii) and from (A.3.3) that for a Hermitian matrix we can write:
\[AU = UA \]
where $U^*U = UU^* = I$ and the diagonal elements of Λ are real numbers. Equivalently,
\[A = U^\Lambda U \] (A.3.11)
which is the so-called eigenvalue decomposition (EVD) of $A = A^*$. The EVD of a Hermitian matrix is a special case of the singular value decomposition of a general matrix discussed in the next section.

The following is a useful result associated with Hermitian matrices.
Appendix A Linear Algebra and Matrix Analysis Tools

Result R13: Let $A = A^* \in \mathbb{C}^{m \times m}$ and let $v \in \mathbb{C}^{m \times 1}$ ($v \neq 0$). Also, let the eigenvalues of A be arranged in a nonincreasing order:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m.$$

Then:

$$\lambda_m \leq \frac{v^* Av}{v^* v} \leq \lambda_1 \quad \text{(A.3.12)}$$

The ratio in (A.3.12) is called the Rayleigh quotient. As this ratio is invariant to the multiplication of v by any complex number, we can rewrite (A.3.12) in the form:

$$\lambda_m \leq v^* Av \leq \lambda_1 \quad \text{for any } v \in \mathbb{C}^{m \times 1} \text{ with } v^* v = 1 \quad \text{(A.3.13)}$$

The equalities in (A.3.13) are evidently achieved when v is equal to the eigenvector of A associated with λ_m and λ_1, respectively.

Proof: Let the EVD of A be given by (A.3.11), and let

$$w = U^* v = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$

We need to prove that

$$\lambda_m \leq w^* Aw = \sum_{k=1}^{m} \lambda_k |w_k|^2 \leq \lambda_1$$

for any $w \in \mathbb{C}^{m \times 1}$ satisfying

$$w^* w = \sum_{k=1}^{m} |w_k|^2 = 1.$$

However, this is readily verified as follows:

$$\lambda_1 - \sum_{k=1}^{m} \lambda_k |w_k|^2 = \sum_{k=1}^{m} (\lambda_1 - \lambda_k)|w_k|^2 \geq 0$$

and

$$\sum_{k=1}^{m} \lambda_k |w_k|^2 - \lambda_m = \sum_{k=1}^{m} (\lambda_k - \lambda_m)|w_k|^2 \geq 0$$

and the proof is concluded.

The following result is an extension of R13.

Result R14: Let $V \in \mathbb{C}^{m \times n}$, with $m > n$, be a semiunitary matrix (i.e., $V^* V = I$), and let $A = A^* \in \mathbb{C}^{m \times m}$ have its eigenvalues ordered as in R13. Then:

$$\sum_{k=m-n+1}^{m} \lambda_k \leq \text{tr}(V^* AV) \leq \sum_{k=1}^{n} \lambda_k \tag{A.3.14}$$
where the equalities are achieved, for instance, when the columns of V are the eigenvectors of A corresponding to $(\lambda_{m-n+1}, \ldots, \lambda_m)$ and, respectively, to $(\lambda_1, \ldots, \lambda_n)$. The ratio
\[
\frac{\text{tr}(V^*AV)}{\text{tr}(V^*V)} = \frac{\text{tr}(V^*AV)}{n}
\]
is sometimes called the \textit{extended Rayleigh quotient}.

\textbf{Proof:} Let
\[
A = UAU^*
\]
(cf. (A.3.11)), and let
\[
S = U^*V \triangleq \begin{bmatrix}
s_1^* \\
\vdots \\
s_m^*
\end{bmatrix} \quad (m \times n)
\]
(hence s_k^* is the kth row of S). By making use of the above notation, we can write:
\[
\text{tr}(V^*AV) = \text{tr}(V^*UAV) = \text{tr}(S^*AS) = \text{tr}(ASS^*) = \sum_{k=1}^{m} \lambda_k c_k \quad \text{(A.3.15)}
\]
where
\[
c_k \triangleq s_k^*s_k, \quad k = 1, \ldots, m \quad \text{(A.3.16)}
\]
Clearly,
\[
c_k \geq 0, \quad k = 1, \ldots, m \quad \text{(A.3.17)}
\]
and
\[
\sum_{k=1}^{m} c_k = \text{tr}(SS^*) = \text{tr}(S^*S) = \text{tr}(V^*UU^*V) = \text{tr}(V^*V) = \text{tr}(I) = n \quad \text{(A.3.18)}
\]
Furthermore,
\[
c_k \leq 1, \quad k = 1, \ldots, m. \quad \text{(A.3.19)}
\]
To see this, let $G \in \mathbb{C}^{m \times (m-n)}$ be such that the matrix $[S \ G]$ is unitary; and let g_k^* denote the kth row of G. Then, by construction,
\[
\begin{bmatrix}
s_k^* \\
g_k
\end{bmatrix} = c_k + g_k^*g_k = 1 \implies c_k = 1 - g_k^*g_k \leq 1
\]
which is (A.3.19).

Finally, by combining (A.3.15) with (A.3.17)–(A.3.19) we can readily verify that $\text{tr}(V^*AV)$ satisfies (A.3.14), where the equalities are achieved for
\[
c_1 = \cdots = c_{m-n} = 0; \quad c_{m-n+1} = \cdots = c_m = 1
\]
and, respectively,
\[
c_1 = \cdots = c_n = 1; \quad c_{n+1} = \cdots = c_m = 0
\]
These conditions on $\{c_k\}$ are satisfied if, for example, S is equal to $[0 \ I]^T$ and $[I \ 0]^T$, respectively. With this observation, the proof is concluded.

Result R13 is clearly a special case of Result R14. The only reason for considering R13 separately is that the simpler result R13 is more often used in the text than R14.
A.4 SINGULAR VALUE DECOMPOSITION AND PROJECTION OPERATORS

For any matrix $A \in \mathbb{C}^{m \times n}$ there exist unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ with nonnegative diagonal elements, such that

$$A = U\Sigma V^* \tag{A.4.1}$$

By appropriate permutation, the diagonal elements of Σ can be arranged in a nonincreasing order:

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)}$$

The factorization (A.4.1) is called the singular value decomposition (SVD) of A and its existence is a significant result from both a theoretical and practical standpoint. We reiterate that the matrices U, Σ, and V in (A.4.1) satisfy:

$$U^*U = UU^* = I \quad (m \times m)$$
$$V^*V = VV^* = I \quad (n \times n)$$
$$\Sigma_{ij} = \begin{cases} \sigma_i & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

The following terminology is most commonly associated with the SVD:

- The left singular vectors of A are the columns of U. These singular vectors are also the eigenvectors of the matrix AA^*.
- The right singular vectors of A are the columns of V. These vectors are also the eigenvectors of the matrix A^*A.
- The singular values of A are the diagonal elements $\{\sigma_i\}$ of Σ. Note that $\{\sigma_i\}$ are the square roots of the largest $\min(m,n)$ eigenvalues of AA^* or A^*A.
- The singular triple of A is the triple (singular value, left singular vector, and right singular vector) (σ_k, u_k, v_k), where u_k (v_k) is the kth column of U (V).

If $\text{rank}(A) = r \leq \min(m,n)$ then one can show that:

$$\begin{cases} \sigma_k > 0, & k = 1, \ldots, r \\ \sigma_k = 0, & k = r + 1, \ldots, \min(m,n) \end{cases}$$

Hence, for a matrix of rank r the SVD can be written as:

$$A = \left[\begin{array}{c} U_1 \\ \hline \vdots \\ \hline U_2 \end{array} \right] \left[\begin{array}{cc} \Sigma_1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} V_1^* \\ V_2 \end{array} \right]_{n-r} = U_1\Sigma_1V_1^* \tag{A.4.2}$$

where $\Sigma_1 \in \mathbb{R}^{r \times r}$ is nonsingular. The factorization of A in (A.4.2) has a number of important consequences.

Result R15: Consider the SVD of $A \in \mathbb{C}^{m \times n}$ in (A.4.2), where $r \leq \min(m,n)$. Then:
Section A.4 Singular Value Decomposition and Projection Operators 337

(i) U_1 is an orthonormal basis of $\mathcal{R}(A)$
(ii) U_2 is an orthonormal basis of $\mathcal{N}(A^*)$
(iii) V_1 is an orthonormal basis of $\mathcal{R}(A^*)$
(iv) V_2 is an orthonormal basis of $\mathcal{N}(A)$.

Proof: We see that (iii) and (iv) follow from the properties (i) and (ii) applied to A^*. To prove (i) and (ii), we need to show that:

$$\mathcal{R}(A) = \mathcal{R}(U_1)$$

and, respectively,

$$\mathcal{N}(A^*) = \mathcal{R}(U_2)$$

To show (A.4.3), note that

$$\alpha \in \mathcal{R}(A) \Rightarrow \text{there exists } \beta \text{ such that } \alpha = A\beta \Rightarrow \alpha = U_1(\Sigma_1 V_1^* \beta) = U_1 \gamma \Rightarrow \alpha \in \mathcal{R}(U_1)$$

so $\mathcal{R}(A) \subset \mathcal{R}(U_1)$. Also,

$$\alpha \in \mathcal{R}(U_1) \Rightarrow \text{there exists } \beta \text{ such that } \alpha = U_1 \beta$$

From (A.4.2), $U_1 = AV_1\Sigma_1^{-1}$; it follows that

$$\alpha = A(V_1\Sigma_1^{-1} \beta) = A\rho \Rightarrow \alpha \in \mathcal{R}(A)$$

which shows $\mathcal{R}(U_1) \subset \mathcal{R}(A)$. Combining $\mathcal{R}(U_1) \subset \mathcal{R}(A)$ with $\mathcal{R}(A) \subset \mathcal{R}(U_1)$ gives (A.4.3). Similarly,

$$\alpha \in \mathcal{N}(A^*) \Rightarrow A^* \alpha = 0 \Rightarrow V_1\Sigma_1 V_1^* \alpha = 0 \Rightarrow \Sigma_1^{-1} V_1^* V_1 \Sigma_1 U_1^* \alpha = 0 \Rightarrow U_1^* \alpha = 0$$

Now, any vector α can be written as

$$\alpha = [U_1 \ U_2] \begin{bmatrix} \gamma \\ \beta \end{bmatrix}$$

since $[U_1 \ U_2]$ is nonsingular. However, $0 = U_1^* \alpha = U_1^* U_1 \gamma + U_2^* U_2 \beta = \gamma$, so $\gamma = 0$, and thus $\alpha = U_2 \beta$. Thus, $\mathcal{N}(A^*) \subset \mathcal{R}(U_2)$. Finally,

$$\alpha \in \mathcal{R}(U_2) \Rightarrow \text{there exists } \beta \text{ such that } \alpha = U_2 \beta$$

Then

$$A^* \alpha = V_1 \Sigma_1 U_1^* U_2 \beta = 0 \Rightarrow \alpha \in \mathcal{N}(A^*)$$

which leads to (A.4.4).

The previous result, readily derived by using the SVD, has a number of interesting corollaries which complement the discussion on range and null subspaces in Section A.2.
Appendix A Linear Algebra and Matrix Analysis Tools

Result R16: For any \(A \in \mathbb{C}^{m \times n} \) the subspaces \(\mathcal{R}(A) \) and \(\mathcal{N}(A^*) \) are orthogonal to each other and they together span \(\mathbb{C}^m \). Consequently, we say that \(\mathcal{N}(A^*) \) is the orthogonal complement of \(\mathcal{R}(A) \) in \(\mathbb{C}^m \), and vice versa. In particular, we have:

\[
\text{dim} \mathcal{N}(A^*) = m - r \tag{A.4.5}
\]
\[
\text{dim} \mathcal{N}(A) = n - r \tag{A.4.6}
\]

(Recall that \(\text{dim} \mathcal{R}(A) = \text{dim} \mathcal{R}(A^*) = r \).)

Proof: This result is a direct corollary of R15.

The SVD of a matrix also provides a convenient representation for the projectors onto the range and null spaces of \(A \) and \(A^* \).

Definition D9: Let \(y \in \mathbb{C}^{m \times 1} \) be an arbitrary vector. By definition the orthogonal projector onto \(\mathcal{R}(A) \) is the matrix \(\Pi \), which is such that (i) \(\mathcal{R}(\Pi) = \mathcal{R}(A) \) and (ii) the Euclidean distance between \(y \) and \(\Pi y \in \mathcal{R}(A) \) is minimum:

\[
\|y - \Pi y\|^2 = \min_{\Pi y} \quad \text{over} \ \mathcal{R}(A)
\]

Hereafter, \(\|x\|^2 = x^*x \) denotes the Euclidean vector norm.

Result R17: Let \(A \in \mathbb{C}^{m \times n} \). The orthogonal projector onto \(\mathcal{R}(A) \) is given by

\[
\Pi = U_1 U_1^* \tag{A.4.7}
\]

whereas the orthogonal projector onto \(\mathcal{N}(A^*) \) is

\[
\Pi^\perp = I - U_1 U_1^* = U_2 U_2^* \tag{A.4.8}
\]

Proof: Let \(y \in \mathbb{C}^{m \times 1} \) be an arbitrary vector. As \(\mathcal{R}(A) = \mathcal{R}(U_1) \), according to R15, we can find the vector in \(\mathcal{R}(A) \) that is of minimal distance from \(y \) by solving the problem:

\[
\min_{\beta} \|y - U_1 \beta\|^2 \tag{A.4.9}
\]

Because

\[
\|y - U_1 \beta\|^2 = (\beta^* - y^* U_1^*)(\beta - U_1^* y) + y^*(I - U_1 U_1^*)y
\]

\[
= \|\beta - U_1^* y\|^2 + \|U_2^* y\|^2
\]

it readily follows that the solution to the minimization problem (A.4.9) is given by \(\beta = U_1^* y \). Hence the vector \(U_1 U_1^* y \) is the orthogonal projection of \(y \) onto \(\mathcal{R}(A) \) and the minimum distance from \(y \) to \(\mathcal{R}(A) \) is \(\|U_2^* y\| \). This proves (A.4.7). Then (A.4.8) follows immediately from (A.4.7) and the fact that \(\mathcal{N}(A^*) = \mathcal{R}(U_2) \).

Note, for instance, that for the projection of \(y \) onto \(\mathcal{R}(A) \) the error vector is \(y - U_1 U_1^* y = U_2 U_2^* y \), which is in \(\mathcal{R}(U_2) \) and is therefore orthogonal to \(\mathcal{R}(A) \) by R15. For this reason, \(\Pi \) is given the name “orthogonal projector” in D9 and R17.

As an aside, we remark that the orthogonal projectors in (A.4.7) and (A.4.8) are idempotent matrices; see the next definition.
Definition D10: The matrix $A \in \mathbb{C}^{m \times m}$ is **idempotent** if

$$A^2 = A \quad (A.4.10)$$

Furthermore, observe by making use of R11 that the idempotent matrix in (A.4.7), for example, has r eigenvalues equal to 1 and $(m - r)$ eigenvalues equal to zero. This is a general property of idempotent matrices: their eigenvalues are either zero or one.

Finally we present a result that even alone would be enough to make the SVD an essential matrix analysis tool.

Result R18: Let $A \in \mathbb{C}^{m \times n}$, with elements A_{ij}. Let the SVD of A (with the singular values arranged in a nonincreasing order) be given by:

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \begin{bmatrix} V_1^* \\ V_2^* \end{bmatrix} \quad (A.4.11)$$

where $p \leq \min(m, n)$ is an integer. Let

$$\|A\|^2 = \text{tr}(A^*A) = \sum_{i=1}^{m} \sum_{j=1}^{n} |A_{ij}|^2 = \sum_{k=1}^{\min(m, n)} \sigma_k^2 \quad (A.4.12)$$

denote the square of the so-called **Frobenius norm**. Then the best rank-p **approximant** of A in the Frobenius norm metric, that is, the solution to

$$\min_B \|A - B\|^2 \quad \text{subject to } \text{rank}(B) = p, \quad (A.4.13)$$

is given by

$$B_0 = U_1 \Sigma_1 V_1^* \quad (A.4.14)$$

Furthermore, B_0 above is the unique solution to the approximation problem (A.4.13) if and only if $\sigma_p > \sigma_{p+1}$.

Proof: It follows from R4 and (A.4.2) that we can parameterize B in (A.4.13) as:

$$B = CD^* \quad (A.4.15)$$

where $C \in \mathbb{C}^{m \times p}$ and $D \in \mathbb{C}^{n \times p}$ are full column rank matrices. The previous parameterization of B is of course nonunique but, as we will see, this fact does not introduce any problem. By making use of (A.4.15) we can rewrite the problem (A.4.13) in the following form:

$$\min_{C,D} \|A - CD^*\|^2 \quad \text{rank}(C) = \text{rank}(D) = p \quad (A.4.16)$$

The reparameterized problem is essentially constraint free. Indeed, the full column rank condition that must be satisfied by C and D can be easily handled, see below.
First, we minimize (A.4.16) with respect to D, for a given C. To that end, observe that:

$$
\|A - CD^*\|^2 = \text{tr}\{[D - A^*(C^*C)^{-1}][(C^*C)[D^* - (C^*C)^{-1}C^*A] + A^*[I - C(C^*C)^{-1}C^*]A}\}
$$

(A.4.17)

By result (iii) in Definition D11 in the next section, the matrix $[D - A^*(C^*C)^{-1}] - (C^*C)[D^* - (C^*C)^{-1}C^*A]$ is positive semidefinite for any D. This observation implies that (A.4.17) is minimized with respect to D for

$$
D_0 = A^*C(C^*C)^{-1}
$$

(A.4.18)

and the corresponding minimum value of (A.4.17) is given by

$$
\text{tr}\{A^*[I - C(C^*C)^{-1}C^*]A\}
$$

(A.4.19)

Next we minimize (A.4.19) with respect to C. Let $S \in C^{m \times p}$ denote an orthogonal basis of $\mathcal{R}(C)$; that is, $S^*S = I$ and $S = CT$

for some nonsingular $p \times p$ matrix T. It is then straightforward to verify that

$$
I - C(C^*C)^{-1}C^* = I - SS^*
$$

(A.4.20)

By combining (A.4.19) and (A.4.20) we can restate the problem of minimizing (A.4.19) with respect to C as:

$$
\max_{S, S^*S = I} \text{tr}[S^*(AA^*)S]
$$

(A.4.21)

The solution to (A.4.21) follows from R14: the maximizing S is given by

$$
S_0 = U_1
$$

which yields

$$
C_0 = U_1\Gamma^{-1}
$$

(A.4.22)

It follows that:

$$
B_0 = C_0D_0^* = C_0(C^*C_0)^{-1}C^*A = S_0S_0^*A
$$

$$
= U_1U_1^*(U_1\Sigma_1V_1^* + U_2\Sigma_2V_2^*)
$$

$$
= U_1\Sigma_1V_1^*.
$$

Furthermore, we observe that the minimum value of the Frobenius distance in (A.4.13) is given by

$$
\|A - B_0\|^2 = \|U_2\Sigma_2V_2^*\|^2 = \sum_{k=p+1}^{\min(m,n)} \sigma_k^2
$$

If $\sigma_p > \sigma_{p+1}$ then the best rank-p approximant B_0 derived above is unique. Otherwise it is not unique. Indeed, whenever $\sigma_p = \sigma_{p+1}$ we can obtain B_0 by using either the singular vectors associated with σ_p or those corresponding to σ_{p+1}, which will generally lead to different solutions.
A.5 POSITIVE (SEMI)DEFINITE MATRICES

Let \(A = A^* \in \mathbb{C}^{m \times m} \) be a Hermitian matrix, and let \(\{\lambda_k\}_{k=1}^m \) denote its eigenvalues.

Definition D11: We say that \(A \) is **positive semidefinite** (psd) or **positive definite** (pd) if any of the following equivalent conditions holds true.

(i) \(\lambda_k \geq 0 \) (\(\lambda_k > 0 \) for pd) for \(k = 1, \ldots, m \).

(ii) \(\alpha^* A \alpha \geq 0 \) (\(\alpha^* A \alpha > 0 \) for pd) for any nonzero vector \(\alpha \in \mathbb{C}^{m \times 1} \)

(iii) There exists a matrix \(C \) such that

\[
A = CC^* \tag{A.5.1}
\]

(with \(\text{rank}(C) = m \) for pd)

(iv) \(|A(i_1, \ldots, i_k)| \geq 0 \) (\(> 0 \) for pd) for all \(k = 1, \ldots, m \) and all indices \(i_1, \ldots, i_k \in [1, m] \), where \(A(i_1, \ldots, i_k) \) is the submatrix formed from \(A \) by eliminating the \(i_1, \ldots, i_k \) rows and columns of \(A \). (\(A(i_1, \ldots, i_k) \) is called a **principal submatrix** of \(A \)). The condition for \(A \) to be positive definite can be simplified to requiring that \(|A(k+1, \ldots, m)| > 0 \) (for \(k = 1, \ldots, m-1 \)) and \(|A| > 0 \). (\(A(k+1, \ldots, m) \) is called a **leading submatrix** of \(A \)).

The notation \(A > 0 \) (\(A \geq 0 \)) is commonly used to denote that \(A \) is pd (psd).

Of the previous defining conditions, (iv) is apparently more involved. The necessity of (iv) can be proven as follows. Let \(\alpha \) be a vector in \(\mathbb{C}^m \) with zeroes at the positions \(\{i_1, \ldots, i_k\} \) and arbitrary elements elsewhere. Then, by using (ii) we readily see that \(A \geq 0 \) (\(> 0 \)) implies \(A(i_1, \ldots, i_k) \geq 0 \) (\(> 0 \)) which, in turn, implies (iv) by making use of (i) and the fact that the determinant of a matrix equals the product of its eigenvalues. The sufficiency of (iv) is shown in [Strang 1988].

The equivalence of the remaining conditions, (i), (ii), and (iii), is easily proven by making use of the EVD of \(A: A = U \Lambda U^* \). To show that (i) \(\iff \) (ii), assume first that (i) holds and let \(\beta = U^* \alpha \). Then:

\[
\alpha^* A \alpha = \beta^* \Lambda \beta = \sum_{k=1}^m \lambda_k |\beta_k|^2 \geq 0 \tag{A.5.2}
\]

and hence, (ii) holds as well. Conversely, since \(U \) is invertible it follows from (A.5.2) that (ii) can hold only if (i) holds; indeed, if (i) does not hold one can choose \(\beta \) to make (A.5.2) negative; thus there exists an \(\alpha = U \beta \) such that \(\alpha^* A \alpha < 0 \), which contradicts the assumption that (ii) holds. Hence (i) and (ii) are equivalent. To show that (iii) \(\Rightarrow \) (ii), note that

\[
\alpha^* A \alpha = \alpha^* C C^* \alpha = \|C^* \alpha\|^2 \geq 0
\]

and hence (ii) holds as well. Since (iii) \(\Rightarrow \) (ii) and (ii) \(\Rightarrow \) (i), we have (iii) \(\Rightarrow \) (i).

To show that (i) \(\Rightarrow \) (iii), we assume (i) and write

\[
A = U \Lambda U^* = (U \Lambda^{1/2} \Lambda^{1/2} U^*) = (U \Lambda^{1/2} U^*) (U \Lambda^{1/2} U^*) \triangleq CC^* \tag{A.5.3}
\]
Appendix A Linear Algebra and Matrix Analysis Tools

and hence (iii) is also satisfied. In (A.5.3), \(\Lambda^{1/2} \) is a diagonal matrix the diagonal elements of which are equal to \(\{ \lambda_k^{1/2} \} \). In other words, \(\Lambda^{1/2} \) is the “square root” of \(\Lambda \).

In a general context, the square root of a positive semidefinite matrix is defined as follows.

Definition D12: Let \(A = A^* \) be a positive semidefinite matrix. Then any matrix \(C \) that satisfies

\[
A = CC^* \tag{A.5.4}
\]

is called a **square root** of \(A \). Sometimes such a \(C \) is denoted by \(A^{1/2} \).

If \(C \) is a square root of \(A \), then so is \(CB \) for any unitary matrix \(B \), and hence there are an infinite number of square roots of a given positive semidefinite matrix. Two often-used particular choices for square roots are:

(i) **Hermitian square root:** \(C = C^* \). In this case we can simply write (A.5.4) as \(A = C^2 \). Note that we have already obtained such a square root of \(A \) in (A.5.3):

\[
C = U\Lambda^{1/2}U^* \tag{A.5.5}
\]

If \(C \) is also constrained to be positive semidefinite \((C \geq 0) \) then the Hermitian square root is unique.

(ii) **Cholesky factor.** If \(C \) is lower triangular with nonnegative diagonal elements, then \(C \) is called the **Cholesky factor** of \(A \). In computational exercises, the triangular form of the square-root matrix is often preferred to other forms. If \(A \) is positive definite, the Cholesky factor is unique.

We also note that equation (A.5.4) implies that \(A \) and \(C \) have the same rank as well as the same range space. This follows easily, for example, by inserting the SVD of \(C \) into (A.5.4).

Next we prove three specialized results on positive semidefinite matrices required in Section 2.5 and in Appendix B.

Result R19: Let \(A \in \mathbb{C}^{m \times m} \) and \(B \in \mathbb{C}^{m \times m} \) be positive semidefinite matrices. Then the matrix \(A \odot B \) is also positive semidefinite, where \(\odot \) denotes the **Hadamard matrix product** (also called **elementwise multiplication**): \([A \odot B]_{ij} = A_{ij}B_{ij} \).

Proof: Because \(B \) is positive semidefinite it can be written as \(B = CC^* \) for some matrix \(C \in \mathbb{C}^{m \times m} \). Let \(c_k^* \) denote the \(k \)th row of \(C \). Then,

\[
[A \odot B]_{ij} = A_{ij}B_{ij} = A_{ij} c_k^*c_j
\]

and hence, for any \(\alpha \in \mathbb{C}^{m \times 1} \),

\[
\alpha^*(A \odot B)\alpha = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i^*A_{ij}c_i^*c_j\alpha_j \tag{A.5.6}
\]
By letting \(\{c_{jk}\}_{k=1}^{m} \) denote the elements of the vector \(c_j \), we can rewrite (A.5.6) as:

\[
\alpha^*(A \odot B)\alpha = \sum_{k=1}^{m} \left(\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i^* c_{ik} A_{ij} \alpha_j c_{jk} \right) = \sum_{k=1}^{m} \beta_k^* A \beta_k \tag{A.5.7}
\]

where

\[
\beta_k \equiv [\alpha_1 c_{1k} \cdots \alpha_m c_{mk}]^T
\]

As \(A \) is positive semidefinite by assumption, \(\beta_k^* A \beta_k \geq 0 \) for each \(k \), and it follows from (A.5.7) that \(A \odot B \) must be positive semidefinite as well.

Result R20: Let \(A \in \mathbb{C}^{m \times m} \) and \(B \in \mathbb{C}^{m \times m} \) be Hermitian matrices. Assume that \(B \) is nonsingular and that the partitioned matrix

\[
\begin{bmatrix}
A & I \\
I & B
\end{bmatrix}
\]

is positive semidefinite. Then the matrix \((A - B^{-1}) \) is also positive semidefinite, \(A \geq B^{-1} \)

Proof: By Definition D11, part (ii),

\[
\begin{bmatrix}
\alpha_1^* & \alpha_2^*
\end{bmatrix}
\begin{bmatrix}
A & I \\
I & B
\end{bmatrix}
\begin{bmatrix}
\alpha_1 \\
\alpha_2
\end{bmatrix} \geq 0
\]

for any vectors \(\alpha_1, \alpha_2 \in \mathbb{C}^{m \times 1} \). Let

\[
\alpha_2 = -B^{-1}\alpha_1
\]

Then (A.5.8) becomes:

\[
\alpha_1^*(A - B^{-1})\alpha_1 \geq 0
\]

As the above inequality must hold for any \(\alpha_1 \in \mathbb{C}^{m \times 1} \), the proof is concluded.

Result R21: Let \(C \in \mathbb{C}^{m \times m} \) be a (Hermitian) positive definite matrix depending on a real–valued parameter \(\alpha \). Assume that \(C \) is a differentiable function of \(\alpha \). Then

\[
\frac{\partial}{\partial \alpha} \ln |C| = \text{tr} \left[C^{-1} \frac{\partial C}{\partial \alpha} \right]
\]

Proof: Let \(\{\lambda_i\} \in \mathbb{R} \) \((i = 1, \ldots, m) \) denote the eigenvalues of \(C \). Then

\[
\frac{\partial}{\partial \alpha} \ln |C| = \frac{\partial}{\partial \alpha} \left[\ln \prod_{k=1}^{m} \lambda_k \right] = \sum_{k=1}^{m} \frac{\partial}{\partial \alpha} (\ln \lambda_k)
\]

\[
= \sum_{k=1}^{m} \frac{1}{\lambda_k} \frac{\partial \lambda_k}{\partial \alpha}
\]

\[
= \text{tr} \left[\Lambda^{-1} \frac{\partial \Lambda}{\partial \alpha} \right]
\]
where \(\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_m) \). Let \(Q \) be a unitary matrix such that \(Q^* \Lambda Q = C \) (which is the EVD of \(C \)). Since \(Q \) is unitary, \(Q^* Q = I \), we obtain

\[
\frac{\partial Q^*}{\partial \alpha} Q + Q^* \frac{\partial Q}{\partial \alpha} = 0
\]

Thus, we get

\[
\text{tr} \left[\Lambda^{-1} \frac{\partial \Lambda}{\partial \alpha} \right] = \text{tr} \left[(Q^* \Lambda^{-1} Q) \left(Q^* \frac{\partial \Lambda}{\partial \alpha} Q \right) \right]
\]

\[
= \text{tr} \left[C^{-1} \left(\frac{\partial}{\partial \alpha} (Q^* \Lambda Q) - \frac{\partial Q^*}{\partial \alpha} \Lambda Q - Q^* \Lambda \frac{\partial Q}{\partial \alpha} \right) \right]
\]

\[
= \text{tr} \left[C^{-1} \frac{\partial C}{\partial \alpha} \right] - \text{tr} \left[Q^* \Lambda^{-1} Q \left(\frac{\partial Q^*}{\partial \alpha} \Lambda Q + Q^* \Lambda \frac{\partial Q}{\partial \alpha} \right) \right]
\]

\[
= \text{tr} \left[C^{-1} \frac{\partial C}{\partial \alpha} \right] - \text{tr} \left[\frac{\partial Q^*}{\partial \alpha} Q + Q^* \frac{\partial Q}{\partial \alpha} \right]
\]

\[
= \text{tr} \left[C^{-1} \frac{\partial C}{\partial \alpha} \right]
\]

which is the result stated.

Finally we make use of a simple property of positive semidefinite matrices to prove the \textit{Cauchy-Schwartz inequality} for vectors and for functions.

Result R22: (Cauchy-Schwartz inequality for vectors). Let \(x, y \in \mathbb{C}^{m \times 1} \). Then:

\[
|x^* y|^2 \leq \|x\|^2 \|y\|^2 \tag{A.5.9}
\]

where \(| \cdot |\) denotes the modulus of a possibly complex-valued number, and \(\| \cdot \| \) denotes the Euclidean vector norm (\(\|x\|^2 = x^* x \)). Equality in (A.5.9) is achieved if and only if \(x \) is proportional to \(y \).

Proof: The \((2 \times 2)\) matrix

\[
\begin{bmatrix}
\|x\|^2 & x^* y \\
y^* x & \|y\|^2
\end{bmatrix}
= \begin{bmatrix}
x^* \\
y^*
\end{bmatrix}
\begin{bmatrix}
x & y
\end{bmatrix}
\tag{A.5.10}
\]

is clearly positive semidefinite (observe that condition (iii) in D11 is satisfied). It follows from condition (iv) in D11 that the determinant of the above matrix must be nonnegative:

\[
\|x\|^2 \|y\|^2 - |x^* y|^2 \geq 0
\]

which gives (A.5.9). Equality in (A.5.9) holds if and only if the determinant of (A.5.10) is equal to zero. The latter condition is equivalent to requiring that \(x \) is proportional to \(y \) (cf. D3: the columns of the matrix \([x \ y]\) will then be linearly dependent).
Result R23: (Cauchy–Schwartz inequality for functions). Let \(f(x) \) and \(g(x) \) be two complex-valued functions defined for real-valued argument \(x \). Then, assuming that the integrals below exist,

\[
\left| \int_I f(x)g^*(x) dx \right|^2 \leq \left[\int_I |f(x)|^2 dx \right] \left[\int_I |g(x)|^2 dx \right]
\]

where \(I \subset \mathbb{R} \) is an integration interval. The inequality above becomes an equality if and only if \(f(x) \) is proportional to \(g(x) \) on \(I \).

Proof: The following matrix

\[
\int_I \begin{bmatrix} f(x) \\ g(x) \end{bmatrix} \begin{bmatrix} f^*(x) & g^*(x) \end{bmatrix} dx
\]

is seen to be positive semidefinite (since the integrand is a positive semidefinite matrix for every \(x \in I \)). Hence the stated result follows from the type of argument used in the proof of Result R22.

A.6 MATRICES WITH SPECIAL STRUCTURE

In this section we consider several types of matrices with a special structure, for which we prove some basic properties used in the text.

Definition D13: A matrix \(A \in \mathbb{C}^{m \times n} \) is called **Vandermonde** if it has the following structure:

\[
A = \begin{bmatrix}
1 & \cdots & 1 \\
z_1 & \cdots & z_n \\
\vdots & \ddots & \vdots \\
z_1^{m-1} & \cdots & z_n^{m-1}
\end{bmatrix}
\]

(A.6.1)

where \(z_k \in \mathbb{C} \) are usually assumed to be distinct.

Result R24: Consider the matrix \(A \) in (A.6.1) with \(z_k \neq z_p \) for \(k, p = 1, \ldots, n \) and \(k \neq p \). Also let \(m \geq n \) and assume that \(z_k \neq 0 \) for all \(k \). Then any \(n \) consecutive rows of \(A \) are linearly independent.

Proof: To prove the assertion, it is sufficient to show that the following \(n \times n \) Vandermonde matrix is nonsingular:

\[
\tilde{A} = \begin{bmatrix}
1 & \cdots & 1 \\
z_1 & \cdots & z_n \\
\vdots & \ddots & \vdots \\
z_1^{n-1} & \cdots & z_n^{n-1}
\end{bmatrix}
\]

Let \(\beta = [\beta_0 \cdots \beta_{n-1}]^* \neq 0 \). The equation \(\beta^* \tilde{A} = 0 \) is equivalent to

\[
\beta_0 + \beta_1 z + \cdots + \beta_{n-1} z^{n-1} = 0 \quad \text{at} \quad z = z_k \quad (k = 1, \ldots, n)
\]

(A.6.2)

However, (A.6.2) is impossible as a \((n-1)\)-degree polynomial cannot have \(n \) zeroes. Hence, \(\tilde{A} \) has full rank.
Appendix A Linear Algebra and Matrix Analysis Tools

Definition D14: A matrix \(A \in \mathbb{C}^{m \times n} \) is called:

- **Toeplitz** when \(A_{ij} = A_{i-j} \)
- **Hankel** when \(A_{ij} = A_{i+j} \)

Observe that a Toeplitz matrix has the same element along each diagonal, whereas a Hankel matrix has identical elements on each of the antidiagonals.

Result R25: The eigenvectors of a symmetric Toeplitz matrix \(A \in \mathbb{R}^{m \times m} \) are either symmetric or skew-symmetric. More precisely, if \(J \) denotes the exchange (or reversal) matrix

\[
J = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}
\]

and if \(x \) is an eigenvector of \(A \), then either \(x = Jx \) or \(x = -Jx \).

Proof: By the property (3.5.3) proven in Section 3.5, \(A \) satisfies

\[
AJx = JAx
\]

or equivalently

\[
(JAJ)x = Ax
\]

for any \(x \in \mathbb{C}^{m \times 1} \). Hence, we must have:

\[
JAJ = A \tag{A.6.3}
\]

Let \((\lambda, x)\) denote an eigenpair of \(A \):

\[
Ax = \lambda x \tag{A.6.4}
\]

Combining (A.6.3) and (A.6.4) yields:

\[
\lambda Jx = JAx = J(JAJ)x = A(Jx) \tag{A.6.5}
\]

Because the eigenvectors of a symmetric matrix are unique modulo multiplication by a scalar, it follows from (A.6.5) that:

\[
x = \alpha Jx \quad \text{for some } \alpha \in \mathbb{R}
\]

As \(x \) and hence \(Jx \) must have unit norm, \(\alpha \) must satisfy \(\alpha^2 = 1 \Rightarrow \alpha = \pm 1 \); thus, either \(x = Jx \) (\(x \) is symmetric) or \(x = -Jx \) (\(x \) is skew-symmetric).

One can show that for \(m \) even, the number of symmetric eigenvectors is \(m/2 \), as is the number of skew-symmetric eigenvectors; for odd \(m \) the number of symmetric eigenvectors is \((m + 1)/2 \) and the number of skew-symmetric eigenvectors is \((m - 1)/2 \) (see [CANTONI AND BUTLER 1976]).

For many additional results on Toeplitz matrices, the reader can consult [IOHVIDOV 1982; BÖTTCHER AND SILBERMANN 1983].
A.7 MATRIX INVERSION LEMMAS

The following formulas for the inverse of a partitioned matrix are used in the text.

Result R26: Let \(A \in \mathbb{C}^{m \times m} \), \(B \in \mathbb{C}^{n \times n} \), \(C \in \mathbb{C}^{m \times n} \) and \(D \in \mathbb{C}^{n \times m} \). Then, provided that the matrix inverses appearing below exist,

\[
\begin{bmatrix}
 A & C \\
 D & B
\end{bmatrix}^{-1} = \begin{bmatrix}
 I & 0 \\
 0 & I
\end{bmatrix} A^{-1} \begin{bmatrix}
 I & 0 \\
 0 & I
\end{bmatrix} + \begin{bmatrix}
 -A^{-1}C \\
 I
\end{bmatrix} (B - DA^{-1}C)^{-1}[-DA^{-1} I] + \begin{bmatrix}
 I \\
 -B^{-1} D
\end{bmatrix} (A - CB^{-1} D)^{-1} [I - CB^{-1}]
\]

Proof: By direct verification.

By equating the top-left blocks in the above two equations we obtain the so-called Matrix Inversion Lemma.

Result R27: (Matrix Inversion Lemma) Let \(A, B, C \) and \(D \) be as in R26. Then, assuming that the matrix inverses appearing below exist,

\[
(A - CB^{-1} D)^{-1} = A^{-1} + A^{-1} C (B - DA^{-1} C)^{-1} DA^{-1}
\]

A.8 SYSTEMS OF LINEAR EQUATIONS

Let \(A \in \mathbb{C}^{m \times n} \), \(B \in \mathbb{C}^{m \times p} \), and \(X \in \mathbb{C}^{n \times p} \). A general system of linear equations in \(X \) can be written as:

\[
AX = B
\]

where \(A \) and \(B \) are given and \(X \) is the unknown matrix. The special case of (A.8.1) corresponding to \(p = 1 \) (for which \(X \) and \(B \) are vectors) is perhaps the most common one in applications. For the sake of generality, we consider the system (A.8.1) with \(p \geq 1 \). (The ESPRIT system of equations encountered in Section 4.7 is of the form of (A.8.1) with \(p > 1 \).) We say that (A.8.1) is exactly determined whenever \(m = n \), overdetermined if \(m > n \) and underdetermined if \(m < n \). In the following discussion, we first address the case where (A.8.1) has an exact solution and then the case where (A.8.1) cannot be exactly satisfied.

A.8.1 Consistent Systems

Result R28: The linear system (A.8.1) is consistent, that is it admits an exact solution \(X \), if and only if \(\mathcal{R}(B) \subseteq \mathcal{R}(A) \) or equivalently

\[
\text{rank}([A \ B]) = \text{rank}(A)
\]

Proof: The result is readily shown by using simple rank and range properties.
Appendix A
Linear Algebra and Matrix Analysis Tools

Result R29: Let \(X_0 \) be a particular solution to (A.8.1). Then the set of all solutions to (A.8.1) is given by:

\[
X = X_0 + \Delta
\]

(A.8.3)

where \(\Delta \in \mathbb{C}^{n \times p} \) is any matrix whose columns are in \(\mathcal{N}(A) \).

Proof: Obviously (A.8.3) satisfies (A.8.1). To show that no solution outside the set (A.8.3) exists, let \(\Omega \in \mathbb{C}^{n \times p} \) be a matrix whose columns do not all belong to \(\mathcal{N}(A) \). Then \(A\Omega \neq 0 \) and

\[
A(X_0 + \Delta + \Omega) = A\Omega + B \neq B
\]

and hence \(X_0 + \Delta + \Omega \) is not a solution to \(AX = B \).

Result R30: The system of linear equations (A.8.1) has a unique solution if and only if (A.8.2) holds and \(A \) has full column rank:

\[
\text{rank}(A) = n \leq m
\]

(A.8.4)

Proof: The assertion follows from R28 and R29.

Next let us assume that (A.8.1) is consistent but \(A \) does not satisfy (A.8.4) (hence \(\dim \mathcal{N}(A) \geq 1 \)). Then, according to R29 there are an infinite set of solutions. In what follows we obtain the unique solution \(X_0 \), which has minimum norm.

Result R31: Consider a linear system that satisfies the consistency condition in (A.8.2). Let \(A \) have rank \(r \leq \min(m, n) \), and let

\[
A = \left[\begin{array}{c|c} U_1 & U_2 \\ \hline r & m-r \end{array} \right] \left[\begin{array}{cc} \Sigma_1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{c} V_1^* \\ V_2^* \end{array} \right] \right]_r \left[\begin{array}{c} r \\ n-r \end{array} = U_1 \Sigma_1 V_1^* \right]
\]

denote the SVD of \(A \). (Here \(\Sigma_1 \) is nonsingular, cf. the discussion in Section A.4).

Then:

\[
X_0 = V_1 \Sigma_1^{-1} U_1^* B
\]

(A.8.5)

is the minimum Frobenius norm solution of (A.8.1) in the sense that

\[
\|X_0\|^2 < \|X\|^2
\]

(A.8.6)

for any other solution \(X \neq X_0 \).

Proof: First we verify that \(X_0 \) satisfies (A.8.1). We have

\[
AX_0 = U_1 U_1^* B
\]

(A.8.7)

In (A.8.7) \(U_1 U_1^* \) is the orthogonal projector onto \(\mathcal{R}(A) \) (cf. R17). Because \(B \) must belong to \(\mathcal{R}(A) \) (see R28), we conclude that \(U_1 U_1^* B = B \) and hence that \(X_0 \) is indeed a solution.
Next note that, according to R15,
\[\mathcal{N}(A) = \mathcal{R}(V_2) \]
Consequently, the general solution (A.8.3) can be written as (cf. R29)
\[X = X_0 + V_2 Q ; \quad Q \in \mathbb{C}^{(n-r) \times p} \]
from which we obtain:
\[
\|X\|^2 = \text{tr}[(X_0^* + Q^* V_2^*)(X_0 + V_2 Q)] \\
= \|X_0\|^2 + \|V_2 Q\|^2 > \|X_0\|^2 \quad \text{for } X \neq X_0
\]

Definition D15: The matrix
\[A^\dagger \triangleq V_1 \Sigma_1^{-1} U_1^* \quad \text{(A.8.8)} \]
in (A.8.5) is the so-called **Moore–Penrose pseudoinverse** (or **generalized inverse**) of \(A \).

It can be shown that \(A^\dagger \) is the unique solution to the following set of equations:
\[
\begin{align*}
AA^\dagger A &= A \\
A^\dagger AA^\dagger &= A^\dagger \\
A^\dagger A \text{ and } AA^\dagger &\text{ are Hermitian}
\end{align*}
\]
Evidently whenever \(A \) is square and nonsingular we have \(A^\dagger = A^{-1} \), which partly motivates the name of “generalized inverse” (or “pseudoinverse”) given to \(A^\dagger \) in the general case.

The computation of a solution to (A.8.1), whenever one exists, is an important issue which we address briefly in the following. We begin by noting that in the general case there is of course no computer algorithm which can compute a solution to (A.8.1) **exactly** (i.e., without any numerical errors). In effect, the best we can hope for is to compute the exact solution to a slightly perturbed (fictitious) system of linear equations:
\[(A + \Delta A)(X + \Delta X) = B + \Delta B \quad \text{(A.8.9)} \]
where \(\Delta A \) and \(\Delta B \) are small perturbation terms, the magnitude of which depends on the algorithm and the length of the computer word, and where \(\Delta X \) is the solution perturbation induced. An algorithm which, when applied to (A.8.1), provides a solution to (A.8.9) corresponding to perturbation terms (\(\Delta A, \Delta B \)) whose magnitude is of the order afforded by the “machine epsilon” is said to be **numerically stable**. Now, assuming that (A.8.1) has a unique solution (and hence that \(A \) satisfies (A.8.4)), one can show that the perturbations in \(A \) and \(B \) in (A.8.9) are retrieved in \(\Delta X \) multiplied by a proportionality factor given by
\[\text{cond}(A) = \sigma_1 / \sigma_n \quad \text{(A.8.10)} \]
where \(\sigma_1 \) and \(\sigma_n \) are the largest and smallest singular values of \(A \), respectively, and where “cond” is short for “condition”. The system (A.8.1) is said to be **well-conditioned** if the corresponding ratio (A.8.10) is “small” (that is, not much larger.
than one). The ratio in (A.8.10) is called the condition number of the matrix A and is an important parameter of a given system of linear equations. Note from the previous discussion that even a numerically stable algorithm (i.e., one that induces quite small Δ_A and Δ_B) can yield an inaccurate solution X when applied to an ill-conditioned system of linear equations (i.e., a system with a very large $\text{cond}(A)$). For more details on the topic of this paragraph, including specific algorithms for solving linear systems, we refer the reader to [Stewart 1973; Golub and Van Loan 1989].

A.8.2 Inconsistent Systems

The systems of linear equations that appear in applications (such as those in the text) are quite often perturbed versions of a “nominal system” and usually they do not admit any exact solution. Such systems are said to be inconsistent, and frequently they are overdetermined and have a matrix A that has full column rank:

$$\text{rank}(A) = n \leq m \quad (A.8.11)$$

In what follows, we present two approaches to obtain an approximate solution to an inconsistent system of linear equations

$$AX \simeq B \quad (A.8.12)$$

under the condition (A.8.11).

Definition D16: The least squares (LS) approximate solution to (A.8.12) is given by the minimizer X_{LS} of the following criterion:

$$\|AX - B\|^2$$

Equivalently, X_{LS} can be defined as follows. Obtain the minimal perturbation Δ_B that makes the system (A.8.12) consistent:

$$\min \|\Delta_B\|^2 \quad \text{subject to} \quad AX = B + \Delta_B \quad (A.8.13)$$

Then derive X_{LS} by solving the system in (A.8.13) corresponding to the optimal perturbation Δ_B.

The LS solution introduced above can be obtained in several ways. A simple way is as follows.

Result R32: The LS solution to (A.8.12) is given by:

$$X_{LS} = (A^*A)^{-1}A^*B \quad (A.8.14)$$

The inverse matrix in the above equation exists in view of (A.8.11).

Proof: The matrix B_0 that makes the system consistent and which is of minimal distance (in the Frobenius norm metric) from B is given by the orthogonal projection of (the columns of) B onto $R(A)$:

$$B_0 = A(A^*A)^{-1}A^*B \quad (A.8.15)$$
Section A.8 Systems of Linear Equations 351

To motivate (A.8.15) by using only the results proven so far in this appendix, we digress from the main proof and let \(U_1 \) denote an orthogonal basis of \(\mathbb{R}(A) \). Then R17 implies that \(B_0 = U_1 U_1^T B \). However, \(U_1 \) and \(A \) span the same subspace and hence they must be related to one another by a nonsingular linear transformation: \(U_1 = AQ \). It follows from this observation that \(U_1 U_1^T = AQQ^*A^* \) and also that \(Q^*A^*AQ = I \), which lead to the following projector formula: \(U_1 U_1^T = A(A^*)^{-1}A^* \) (as used in (A.8.15)).

Next, we return to the proof of (A.8.14). The unique solution to

\[
AX - B_0 = A[X - (A^*A)^{-1}A^*B]
\]

is obviously (A.8.14) since \(\dim \mathcal{N}(A) = 0 \) by assumption.

The LS solution \(X_{LS} \) can be computed by means of the SVD of the \(m \times n \) matrix \(A \). The \(X_{LS} \) can, however, be obtained in a computationally more efficient way as briefly described below. Note that \(X_{LS} \) should not be computed by directly evaluating the formula in (A.8.14) as it stands. Briefly stated, the reason is as follows. Recall from (A.8.10) that the condition number of \(A \) is given by:

\[
\text{cond}(A) = \sigma_1/\sigma_n \tag{A.8.16}
\]

(note that \(\sigma_n \neq 0 \) under (A.8.11)). When working directly on \(A \), the numerical errors made in the computation of \(X_{LS} \) can be shown to be proportion to (A.8.16). However, in (A.8.14) one would need to invert the matrix \(A^*A \) whose condition number is:

\[
\text{cond}(A^*A) = \sigma_1^2/\sigma_n^2 = [\text{cond}(A)]^2 \tag{A.8.17}
\]

Working with \(A^*A \) may hence induce much larger numerical errors during the computation of \(X_{LS} \) and is therefore not advisable. The algorithm sketched in what follows derives \(X_{LS} \) by operating on \(A \) directly.

For any matrix \(A \) satisfying (A.8.11) there exist a unitary matrix \(Q \in \mathbb{C}^{m \times m} \) and nonsingular upper–triangular matrix \(R \in \mathbb{C}^{n \times n} \) such that

\[
A = Q \begin{bmatrix} R & 0 \\ 0 & 0 \end{bmatrix} \triangleq \begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} \tag{A.8.18}
\]

The previous factorization of \(A \) is called the QR decomposition (QRD). Inserting (A.8.18) into (A.8.14) we obtain

\[
X_{LS} = R^{-1}Q_1^T B
\]

Hence, once the QRD of \(A \) has been performed, \(X_{LS} \) can be conveniently obtained as the solution of a triangular system of linear equations:

\[
RX_{LS} = Q_2^T B \tag{A.8.19}
\]

We note that the computation of the QRD is faster than that of the SVD (see, e.g., [Stewart 1973; Golub and Van Loan 1989]).

The previous definition and derivation of \(X_{LS} \) make it clear that the LS approach derives an approximate solution to (A.8.12) by implicitly assuming that
only the right-hand side matrix B is perturbed. In applications quite frequently both A and B can be considered to be perturbed versions of some nominal (and unknown) matrices. In such cases we may think of determining an approximate solution to (A.8.12) by explicitly recognizing the fact that neither A nor B are perturbation free. An approach based on this idea is described next (see, e.g., [Van Huffel and Vandewalle 1991]).

Definition D17: The total least squares (TLS) approximate solution to (A.8.12) is defined as follows. First derive the minimal perturbations ΔA and ΔB that make the system consistent:

$$
\min \| [\Delta A \; \Delta B] \|^2 \quad \text{subject to} \quad (A + \Delta A)X = B + \Delta B \tag{A.8.20}
$$

Then obtain X_{TLS} by solving the system in (A.8.20) corresponding to the optimal perturbations $(\Delta A, \; \Delta B)$.

A simple way to derive a more explicit formula for calculating the X_{TLS} runs as follows.

Result R33: Let

$$
[A \; B] = \left[\begin{array}{c|c}
\hat{U}_1 & \hat{U}_2 \\
\hline
\hat{\Sigma}_1 & 0 \\
0 & \hat{\Sigma}_2
\end{array} \right] \left[\begin{array}{c|c}
\check{V}_1^* & 0 \\
0 & \check{V}_2^*
\end{array} \right] \left[\begin{array}{c|c}
\check{V}_1 & \check{V}_2
\end{array} \right] \tag{A.8.21}
$$

denote the SVD of the matrix $[A \; B]$. Furthermore, partition \check{V}_2^* as

$$
\check{V}_2^* = \left[\begin{array}{c}
\check{V}_{21}^* \\
\check{V}_{22}^*
\end{array} \right] \tag{A.8.22}
$$

Then

$$
X_{TLS} = -\check{V}_{21} \check{V}_{22}^{-1} \tag{A.8.23}
$$

if \check{V}_{22}^{-1} exists.

Proof: The optimization problem with constraints in (A.8.20) can be restated in the following way: Find the minimal perturbation $[\Delta A \; \Delta B]$ and the corresponding matrix X such that

$$
\left\{ [A \; B] + [\Delta A \; \Delta B] \right\} \left[\begin{array}{c}
-X \\
I
\end{array} \right] = 0 \tag{A.8.24}
$$

Since $\text{rank} \left[\begin{array}{c}
-X \\
I
\end{array} \right] = p$ it follows that $[\Delta A \; \Delta B]$ should be such that $\dim \mathcal{N}([A \; B] + [\Delta A \; \Delta B]) \geq p$ or, equivalently,

$$
\text{rank} ([A \; B] + [\Delta A \; \Delta B]) \leq n \tag{A.8.25}
$$

According to R18, the minimal perturbation matrix $[\Delta A \; \Delta B]$ that achieves (A.8.25) is given by

$$
[\Delta A \; \Delta B] = -\hat{U}_2 \hat{\Sigma}_2 \check{V}_2^* \tag{A.8.26}
$$
Inserting (A.8.26) along with (A.8.21) into (A.8.24), we obtain the following matrix equation in X:

$$
\tilde{U}_1 \tilde{\Sigma}_1 \tilde{V}_1^* \begin{bmatrix}
-X \\
I
\end{bmatrix} = 0
$$

or, equivalently,

$$
\tilde{V}_1^* \begin{bmatrix}
-X \\
I
\end{bmatrix} = 0 \quad (A.8.27)
$$

Equation (A.8.27) implies that X must satisfy

$$
\begin{bmatrix}
-X \\
I
\end{bmatrix} = \tilde{V}_2 Q = \begin{bmatrix}
\tilde{V}_{21} \\
\tilde{V}_{22}
\end{bmatrix} Q \quad (A.8.28)
$$

for some nonsingular normalizing matrix Q. The expression (A.8.23) for X_{TLS} is readily obtained from (A.8.28).

The TLS solution in (A.8.23) is unique if and only if the singular values $\{\tilde{\sigma}_k\}$ of the matrix $[A \ B]$ are such that $\tilde{\sigma}_1 > \tilde{\sigma}_{n+1}$ (this follows from R18). When \tilde{V}_{22} is singular, the TLS solution does not exist; see [VAN Huffel and Vandewalle 1991].

The computation of the X_{TLS} requires the SVD of the $m \times (n+p)$ matrix $[A \ B]$. The solution X_{TLS} can be rewritten in a slightly different form. Let \tilde{V}_{11}, \tilde{V}_{12} be defined via the following partition of \tilde{V}_1^*

$$
\tilde{V}_1^* = \begin{bmatrix}
\tilde{V}_{11} \\
\tilde{V}_{12}
\end{bmatrix}
$$

The orthogonality condition $\tilde{V}_1^* \tilde{V}_2 = 0$ can be rewritten as

$$
\tilde{V}_{11} \tilde{V}_{21} + \tilde{V}_{12} \tilde{V}_{22} = 0
$$

which yields

$$
X_{TLS} = -\tilde{V}_{21} \tilde{V}_{22}^{-1} = \tilde{V}_{11}^{-1} \tilde{V}_{12} \quad (A.8.29)
$$

Since usually p is (much) smaller than n, the formula (A.8.23) for X_{TLS} may often be computationally more convenient than (A.8.29) (for example, in the common case of $p = 1$, (A.8.23) does not require any matrix inversion whereas (A.8.29) requires the calculation of an $n \times n$ matrix inverse).

A.9 QUADRATIC MINIMIZATION

Several problems in this text require the solution to quadratic minimization problems. In this section, we make use of matrix analysis techniques to derive two results: one on unconstrained minimization, and the other on constrained minimization.

Result R34: Let A be an $(n \times n)$ Hermitian positive definite matrix, let X and B be $(n \times m)$ matrices, and let C be an $m \times m$ Hermitian matrix. Then the unique solution to the minimization problem

$$
\min_X F(X), \quad F(X) = X^*AX + X^*B + B^*X + C \quad (A.9.1)
$$

is given by

\[X_0 = -A^{-1}B, \quad F(X_0) = C - B^*A^{-1}B \quad (A.9.2) \]

Here, the matrix minimization means \(F(X_0) \leq F(X) \) for every \(X \neq X_0 \); that is, \(F(X) - F(X_0) \) is a positive semidefinite matrix.

Proof: Let \(X = X_0 + \Delta \), where \(\Delta \) is an arbitrary \((n \times m)\) complex matrix. Then

\[
F(X) = (-A^{-1}B + \Delta)^*A(-A^{-1}B + \Delta) + (-A^{-1}B + \Delta)^*B + B^*(-A^{-1}B + \Delta) + C = \Delta^*A\Delta + F(X_0) \quad (A.9.3)
\]

Since \(A \) is positive definite, \(\Delta^*A\Delta \geq 0 \) for all nonzero \(\Delta \); thus, the minimum value of \(F(X) \) is \(F(X_0) \), and the result is proven.

We next present a result on linearly constrained quadratic minimization.

Result R35: Let \(A \) be an \((n \times n)\) Hermitian positive definite matrix, and let \(X \in \mathbb{C}^{n \times m} \), \(B \in \mathbb{C}^{n \times k} \), and \(C \in \mathbb{C}^{m \times k} \). Assume that \(B \) has full column rank equal to \(k \) (hence \(n \geq k \)). Then the unique solution to the minimization problem

\[
\min_X X^*AX \quad \text{subject to} \quad X^*B = C \quad (A.9.4)
\]

is given by

\[
X_0 = A^{-1}B(B^*A^{-1}B)^{-1}C^*. \quad (A.9.5)
\]

Proof: First note that \((B^*A^{-1}B)^{-1}\) exists and that \(X_0^*B = C \). Let \(X = X_0 + \Delta \), where \(\Delta \in \mathbb{C}^{n \times m} \) satisfies \(\Delta^*B = 0 \) (so that \(X \) also satisfies the constraint \(X^*B = C \)). Then

\[
X^*AX = X_0^*AX_0 + X_0^*A\Delta + \Delta^*AX_0 + \Delta^*A\Delta \quad (A.9.6)
\]

where the two middle terms are equal to zero:

\[
\Delta^*AX_0 = \Delta^*B(B^*A^{-1}B)^{-1}C^* = 0
\]

Hence,

\[
X^*AX - X_0^*AX_0 = \Delta^*A\Delta \geq 0 \quad (A.9.7)
\]

as \(A \) is positive definite. It follows from (A.9.7) that the minimizing \(X \) matrix is given by \(X_0 \).

A common special case of Result R35 is \(m = k = 1 \) (so \(X \) and \(B \) are both vectors) and \(C = 1 \). Then

\[
X_0 = \frac{A^{-1}B}{B^*A^{-1}B}
\]
A P P E N D I X B

Cramér–Rao Bound Tools

B.1 INTRODUCTION

In the text we have kept the discussion of statistical aspects at a minimum for conciseness reasons. However, we have presented certain statistical tools and analyses that we have found useful to the understanding of the spectral analysis material discussed. In this appendix we introduce some basic facts on an important statistical tool: the Cramér–Rao bound (abbreviated as CRB). We begin our discussion by explaining the importance of the CRB for parametric spectral analysis.

Let \(\phi(\omega, \theta) \) denote a parametric spectral model, depending on a real-valued vector \(\theta \), and let \(\hat{\phi}(\omega, \hat{\theta}) \) denote the spectral density estimated from \(N \) data samples. Assume that the estimate \(\hat{\theta} \) of \(\theta \) is consistent such that the estimation error is small for large values of \(N \). Then, by making use of a Taylor series expansion technique, we can approximately write the estimation error \([\phi(\omega, \hat{\theta}) - \phi(\omega, \theta)] \) as a linear function of \(\hat{\theta} - \theta \):

\[
[\phi(\omega, \hat{\theta}) - \phi(\omega, \theta)] \simeq \psi^T(\omega, \theta)(\hat{\theta} - \theta) \tag{B.1.1}
\]

where the symbol \(\simeq \) denotes an asymptotically (in \(N \)) valid approximation, and \(\psi(\omega, \theta) \) is the gradient of \(\phi(\omega, \theta) \) with respect to \(\theta \) (evaluated at the true parameter values):

\[
\psi(\omega, \theta) = \frac{\partial \phi(\omega, \theta)}{\partial \theta} \tag{B.1.2}
\]

It follows from (B.1.1) that the mean squared error (MSE) of \(\phi(\omega, \hat{\theta}) \) is approximately given by

\[
\text{MSE}[\phi(\omega, \hat{\theta})] \simeq \psi^T(\omega, \theta)P(\omega, \theta) \quad \text{(for } N \gg 1) \tag{B.1.3}
\]

where

\[
P = \text{MSE}[\hat{\theta}] = E \left\{ (\hat{\theta} - \theta)(\hat{\theta} - \theta)^T \right\} \tag{B.1.4}
\]

We see from (B.1.3) that the variance (or MSE) of the estimation errors in the spectral domain are linearly related to the variance (or MSE) of the parameter vector estimate \(\hat{\theta} \), so that we can get an accurate spectral estimate only if we use an accurate parameter estimator. We start from this simple observation, which reduces the statistical analysis of \(\phi(\omega, \hat{\theta}) \) to the analysis of \(\hat{\theta} \), to explain the importance of the CRB for the performance study of spectral analysis. Toward that end, we discuss several facts in the paragraphs that follow.

Assume that \(\hat{\theta} \) is some unbiased estimate of \(\theta \) (that is \(E\{\hat{\theta}\} = \theta \)), and let \(P \) denote the covariance matrix of \(\hat{\theta} \) (cf. (B.1.4)):

\[
P = E \left\{ (\hat{\theta} - \theta)(\hat{\theta} - \theta)^T \right\} \tag{B.1.5}
\]
Appendix B Cramer–Rao Bound Tools

(Note that here we do not require that \(N \) be large). Then, under quite general conditions, there is a matrix (which we denote by \(P_{cr} \)) such that

\[
P \succeq P_{cr}
\]

(B.1.6)

in the sense that the difference \((P - P_{cr}) \) is a positive semidefinite matrix. This is basically the celebrated Cramér–Rao bound result [Cramér 1946; Rao 1945]. We will derive the inequality (B.1.6) along with an expression for the CRB in the next section.

In view of (B.1.6) we may think of assessing the performance of a given estimation method by comparing its covariance matrix \(P \) with the CRB. Such a comparison would make perfect sense whenever the CRB is achievable; that is, whenever there exists an estimation method such that its \(P \) equals the CRB. Unfortunately, this is rarely the case for finite \(N \). Additionally, biased estimators may exist whose MSEs are smaller than the CRB under discussion (see, for example, [Stoica and Moses 1990; Stoica and Ottersten 1996]). Hence, in the finite sample case (particularly for small samples) comparing with the CRB does not really make too much sense because:

(i) There might be no unbiased estimator that attains the CRB and, consequently, a large difference \((P - P_{cr}) \) may not necessarily mean bad accuracy; and

(ii) The equality \(P = P_{cr} \) does not necessarily mean that we have achieved the ultimate possible performance, as there might be biased estimators with lower MSE than the CRB.

In the large sample case, on the other hand, the utility of the CRB result for the type of parameter estimation problems addressed in the text is significant, as explained next.

Let \(y \in \mathbb{R}^{N \times 1} \) denote the sample of available observations. Any estimate \(\hat{\theta} \) of \(\theta \) will be a function of \(y \). We assume that both \(\theta \) and \(y \) are real-valued. Working with real \(\theta \) and \(y \) vectors appears to be the most convenient way when discussing the CRB theory, even when the original parameters and measurements are complex-valued. (If the parameters and measurements are complex-valued, \(\theta \) and \(y \) are obtained by concatenating the real and imaginary parts of the complex parameter and data vectors, respectively.) We also assume that the probability density of \(y \), which we denote by \(p(y; \theta) \), is a differentiable function of \(\theta \). An important general method for parameter estimation consists of maximizing \(p(y; \theta) \) with respect to \(\theta \):

\[
\hat{\theta} = \arg \max_{\theta} p(y; \theta)
\]

(B.1.7)

The \(p(y; \theta) \) in (B.1.7) with \(y \) fixed and \(\theta \) variable is called the likelihood function, and \(\hat{\theta} \) is called the maximum likelihood (ML) estimate of \(\theta \). Under regularity conditions the ML estimate (MLE) is consistent (i.e., \(\lim_{N \to \infty} \hat{\theta} = \theta \) stochastically) and its covariance matrix approaches the CRB as \(N \) increases:

\[
P \simeq P_{cr} \quad \text{for a MLE with } N \gg 1
\]

(B.1.8)
The aforementioned regularity conditions basically amount to requiring that the number of free parameters does not increase with \(N \), which is true for all but one of the parametric spectral estimation problems discussed in the text. The array processing problem of Chapter 6 does not satisfy the previous requirement when the signal snapshots are assumed to be unknown deterministic variables; in such a case the number of unknown parameters grows without bound as \(N \) increases, and the equality in (B.1.8) does not hold, see [STOICA AND NEHORAI 1989A; STOICA AND NEHORAI 1990] and also Section B.6.

In summary, then, in large samples the ML method attains the ultimate performance corresponding to the CRB, under rather general conditions. Furthermore, there are no other known practical methods that can provide consistent estimates of \(\theta \) with lower variance than the CRB\(^1\). Hence, the ML method can be said to be asymptotically a statistically efficient practical estimation approach. The accuracy achieved by any other estimation method can therefore be assessed by comparing the (large sample) covariance matrix of that method with the CRB, which approximately equals the covariance matrix of the MLE in large samples (cf. (B.1.8)). This performance comparison ability is one of the most important uses of the CRB.

With reference to the spectral estimation problem, it follows from (B.1.3) and the previous observation that we can assess the performance of a given spectral estimator by comparing its large sample MSE values with

\[
\psi^T(\omega, \theta) [P_{cr}](\omega, \theta) \tag{B.1.9}
\]

The MSE values can be obtained by the Monte–Carlo simulation of a typical scenario representative of the problem of interest, or by using analytical MSE formulas whenever they are available. In the text we have emphasized the former, more pragmatic way of determining the MSE of a given spectral estimator.

Remark: The CRB formula (B.1.9) for parametric (or model-based) spectral analysis holds in the case where the model order (i.e., the dimension of \(\theta \)) is equal to the “true order”. Of course, in any practical spectral analysis exercise using the parametric approach we will have to estimate \(n \), the model order, in addition to \(\theta \), the (real-valued) model parameters. The need for order estimation is a distinctive feature and an additional complication of parametric spectral analysis, as compared with nonparametric spectral analysis.

There are several available rules for order selection (see Appendix C). For most of these rules, the probability of underestimating the true order approaches zero as \(N \) increases (if that is not the case, then the estimated spectrum may be heavily biased). The probability of overestimating the true order, on the other hand, may be nonzero even when \(N \to \infty \). Let \(\hat{n} \) denote the estimated order, \(n_0 \) the true order, and \(p_n = \Pr(\hat{n} = n) \) for \(N \to \infty \). Assume that \(p_n = 0 \) for \(n < n_0 \) and that the CRB formula (B.1.9) holds for any \(n \geq n_0 \) (which is a relatively mild restriction). Then it can be shown (see [SANDO, MITRA, AND STOICA 2002])

\(^1\)Consistent estimation methods whose asymptotic variance is lower than the CRB, at certain points in the parameter set, do exist! However, such methods (which are called “asymptotically statistically super-efficient”) have little practical relevance (they are mainly of a theoretical interest); see, e.g., [STOICA AND OTTERSTEN 1996].
Appendix B Cramér–Rao Bound Tools

and the references therein) that whenever \(n \) is estimated along with \(\theta \) the formula (B.1.9) should be replaced with its average over the distribution of order estimates:

\[
\sum_{n=n_0}^{n_{\text{MAX}}} p_n \psi_n^T(\omega, \theta_n)[P_{\text{cr},n}]\psi_n(\omega, \theta_n)
\]

(B.1.10)

where we have emphasized by notation the dependence of \(\psi, \theta, \) and \(P_{\text{cr}} \) on the model order \(n \), and where \(n_{\text{MAX}} \) denotes the maximum order value considered in the order selection rule. The set of probabilities \(\{p_n\} \) associated with various order estimation rules are tabulated, e.g., in [McQuarrie and Tsai 1998]. As expected, it can be proven that the spectral CRB in (B.1.10) increases (for each \(\omega \)) with increasing \(n_{\text{MAX}} \) (see [Sando, Mitra, and Stoica 2002]). This increase of the spectral estimation error is the price paid for not knowing the true model order.

B.2 THE CRB FOR GENERAL DISTRIBUTIONS

Result R36: (Cramér–Rao Bound) Consider the likelihood function \(p(y, \theta) \), introduced in the previous section, and define

\[
P_{\text{cr}} = \left(E \left\{ \left[\frac{\partial \ln p(y, \theta)}{\partial \theta} \right] \left[\frac{\partial \ln p(y, \theta)}{\partial \theta} \right]^T \right\} \right)^{-1}
\]

(B.2.1)

where the inverse is assumed to exist. Then

\[
P \geq P_{\text{cr}}
\]

(B.2.2)

holds for any unbiased estimate of \(\theta \). Furthermore, the CRB matrix can alternatively be expressed as:

\[
P_{\text{cr}} = - \left(E \left\{ \frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial^T \theta} \right\} \right)^{-1}
\]

(B.2.3)

Proof: As \(p(y, \theta) \) is a probability density function,

\[
\int p(y, \theta) dy = 1
\]

(B.2.4)

where the integration is over \(\mathbb{R}^N \). The assumption that \(\hat{\theta} \) is an unbiased estimate implies

\[
\int \hat{\theta} p(y, \theta) dy = \theta
\]

(B.2.5)
Differentiation of (B.2.4) and (B.2.5) with respect to \(\theta \) yields, under regularity conditions,

\[
\int \frac{\partial p(y, \theta)}{\partial \theta} dy = \int \frac{\partial \ln p(y, \theta)}{\partial \theta} p(y, \theta) dy = E \left\{ \frac{\partial \ln p(y, \theta)}{\partial \theta} \right\} = 0 \quad \text{(B.2.6)}
\]

and

\[
\int \frac{\partial p(y, \theta)}{\partial \theta} dy = \int \frac{\partial \ln p(y, \theta)}{\partial \theta} p(y, \theta) dy = E \left\{ \frac{\partial \ln p(y, \theta)}{\partial \theta} \right\} = I \quad \text{(B.2.7)}
\]

It follows from (B.2.6) and (B.2.7) that

\[
E \left\{ \left(\hat{\theta} - \theta \right) \frac{\partial \ln p(y, \theta)}{\partial \theta} \right\} = I \quad \text{(B.2.8)}
\]

Next note that the matrix

\[
J = E \left\{ \begin{bmatrix} \frac{\partial \ln p(y, \theta)}{\partial \theta} \\ \frac{\partial \ln p(y, \theta)}{\partial \theta^T} \end{bmatrix} \begin{bmatrix} \frac{\partial \ln p(y, \theta)}{\partial \theta} \\ \frac{\partial \ln p(y, \theta)}{\partial \theta^T} \end{bmatrix}^T \right\} = -E \left\{ \frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial \theta^T} \right\}
\]

which is precisely what we had to prove.

The matrix

\[
J = E \left\{ \begin{bmatrix} \frac{\partial \ln p(y, \theta)}{\partial \theta} \\ \frac{\partial \ln p(y, \theta)}{\partial \theta^T} \end{bmatrix} \begin{bmatrix} \frac{\partial \ln p(y, \theta)}{\partial \theta} \\ \frac{\partial \ln p(y, \theta)}{\partial \theta^T} \end{bmatrix}^T \right\} = -E \left\{ \frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial \theta^T} \right\}
\]

the inverse of which appears in the CRB formula (B.2.1) (or (B.2.3)), is called the (Fisher) information matrix [FISHER 1922].

B.3 THE CRB FOR GAUSSIAN DISTRIBUTIONS

The CRB matrix in (B.2.1) depends implicitly on the data properties via the probability density function \(p(y, \theta) \). To obtain a more explicit expression for the CRB
we should specify the data distribution. A particularly convenient CRB formula is obtained if the data vector is assumed to be Gaussian distributed:
\[p(y, \theta) = \frac{1}{(2\pi)^{N/2}|C|^{1/2}} e^{-(y-\mu)^T C^{-1} (y-\mu)/2} \] (B.3.1)
where \(\mu \) and \(C \) are, respectively, the mean and the covariance matrix of \(y \) (\(C \) is assumed to be invertible). In the case of (B.3.1), the log-likelihood function that appears in (B.2.1) is given by:
\[\ln p(y, \theta) = \frac{-N}{2} \ln 2\pi - \frac{1}{2} \ln |C| - \frac{1}{2} (y-\mu)^T C^{-1} (y-\mu) \] (B.3.2)

Result R37: The CRB matrix corresponding to the Gaussian data distribution in (B.3.1) is given (elementwise) by:
\[
[P^{-1}]_{ij} = \frac{1}{2} \text{tr} \left[C^{-1} C'_i C^{-1} C'_j \right] + [\mu'_i]^T C^{-1} [\mu'_j]
\] (B.3.3)
where \(C'_i \) denotes the derivative of \(C \) with respect to the \(i \)th element of \(\theta \) (and similarly for \(\mu'_i \)).

Proof: By using Result R21 and the notational convention for the first-order and second-order derivatives, we obtain:
\[
2[\ln p(y, \theta)]''_{ij} = \frac{\partial^2}{\partial \theta_i \partial \theta_j} \left\{ -\text{tr} \left[C^{-1} C'_i \right] + 2 \mu'^T C^{-1} (y-\mu) + (y-\mu)^T C^{-1} C'_i C^{-1} (y-\mu) \right\}
\]
\[
= \text{tr} \left[C^{-1} C'_i C^{-1} C'_j \right] - \text{tr} \left[C^{-1} C''_{ij} \right]
+ 2 \left\{ [\mu'_i]^T C^{-1} (y-\mu) + \mu'^T C^{-1} \mu'_j \right\} - 2 \mu'^T C^{-1} C'_i (y-\mu)
+ \text{tr} \left\{ (y-\mu)(y-\mu)^T \right\}
\cdot \left[-C^{-1} C'_i C^{-1} C'_j C^{-1} + C^{-1} C''_{ij} C^{-1} C^{-1} C'_i C^{-1} \right]
\]
Taking the expectation of both sides of the equation above yields:
\[
2 [P^{-1}]_{ij} = -\text{tr} \left[C^{-1} C'_i C^{-1} C'_j \right] + \text{tr} \left[C^{-1} C''_{ij} \right] + 2 \mu'^T C^{-1} \mu'_j
+ \text{tr} \left[C^{-1} C'_i C^{-1} C'_j \right] - \text{tr} \left[C^{-1} C''_{ij} \right] + \text{tr} \left[C^{-1} C'_i C^{-1} C'_j \right]
= \text{tr} \left[C^{-1} C'_i C^{-1} C'_j \right] + 2 \mu'^T C^{-1} \mu'_j
\]
which concludes the proof.

The CRB expression in (B.3.3) is sometimes referred to as the Slepian–Bangs formula. (The second term in (B.3.3) is due to Slepian [SLEPIAN 1954] and the first to Bangs [BANGS 1971]).
Section B.3 The CRB for Gaussian Distributions 361

Next we specialize the CRB formula (B.3.3) to a particular type of Gaussian distribution. Let \(N = 2N \) (hence, \(N \) is assumed to be even). Partition the vector \(y \) as

\[
y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \\
\end{bmatrix} \quad \text{(B.3.4)}
\]

Accordingly, partition \(\mu \) and \(C \) as

\[
\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix} \quad \text{(B.3.5)}
\]

and

\[
C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} \quad \text{(B.3.6)}
\]

The vector \(y \) is said to have a \textit{circular} (or \textit{circularly symmetric}) Gaussian distribution if

\[
C_{11} = C_{22} \quad \text{(B.3.7)}
\]

\[
C_{12}^T = -C_{12} \quad \text{(B.3.8)}
\]

Let

\[
y = y_1 + iy_2 \quad \text{(B.3.9)}
\]

and

\[
\mu = \mu_1 + i\mu_2 \quad \text{(B.3.10)}
\]

We also say that the \textit{complex-valued} random vector \(y \) has a \textit{circular} Gaussian distribution whenever the conditions (B.3.7) and (B.3.8) are satisfied. It is a straightforward exercise to verify that the aforementioned conditions can be more compactly written as:

\[
E \{(y - \mu)(y - \mu)^T\} = 0 \quad \text{(B.3.11)}
\]

The Fourier transform, as well as the complex demodulation operation (see Chapter 6), often lead to signals satisfying (B.3.11) (see, \textit{e.g.}, [BRILLINGER 1981]). Hence, the \textit{circularity} is a relatively frequent property of the Gaussian random signals encountered in the spectral analysis problems discussed in this text.

Remark: If a random vector \(y \) satisfies the “circularity condition” (B.3.11) then it is readily verified that \(y \) and \(ye^{iz} \) have the same second-order properties for every constant \(z \in [-\pi, \pi] \). Hence, the second-order properties of \(y \) do not change if its generic element \(y_k \) is replaced by any other value, \(ye^{iz} \), on the circle with radius \(|y_k| \) (recall that \(z \) is nonrandom and it does not depend on \(k \)). This observation provides a motivation for the name “circularly symmetric” given to such a random vector \(y \).
Appendix B Cramér–Rao Bound Tools

Let
\[\Gamma = E \{(y - \mu)(y - \mu)^*\} \] \hfill (B.3.12)

For circular Gaussian random vectors \(y \) (or \(y \)), the CRB formula (B.3.3) can be rewritten in a compact form as a function of \(\Gamma \) and \(\mu \). (Note that the dimensions of \(\Gamma \) and \(\mu \) are half the dimensions of \(C \) and \(\mu \) appearing in (B.3.3).) In order to show how this can be done, we need some preparations.

Let
\[\bar{C} = C_{11} = C_{22} \] \hfill (B.3.13)
\[\tilde{C} = C_{12}^T = -C_{12} \] \hfill (B.3.14)

Hence,
\[C = \begin{bmatrix} \bar{C} & \tilde{C} \\ \tilde{C} & \bar{C} \end{bmatrix} \] \hfill (B.3.15)

and
\[\Gamma = 2(\bar{C} + i\tilde{C}) \] \hfill (B.3.16)

To any complex–valued matrix \(\mathcal{C} = \bar{C} + i\tilde{C} \) we associate a real–valued matrix \(C \) as defined in (B.3.15), and vice versa. It is a simple exercise to verify that if
\[A = BC \iff \bar{A} + i\tilde{A} = (\bar{B} + i\tilde{B})(C + i\tilde{C}) \] \hfill (B.3.17)

then the real–valued matrix associated with \(A \) is given by
\[A = BC \iff \begin{bmatrix} \bar{A} & -\tilde{A} \\ \tilde{A} & \bar{A} \end{bmatrix} = \begin{bmatrix} \bar{B} & -\tilde{B} \\ \tilde{B} & \bar{B} \end{bmatrix} \begin{bmatrix} \bar{C} & -\tilde{C} \\ \tilde{C} & \bar{C} \end{bmatrix} \] \hfill (B.3.18)

In particular, it follows from (B.3.17) and (B.3.18) with \(A = I \) (and hence \(A = I \)) that the matrices \(C^{-1} \) and \(\bar{C}^{-1} \) form a real–complex pair as defined above.

We deduce from the results previously derived that the matrix in the first term of (B.3.3),
\[D = C^{-1}C(C^{-1})^T \] \hfill (B.3.19)
is associated with
\[D = C^{-1}C(C^{-1})^T = \Gamma^{-1}\Gamma_i^T\Gamma^{-1}\Gamma_j^T \] \hfill (B.3.20)

Furthermore, we have
\[\frac{1}{2} \text{tr}(D) = \text{tr}(\bar{D}) = \text{tr}(D) \] \hfill (B.3.21)
The second equality above follows from the fact that \(\mathcal{C} \) is Hermitian, and hence
\[\text{tr}(D^*) = \text{tr}(\bar{C}^T\bar{C}^{-1}\bar{C}^T) = \text{tr}(C^{-1}C^{-1}C^T) = \text{tr}(D) \]

which in turn implies that \(\text{tr}(\bar{D}) = 0 \) and therefore that \(\text{tr}(D) = \text{tr}(\bar{D}) \). Combining (B.3.20) and (B.3.21) shows that the first term in (B.3.3) can be rewritten as:
\[\text{tr}(\Gamma^{-1}\Gamma_i^T\Gamma^{-1}\Gamma_j^T) \] \hfill (B.3.22)

Next we consider the second term in (B.3.3). Let
\[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \text{and} \quad z = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \]
be two arbitrary vectors partitioned similarly to \(\mu \), and let \(x = x_1 + ix_2 \) and \(z = z_1 + iz_2 \). A straightforward calculation shows that:
\[
x^T A z = x_1^T \bar{A} z_1 + x_2^T \bar{A} z_2 + x_2^T \bar{A} z_1 - x_1^T \bar{A} z_2
\]
\[
= \text{Re} \{ x^* A z \}
\]
Hence,
\[
\mu_i^T C^{-1} \mu_j' = \text{Re} \{ \mu_i^* C^{-1} \mu_j' \}
\]
\[
= 2 \text{Re} \{ \mu_i^* \Gamma^{-1} \mu_j' \}
\]
Insertion of \((B.3.22) \) and \((B.3.24) \) into \((B.3.3) \) yields the following CRB formula that holds in the case of circularly Gaussian distributed data vectors \(y \) (or \(y \)):
\[
[P_{cr}^{-1}]_{ij} = \text{tr} \left[\Gamma^{-1} \Gamma_j' \Gamma^{-1} \Gamma_i' \right] + 2 \text{Re} \left[\mu_i^* \Gamma^{-1} \mu_j' \right]
\]
The importance of the Gaussian CRB formulas lies not only in the fact that Gaussian data are rather frequently encountered in applications, but also in a more subtle aspect explained in what follows. Briefly stated, the second reason for the importance of the CRB formulas derived in this section is that:

Under rather general conditions and (at least) in large samples, the Gaussian CRB is the largest of all CRB matrices corresponding to different congruous distributions of the data sample\(^2\).

\[\text{(B.3.26)} \]

To motivate the previous assertion, consider the ML estimate of \(\theta \) derived under the Gaussian data hypothesis, which we denote by \(\hat{\theta}_G \). According to the discussion around equation \((B.1.8) \), the large sample covariance matrix of \(\hat{\theta} \) equals \(P_{cr}^G \) (similar to \(\hat{\theta}_G \), we use an index \(G \) to denote the CRB matrix in the Gaussian hypothesis case). Now, under rather general conditions, the large sample properties of the Gaussian ML estimator are independent of the data distribution (see, e.g., [SöDERSTRÖM and STOICA 1989]). In other words, the large sample covariance matrix of \(\hat{\theta}_G \) is equal to \(P_{cr}^G \) for many other data distributions besides the Gaussian one. This observation, along with the general CRB inequality, implies that:
\[
P_{cr}^G \geq P_{cr}
\]
where the right-hand side is the CRB matrix corresponding to the data distribution at hand.

The inequality \((B.3.27) \) (or, equivalently, the assertion \((B.3.26) \)) shows that a method whose covariance matrix is much larger than \(P_{cr}^G \) cannot be a good estimation method. As a matter of fact, the “asymptotic properties” of most existing

\(^2\)A meaningful comparison of the CRBs under two different data distributions requires that the hypothesized distributional models do not contain conflicting assumptions. In particular, when one of the two distributions is the Gaussian, the mean and covariance matrix should be the same for both distributions.
parameter estimation methods do not depend on the data distribution. This means that P_{cr}^G is a lower bound for the covariance matrices of a large class of estimation methods, regardless of the data distribution. On the other hand, the inequality (B.3.27) also shows that for non-Gaussian data it should be possible to beat the Gaussian CRB (for instance by exploiting higher-order moments of the data, beyond the first and second-order moments used in the Gaussian ML method). However, general estimation methods with covariance matrices uniformly smaller than P_{cr}^G are yet to be discovered. In summary, comparing against the P_{cr}^G makes sense in most parameter estimation exercises.

In what follows, we briefly consider the application of the general Gaussian CRB formulas derived above to the three main parameter estimation problems treated in the text.

B.4 THE CRB FOR LINE SPECTRA

As explained in Chapter 4 the estimation of line spectra is basically a parameter estimation problem. The corresponding parameter vector is

$$\theta = [\alpha_1 \ldots \alpha_n, \varphi_1 \ldots \varphi_n, \omega_1 \ldots \omega_n, \sigma^2]^T$$ \hspace{1cm} (B.4.1)

and the data vector is

$$y = [y(1) \cdots y(N)]^T$$ \hspace{1cm} (B.4.2)

or, in real-valued form,

$$y = [\text{Re}[y(1)] \cdots \text{Re}[y(N)] \text{ Im}[y(1)] \cdots \text{Im}[y(N)]]^T$$ \hspace{1cm} (B.4.3)

When $\{\varphi_k\}$ are assumed to be random variables uniformly distributed on $[0, 2\pi]$ (whereas $\{\alpha_k\}$ and $\{\omega_k\}$ are deterministic constants), the distribution of y is not Gaussian and hence neither of the CRB formulas of the previous section are usable. To overcome this difficulty it is customary to consider the distribution of y conditioned on $\{\varphi_k\}$ (i.e., for $\{\varphi_k\}$ fixed). This distribution is circular Gaussian, under the assumption that the (white) noise is circularly Gaussian distributed, with the following mean and covariance matrix:

$$\mu = E\{y\} = \begin{bmatrix} 1 & \cdots & 1 \\
1 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 1 \\
e^{i\omega_1} & \cdots & e^{i\omega_n} \\
\vdots & \ddots & \vdots \\
e^{i(N-1)\omega_1} & \cdots & e^{i(N-1)\omega_n} \\
\end{bmatrix} \begin{bmatrix} \alpha_1 e^{i\varphi_1} \\
\vdots \\
\alpha_n e^{i\varphi_n} \end{bmatrix}$$ \hspace{1cm} (B.4.4)

$$\Gamma = E\{(y - \mu)(y - \mu)^*\} = \sigma^2 I$$ \hspace{1cm} (B.4.5)

The differentiation of (B.4.4) and (B.4.5) with respect to the elements of the parameter vector θ can be easily done (we leave the details of this differentiation operation as an exercise to the reader). Hence, we can readily obtain all ingredients required to evaluate the CRB matrix in equation (B.3.25). If the distribution of y (or y) is Gaussian but not circular, we need additional parameters, besides σ^2, to characterize the matrix $E\{(y - \mu)(y - \mu)^*\}$. Once these parameters are introduced, the use of formula (B.3.3) to obtain the CRB is straightforward.
In Section 4.3 we have given a simple formula for the block of the CRB matrix corresponding to the frequency estimates \(\{ \hat{\omega}_k \} \). That formula holds asymptotically, as \(N \) increases. For finite values of \(N \), it is a good approximation of the exact CRB whenever the minimum frequency separation is larger than \(1/N \) [Stoica, Moses, Friedlander, and Söderström 1989]. In any case, the approximate (large sample) CRB formula given in Section 4.3 is computationally much simpler to implement than the exact CRB.

The computation and properties of the CRB for line spectral models are discussed in great detail in [Ghogho and Swami 1999]. In particular, a modified lower bound on the variance of any unbiased estimates of \(\{ \alpha_k \} \) and \(\{ \omega_k \} \) is derived for the case in which \(\{ \varphi_k \} \) are independent random variables uniformly distributed on \([0, 2\pi]\). That bound, which was obtained using the so-called posterior CRB introduced in [Van Trees 1968] (as indicated above, the standard CRB does not apply to such a case), has an expression that is quite similar to the large-sample CRB given in [Stoica, Moses, Friedlander, and Söderström 1989] (see Section 4.3 for the large-sample CRB for \(\{ \hat{\omega}_k \} \)). The paper [Ghogho and Swami 1999] also discusses the derivation of the CRB in the case of non-Gaussian noise distributions. The extension of the asymptotic CRB formula in Section 4.3 to the case of colored noise can be found in [Stoica, Jakobsson, and Li 1997].

B.5 The CRB for Rational Spectra

For rational (or ARMA) spectra, the Cramér–Rao lower bound on the variance of any consistently estimated spectrum is asymptotically (for \(N \gg 1 \)) given by (B.1.9). The CRB matrix for the parameter vector estimate, which appears in (B.1.9), can be evaluated as outlined in what follows.

In the case of ARMA spectral models, the parameter vector consists of the white noise power \(\sigma^2 \) and the polynomial coefficients \(\{ a_k, b_k \} \). We arrange the ARMA coefficients in the following real-valued vector:

\[
\theta = [\text{Re}(a_1) \cdots \text{Re}(a_n) \text{ Re}(b_1) \cdots \text{Re}(b_m) \text{ Im}(a_1) \cdots \text{Im}(a_n) \text{ Im}(b_1) \cdots \text{Im}(b_m)]^T
\]

The data vector is defined as in equations (B.4.2) or (B.4.3) and has zero mean \((\mu = 0)\). The calculation of the covariance matrix of the data vector reduces to the calculation of ARMA covariances:

\[
r(k) = \sigma^2 E \left\{ \left[\frac{B(z)}{A(z)} w(t) \right] \left[\frac{B(z)}{A(z)} w(t-k) \right]^* \right\}
\]

where the white noise sequence \(\{ w(t) \} \) is normalized such that its variance is one. Methods for computation of \(\{ r_k \} \) (for given values of \(\sigma^2 \) and \(\theta \)) were outlined in Exercises C1.12 and 3.2. The method in Exercise C1.12 should perform reasonably well as long as the zeroes of \(A(z) \) are not too close to the unit circle. If the zeroes of \(A(z) \) are close to the unit circle, it is advisable to use the method in Exercise 3.2 or in [Kinkel, Perl, Scharf, and Stubberud 1979; Demeure and Mullis 1989].

The calculation of the derivatives of \(\{ r(k) \} \) with respect to \(\sigma^2 \) and the elements of \(\theta \), which appear in the CRB formulas (B.3.3) or (B.3.25), can also be reduced to
ARMA (cross)covariance computation. To see this, let \(\alpha \) and \(\gamma \) be the real parts of \(a_p \) and \(b_p \), respectively. Then

\[
\frac{\partial r(k)}{\partial \alpha} = -\sigma^2 E \left\{ \left[\frac{B(z)}{A^2(z)} w(t - p) \right] \left[\frac{B(z)}{A(z)} w(t - k) \right]^* \right\}
\]

and

\[
\frac{\partial r(k)}{\partial \gamma} = \sigma^2 E \left\{ \left[\frac{1}{A(z)} w(t - p) \right] \left[\frac{B(z)}{A(z)} w(t - k) \right]^* \right\}
\]

The derivatives of \(r(k) \) with respect to the imaginary parts of \(a_p \) and \(b_p \) can be similarly obtained. The differentiation of \(r(k) \) with respect to \(\sigma^2 \) is immediate. Hence, by making use of an algorithm for ARMA cross–covariance calculation (similar to the ones for autocovariance calculation in Exercises C1.12 and 3.2) we can readily obtain all the ingredients needed to evaluate the CRB matrix in equation (B.3.3) or (B.3.25).

Similarly to the case of line spectra, for relatively large values of \(N \) (e.g., on the order of hundreds) the use of the exact CRB formula for rational spectra may be computationally burdensome (owing to the need to multiply and invert matrices of large dimensions). In such large–sample cases, we may want to use an asymptotically valid approximation of the exact CRB such as the one developed in [SÖDERSTRÖM AND STOICA 1989]. Below we present such an approximate (large sample) CRB formula for ARMA parameter estimates.

Let

\[
\Lambda = E \left\{ \begin{bmatrix} \text{Re}[e(t)] \\ \text{Im}[e(t)] \end{bmatrix} \begin{bmatrix} \text{Re}[e(t)] & \text{Im}[e(t)] \end{bmatrix} \right\} \tag{B.5.1}
\]

Typically the real and imaginary parts of the complex–valued white noise sequence \(\{e(t)\} \) are assumed to be mutually uncorrelated and have the same variance \(\sigma^2/2 \). In such a case, we have \(\Lambda = (\sigma^2/2)I \). However, this assumption is not necessary for the result discussed below to hold, and hence we do not impose it (in other words, \(\Lambda \) in (B.5.1) is only constrained to be a positive definite matrix). We should also remark that, for the sake of simplicity, we assumed the ARMA signal under discussion is scalar. Nevertheless, the extension of the discussion that follows to multivariate ARMA signals is immediate. Finally, note that for real–valued signals the imaginary parts in (B.5.1) (and in equation (B.5.2)) should be omitted.

The real–valued white noise vector in (B.5.1) satisfies the following equation:

\[
\begin{bmatrix} \text{Re}[e(t)] \\ \text{Im}[e(t)] \end{bmatrix}_{\epsilon(t)} = \begin{bmatrix} \text{Re} \left[\frac{A(z)}{B(z)} \right] & -\text{Im} \left[\frac{A(z)}{B(z)} \right] \\ \text{Im} \left[\frac{A(z)}{B(z)} \right] & \text{Re} \left[\frac{A(z)}{B(z)} \right] \end{bmatrix}_{H(z)} \begin{bmatrix} \text{Re}[y(t)] \\ \text{Im}[y(t)] \end{bmatrix}_{v(t)} \tag{B.5.2}
\]
where z^{-1} is to be treated as the unit delay operator (not as a complex variable). As the coefficients of the polynomials $A(z)$ and $B(z)$ in $H(z)$ above are the unknowns in our estimation problem, we can rewrite (B.5.2) in the following form to stress the dependence of $\varepsilon(t)$ on θ:

$$\varepsilon(t, \theta) = H(z, \theta)v(t) \quad (B.5.3)$$

Because the polynomials of the ARMA model are monic by assumption, we have:

$$H(z, \theta)|_{z^{-1}=0} = I \quad (\text{for any } \theta) \quad (B.5.4)$$

This observation, along with the fact that $\varepsilon(t)$ is white and the “whitening filter” $H(z)$ is stable and causal (which follows from the fact that the complex-valued (equivalent) counterpart of (B.5.2), $e(t) = \frac{A(z)}{B(z)}y(t)$, is stable and causal) implies that (B.5.3) is a standard prediction error model to which the CRB result of [SöDERSTRÖM and STOICA 1989] applies.

Let

$$\Delta(t) = \frac{\partial \varepsilon^T(t, \theta)}{\partial \theta} \quad (B.5.5)$$

($\varepsilon(t, \theta)$ depends on θ via $H(z, \theta)$ only; see (B.5.2)). Then an asymptotically valid expression for the CRB block corresponding to the parameters in θ is given by:

$$P_{cr, \theta} = \left(E \{ \Delta(t) \Lambda^{-1} \Delta^T(t) \} \right)^{-1} \quad (B.5.6)$$

The calculation of the derivative matrix in (B.5.5) is straightforward. The evaluation of the statistical expectation in (B.5.6) can be reduced to ARMA cross-covariance calculations. Since equation (B.5.6) does not require handling matrices of large dimensions (on the order of N), its implementation is much simpler than that of the exact CRB formula.

For some recent results on the CRB for rational spectral analysis, see [NINNESS 2003].

B.6 THE CRB FOR SPATIAL SPECTRA

Consider the model (6.2.21) for the output sequence $\{y(t)\}_{t=1}^N$ of an array that receives the signals emitted by n narrowband point sources:

$$y(t) = As(t) + e(t)$$

$$A = [a(\theta_1), \ldots, a(\theta_n)] \quad (B.6.1)$$

The noise term, $e(t)$, in (B.6.1) is assumed to be circularly Gaussian distributed with mean zero and the following covariances:

$$E \{ e(t)e^*(\tau) \} = \sigma^2 I_{\delta_{\tau}} \quad (B.6.2)$$

Regarding the signal vector, $s(t)$, in the equation (B.6.1), we can assume that either:

Det: $\{s(t)\}$ is a deterministic, unknown sequence

Sto: \(\{s(t)\} \) is a random sequence which is circularly Gaussian distributed with mean zero and covariances

\[
E \{s(t)s^*(\tau)\} = P \delta_{t,\tau} \quad (B.6.3)
\]

Hereafter, the acronyms Det and Sto are used to designate the case of deterministic or stochastic signals, respectively. Note that making one of these two assumptions on \(\{s(t)\} \) is similar to assuming in the line spectral analysis problem that the initial phases \(\{\varphi_k\} \) are deterministic or random (see Section B.4). As we will see shortly, both the CRB analysis and the resulting CRB formulas depend heavily on which of the two assumptions we make on \(\{s(t)\} \). The reader may already wonder which assumption should then be used in a given application. This is not a simple question, and we will be better prepared to answer it after deriving the corresponding CRB formulas.

In Chapter 6 we used the symbol \(\theta \) to denote the DOA vector. To conform with the notation used in this appendix (and by a slight abuse of notation), we will here let \(\theta \) denote the entire parameter vector.

As explained in Chapter 6, the use of array processing for spatial spectral analysis leads essentially to a parameter estimation problem. Under the Det assumption the parameter vector to be estimated is given by:

\[
\theta = [\theta_1, \ldots, \theta_n; \bar{s}^T(1), \ldots, \bar{s}^T(N); \tilde{s}^T(1), \ldots, \tilde{s}^T(N); \sigma^2]^T \quad (B.6.4)
\]

whereas under the Sto assumption

\[
\theta = [\theta_1, \ldots, \theta_n; P_{11}, P_{12}, \tilde{P}_{12}, \ldots, P_{1n}, \bar{P}_{1n}, P_{22}, \bar{P}_{22}, \ldots, P_{nn}, \sigma^2]^T \quad (B.6.5)
\]

Hereafter, \(\bar{s}(t) \) and \(\tilde{s}(t) \) denote the real and imaginary parts of \(s(t) \), and \(P_{ij} \) denotes the \((i,j) \)th element of the matrix \(P \). Furthermore, under both Det and Sto assumptions the observed array output sample,

\[
y(t) = [y^T(1), \ldots, y^T(N)]^T \quad (B.6.6)
\]

is circularly Gaussian distributed with the following mean \(\mu \) and covariance \(\Gamma \):

Under Det:

\[
\mu = \begin{bmatrix} \text{As}(1) \\ \vdots \\ \text{As}(N) \end{bmatrix}, \quad \Gamma = \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \sigma^2 I \end{bmatrix} \quad (B.6.7)
\]

Under Sto:

\[
\mu = 0, \quad \Gamma = \begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix} \quad (B.6.8)
\]

where \(R \) is given by (see (6.4.3))

\[
R = APA^* + \sigma^2 I \quad (B.6.9)
\]
The differentiation of either (B.6.7) or (B.6.8) with respect to the elements of the parameter vector θ is straightforward. Using the so-obtained derivatives of μ and Γ in the general CRB formula in (B.3.25) provides a simple means of computing CRB_{Det} and CRB_{Sto} for the entire parameter vector θ as defined in (B.6.4) or (B.6.5).

Computing the CRB as described above may be sufficient for many applications. However, sometimes we may need more than just that. For example, we may be interested in using the CRB for the design of array geometry or for getting insights into the various features of a specific spatial spectral analysis scenario. In such cases we may want to have a closed-form (or analytical) expression for the CRB. More precisely, as the DOAs are usually the parameters of major interest, we may often want a closed-form expression for $\text{CRB}(\text{DOA})$ (i.e., the block of the CRB matrix that corresponds to the DOA parameters). Below we consider the problem of obtaining such a closed-form CRB expression under both the Det and Sto assumptions made above.

First, consider the Det assumption. Let us write the corresponding μ vector in (B.6.7) as

$$\mu = Gs$$ \hspace{1cm} (B.6.10)

where

$$G = \begin{bmatrix} A & 0 \\ \vdots & \ddots \\ 0 & A \end{bmatrix}, \quad s = \begin{bmatrix} s(1) \\ \vdots \\ s(N) \end{bmatrix}$$ \hspace{1cm} (B.6.11)

Then, a straightforward calculation yields:

$$\frac{\partial \mu}{\partial s^T} = G, \quad \frac{\partial \mu}{\partial \bar{s}^T} = iG; \hspace{1cm} (B.6.12)$$

and

$$\frac{\partial \mu}{\partial \theta_k} = \begin{bmatrix} \frac{\partial A}{\partial \theta_k} s(1) \\ \vdots \\ \frac{\partial A}{\partial \theta_k} s(N) \end{bmatrix} = \begin{bmatrix} d_k s_k(1) \\ \vdots \\ d_k s_k(N) \end{bmatrix}, \quad k = 1, \ldots, n$$ \hspace{1cm} (B.6.13)

where $s_k(t)$ is the kth element of $s(t)$ and

$$d_k = \left. \frac{\partial a(\theta)}{\partial \theta} \right|_{\theta = \theta_k}$$ \hspace{1cm} (B.6.14)

Using the notation

$$\Delta = \begin{bmatrix} d_1 s_1(1) & \cdots & d_n s_n(1) \\ \vdots & \ddots & \vdots \\ d_1 s_1(N) & \cdots & d_n s_n(N) \end{bmatrix}, \quad (N \times n)$$ \hspace{1cm} (B.6.15)

we can then write:

$$\frac{d\mu}{d \theta^T} = [\Delta, G, iG, 0]$$ \hspace{1cm} (B.6.16)
which gives the following expression for the second term in the general CRB formula in (B.3.25):

\[
2 \Re \left\{ \frac{d\mu^*}{d\theta} \Gamma^{-1} \frac{d\mu}{d\theta^T} \right\} = \begin{bmatrix} J & 0 \\ 0 & 0 \end{bmatrix}
\]

(B.6.17)

where

\[
J \triangleq \frac{2}{\sigma^2} \Re \left\{ \begin{bmatrix} \Delta^* & G^* \\ -iG^* \end{bmatrix} \begin{bmatrix} \Delta & G & iG \end{bmatrix} \right\}
\]

(B.6.18)

Furthermore, as \(\Gamma \) depends only on \(\sigma^2 \) and as

\[
\frac{d\Gamma}{d\sigma^2} = \begin{bmatrix} I & 0 \\ 0 & \ddots \\ 0 & I \end{bmatrix}
\]

we can easily verify that the matrix corresponding to the first term in the general CRB formula, (B.3.25), is given by

\[
\text{tr} \left[\Gamma^{-1} \Gamma_j' \Gamma^{-1} \Gamma_j \right] = \begin{bmatrix} 0 & 0 \\ 0 & \frac{mN}{\sigma^2} \end{bmatrix}, \quad i, j = 1, 2, \ldots
\]

(B.6.19)

Combining (B.6.17) and (B.6.19) yields the following CRB formula for the parameter vector \(\theta \) in (B.6.4), under the Det assumption:

\[
\text{CRB}_{\text{Det}} = \begin{bmatrix} J^{-1} & 0 \\ 0 & \frac{\sigma^2}{mN} \end{bmatrix}
\]

(B.6.20)

Hence, to obtain the CRB for the DOA subvector of \(\theta \) we need to extract the corresponding block of \(J^{-1} \). One convenient way of doing this is by suitably block-diagonalizing the matrix \(J \). To this end, let us introduce the matrix

\[
B = (G^*G)^{-1}G^*\Delta
\]

(B.6.21)

Note that the inverse in (B.6.21) exists because \(A^*A \) is nonsingular by assumption. Also, let

\[
F = \begin{bmatrix} I & 0 & 0 \\ -\bar{B} & I & 0 \\ -\bar{B} & 0 & I \end{bmatrix}
\]

(B.6.22)

where \(\bar{B} = \Re\{B\} \) and \(\bar{B} = \Im\{B\} \). It can be verified that

\[
\begin{bmatrix} \Delta & G & iG \end{bmatrix} F = \begin{bmatrix} (\Delta - GB) & G & iG \end{bmatrix} = [\Pi_G^\bot \Delta & G & iG]
\]

(B.6.23)

where

\[
\Pi_G^\bot = I - G(G^*G)^{-1}G^*
\]

is the orthogonal projector onto the null space of \(G^* \) (see Result R17 in Appendix A); in particular, observe that \(G^*\Pi_G^\bot = 0 \). It follows from (B.6.18) and
(B.6.23) that

\[
F^T J F = \frac{2}{\sigma^2} \text{Re} \left\{ F^* \begin{bmatrix} \Delta^* \\ G^* \\ -iG^* \end{bmatrix} \begin{bmatrix} \Delta & G & iG \end{bmatrix} F \right\}
\]

\[
= \frac{2}{\sigma^2} \text{Re} \left\{ \begin{bmatrix} \Delta^* \Pi_G^1 \Delta \\ G^* \Pi_G^1 \Delta & G \\ -iG^* \end{bmatrix} \begin{bmatrix} 0 & 0 \\ G^*G & iG^*G \\ 0 & -iG^*G & G^*G \end{bmatrix} \right\}
\]

and hence that the CRB matrix for the DOAs and the signal sequence is given by

\[
J^{-1} = F \left(F^T J F \right)^{-1} F^T
\]

\[
= \frac{\sigma^2}{2} \begin{bmatrix} I & 0 & 0 \\ -\hat{B} & I & 0 \\ -\hat{B} & 0 & I \end{bmatrix} \left[\text{Re}(\Delta^* \Pi_G^1 \Delta) \right]^{-1} \begin{bmatrix} 0 & 0 & 0 \\ x & x & 0 \\ x & x & x \end{bmatrix} \begin{bmatrix} I & -\hat{B}^T & -\hat{B}^T \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}
\]

\[
= \left[\frac{\sigma^2}{2} \left[\text{Re}(\Delta^* \Pi_G^1 \Delta) \right]^{-1} \begin{bmatrix} x & x \\ x & x \\ x & x \end{bmatrix} \right]
\]

where we used the symbol \(x \) to denote a block of no interest in the derivation. From (B.6.4) and (B.6.25) we can immediately see that the CRB matrix for the DOAs is given by:

\[
\text{CRB}_{\text{Det(DOA)}} = \frac{\sigma^2}{2} \left[\text{Re}(\Delta^* \Pi_G^1 \Delta) \right]^{-1} \quad (B.6.26)
\]

It is possible to rewrite (B.6.26) in a more convenient form. To do so, we note that

\[
\Pi_G^1 = \begin{bmatrix} I & 0 & 0 \\ \vdots & \Pi_A & 0 \\ 0 & \Pi_A & I \end{bmatrix} = \begin{bmatrix} \Pi_A^1 & 0 \\ 0 & \Pi_A \end{bmatrix}
\]

and hence

\[
[\Delta^* \Pi_G^1 \Delta]_{kp} = \sum_{t=1}^{N} d_k^T s_k(t) \Pi_A^1 d_p s_p(t)
\]

\[
= N \left[d_k^T \Pi_A^1 d_p \right] \left[\frac{1}{N} \sum_{t=1}^{N} s_p(t) s_k^*(t) \right]
\]

\[
= N \left[D^* \Pi_A D \right]_{kp} \left[\hat{p}^T \right]_{kp} \quad (B.6.28)
\]
where

\[
D = \begin{bmatrix} d_1 & \cdots & d_n \end{bmatrix} \quad \text{(B.6.29)}
\]

and

\[
\hat{P} = \frac{1}{N} \sum_{t=1}^{N} s(t)s^*(t) \quad \text{(B.6.30)}
\]

It follows from (B.6.28) that

\[
\Delta^* \Pi_D^\top \Delta = N \left((D^* \Pi_A^\top D) \odot \hat{P}^T \right) \quad \text{(B.6.31)}
\]

where \(\odot\) denotes the Hadamard (or elementwise) matrix product (see the definition in Result R19 in Appendix A). Inserting (B.6.31) in (B.6.26) yields the following analytical expression for the CRB matrix associated with the DOA vector under the Det assumption:

\[
\text{CRB}_{\text{Det}}(\text{DOA}) = \frac{\sigma^2}{2N} \left\{ \text{Re} \left[(D^* \Pi_A^\top) \odot \hat{P}^T \right] \right\}^{-1} \quad \text{(B.6.32)}
\]

We refer the reader to [Stoica and Nehorai 1989a] for more details about (B.6.32) and its possible uses in array processing. The presented derivation of (B.6.32) has been adapted from [Stoica and Larsson 2001]. Note that (B.6.32) can be directly applied to the temporal line spectral model in Section B.4 (see equations (B.4.4) and (B.4.5) there) to obtain an analytical CRB formula for the sinusoidal frequencies.

The derivation of an analytical expression for the CRB matrix associated with the DOAs under the Sto assumption is more intricate, and we give only the final formula here (see [Stoica, Larsson, and Gershman 2001] and its references for a derivation):

\[
\text{CRB}_{\text{Sto}}(\text{DOA}) = \frac{\sigma^2}{2N} \left\{ \text{Re} \left[(D^* \Pi_A^\top) \odot (PA^* R^{-1} AP)^T \right] \right\}^{-1} \quad \text{(B.6.33)}
\]

At this point we should emphasize the fact that the two CRBs discussed above, CRB_{\text{Det}} and CRB_{\text{Sto}}, correspond to two different models of the data vector \(y\) (see (B.6.7) and (B.6.8)), and hence they are not directly comparable. On the other hand, the CRBs for the DOA parameters can be compared with one another. To make this comparison possible, let us introduce the assumption that the sample covariance matrix \(\hat{P}\) in (B.6.30) converges to the \(P\) matrix in (B.6.3), as \(N \to \infty\). Let \(\text{CRB}_{\text{Det}}(\text{DOA})\) denote the CRB matrix in (B.6.32) with \(\hat{P}\) replaced by \(P\). Then, the following interesting order relation holds true:

\[
\text{CRB}_{\text{Sto}}(\text{DOA}) \geq \text{CRB}_{\text{Det}}(\text{DOA}) \quad \text{(B.6.34)}
\]

To prove (B.6.34) we need to show that (see (B.6.32) and (B.6.33)):

\[
\left\{ \text{Re} \left[(D^* \Pi_A^\top) \odot (PA^* R^{-1} AP)^T \right] \right\}^{-1} \geq \left\{ \text{Re} \left[(D^* \Pi_A^\top) \odot P^T \right] \right\}^{-1}
\]
or, equivalently, that
\[
\text{Re} \left((D^*\Pi A_D) \odot (P - PA^*P^{-1}AP) \right) \geq 0
\] (B.6.35)

The real part of a positive semidefinite matrix is positive semidefinite itself, i.e.
\[
H \geq 0 \implies \text{Re}[H] \geq 0
\] (B.6.36)

(indeed, for any real-valued vector \(h\) we have: \(h^*\text{Re}[H]h = \text{Re}[h^*Hh] \geq 0\) for \(H \geq 0\)). Combining this observation with Result R19 in Appendix A shows that to prove (B.6.35) it is sufficient to verify that:
\[
P \geq PA^*P^{-1}AP
\] (B.6.37)

or, equivalently,
\[
I \geq P^{1/2}A^*P^{-1}AP^{1/2}
\] (B.6.38)

where \(P^{1/2}\) denotes the Hermitian square root of \(P\) (see Definition D12 in Appendix A). Let
\[
Z = AP^{1/2}
\]
Then (B.6.38) can be rewritten as
\[
I - Z^* (ZZ^* + \sigma^2 I)^{-1} Z \geq 0
\] (B.6.39)

To prove (B.6.39) we use the fact that the following matrix is evidently positive semidefinite:
\[
\begin{bmatrix}
I & Z^* \\
Z & ZZ^* + \sigma^2 I
\end{bmatrix} = \begin{bmatrix}
I & 0 \\
0 & \sigma^2 I
\end{bmatrix} \geq 0
\] (B.6.40)

and therefore
\[
\begin{bmatrix}
I - Z^* (ZZ^* + \sigma^2 I)^{-1} \\
0
\end{bmatrix} \begin{bmatrix}
I & Z^* \\
Z & ZZ^* + \sigma^2 I
\end{bmatrix} \begin{bmatrix}
I & 0 \\
Z^* & (ZZ^* + \sigma^2 I)^{-1} Z \\
0 & ZZ^* + \sigma^2 I
\end{bmatrix} \geq 0
\] (B.6.41)

The inequality in (B.6.39) is a simple consequence of (B.6.41), and hence the proof of (B.6.34) is concluded.

To understand (B.6.34) at an intuitive level we note that the ML method for DOA estimation under the Sto assumption, \(\text{ML}_{\text{Sto}}\), can be shown to achieve \(\text{CRB}_{\text{Sto}}\) (DOA) (for sufficiently large values of \(N\)); see, e.g., [STOICA AND NEHORAI 1990] and [OTTERSTEN, VIBERG, STOICA, AND NEHORAI 1993]. This result should in fact be no surprise because the general ML method of parameter estimation is known to be asymptotically statistically efficient \((i.e.,\ it\ achieves\ the\ CRB\ as\ N \to \infty)\) under some regularity conditions which are satisfied in the Sto assumption case. Specifically, the regularity conditions require that the number of unknown parameters does not increase as \(N\) increases, which is indeed true for the
Appendix B Cramér–Rao Bound Tools

Sto model (see (B.6.5)). Let $\text{CML}_{\text{Sto}}(\text{DOA})$ denote the asymptotic covariance matrix of the ML_{Sto} estimate of the DOA parameter vector. According to the above discussion, we have that

$$\text{CML}_{\text{Sto}}(\text{DOA}) = \text{CRB}_{\text{Sto}}(\text{DOA})$$ \hspace{1cm} (B.6.42)

At the same time, under the Det assumption the ML_{Sto} can be viewed as some method for DOA estimation, and hence its asymptotic covariance matrix must satisfy the CRB inequality (corresponding to the Det assumption):

$$\text{CML}_{\text{Sto}}(\text{DOA}) \geq \text{CRB}_{\text{Det}}(\text{DOA})$$ \hspace{1cm} (B.6.43)

(Note that the asymptotic covariance matrix of ML_{Sto} can be shown to be the same under either the Sto or Det assumption). The above equation along with (B.6.42) provide a heuristic motivation for the relationship between $\text{CRB}_{\text{Sto}}(\text{DOA})$ and $\text{CRB}_{\text{Det}}(\text{DOA})$ in (B.6.34). Note that the inequality in (B.6.34) is in general strict, but the relative difference between $\text{CRB}_{\text{Sto}}(\text{DOA})$ and $\text{CRB}_{\text{Det}}(\text{DOA})$ is usually fairly small (see, e.g., [Ottersten, Viberg, Stoica, and Nehorai 1993]).

A similar remark to the one in the previous paragraph can be made on the ML method for DOA estimation under the Det assumption, which we abbreviate as ML_{Det}. Note that ML_{Det} can be readily seen to coincide with the NLS method discussed in Section 6.4.1. Under the Sto assumption, ML_{Det} (i.e., the NLS method) can be viewed as just some method for DOA estimation. Hence, its (asymptotic) covariance matrix must be bounded below by the CRB corresponding to the Sto assumption:

$$\text{CML}_{\text{Det}}(\text{DOA}) \geq \text{CRB}_{\text{Sto}}(\text{DOA})$$ \hspace{1cm} (B.6.44)

Similarly to ML_{Sto}, the asymptotic covariance matrix of ML_{Det} can also be shown to be the same under either the Sto or Det assumption. Hence, we can infer from (B.6.34) and (B.6.44) that ML_{Det} may not attain $\text{CRB}_{\text{Det}}(\text{DOA})$ which is indeed the case (as is shown in, e.g., [Stoica and Nehorai 1989a]). To understand why this happens, note that the Det model contains $(2N+1)n+1$ real-valued parameters (see (B.6.4)) which must be estimated from $2mN$ data samples. Hence, for large N, the ratio between the number of unknown parameters and the available data samples approaches a constant (equal to n/m), which violates one of the aforementioned regularity conditions for the statistical efficiency of the ML method.

Remark: $\text{CRB}_{\text{Det}}(\text{DOA})$ depends on the signal sequence $\{s(t)\}_{t=1}^N$. However, neither $\text{CRB}_{\text{Det}}(\text{DOA})$ nor the asymptotic covariance matrices of $\text{ML}_{\text{Sto}}, \text{ML}_{\text{Det}},$ or in fact many other DOA estimation methods depend on this sequence. We will use the symbol C to denote the (asymptotic) covariance matrix of such a DOA estimation method for which C is independent of the signal sequence.

From $\text{CRB}_{\text{Det}}(\text{DOA})$ we can obtain a matrix, different from $\text{CRB}_{\text{Det}}(\text{DOA})$, which is independent of the signal sequence, in the following manner:

$$\text{ACRB}_{\text{Det}}(\text{DOA}) = \hat{E}\{\text{CRB}_{\text{Det}}(\text{DOA})\}$$ \hspace{1cm} (B.6.45)

where \hat{E} is an averaging operator, and ACRB_{Det} stands for Averaged CRB_{Det}. For example, $\hat{E}\{\cdot\}$ in (B.6.45) can be a simple arithmetic averaging of $\text{CRB}_{\text{Det}}(\text{DOA})$.
over a set of signal sequences. Using the fact that \(\mathbb{E}\{C\} = C \) (since \(C \) does not depend on the sequence \(\{s(t)\}_{t=1}^{N} \)), we can apply the operator \(\mathbb{E}\{\cdot\} \) to both sides of the following CRB inequality:

\[
C \geq \text{CRB}_{\text{Det}}(\text{DOA})
\]

(B.6.46)

to obtain

\[
C \geq \text{ACRB}_{\text{Det}}(\text{DOA})
\]

(B.6.47)

(Note that the inequality in (B.6.46) and hence that in (B.6.47) hold at least for sufficiently large values of \(N \)). It follows from (B.6.47) that \(\text{ACRB}_{\text{Det}}(\text{DOA}) \) can also be used as a lower bound on the DOA estimation error covariance. Furthermore, it can be shown that \(\text{ACRB}_{\text{Det}}(\text{DOA}) \) is tighter than \(\text{CRB}_{\text{Det}}(\text{DOA}) \):

\[
\text{ACRB}_{\text{Det}}(\text{DOA}) \geq \text{CRB}_{\text{Det}}(\text{DOA})
\]

(B.6.48)

To prove (B.6.48), we introduce the matrix:

\[
X = \frac{2N}{\sigma^2} \text{Re} \left[(D^*\Pi^D) \otimes \hat{P}^T\right]
\]

(B.6.49)

Using this notation along with the fact that \(\mathbb{E}\{\hat{P}\} = P \) (which holds under mild conditions), we can rewrite (B.6.48) as follows:

\[
\mathbb{E}\{X^{-1}\} \geq \left[\mathbb{E}\{X\}\right]^{-1}
\]

(B.6.50)

To prove (B.6.50), we note that the matrix

\[
\mathbb{E}\left\{\begin{bmatrix} X^{-1} & I \\ I & X \end{bmatrix}\right\} = \mathbb{E}\left\{\begin{bmatrix} X^{-1/2} \\ X^{1/2} \end{bmatrix} \begin{bmatrix} X^{-1/2} & X^{1/2} \end{bmatrix}\right\}
\]

(where \(X^{1/2} \) and \(X^{-1/2} \) denote the Hermitian square roots of \(X \) and \(X^{-1} \), respectively) is clearly positive semidefinite, and therefore so must be the following matrix:

\[
\begin{bmatrix}
I & -\left[\mathbb{E}\{X\}\right]^{-1} \\
0 & I
\end{bmatrix}
\begin{bmatrix}
\mathbb{E}\{X^{-1}\} \\
I
\end{bmatrix}
= \begin{bmatrix}
\mathbb{E}\{X^{-1}\} - \left[\mathbb{E}\{X\}\right]^{-1} \\
0
\end{bmatrix} \geq 0
\]

(B.6.51)

The matrix inequality in (B.6.50), which is somewhat similar to the scalar Jensen inequality (see, e.g., Complement 4.9.5) readily follows from (B.6.51).

The inequality (B.6.48) looks appealing. On the other hand, \(\text{ACRB}_{\text{Det}}(\text{DOA}) \) should be less tight than \(\text{CRB}_{\text{Sto}}(\text{DOA}) \), in view of the results in (B.6.42) and (B.6.47). Also, \(\text{CRB}_{\text{Sto}}(\text{DOA}) \) has a simpler analytical form. Hence, we may have little reason to use \(\text{ACRB}_{\text{Det}}(\text{DOA}) \) in lieu of \(\text{CRB}_{\text{Sto}}(\text{DOA}) \). Despite these drawbacks of \(\text{ACRB}_{\text{Det}}(\text{DOA}) \), we have included this discussion for the potential usefulness of the inequality in (B.6.50) and of the basic idea behind the introduction of \(\text{ACRB}_{\text{Det}}(\text{DOA}) \).
In the remainder of this section we rely on the previous results to compare the Det and Sto model assumptions, to discuss the consequences of making these assumptions, and to draw some conclusions.

First, consider the array output model in equation (B.6.1). To derive the ML estimates of the unknown parameters in (B.6.1) we must make some assumptions on the signal sequence \(\{s(t)\} \). The ML_Sto method for DOA estimation (derived under the Sto assumption) turns out to be more accurate than the ML_Det method (obtained under the Det assumption), under quite general conditions on \(\{s(t)\} \). However, the ML_Sto method is somewhat more complicated computationally than the ML_Det method; see, e.g., [Ottersten, Viberg, Stoica, and Nehorai 1993].

The previous discussion implies that the question as to which assumption should be used (because “it is more likely to be true”) is in fact irrelevant in this case. Indeed, we should see the two assumptions only as instruments for deriving the two corresponding ML methods. Once we have completed the derivations, the assumption issue is no longer important and we can simply choose the ML method that we prefer, regardless of the nature of \(\{s(t)\} \). The choice should be based on the facts that (a) ML_Det is computationally simpler than ML_Sto, and (b) ML_Sto is statistically more accurate than ML_Det under quite general conditions on \(\{s(t)\} \).

Second, regarding the two CRB matrices that correspond to the Det and Sto assumptions, respectively, we can argue as follows. Under the Sto assumption, CRB_Sto(DOA) is the Cramér–Rao bound and hence the lower bound to use. Under the Det assumption, while CRB_Sto(DOA) is no longer the true CRB, it is still a tight lower bound on the asymptotic covariance matrix of any known DOA estimation method. CRB_Det(DOA) is also a lower bound, but it is not tight. Hence CRB_Sto(DOA) should be the normal choice for a lower bound, regardless of the assumption (Det or Sto) that the signal sequence is likely to satisfy. Note that, under the Det assumption, ML_Sto can be seen as some DOA estimation method. Therefore, in principle, a better DOA estimation method than ML_Sto may exist (where by “better” we mean that the covariance matrix of such an estimation method would be smaller than CRB_Sto(DOA)). However, no such DOA estimation method appears to be available, in spite of a significant literature on the so-called problem of “estimation in the presence of many nuisance parameters,” of which the DOA estimation problem under the Det assumption is a special case.
A P P E N D I X C

Model Order Selection Tools

C.1 INTRODUCTION

The parametric methods of spectral analysis (discussed in Chapters 3, 4, and 6) require not only the estimation of a vector of real-valued parameters but also the selection of one or several integer-valued parameters that are equally important for the specification of the data model. Specifically, these integer-valued parameters of the model are the ARMA model orders in Chapter 3, the number of sinusoidal components in Chapter 4, and the number of source signals impinging on the array in Chapter 6. In each of these cases, the integer-valued parameters determine the dimension of the real-valued parameter vector of the data model. In what follows we will use the following symbols:

\[y = \text{the vector of available data (of size } N) \]
\[\theta = \text{the (real-valued) parameter vector} \]
\[n = \text{the dimension of } \theta \]

For short, we will refer to \(n \) as the model order, even though sometimes \(n \) is not really an order (see, e.g., the above examples). We assume that both \(y \) and \(\theta \) are real-valued:

\[y \in \mathbb{R}^N, \quad \theta \in \mathbb{R}^n \]

Whenever we need to emphasize that the number of elements in \(\theta \) is \(n \), we will use the notation \(\theta^n \). A method that estimates \(n \) from the data vector \(y \) will be called an order selection rule. Note that the need for estimating a model order is typical of the parametric approaches to spectral analysis. The nonparametric methods of spectral analysis do not have such a requirement.

The discussion in the text on the parametric spectral methods has focused on estimating the model parameter vector \(\theta \) for a specific order \(n \). In this general appendix\(^1\) we explain how to estimate \(n \) as well. The literature on order selection is as considerable as that on (real-valued) parameter estimation (see, e.g., [Choi 1992; Söderström and Stoica 1989; McQuarrie and Tsai 1998; Linhart and Zucchini 1986; Burnham and Anderson 2002; Sakamoto, Ishiguro, and Kitagawa 1986; Stoica, Eykhoff, Jannsen, and Söderström 1986] and the many references therein). However, many order selection rules are tied to specific parameter estimation methods and hence their applicability is rather limited. Here we will concentrate on order selection rules that are associated with the maximum likelihood method (MLM) of parameter estimation. As explained

briefly in Appendix B (see also below), the MLM is likely the most commonly used
parameter estimation method. Consequently, the order estimation rules that can
be used with the MLM are of quite a general interest. In the next section we review
briefly the ML method of parameter estimation and some of its main properties.

C.2 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

Let
\[p(y, \theta) = \text{the probability density function (pdf) of the data vec-
\text{tor } y, \text{ which depends on the parameter vector } \theta; \text{ also called the like-
lihood function.} \]

The ML estimate of \(\theta \), which we denote by \(\hat{\theta} \), is given by the maximizer of
\(p(y, \theta) \) (see, e.g., [Anderson 1971; Brockwell and Davis 1991; Hannan and Deistler 1988; Papoulis 1977; Porat 1994; Priestley 1981; Scharf 1991; Therrien 1992; Söderström and Stoica 1989] and also Appendix B). Alternatively, as \(\ln(\cdot) \) is a monotonically increasing function,

\[
\hat{\theta} = \arg \max_{\theta} \ln p(y, \theta) \tag{C.2.1}
\]

Under the Gaussian data assumption, the MLM typically reduces to the nonlinear
least-squares (NLS) method of parameter estimation (particular forms of which are
discussed briefly in Chapter 3 and in more detail in Chapters 4 and 6). To illustrate
this fact, let us assume that the observation vector \(y \) can be written as:

\[
y = \mu(\gamma) + e \tag{C.2.2}
\]

where \(e \) is a (real-valued) Gaussian white noise vector with mean zero and covariance
matrix given by \(E\{ee^T\} = \sigma^2 I \), \(\gamma \) is an unknown parameter vector, and \(\mu(\gamma) \) is a
deterministic function of \(\gamma \). It follows readily from (C.2.2) that

\[
p(y, \theta) = \frac{1}{(2\pi)^{N/2}(\sigma^2)^{N/2}} e^{-\frac{\|y - \mu(\gamma)\|^2}{2\sigma^2}} \tag{C.2.3}
\]

where

\[
\theta = \begin{bmatrix} \gamma \\ \sigma^2 \end{bmatrix} \tag{C.2.4}
\]

Remark: Note that in this appendix we use the symbol \(\theta \) for the whole parameter
vector, unlike in some previous discussions where we used \(\theta \) to denote the signal
parameter vector (which is denoted by \(\gamma \) here).

We deduce from (C.2.3) that

\[
-2 \ln p(y, \theta) = N \ln(2\pi) + N \ln \sigma^2 + \frac{\|y - \mu(\gamma)\|^2}{\sigma^2} \tag{C.2.5}
\]
A simple calculation based on (C.2.5) shows that the ML estimates of γ and σ^2 are given by:

$$\hat{\gamma} = \arg\min_{\gamma} \| y - \mu(\gamma) \|^2$$ \hspace{1cm} (C.2.6)

$$\hat{\sigma}^2 = \frac{1}{N} \| y - \mu(\hat{\gamma}) \|^2$$ \hspace{1cm} (C.2.7)

The corresponding value of the likelihood function is given by

$$-2 \ln p(y, \hat{\theta}) = \text{constant} + N \ln \hat{\sigma}^2$$ \hspace{1cm} (C.2.8)

As can be seen from (C.2.6), in the present case the MLM indeed reduces to the NLS. In particular, note that the NLS method for sinusoidal parameter estimation discussed in Chapter 4 is precisely of the form of (C.2.6). If we let N_s denote the number of observed complex-valued samples of the noisy sinusoidal signal, and n_c denote the number of sinusoidal components present in the signal, then:

$$N = 2N_s$$ \hspace{1cm} (C.2.9)

$$n = 3n_c + 1$$ \hspace{1cm} (C.2.10)

We will use the sinusoidal signal model of Chapter 4 as a vehicle for illustrating how the various general order selection rules presented in what follows should be used in a specific situation. These rules can also be used with the parametric spectral analysis methods of Chapters 3 and 6. The task of deriving explicit forms of these order selection rules for the aforementioned methods is left as an interesting exercise to the reader (see, e.g., [McQuarrie and Tsai 1998; Brockwell and Davis 1991; Porat 1994]).

Next, we note that under regularity conditions the pdf of the ML estimate $\hat{\theta}$ converges, as $N \to \infty$, to a Gaussian pdf with mean θ and covariance matrix equal to the Cramér–Rao Bound (CRB) matrix (see Section B.2 for a discussion about the CRB). Consequently, asymptotically in N, the pdf of $\hat{\theta}$ is given by:

$$p(\hat{\theta}) = \frac{1}{(2\pi)^{n/2}|J|^{1/2}}e^{-\frac{1}{2}(\hat{\theta}-\theta)^\top J(\hat{\theta}-\theta)}$$ \hspace{1cm} (C.2.11)

where (see (B.2.10))

$$J = -E \left\{ \frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial \theta^\top} \right\}$$ \hspace{1cm} (C.2.12)

Remark: To simplify the notation, we use the symbol θ for both the true parameter vector and the parameter vector viewed as an unknown variable (as we also did in Appendix B). The exact meaning of θ should be clear from the context.

The “regularity conditions” referred to above require that n is not a function of N, and hence that the ratio between the number of unknown parameters and the number of observations tends to zero as $N \to \infty$. This is true for the parametric
Appendix C Model Order Selection Tools

spectral analysis problems discussed in Chapters 3 and 4. However, the previous condition does not hold for the parametric spectral analysis problem addressed in Chapter 6. Indeed, in the latter case the number of parameters to be estimated from the data is proportional to N, owing to the assumption that the signal sequence is completely unknown. To overcome this difficulty we can assume that the signal vector is temporally white and Gaussian distributed, which leads to a ML problem that satisfies the previously stated regularity condition (we refer the interested reader to [Ottersten, Viberg, Stoica, and Nehorai 1993; Stoica and Nehorai 1990; Van Trees 2002] for details on this ML approach to the spatial spectral analysis problem of Chapter 6).

To close this section, we note that under mild conditions:

$$\left[-\frac{1}{N} \frac{\partial^2 \ln p(y, \theta)}{\partial \theta \, \partial \theta^T} - \frac{1}{N} J\right] \rightarrow 0 \quad \text{as } N \rightarrow \infty \quad \text{(C.2.13)}$$

To motivate (C.2.13) for the fairly general data model in (C.2.2) we can argue as follows. Let us rewrite the negative log-likelihood function associated with (C.2.2) as (see (C.2.5)):

$$-\ln p(y, \theta) = \text{constant} + \frac{N}{2} \ln(\sigma^2) + \frac{1}{2\sigma^2} \sum_{t=1}^{N} [y_t - \mu_t(\gamma)]^2 \quad \text{(C.2.14)}$$

where the subindex t denotes the t-th component. From (C.2.14) we obtain by a simple calculation:

$$-\frac{\partial \ln p(y, \theta)}{\partial \theta} = \begin{bmatrix}
-\frac{1}{\sigma^2} \sum_{t=1}^{N} [y_t - \mu_t(\gamma)] \mu_t'(\gamma) \\
\frac{N}{2\sigma^2} - \frac{1}{2\sigma^2} \sum_{t=1}^{N} [y_t - \mu_t(\gamma)]^2
\end{bmatrix} \quad \text{(C.2.15)}$$

where

$$\mu_t'(\gamma) = \frac{\partial \mu_t(\gamma)}{\partial \gamma} \quad \text{(C.2.16)}$$

Differentiating (C.2.15) once again gives:

$$-\frac{\partial^2 \ln p(y, \theta)}{\partial \theta \, \partial \theta^T} = \begin{bmatrix}
-\frac{1}{\sigma^2} \sum_{t=1}^{N} e_t \mu_t''(\gamma) + \frac{1}{\sigma^2} \sum_{t=1}^{N} \mu_t'(\gamma) \mu_t'^T(\gamma) & \frac{1}{\sigma^2} \sum_{t=1}^{N} e_t \mu_t'(\gamma) \\
\frac{1}{\sigma^2} \sum_{t=1}^{N} e_t \mu_t'(\gamma) & -\frac{N}{2\sigma^4} + \frac{1}{\sigma^2} \sum_{t=1}^{N} e_t^2
\end{bmatrix} \quad \text{(C.2.17)}$$

where $e_t = y_t - \mu_t(\gamma)$ and

$$\mu_t''(\gamma) = \frac{\partial^2 \mu_t(\gamma)}{\partial \gamma \, \partial \gamma^T} \quad \text{(C.2.18)}$$
Taking the expectation of (C.2.17) and dividing by N, we get:

$$
\frac{1}{N}J = \begin{bmatrix}
\frac{1}{\sigma^2} \left(\frac{1}{N} \sum_{t=1}^{N} \mu_t^T(\gamma) \mu_t^T(\gamma) \right) & 0 \\
0 & \frac{1}{2\sigma^4}
\end{bmatrix}
$$

We assume that $\mu(\gamma)$ is such that the above matrix has a finite limit as $N \to \infty$. Under this assumption, and the previously-made assumption on e, we can also show from (C.2.17) that

$$
-\frac{1}{N} \frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial \theta^T}
$$

converges (as $N \to \infty$) to the right side of (C.2.19), which concludes the motivation of (C.2.13). Letting

$$
\hat{J} = -\frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial \theta^T} \bigg|_{\theta = \hat{\theta}}
$$

we deduce from (C.2.13), (C.2.19), and the consistency of $\hat{\theta}$ that, for sufficiently large values of N,

$$
\frac{1}{N} \hat{J} \simeq \frac{1}{N} J = \mathcal{O}(1)
$$

Hereafter, \simeq denotes an asymptotic (approximate) equality, in which the higher-order terms have been neglected, and $\mathcal{O}(1)$ denotes a term that tends to a constant as $N \to \infty$.

Interestingly enough, the assumption that the right side of (C.2.19) has a finite limit, as $N \to \infty$, holds for many problems, but not for the sinusoidal parameter estimation problem of Chapter 4. In the latter case, (C.2.21) needs to be modified as follows (see, e.g., Appendix B):

$$
K_N \hat{J} K_N \simeq K_N J K_N = \mathcal{O}(1)
$$

where

$$
K_N = \begin{bmatrix}
\frac{1}{N_n} I_{n_n} & 0 \\
0 & \frac{1}{N_{n+1}} I_{2n_{n+1}}
\end{bmatrix}
$$

and where I_k denotes the $k \times k$ identity matrix; to write (C.2.23), we assumed that the upper-left $n_c \times n_c$ block of J corresponds to the sinusoidal frequencies, but this fact is not really important for the analysis in this appendix, as we will see below.

C.3 USEFUL MATHEMATICAL PRELIMINARIES AND OUTLOOK

In this section we discuss a number of mathematical tools that will be used in the next sections to derive several important order selection rules. We will keep the discussion at an informal level to make the material as accessible as possible. In Section C.3.1 we will formulate the model order selection as a hypothesis testing problem, with the main goal of showing that the maximum a posteriori (MAP) approach leads to the optimal order selection rule (in a sense specified there). In Section C.3.2 we discuss the Kullback-Leibler information criterion, which lies at the basis of another approach that can be used to derive model order selection rules.
Appendix C Model Order Selection Tools

C.3.1 Maximum A Posteriori (MAP) Selection Rule

Let \(H_n \) denote the hypothesis that the model order is \(n \), and let \(\bar{n} \) denote a known upper bound on \(n \):

\[
n \in [1, \bar{n}]
\]

We assume that the hypotheses \(\{H_n\}_{n=1}^{\bar{n}} \) are mutually exclusive (i.e., only one of them can hold true at a time). As an example, for a real-valued AR signal with coefficients \(\{a_k\} \) we can define \(H_n \) as follows:

\[
H_n : a_n \neq 0 \text{ and } a_{n+1} = \cdots = a_{\bar{n}} = 0
\]

For a sinusoidal signal we can proceed similarly, after observing that for such a signal the number of components \(n_c \) is related to \(n \) as in (C.2.10), viz.

\[
n = 3n_c + 1
\]

Hence, for a sinusoidal signal with amplitudes \(\{\alpha_k\} \) we can consider the following hypotheses:

\[
H_{n_c} : \alpha_k \neq 0 \text{ for } k = 1, \ldots, n_c, \text{ and } \alpha_k = 0 \text{ for } k = n_c + 1, \ldots, \bar{n}_c
\]

for \(n_c \in [1, \bar{n}_c] \) (with the corresponding “model order” \(n \) being given by (C.3.3)).

Remark: The hypotheses \(\{H_n\} \) can be either nested or non-nested. We say that \(H_1 \) and \(H_2 \) are nested whenever the model corresponding to \(H_1 \) can be obtained as a special case of that associated with \(H_2 \). To give an example, the following hypotheses

\[
H_1 : \text{the signal is a first-order AR process} \\
H_2 : \text{the signal is a second-order AR process}
\]

are nested, whereas the above \(H_1 \) and

\[
H_3 : \text{the signal consists of one sinusoid in noise}
\]

are non-nested.

Let

\[
p_n(y|H_n) = \text{the pdf of } y \text{ under } H_n
\]

Whenever we want to emphasize the possible dependence of the pdf in (C.3.5) on the parameter vector of the model corresponding to \(H_n \), we write:

\[
p_n(y, \theta^n) \triangleq p_n(y|H_n)
\]

Assuming that (C.3.5) is available, along with the \(\text{a priori} \) probability of \(H_n \), \(p_n(H_n) \), we can write the conditional probability of \(H_n \), given \(y \), as:

\[
p_n(H_n|y) = \frac{p_n(y|H_n)p_n(H_n)}{p(y)}
\]
The maximum *a posteriori* probability (MAP) rule selects the order \(n \) (or the hypothesis \(H_n \)) that maximizes (C.3.7). As the denominator in (C.3.7) does not depend on \(n \), the MAP rule is given by:

\[
\max_{n \in [1, \tilde{n}]} p_n(y|H_n)p_n(H_n) \tag{C.3.8}
\]

Most typically, the hypotheses \(\{H_n\} \) are *a priori* equiprobable, i.e.,

\[
p_n(H_n) = \frac{1}{\tilde{n}}, \quad n = 1, \ldots, \tilde{n} \tag{C.3.9}
\]

in which case the MAP rule reduces to:

\[
\max_{n \in [1, \tilde{n}]} p_n(y|H_n) \tag{C.3.10}
\]

Next, we define the average (or total) probability of correct detection as

\[
P_{cd} = \Pr\{[(\text{decide } H_1) \cap (H_1 = \text{true})] \cup \cdots \cup [(\text{decide } H_n) \cap (H_n = \text{true})]\} \tag{C.3.11}
\]

The attribute “average” that has been attached to \(P_{cd} \) is motivated by the fact that (C.3.11) gives the probability of correct detection “averaged” over all possible hypotheses (as opposed, for example, to only considering the probability of correctly detecting that the model order is 2 (let us say), which is \(\Pr\{\text{decide } H_2|H_2\} \)).

Remark: Regarding the terminology, note that the determination of a real-valued parameter from the available data is called “estimation,” whereas it is usually called “detection” for an integer-valued parameter, such as a model order.

In the following we prove that the MAP rule is optimal in the sense of maximizing \(P_{cd} \). To do so, consider a generic rule for selecting \(n \), or, equivalently, for testing the hypotheses \(\{H_n\} \) against each other. Such a rule will implicitly or explicitly partition the observation space, \(\mathbb{R}^N \), into \(\tilde{n} \) sets \(\{S_n\}_{n=1}^{\tilde{n}} \), which are such that:

\[
\text{We decide } H_n \text{ if and only if } y \in S_n \tag{C.3.12}
\]

Making use of (C.3.12) along with the fact that the hypotheses \(\{H_n\} \) are mutually exclusive, we can write \(P_{cd} \) in (C.3.11) as:

\[
P_{cd} = \sum_{n=1}^{\tilde{n}} \Pr\{[(\text{decide } H_n) \cap (H_n = \text{true})]\}
= \sum_{n=1}^{\tilde{n}} \Pr\{\text{decide } H_n|H_n\} \Pr\{H_n\}
= \sum_{n=1}^{\tilde{n}} \int_{S_n} p_n(y|H_n)p_n(H_n) \, dy
= \int_{\mathbb{R}^N} \left[\sum_{n=1}^{\tilde{n}} I_n(y)p_n(y|H_n)p_n(H_n) \right] \, dy \tag{C.3.13}
\]
where $I_n(y)$ is the so-called indicator function given by:

$$I_n(y) = \begin{cases}
1, & \text{if } y \in S_n \\
0, & \text{otherwise}
\end{cases} \quad (C.3.14)$$

Next, observe that for any given data vector, y, one and only one indicator function can be equal to one (as the sets S_n do not overlap and their union is \mathbb{R}^N). This observation along with the expression (C.3.13) for P_{cd} imply that the MAP rule in (C.3.8) maximizes P_{cd}, as stated. Note that the sets $\{S_n\}$ corresponding to the MAP rule are implicitly defined via (C.3.8); however, $\{S_n\}$ are of no real interest in the proof, as both they and the indicator functions are introduced only to simplify the above proof. For more details on the topic of this subsection, we refer the reader to [Scharf 1991; Van Trees 2002].

C.3.2 Kullback-Leibler Information

Let $p_0(y)$ denote the true pdf of the observed data vector y, and let $\hat{p}(y)$ denote the pdf of a generic model of the data. The “discrepancy” between $p_0(y)$ and $\hat{p}(y)$ can be measured using the Kullback-Leibler (KL) information or discrepancy function (see [Kullback and Leibler 1951]):

$$D(p_0, \hat{p}) = \int p_0(y) \ln \frac{p_0(y)}{\hat{p}(y)} \, dy \quad (C.3.15)$$

To simplify the notation, we omit the region of integration when it is the entire space. Letting $E_0\{\cdot\}$ denote the expectation with respect to the true pdf, $p_0(y)$, we can rewrite (C.3.15) as:

$$D(p_0, \hat{p}) = E_0\{\ln \frac{p_0(y)}{\hat{p}(y)}\} = E_0\{\ln p_0(y)\} - E_0\{\ln \hat{p}(y)\} \quad (C.3.16)$$

Next, we prove that (C.3.15) possesses some properties of a suitable discrepancy function, viz.

$$D(p_0, \hat{p}) \geq 0$$
$$D(p_0, \hat{p}) = 0 \text{ if and only if } p_0(y) = \hat{p}(y) \quad (C.3.17)$$

To verify (C.3.17) we use the fact shown in Complement 6.5.8 that

$$-\ln \lambda \geq 1 - \lambda \quad \text{for any } \lambda > 0 \quad (C.3.18)$$

and

$$-\ln \lambda = 1 - \lambda \quad \text{if and only if } \lambda = 1 \quad (C.3.19)$$

Hence, letting $\lambda(y) = \hat{p}(y)/p_0(y)$, we have that:

$$D(p_0, \hat{p}) = \int p_0(y) [-\ln \lambda(y)] \, dy \geq \int p_0(y) [1 - \lambda(y)] \, dy = \int p_0(y) \left[1 - \frac{\hat{p}(y)}{p_0(y)}\right] \, dy = 0$$
where the equality holds if and only if \(\lambda(y) = 1 \), i.e. \(\hat{p}(y) = p_0(y) \).

Remark: The inequality in (C.3.17) also follows from Jensen’s inequality (see equation (4.9.36) in Complement 4.9.5) and the concavity of the function \(\ln(\cdot) \):

\[
D(p_0, \hat{p}) = -E_0 \left\{ \ln \left(\frac{\hat{p}(y)}{p_0(y)} \right) \right\} \\
\geq - \ln \left[E_0 \left\{ \frac{\hat{p}(y)}{p_0(y)} \right\} \right] \\
= - \ln \left[\int \frac{\hat{p}(y)}{p_0(y)} p_0(y) \, dy \right] = - \ln(1) = 0
\]

The KL discrepancy function can be viewed as quantifying the “loss of information” induced by the use of \(\hat{p}(y) \) in lieu of \(p_0(y) \). For this reason, \(D(p_0, \hat{p}) \) is sometimes called an information function, and the order selection rules derived from it are called information criteria (see Sections C.4–C.6).

C.3.3 Outlook: Theoretical and Practical Perspectives

Neither the MAP rule nor the KL information can be directly used for order selection because neither the pdfs of the data vector under the various hypotheses nor the true data pdf are available in any of the parametric spectral analysis problems discussed in the text. A possible way of using the MAP approach for order estimation consists of assuming an a priori pdf for the unknown parameter vector, \(\theta^n \), and integrating \(\theta^n \) out of \(p_n(y; \theta^n) \) to obtain \(p_n(y|H_n) \). This Bayesian-type approach will be discussed in Section C.7. Regarding the KL approach, a natural way of using it for order selection consists of using an estimate, \(\hat{D}(p_0, \hat{p}) \), in lieu of the unavailable \(D(p_0, \hat{p}) \) (for a suitably chosen model pdf, \(\hat{p}(y) \)), and determining the model order by minimizing \(\hat{D}(p_0, \hat{p}) \). This KL-based approach will be discussed in Sections C.4–C.6.

The derivations of all model order selection rules in the sections that follow rely on the assumption that one of the hypotheses \(\{H_n\} \) is true. As this assumption is unlikely to hold in applications with real-life data, the reader may justifiably wonder whether an order selection rule derived under such an assumption has any practical value. To address this concern, we remark that good parameter estimation methods (such as the MLM), derived under rather strict modeling assumptions, perform quite well in applications where the assumptions made are rarely satisfied exactly. Similarly, order selection rules based on sound theoretical principles (such as the ML, KL, and MAP principles used in this text) are likely to perform well in applications despite the fact that some of the assumptions made when deriving them do not hold exactly. While the precise behavior of order selection rules (such as those presented in the sections to follow) in various mismodeling scenarios is not well understood, extensive simulation results (see, e.g., [McQuarrie and Tsai 1998; Linhart and Zucchini 1986; Burnham and Anderson 2002]) lend support to the above claim.
Appendix C Model Order Selection Tools

C.4 DIRECT KULLBACK-LEIBLER (KL) APPROACH: NO-NAME RULE

The model-dependent part of the Kullback-Leibler (KL) information, (C.3.16), is given by

\[-E_0\{\ln \hat{p}(y)\}\] \hspace{1cm} (C.4.1)

where \(\hat{p}(y)\) is the pdf or likelihood of the model (to simplify the notation, we omit the index \(n\) of \(\hat{p}(y)\); we will reinstate the index \(n\) later on, when needed). Minimization of (C.4.1) with respect to the model order is equivalent to maximization of the function:

\[I(p_0, \hat{p}) \equiv E_0\{\ln \hat{p}(y)\}\] \hspace{1cm} (C.4.2)

which is sometimes called the relative KL information. The ideal choice for \(\hat{p}(y)\) in (C.4.2) would be the model likelihood, \(p_n(y|H_n) = p_n(y, \theta^n)\). However, the model likelihood function is not available, and hence this choice is not possible. Instead, we might think of using

\(\hat{p}(y) = p(y, \hat{\theta})\) \hspace{1cm} (C.4.3)

in (C.4.2), which would give

\[I(p_0, p(y, \hat{\theta})) = E_0\{\ln p(y, \hat{\theta})\}\] \hspace{1cm} (C.4.4)

Because the true pdf of the data vector is unknown, we cannot evaluate the expectation in (C.4.4). Apparently, what we could easily do is to use the following unbiased estimate of \(I(p_0, p(y, \hat{\theta}))\), instead of (C.4.4) itself,

\[\hat{I} = \ln p(y, \hat{\theta})\] \hspace{1cm} (C.4.5)

However, the order selection rule that maximizes (C.4.5) does not have satisfactory properties. This is especially true for nested models, in the case of which the order selection rule based on the maximization of (C.4.5) fails completely: indeed, for nested models this rule will always choose the maximum possible order, \(\hat{n}\), owing to the fact that \(\ln p_n(y, \theta^n)\) monotonically increases with increasing \(n\).

A better idea consists of approximating the unavailable log-pdf of the model, \(\ln p_n(y, \theta^n)\), by a second-order Taylor series expansion around \(\hat{\theta}^n\), and using the so-obtained approximation to define \(\ln \hat{p}(y)\) in (C.4.2):

\[
\ln p_n(y, \theta^n) \simeq \ln p_n(y, \hat{\theta}^n) + (\theta^n - \hat{\theta}^n)^T \left[\frac{\partial \ln p_n(y, \theta^n)}{\partial \theta^n} \right]_{\theta^n = \hat{\theta}^n} + \frac{1}{2} (\theta^n - \hat{\theta}^n)^T \left[\frac{\partial^2 \ln p_n(y, \theta^n)}{\partial \theta^n \partial \theta^n} \right]_{\theta^n = \hat{\theta}^n} (\theta^n - \hat{\theta}^n) \hspace{1cm} (C.4.6)
\]

Because \(\hat{\theta}^n\) is the maximizer of \(\ln p_n(y, \theta^n)\), the second term in (C.4.6) is equal to zero. Hence, we can write (see also (C.2.21)):

\[
\ln \hat{p}_n(y) \simeq \ln p_n(y, \hat{\theta}^n) - \frac{1}{2} (\theta^n - \hat{\theta}^n)^T J (\theta^n - \hat{\theta}^n) \hspace{1cm} (C.4.7)
\]

According to (C.2.11),

\[E_0\{(\theta^n - \hat{\theta}^n)^T J (\theta^n - \hat{\theta}^n)\} = \text{tr} \left[J E_0\{(\theta^n - \hat{\theta}^n)(\theta^n - \hat{\theta}^n)^T\} \right] = \text{tr}[I_n] = n \hspace{1cm} (C.4.8)\]
which means that, for the choice of \(\hat{p}_n(y) \) in (C.4.7), we have

\[
I = E_0 \left\{ \ln p_n(y, \hat{\theta}^n) - \frac{n}{2} \right\}
\]

(A.4.9)

An unbiased estimate of the above relative KL information is given by

\[
\ln p_n(y, \hat{\theta}^n) - \frac{n}{2}
\]

(A.4.10)

The corresponding order selection rule maximizes (A.4.10), or, equivalently, minimizes

\[
\text{NN}(n) = -2 \ln p_n(y, \hat{\theta}^n) + n
\]

(A.4.11)

with respect to model order \(n \). This no-name (NN) rule can be shown to perform better than that based on (A.4.5), but worse than the rules presented in the next sections. Essentially, the problem with (A.4.11) is that it tends to overfit \(\text{i.e.,} \) to select model orders larger than the “true” order. To understand intuitively how this happens, note that the first term in (A.4.11) decreases with increasing \(n \) (for nested models), whereas the second term increases. Hence, the second term in (A.4.11) penalizes overfitting; however, it turns out that it does not penalize quite enough. The rules presented in the following sections have a form similar to (A.4.11), but with a larger penalty term, and they do have better properties than (A.4.11). Despite this fact, we have chosen to present (A.4.11) briefly in this section for two reasons: \(\text{ii) \ the \ discussion \ here \ has \ revealed \ the \ failure \ of \ using} \)

\[
\max_n \ln p_n(y, \hat{\theta}^n)
\]

as an order selection rule, \(\text{and \ has \ shown \ that \ it \ is \ in \ effect \ quite \ easy \ to \ obtain \ rules \ with \ better \ properties;} \)

and (ii) this section has laid groundwork for the derivation of better order selection rules based on the KL approach in the next two sections.

To close this section, we motivate the multiplication by \(-2\) in going from (A.4.10) to (A.4.11). The reason for preferring (A.4.11) to (A.4.10) is that for the fairly common NLS model in (C.2.2) and the associated Gaussian likelihood in (C.2.3), \(-2 \ln p_n(y, \hat{\theta}^n)\) takes on the following convenient form:

\[
-2 \ln p_n(y, \hat{\theta}^n) = N \ln \hat{\sigma}_n^2 + \text{constant}
\]

(C.4.12)

(see (C.2.5)–(C.2.7)). Hence, in such a case we can replace \(-2 \ln p_n(y, \hat{\theta}^n)\) in (A.4.11) by the scaled logarithm of the residual variance, \(N \ln \hat{\sigma}_n^2 \). This remark also applies to the order selection rules presented in the following sections, which are written in a form similar to (A.4.11).

C.5 CROSS-VALIDATORY KL APPROACH: THE AIC RULE

As explained in the previous section, a possible approach to model order selection consists of minimizing the KL discrepancy between the “true” pdf of the data and the pdf (or likelihood) of the model, or equivalently maximizing the relative KL information (see (A.4.2)):

\[
I(p_0, \hat{p}) = E_0 \{ \ln \hat{p}(y) \}
\]

(C.5.1)

When using this approach, the first (and, likely the main) hurdle that we have to overcome is the choice of the model likelihood, \(\hat{p}(y) \). As discussed in the previous
section, we would ideally like to use the true pdf of the model as \(\hat{p}(y) \) in (C.5.1), i.e. \(\hat{p}(y) = p_n(y, \theta^*) \), but this is not possible since \(p_n(y, \theta^*) \) is unknown. Hence, we have to choose \(\hat{p}(y) \) in a different way. This choice is important, as it eventually determines the model order selection rule that we will obtain. The other issue we should consider when using the approach based on (C.5.1) is that the expectation in (C.5.1) cannot be evaluated because the true pdf of the data is unknown. Consequently, we will have to use an estimate, \(\hat{I} \), in lieu of the unavailable \(I(p_0, \hat{p}) \) in (C.5.1).

Let \(\bar{x} \) denote a fictitious data vector with the same size, \(N \), and the same pdf as \(y \), but which is independent of \(y \). Also, let \(\hat{\theta}_x \) denote the ML estimate of the model parameter vector that would be obtained from \(x \) if \(x \) were available (we omit the superindex \(n \) of \(\hat{\theta}_x \) as often as possible, to simplify notation). In this section we will consider the following choice of the model’s pdf:

\[
\ln \hat{p}(y) = E_x \left\{ \ln p(y, \hat{\theta}_x) \right\} \tag{C.5.2}
\]

which, when inserted in (C.5.1), yields:

\[
I = E_y \left\{ E_x \left\{ \ln p(y, \hat{\theta}_x) \right\} \right\} \tag{C.5.3}
\]

Hereafter, \(E_x \{ \cdot \} \) and \(E_y \{ \cdot \} \) denote the expectation with respect to the pdf of \(x \) and \(y \), respectively. The above choice of \(\hat{p}(y) \), which was introduced in [Aka\-ike 1974; Aka\-ike 1978], has an interesting cross-validation interpretation: we use the sample \(x \) for estimation and the independent sample \(y \) for validation of the so-obtained model’s pdf. Note that the dependence of (C.5.3) on the fictitious sample \(x \) is eliminated (as it should be, since \(x \) is unavailable) via the expectation operation \(E_x \{ \cdot \} \); see below for details.

An asymptotic second-order Taylor series expansion of \(\ln p(y, \hat{\theta}_x) \) around \(\hat{\theta}_y \), similar to (C.4.6)–(C.4.7), yields:

\[
\ln p(y, \hat{\theta}_x) \simeq \ln p(y, \hat{\theta}_y) + (\hat{\theta}_x - \hat{\theta}_y)^T \left[\frac{\partial \ln p(y, \theta)}{\partial \theta} \right]_{\theta = \hat{\theta}_y} \\
+ \frac{1}{2} (\hat{\theta}_x - \hat{\theta}_y)^T \left[\frac{\partial^2 \ln p(y, \theta)}{\partial \theta \partial \theta^T} \right]_{\theta = \hat{\theta}_y} (\hat{\theta}_x - \hat{\theta}_y) \\
\simeq \ln p(y, \hat{\theta}_y) - \frac{1}{2} (\hat{\theta}_x - \hat{\theta}_y)^T J_y (\hat{\theta}_x - \hat{\theta}_y) \tag{C.5.4}
\]

where \(J_y \) is the \(J \) matrix, as defined in (C.2.20), associated with the data vector \(y \). Using the fact that \(x \) and \(y \) have the same pdf (which implies that \(J_y = J_x \) along with the fact that they are independent of each other, we can show that:

\[
E_y \left\{ E_x \left\{ (\hat{\theta}_x - \hat{\theta}_y)^T J_y (\hat{\theta}_x - \hat{\theta}_y) \right\} \right\} \\
= E_y \left\{ E_x \left\{ \text{tr} \left(J_y \left[(\hat{\theta}_x - \theta) - (\hat{\theta}_y - \theta) \right] \left[(\hat{\theta}_x - \theta) - (\hat{\theta}_y - \theta) \right]^T \right) \right\} \right\} \\
= \text{tr} \left[J_y \left(J_x^{-1} + J_y^{-1} \right) \right] = 2n \tag{C.5.5}
\]
Section C.5 Cross-Validatory KL Approach: The AIC Rule

Inserting (C.5.5) in (C.5.4) yields the following asymptotic approximation of the relative KL information in (C.5.3):

\[I \simeq E_y \left\{ \ln p_n(y, \hat{\theta}^n) - n \right\} \quad (C.5.6) \]

(where we have omitted the subindex \(y \) of \(\hat{\theta} \) but reinstated the superindex \(n \)). Evidently, (C.5.6) can be estimated in an unbiased manner by

\[\ln p_n(y, \hat{\theta}^n) - n \quad (C.5.7) \]

Maximizing (C.5.7) with respect to \(n \) is equivalent to minimizing the following function of \(n \):

\[\text{AIC} = -2 \ln p_n(y, \hat{\theta}^n) + 2n \quad (C.5.8) \]

where the acronym AIC stands for Akaike Information Criterion (the reasons for multiplying (C.5.7) by -2 to get (C.5.8), and for the use of the word “information” in the name given to (C.5.8) have been explained before, see the previous two sections).

As an example, for the sinusoidal signal model with \(n_c \) components (see Section C.2), AIC takes on the following form (see (C.2.6)–(C.2.10)):

\[\text{AIC} = 2N_s \ln \hat{\sigma}_{n_c}^2 + 2(3n_c + 1) \quad (C.5.9) \]

where \(N_s \) denotes the number of available complex-valued samples, \(\{y_c(t)\}_{t=1}^{N_s} \), and

\[\hat{\sigma}_{n_c}^2 = \frac{1}{N_s} \sum_{t=1}^{N_s} \left| y_c(t) - \sum_{k=1}^{n_c} \hat{\alpha}_k e^{i(\hat{\omega}_k t + \hat{\phi}_k)} \right|^2 \quad (C.5.10) \]

Remark: AIC can also be obtained by using the following relative KL information function, in lieu of (C.5.3),

\[I = E_y \left\{ E_x \left\{ \ln p(x, \hat{\theta}_y) \right\} \right\} \quad (C.5.11) \]

Note that, in (C.5.11), \(x \) is used for validation and \(y \) for estimation. However, the derivation of AIC from (C.5.11) is more complicated; such a derivation, which is left as an exercise to the reader, will make use of two Taylor series expansions, and the fact that \(E_x \{ \ln p(x, \theta) \} = E_y \{ \ln p(y, \theta) \} \).

The performance of AIC has been found to be satisfactory in many case studies and applications to real-life data reported in the literature (see, e.g., [McQuarrie and Tsai 1998; Linhart and Zucchini 1986; Burnham and Anderson 2002; Sakamoto, Ishiguro, and Kitagawa 1986]). The performance of a model order selection rule, such as AIC, can be measured in different ways, as explained in the next two paragraphs.
Appendix C Model Order Selection Tools

As a first possibility, we can consider a scenario in which the data generating mechanism belongs to the class of models under test, and thus there is a true order. In such a case, analytical or numerical studies can be used to determine the probability with which the rule selects the true order. For AIC, it can be shown that, under quite general conditions,

\[
\begin{align*}
\text{the probability of underfitting} & \to 0 \\
\text{the probability of overfitting} & \to \text{constant} > 0
\end{align*}
\]

as \(N \to \infty\) (see, e.g., [McQuarrie and Tsai 1998; Kashyap 1980]). We can see from (C.5.13) that the behavior of AIC with respect to the probability of correct detection is not entirely satisfactory. Interestingly, it is precisely this kind of behavior that appears to make AIC perform satisfactorily with respect to the other possible type of performance measure, as explained below.

An alternative way of measuring the performance is to consider a more practical scenario in which the data generating mechanism is more complex than any of the models under test, which is usually the case in practical applications. In such a case we can use analytical or numerical studies to determine the performance of the model picked by the rule as an approximation of the data generating mechanism: for instance, we can consider the average distance between the estimated and true spectral densities, or the average prediction error of the model. With respect to such a performance measure, AIC performs well, partly because of its tendency to select models with relatively large orders, which may be a good thing to do in a case in which the data generating mechanism is more complex than the models used to fit it.

The nonzero overfitting probability of AIC is due to the fact that the term \(2n\) in (C.5.8) (that penalizes high-order models), while larger than the term \(n\) that appears in the NN rule, is still too small. Extensive simulation studies (see, e.g., [Bhansali and Downham 1977]) have empirically found that the following Generalized Information Criterion (GIC):

\[
\text{GIC} = -2 \ln p_n(y, \hat{\theta}^n) + \nu n
\]

may outperform AIC with respect to various performance measures if \(\nu > 2\). Specifically, depending on the considered scenario as well as the value of \(N\) and the performance measure, values of \(\nu\) in the interval \(\nu \in [2, 6]\) have been found to give the best performance.

In the next section we show that GIC can be obtained as a natural theoretical extension of AIC. Hence, the use of (C.5.14) with \(\nu > 2\) can be motivated on formal grounds. However, the choice of a particular \(\nu\) in GIC is a more difficult problem that cannot be solved in the current KL framework (see the next section for details). The different framework of Section C.7 appears to be necessary to arrive at a rule having the form of (C.5.14) with a specific expression for \(\nu\).

We close this section with a brief discussion on another modification of the AIC rule suggested in the literature (see, e.g., [Hurvich and Tsai 1993]). As explained before, AIC is derived by maximizing an asymptotically unbiased estimate of the relative KL information \(I\) in (C.5.3). Interestingly, for linear regression models
Section C.6 Generalized Cross-Validatory KL Approach: the GIC Rule

(given by (C.2.2) where \(\mu(\gamma) \) is a linear function of \(\gamma \)), the following corrected AIC rule, AIC\(_{c}\), can be shown to be an exactly unbiased estimate of \(I \):

\[
\text{AIC}_c = -2 \ln p_n(y, \hat{\theta}^n) + \frac{2N}{N - n - 1} n \tag{C.5.15}
\]

(see, e.g., [Hurvich and Tsai 1993; Cavanaugh 1997]). As \(N \to \infty \), AIC\(_{c}\) \to AIC (as expected). However, for finite values of \(N \) the penalty term of AIC\(_{c}\) is larger than that of AIC. Consequently, in finite samples AIC\(_{c}\) has a smaller risk of overfitting than AIC, and therefore we can say that AIC\(_{c}\) trades off a decrease of the risk of overfitting (which is rather large for AIC) for an increase in the risk of underfitting (which is quite small for AIC, and hence it can be slightly increased without a significant deterioration of performance). With this fact in mind, AIC\(_{c}\) can be used as an order selection rule for more general models than just linear regressions, even though its motivation in the general case is pragmatic rather than theoretical. For other finite-sample corrections of AIC we refer the reader to [de Waele and Broersen 2003; Broersen 2000; Broersen 2002; Seghouane, Bekara, and Fleury 2003].

C.6 GENERALIZED CROSS-VALIDATORY KL APPROACH: THE GIC RULE

In the cross-validatory approach of the previous section, the estimation sample \(x \) has the same length as the validation sample \(y \). In that approach, \(\hat{\theta}_x \) (obtained from \(x \)) is used to approximate the likelihood of the model via \(E_x\{p(y, \hat{\theta}_x)\} \). The AIC rule so obtained has a nonzero probability of overfitting (even asymptotically). Intuitively, the risk of overfitting will decrease if we let the length of the validation sample be (much) larger than that of the estimation sample, i.e.

\[
N \triangleq \text{length}(y) = \rho \cdot \text{length}(x), \quad \rho \geq 1 \tag{C.6.1}
\]

Indeed, overfitting occurs when the model corresponding to \(\hat{\theta}_x \) also fits the “noise” in the sample \(x \) so that \(p(x, \hat{\theta}_x) \) has a “much” larger value than the true pdf, \(p(x, \theta) \). Such a model may behave reasonably well on a short validation sample \(y \), but not on a long validation sample (in the latter case, \(p(y, \hat{\theta}_x) \) will take on very small values). The simple idea in (C.6.1) of letting the lengths of the validation and estimation samples be different leads to a natural extension of AIC, as shown below.

A straightforward calculation shows that under (C.6.1) we have

\[
J_y = \rho J_x \tag{C.6.2}
\]

(see, e.g., (C.2.19)). With this small difference, the calculations in the previous section carry over to the present case and we obtain (see (C.5.4)--(C.5.5)):

\[
I \simeq E_y\left\{ \ln p_n(y, \hat{\theta}_y) \right\} - \frac{1}{2} E_y\left\{ E_x\left\{ \text{tr} \left[J_y \left[(\hat{\theta}_x - \theta) - (\hat{\theta}_y - \theta) \right] \right\} \right\} \right\} - \frac{1}{2} \text{tr} \left[J_y (\rho J_y^{-1} + J_y^{-1}) \right] \]

\[
= E_y\left\{ \ln p_n(y, \hat{\theta}_y) - \frac{1}{2} \text{tr} \left[J_y (\rho J_y^{-1} + J_y^{-1}) \right] \right\}
\]

\[
= E_y\left\{ \ln p_n(y, \hat{\theta}_y) - \frac{1}{2} \left(\rho + \frac{1}{\rho} \right) n \right\} \tag{C.6.3}
\]
Appendix C Model Order Selection Tools

An unbiased estimate of the right side in (C.6.3) is given by:

$$\ln p(y, \hat{\theta}_y) - \frac{1 + \rho}{2} n$$ \hspace{1cm} (C.6.4)

The generalized information criterion (GIC) rule maximizes (C.6.4) or, equivalently, minimizes

$$\text{GIC} = -2 \ln p_n(y, \hat{\theta}^n) + (1 + \rho)n$$ \hspace{1cm} (C.6.5)

As expected, (C.6.5) reduces to AIC for $\rho = 1$. Note also that, for a given y, the order selected by (C.6.5) with $\rho > 1$ is always smaller than the order selected by AIC (because the penalty term in (C.6.5) is larger than that in (C.5.8)); hence, as predicted by the previous intuitive discussion, the risk of overfitting associated with GIC is smaller than for AIC when $\rho > 1$.

On the negative side, there is no clear guideline for choosing ρ in (C.6.5). The “optimal” value of ρ in the GIC rule has been empirically shown to depend on the performance measure, the number of data samples, and the data generating mechanism itself [McQuarrie and Tsai 1998; Bhansali and Downham 1977]. Consequently, ρ should be chosen as a function of all these factors, but there is no clear rule as to how that should be done. The approach of the next section appears to be more successful than the present approach in suggesting a specific choice for ρ in (C.6.5). Indeed, as we will see, that approach leads to an order selection rule of the GIC type but with a concrete expression for ρ as a function of N.

C.7 BAYESIAN APPROACH: THE BIC RULE

The order selection rule to be presented in this section can be obtained in two ways. First, let us consider the KL framework of the previous sections. Therefore, our goal is to maximize the relative KL information (see (C.5.1)):

$$I(p_0, \hat{\rho}) = E_0\{\ln \hat{p}(y)\}$$ \hspace{1cm} (C.7.1)

The ideal choice of $\hat{p}(y)$ would be $\hat{p}(y) = p_n(y, \theta^n)$. However, this choice is not possible since the likelihood of the model, $p_n(y, \theta^n)$, is not available. Hence we have to use a “surrogate likelihood” in lieu of $p_n(y, \theta^n)$. Let us assume, as before, that a fictitious sample x is used to make inferences about θ. The pdf of the estimate, $\hat{\theta}_x$, obtained from x can alternatively be viewed as an a priori pdf of θ, and hence it will be denoted by $p(\theta)$ in what follows (once again, we omit the superindex n of θ, $\hat{\theta}$, etc. to simplify the notation, whenever there is no risk for confusion). Note that we do not constrain $p(\theta)$ to be Gaussian. We only assume that:

$$p(\theta) \text{ is flat around } \hat{\theta}$$ \hspace{1cm} (C.7.2)

where, as before, $\hat{\theta}$ denotes the ML estimate of the parameter vector obtained from the available data sample, y. Furthermore, now we assume that the length of the fictitious sample is a constant that does not depend on N, which implies that:

$$p(\theta) \text{ is independent of } N$$ \hspace{1cm} (C.7.3)
As a consequence of assumption (C.7.3), the ratio between the lengths of the validation sample and the (fictitious) estimation sample grows without bound as \(N \) increases. According to the discussion in the previous section, this fact should lead to an order selection rule with an asymptotically much larger penalty term than that of AIC or GIC (with \(p = \text{constant} \)), and hence with a reduced risk of overfitting.

The scenario introduced above leads naturally to the following choice of surrogate likelihood:

\[
\hat{p}(y) = \mathbb{E}_\theta \{ p(y, \theta) \} = \int p(y, \theta) p(\theta) d\theta \quad \text{(C.7.4)}
\]

Remark: In the previous sections we used a surrogate likelihood given by (see (C.7.5)):

\[
\ln \hat{p}(y) = \mathbb{E}_x \{ \ln p(y, \hat{\theta}_x) \} \quad \text{(C.7.5)}
\]

However, we could have instead used a \(\hat{p}(y) \) given by

\[
\hat{p}(y) = \mathbb{E}_x \{ p(y, \hat{\theta}_x) \} \quad \text{(C.7.6)}
\]

The rule that would be obtained by using (C.7.6) can be shown to have the same form as AIC and GIC, but with a (slightly) different penalty term. Note that the choice of \(\hat{p}(y) \) in (C.7.6) is similar to the choice in (C.7.4), with the difference that for (C.7.6) the “a priori” pdf, \(p(\hat{\theta}_x) \), depends on \(N \).

To obtain a simple asymptotic approximation of the integral in (C.7.4) we make use of the asymptotic approximation of \(p(y, \theta) \) given by (C.4.6)–(C.4.7):

\[
p(y, \theta) \approx p(y, \hat{\theta}) e^{-\frac{1}{2} (\hat{\theta} - \theta)^T J^{1/2} (\hat{\theta} - \theta)}
\]

which holds for \(\theta \) in the vicinity of \(\hat{\theta} \). Inserting (C.7.7) in (C.7.4) and using the assumption in (C.7.2) along with the fact that \(p(y, \theta) \) is asymptotically much larger at \(\theta = \hat{\theta} \) than at any \(\theta \neq \hat{\theta} \), we obtain:

\[
\hat{p}(y) \approx p(y, \hat{\theta}) p(\hat{\theta}) \int e^{-\frac{1}{2} (\hat{\theta} - \theta)^T J^{1/2} (\hat{\theta} - \theta)} d\theta
\]

\[
= \frac{p(y, \hat{\theta}) p(\hat{\theta}) (2\pi)^{n/2}}{|J|^{1/2}} \int_{-1}^{1} \frac{1}{(2\pi)^{n/2}|J|^{-1/2}} e^{-\frac{1}{2} (\hat{\theta} - \theta)^T J^{1/2} (\hat{\theta} - \theta)} d\theta
\]

\[
= \frac{p(y, \hat{\theta}) p(\hat{\theta}) (2\pi)^{n/2}}{|J|^{1/2}} \quad \text{(C.7.8)}
\]

(see [Djuric 1998] and references therein for the exact conditions under which the above approximation holds true). It follows from (C.7.1) and (C.7.8) that

\[
\hat{I} = \ln p(y, \hat{\theta}) + \ln p(\hat{\theta}) + \frac{n}{2} \ln 2\pi - \frac{1}{2} \ln |J|
\]

is an asymptotically unbiased estimate of the relative KL information. Note, however, that (C.7.9) depends on the “a priori” pdf of \(\theta \), which has not been specified.
Appendix C Model Order Selection Tools

To eliminate this dependence, we use the fact that $|\hat{J}|$ increases without bound as N increases. Specifically, in most cases (but not in all; see below) we have that (cf. (C.2.21)):

$$\ln |\hat{J}| = \ln \left| N \cdot \frac{1}{N} |J| \right| = n \ln N + \ln \left| \frac{1}{N} |J| \right| = n \ln N + O(1) \quad (C.7.10)$$

where we used the fact that $|cJ| = c^2|J|$ for a scalar c and an $n \times n$ matrix J. Using (C.7.10) and the fact that $p(\theta)$ is independent of N (see (C.7.3)) yields the following asymptotic approximation of the right side in (C.7.9):

$$\hat{I} \simeq \ln p_n(y, \hat{\theta}^n) - \frac{n}{2} \ln N \quad (C.7.11)$$

The **Bayesian information criterion (BIC) rule** selects the order that maximizes (C.7.11), or, equivalently, minimizes:

$$\text{BIC} = -2 \ln p_n(y, \hat{\theta}^n) + n \ln N \quad (C.7.12)$$

We remind the reader that (C.7.12) has been derived under the assumption that (C.2.21) holds, which is not always true. As an example (see [DJURIC 1998] for more examples), consider once again the sinusoidal signal model with n_c components (as also considered in Section C.5), in the case of which we have that (cf. (C.2.22)-(C.2.23)):

$$\ln |\hat{J}| = \ln \left| K_N^{-2} + |\hat{J}| K_N \right| = (2n_c + 1) \ln N_s + 3n_c \ln N_s + O(1)$$

$$= (5n_c + 1) \ln N_s + O(1) \quad (C.7.13)$$

Hence, in the case of **sinusoidal signals**, BIC takes on the form:

$$\text{BIC} = -2 \ln p_n(y, \hat{\theta}^{n_c}) + (5n_c + 1) \ln N_s$$

$$= 2N_s \ln \hat{\sigma}^2_{n_c} + (5n_c + 1) \ln N_s \quad (C.7.14)$$

where $\hat{\sigma}^2_{n_c}$ is as defined in (C.5.10), and N_s denotes the number of complex-valued data samples.

The attribute Bayesian in the name of the rule in (C.7.12) or (C.7.14) is motivated by the use of the a priori pdf, $p(\theta)$, in the rule derivation, which is typical of a Bayesian approach. In fact, the BIC rule can be obtained using a full Bayesian approach, as explained next.

To obtain the BIC rule in a **Bayesian framework** we assume that the parameter vector θ is a random variable with a given a priori pdf denoted by $p(\theta)$. Owing to this assumption on θ, we need to modify the previously used notation as follows: $p(y, \theta)$ will now denote the joint pdf of y and θ, and $p(y|\theta)$ will denote the conditional pdf of y given θ. Using this notation and Bayes’ rule we can write:

$$p(y|H_n) = \int p_n(y, \theta^n) d\theta^n = \int p_n(y|\theta^n) p_n(\theta^n) d\theta^n \quad (C.7.15)$$
The right side of (C.7.15) is identical to that of (C.7.4). It follows from this observation and the analysis conducted in the first part of this section that, under the assumptions (C.7.2) and (C.7.3) and asymptotically in \(N \),

\[
\ln p(y|H_n) \simeq \ln p_n(y, \hat{\theta}^n) - \frac{n}{2} \ln N = -\frac{1}{2} \text{BIC}
\]

(see (C.7.12)). Hence, maximizing \(p(y|H_n) \) is asymptotically equivalent with minimizing BIC, independently of the prior \(p(\theta) \) (as long as it satisfies (C.7.2) and (C.7.3)). The rediscovery of BIC in the above Bayesian framework is important, as it reveals the interesting fact that the BIC rule is asymptotically equivalent to the optimal MAP rule (see Section C.3.1), and hence that the BIC rule can be expected to maximize the total probability of correct detection, at least for sufficiently large values of \(N \).

The BIC rule has been proposed in [Schwarz 1978a; Kashyap 1982] among others. In [Rissanen 1978; Rissanen 1982] the same type of rule has been obtained by a different approach based on coding arguments and the minimum description length (MDL) principle. The fact that the BIC rule can be derived in several different ways suggests that it may have a fundamental character. In particular, it can be shown that, under the assumption that the data generating mechanism belongs to the model class considered, the BIC rule is consistent; that is,

\[
\text{For BIC: the probability of correct detection } \to 1 \text{ as } N \to \infty \quad (C.7.17)
\]

(see, e.g., [Söderström and Stoica 1989; McQuarrie and Tsai 1998]). This should be contrasted with the nonzero overfitting probability of AIC and GIC (with \(\rho=\text{constant} \), see (C.5.12)-(C.5.13). Note that the result in (C.7.17) is not surprising in view of the asymptotic equivalence between the BIC rule and the optimal MAP rule.

Finally, we note in passing that if we remove the condition in (C.7.3) that \(p(\theta) \) is independent of \(N \), then the term \(\ln p(\hat{\theta}) \) may no longer be eliminated from (C.7.9) by letting \(N \to \infty \). Consequently, (C.7.9) would lead to a prior-dependent rule which could be used to obtain any other rule described in this appendix by suitably choosing the prior. While this line of argument can serve the theoretical purpose of interpreting various order selection rules in a common Bayesian framework, it appears to have little practical value, as it can hardly be used to derive new sound order selection rules.

C.8 SUMMARY AND THE MULTIMODEL APPROACH

In the first part of this section we summarize the model order selection rules presented in the previous sections. Then we briefly discuss and motivate the multimodel approach which, as the name suggests, is based on the idea of using more than just one model for making inferences about the signal under study.

C.8.1 Summary

We begin with the observation that all the order selection rules discussed in this appendix have a common form, \(i.e.:\)

\[
-2 \ln p_n(y, \hat{\theta}^n) + \eta(n, N)n
\]

(C.8.1)
Appendix C Model Order Selection Tools

but with different penalty coefficients \(\eta(n,N) \):

\[
\text{AIC} : \quad \eta(n,N) = 2
\]
\[
\text{AIC}_c : \quad \eta(n,N) = 2 \frac{N}{N - n - 1} \tag{C.8.2}
\]
\[
\text{GIC} : \quad \eta(n,N) = \nu = \rho + 1
\]
\[
\text{BIC} : \quad \eta(n,N) = \ln N
\]

Before using any of these rules for order selection in a specific problem, we need to carry out the following steps:

(i) Obtain an explicit expression for the term \(-2 \ln p_n(y, \hat{\theta}^n)\) in (C.8.1). This requires the specification of the model structures to be tested as well as their postulated likelihoods. An aspect that should receive some attention here is the fact that the derivation of all previous rules assumed real-valued data and parameters. Consequently, complex-valued data and parameters must be converted to real-valued quantities in order to apply the results in this appendix.

(ii) Count the number of unknown (real-valued) parameters in each model structure under consideration. This is easily done in the parametric spectral analysis problems in which we are interested.

(iii) Verify that the assumptions which have been made to derive the rules hold true. Fortunately, most of the assumptions made are quite weak and hence they will usually hold. Indeed, the models under test may be either nested or non-nested, and they may even be only approximate descriptions of the data generating mechanism. However, there are two particular assumptions, made on the information matrix \(J \), that do not always hold and hence they must be checked. First, we assumed in all derivations that the inverse matrix, \(J^{-1} \), exists, which is not always the case. Second, we made the assumption that \(J \) is such that \(J/N = \mathcal{O}(1) \). For some models this is not true; when it is not true, a different normalization of \(J \) is required to make it tend to a constant matrix as \(N \to \infty \) (this aspect is important for the BIC rule only).

We have used the sinusoidal signal model as an example throughout this appendix to illustrate the steps above and the involved aspects.

Once the above aspects have been carefully considered, we can go on to use one of the four rules in (C.8.1)–(C.8.2) for selecting the order in our estimation problem. The question as to which rule should be used is not an easy one. In general we can prefer AIC\(_c\) over AIC: indeed, there is empirical evidence that AIC\(_c\) outperforms AIC in small samples (whereas in medium or large samples the two rules are almost equivalent). We also tend to prefer BIC over AIC or AIC\(_c\) on the grounds that BIC is an asymptotic approximation of the optimal MAP rule. Regarding GIC, as mentioned in Sections C.5 and C.6, GIC with \(\nu \in [2,6] \) (depending on the scenario under study) can outperform AIC and AIC\(_c\). Hence, for lack of a more precise guideline, we can think of using GIC with \(\nu = 4 \), the value in the middle of the above interval. In summary, then, a possible ranking of the four rules discussed in this appendix is as follows (the first being considered the best):
Section C.8 Summary and the Multimodel Approach

Figure C.1. Penalty coefficients of AIC, GIC with $\nu = 4$ ($\rho = 3$), AIC_c (for $n = 5$), and BIC, as functions of data length N.

- BIC
- GIC with $\nu = 4$ ($\rho = 3$)
- AIC_c
- AIC

In Figure C.1 we show the penalty coefficients of the above rules, as functions of N, to further illustrate the relationship between them.

C.8.2 The Multimodel Approach

We close this section with a brief discussion on a multimodel approach. Assume that we have used our favorite information criterion, let us say XIC, and have computed its values for the model orders under test:

$$\text{XIC}(n); \quad n = 1, \ldots, \bar{n} \quad \text{(C.8.3)}$$

We can then pick the order that minimizes XIC(n) and hence end up using a single model; this is the single model approach.

Alternatively, we can consider a multimodel approach. Specifically, let us pick a $M \in [1, \bar{n}]$ (such as $M = 3$) and consider the model orders that give the M smallest values of XIC(n), let us say n_1, \ldots, n_M. From the derivations presented
in the previous sections of this appendix, we can see that all information criteria attempt to estimate twice the negative log-likelihood of the model:

\[-2 \ln p_n(y, \theta^n) = -2 \ln p(y|H_n)\]

(C.8.4)

Hence, we can use

\[e^{-\frac{1}{2} \text{XIC}(n)}\]

(C.8.5)

as an estimate of the likelihood of the model with order equal to n (to within a multiplicative constant). Consequently, instead of using just one model corresponding to the order that minimizes XIC(n), we can think of considering a combined use of the selected models (with orders \(n_1, \ldots, n_M\)) in which the contribution of each model is proportional to its likelihood value, \(w_i\):

\[e^{-\frac{1}{2} \text{XIC}(n_k)} \frac{1}{\sum_{j=1}^{M} e^{-\frac{1}{2} \text{XIC}(n_j)}}, \quad k = 1, \ldots, M\]

(C.8.6)

For more details on the multimodel approach, including guidelines for choosing \(M\), we refer the interested reader to [Burnham and Anderson 2002; Stoica, Selén, and Li 2004].
APPENDIX D

Answers to Selected Exercises

1.3(a): \(Z\{h_{-k}\} = H(1/z); \ Z\{g_k\} = H(z) H^*(1/z^*) \)

1.4(a):
\[
\begin{align*}
\phi(\omega) &= \frac{\sigma^2}{(1 + a_1 e^{-i\omega})(1 + a_1^* e^{i\omega})} \left[1 + |b_1|^2 + b_1 e^{-i\omega} + b_1^* e^{i\omega}\right] \\
r(0) &= \frac{\sigma^2}{1 - |a_1|^2} \left\{|1 - b_1 a_1|^2 + |b_1|^2(1 - |a_1|^2)\right\} \\
r(k) &= \frac{\sigma^2}{1 - |a_1|^2} \left\{\left(1 - \frac{b_1}{a_1}\right) \left(1 - b_1^* a_1\right)\right\} (-a_1)^k, \ \ k \geq 1
\end{align*}
\]

1.9(a): \(\phi_y(\omega) = \sigma^2 |H_1(\omega)|^2 + \rho \sigma_1 \sigma_2 |H_1(\omega) H_2(\omega) + H_2(\omega) H_1^*(\omega)| + \sigma_2^2 |H_2(\omega)|^2 \)

2.3: An example is \(y(t) = \{1, 1.1, 1\} \), whose unbiased ACS estimate is \(\hat{r}(k) = \{1.07, 1.1, 1\} \), giving \(\hat{\phi}(\omega) = 1.07 + 2.2 \cos(\omega) + 2 \cos(2\omega) \).

2.4(b): \(\text{var}\{\hat{r}(k)\} = \sigma^4 a^2(k)(N - k)[1 + \delta_{k,0}] \)

2.9:
(a) \(E\{Y(\omega_k) Y^*(\omega_r)\} = \frac{\sigma^2}{N} \sum_{t=0}^{N-1} e^{i(\omega_r - \omega_k)t} = \begin{cases} \sigma^2 & k = r \\ 0 & k \neq r \end{cases} \)

(c) \(E\{\hat{\phi}(\omega)\} = \sigma^2 = \phi(\omega) \), so \(\hat{\phi}(\omega) \) is an unbiased estimate.

3.2: Decompose the ARMA system as \(x(t) = \frac{1}{\pi(\tau)} e(t) \) and \(y(t) = B(z) x(t) \). Then \(\{x(t)\} \) is an AR\((n) \) process. To find \(\{r_x(k)\} \) from \(\{\sigma^2, a_1 \ldots a_n\} \), write the Yule–Walker equations as:
\[
\begin{bmatrix}
1 & \cdots & 0 \\
\cdots & \ddots & \vdots \\
a_1 & \cdots & a_n
\end{bmatrix}
\begin{bmatrix}
r_x(0) \\
r_x(1) \\
r_x(n)
\end{bmatrix}
+
\begin{bmatrix}
1 & a_1 & \cdots & a_n \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
r_x(0) \\
r_x(1) \\
r_x(n)
\end{bmatrix}
= \begin{bmatrix}
\sigma^2 \\
0 \\
0
\end{bmatrix}
\]
or
\[
A_1 r_x + A_2 r_x^c = \begin{bmatrix}
\sigma^2 \\
0
\end{bmatrix}
\]
which can be solved for \(\{r_x(m)\}_{m=0}^{n} \). Then find \(r_x(k) \) for \(k > n \) from equation (3.3.4) and \(r_x(k) \) for \(k < 0 \) from \(r_x^*(-k) \). Finally,
\[
r_y(k) = \sum_{j=0}^{m} \sum_{p=0}^{m} r_x(k + p - j) b_j b_p^*
\]
3.4: \(\sigma_b^2 = E \{ |e_b(t)|^2 \} = [1 \theta_b^T] R_{n+1} \left[\begin{array}{c} 1 \\ \theta_b^T \end{array} \right] = [1 \theta_b^T] R_{n+1} \left[\begin{array}{c} 1 \\ \theta_b \end{array} \right] \)
giving \(\theta_b = \theta_f \) and \(\sigma_b^2 = \sigma_f^2 \).

3.5(a):

\[
R_{2m+1}^T \left[\begin{array}{c} c_m \\ \vdots \\ c_1 \\ 1 \\ d_1 \\ \vdots \\ d_m \end{array} \right] = \left[\begin{array}{c} 0 \\ \vdots \\ 0 \\ \sigma_s^2 \\ 0 \\ \vdots \\ 0 \end{array} \right]
\]

3.14: \(c_{\ell} = \sum_{i=0}^{n} a_i \hat{r}(\ell - i) \) for \(0 \leq \ell \leq p \), where \(\hat{r}(k) = r(k) \) for \(k \geq 1 \),
\(\hat{r}(0) = r(0)/2 \), and \(\hat{r}(k) = 0 \) for \(k < 0 \).

3.15(b): First solve for \(b_1, \ldots, b_m \) from

\[
\left[\begin{array}{cccc} c_n & c_{n-1} & \cdots & c_{n-m+1} \\ c_{n+1} & c_n & \cdots & c_{n-m+2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n+m-1} & c_{n+m-2} & \cdots & c_n \end{array} \right] \left[\begin{array}{c} b_1 \\ b_2 \\ \vdots \\ b_m \end{array} \right] = - \left[\begin{array}{c} c_{n+1} \\ c_{n+2} \\ \vdots \\ c_{n+m} \end{array} \right]
\]

Then \(a_1, \ldots, a_n \) can be obtained from \(a_k = c_k + \sum_{i=1}^{m} b_i c_{k-i} \).

4.2:

(a) \(E \{ x(t) \} = 0; \ r_x(k) = (\pi^2 + \sigma_n^2) e^{i\omega_0 k} \)

(b) Let \(p(\varphi) = \sum_{k=-\infty}^{\infty} c_k e^{-ik\varphi} \) be the Fourier series of \(p(\varphi) \) for \(\varphi \in [-\pi, \pi] \). Then
\(E \{ x(t) \} = \frac{\pi e^{i\omega_0}}{2\pi} c_1 \). Thus, \(E \{ x(t) \} = 0 \) if and only if either \(\pi = 0 \) or \(c_1 = 0 \). In this case, \(r_x(k) \) is the same as in part (a).

5.8: The height of the peak of the (unnormalized) Capon spectrum is

\[
1/a^*(\omega)R^{-1}a(\omega)|_{\omega=\omega_0} = \frac{m\alpha^2 + \sigma^2}{m}
\]
Bibliography

402 BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

408 BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

BIBLIOGRAPHY

References Grouped by Subject

Books on Spectral Analysis

[Bloomfield 1976]
[Bracewell 1986]
[Childers 1978]
[Cohen 1995]
[Hayes III 1996]
[Haykin 1991]
[Haykin 1995]
[Kay 1988]
[Kesler 1986]
[Koopmans 1974]
[Marple 1987]
[Naidu 1996]
[Percival and Walden 1993]
[Priestley 1981]

Books about Spectral Analysis and Allied Topics

[Aoki 1987]
[Porat 1994]
[Proakis, Rader, Ling, and Nikias 1992]
[Scharf 1991]
[Söderström and Stoica 1989]
[Terriën 1992]
[van Overschee and de Moor 1996]

Books on Linear Systems and Signals

[Hannan and Deistler 1988]
[Kailath 1980]
[Oppenheim and Schafer 1989]
[Porat 1997]

Books on Array Signal Processing
BIBLIOGRAPHY

[HAYKIN 1991]
[HAYKIN 1995]
[HUDSON 1981]
[PILLAI 1989]
[Van Trees 2002]

Works on Time Series, Estimation Theory, and Statistics

[Anderson 1971]
[Bhansali 1980]
[Brillinger 1981]
[Brockwell and Davis 1991]
[Cleveland 1972]
[Cramér 1946]
[Dempster, Laird, and Rubin 1977]
[Fisher 1922]
[Heiser 1995]
[Janssen and Stoica 1988]
[McLachlan and Krishnan 1997]
[Moon 1996]
[Rao 1945]
[Slepian 1954]
[Stoica and Moses 1990]
[Stoica and Ottersten 1996]
[Stoica and Selén 2004a]
[Viberg 1995]
[Wei 1990]

Works on Matrix Analysis and Linear Algebra

[Böttcher and Silbermann 1983]
[Cantoni and Butler 1976]
[Golub and Van Loan 1989]
[Gray 1972]
[Horn and Johnson 1985]
[Horn and Johnson 1989]
[Iohvidov 1982]
[Stewart 1973]
Works on Nonparametric Temporal Spectral Analysis

(a) Historical
[Bartlett 1948]
[Bartlett 1950]
[Daniell 1946]
[Schuster 1898]
[Schuster 1900]

(b) Classical
[Blackman and Tukey 1959]
[Burg 1972]
[Cooley and Tukey 1965]
[Harris 1978]
[Jenkins and Watts 1968]
[Lacoss 1971]
[Slepian 1964]
[Thomson 1982]
[Welch 1967]

(c) More Recent
[Bronez 1992]
[Calvez and Vilbé 1992]
[DeGraaf 1994]
[Doroslovacki 1998]
[Ishii and Furukawa 1986]
[Jakobsson, Marple, and Stoica 2000]
[Lagunas, Santamaria, Gasull, and Moreno 1986]
[Larsson, Li, and Stoica 2003]
[Lee and Munson Jr. 1995]
[Li and Stoica 1996a]
[McCloud, Scharf, and Mullis 1999]
[Mullis and Scharf 1991]
[Musicus 1985]
[Onn and Steinhardt 1993]
[Riedel and Sidorenko 1995]
[Stankwitz, Dallaire, and Fienup 1994]
[Stoica, Larsson, and Li 2000]
BIBLIOGRAPHY

[Stoica, Li, and Li 1999]

Works on Parametric Temporal Rational Spectral Analysis

(a) Historical
[Yule 1927]
[Walker 1931]

(b) Classical
[Burg 1975]
[Cadzow 1982]
[Durbin 1959]
[Durbin 1960]
[Gersh 1970]
[Levinson 1947]

(c) More Recent
[Byrnes, Georgiou, and Lindquist 2000]
[Byrnes, Georgiou, and Lindquist 2001]
[Choi 1992]
[Delsarte and Genin 1986]
[Dumitrescu, Tabus, and Stoica 2001]
[Fuchs 1987]
[Kinkel, Perl, Scharf, and Stubberud 1979]
[Mayne and Firoozan 1982]
[Moses and Beex 1986]
[Moses, Šimonytė, Stoica, and Söderström 1994]
[Stoica, Friedlander, and Söderström 1987a]
[Stoica, Friedlander, and Söderström 1987b]
[Stoica, McKelvey, and Mari 2000]
[Stoica and Nehorai 1986]
[Stoica and Nehorai 1987]

Works on Parametric Temporal Line Spectral Analysis

(a) Classical
[Bangs 1971]
[Högbom 1974]
[Kumaresan 1983]
[Kung, Arun, and Rao 1983]
[Paulraj, Roy, and Kailath 1986]
[Pisarenko 1973]
(b) More Recent
[Besson and Stoica 1999]
[Bresler and Macovski 1986]
[Clark, Eldén, and Stoica 1997]
[Clark and Scharf 1994]
[Cornwell and Bridle 1996]
[Fuchs 1988]
[Hua and Sarkar 1990]
[Jakobsson, Marple, and Stoica 2000]
[Kumaresan, Scharf, and Shaw 1986]
[Li and Stoica 1996b]
[McKelvey and Viberg 2001]
[Schwarz 1978a]
[Stoica, Besson, and Gershman 2001]
[Stoica, Jakobsson, and Li 1997]
[Stoica, Moses, Friedlander, and Söderström 1989]
[Stoica, Moses, Söderström, and Li 1991]
[Stoica and Nehorai 1989b]
[Stoica and Söderström 1991]
[Stoica, Söderström, and Ti 1989]
[Umesh and Tufts 1996]

Works on Nonparametric Spatial Spectral Analysis

(a) Classical
[Capon 1969]

(b) More Recent
[Abrahamsson, Jakobsson, and Stoica 2004]
[Bangs 1971]
[Feldman and Griffiths 1994]
[Gini and Lombardini 2002]
[Johnson and Dudgeon 1992]
[Li, Stoica, and Wang 2003]
[Li, Stoica, and Wang 2004]
[Marzetta 1983]
[Stoica, Wang, and Li 2003]
[Van Veen and Buckley 1988]
418 BIBLIOGRAPHY

Works on Parametric Spatial Spectral Analysis

(a) Classical
[Barabell 1983]
[Bienvenu 1979]
[Kumaresan and Tufts 1983]
[Roy and Kailath 1989]
[Schmidt 1979]
[Wax and Kailath 1985]

(b) More Recent
[Böhme 1991]
[Doron, Doron, and Weiss 1993]
[Fuchs 1992]
[Fuchs 1996]
[Ottersten, Viberg, Stoica, and Nehorai 1993]
[Pillai 1989]
[Rao and Hari 1993]
[Stoica and Besson 2000]
[Stoica, Besson, and Gershman 2001]
[Stoica and Nehorai 1989a]
[Stoica and Nehorai 1990]
[Stoica and Nehorai 1991]
[Stoica and Sharman 1990]
[Viberg and Ottersten 1991]
[Viberg, Ottersten, and Kailath 1991]
[Viberg, Stoica, and Ottersten 1995]
[Ziskind and Wax 1988]

Works on Model Order Selection

(a) Classical
[Akaike 1974]
[Akaike 1978]
[Bhansali and Downham 1977]
[Kashyap 1980]
[Kashyap 1982]
[Rissanen 1978]
[Rissanen 1982]
[Schwarz 1978b]

(b) More Recent
[Broersen 2000]
[Broersen 2002]
[Burnham and Anderson 2002]
[Cavanaugh 1997]
[Choi 1992]
[de Waele and Broersen 2003]
[Djuric 1998]
[Hurvich and Tsai 1993]
[Linhart and Zucchini 1986]
[McQuarrie and Tsai 1998]
[Sakamoto, Ishiguro, and Kitagawa 1986]
[Seghouane, Bekara, and Fleury 2003]
[Stoica, Eykhoff, Jannsen, and Söderström 1986]
[Stoica and Selén 2004b]

Index

Akaike information criterion, 387–391
- corrected, 391
- generalized, 390–392
all-pole signals, 90
amplitude and phase estimation (APES)
- method, 244–247, 291
 - for gapped data, 247–250
 - for spatial spectra, 305–312
 - for two-dimensional signals, 254–256
amplitude spectrum, 241, 246
 - Capon estimates of, 242–244
angle of arrival, 264
aperture, 263
APES method, see amplitude and phase estimation method
apodization, 59–64
AR process, see autoregressive process
AR spectral estimation, see autoregressive spectral estimation
ARMA process, see autoregressive moving average process
array
 - aperture of, 263
 - beamforming resolution, 320
 - beamspace processing, 323
 - beamwidth, 278, 321
 - broadband signals in, 269
 - coherent signals in, 281, 325
 - isotropic, 322
 - L-shaped, 321
 - narrowband, 269, 271
 - planar, 263
 - uniform linear, 271–273
array model, 265–273
autocorrelation function, 117
autocorrelation method, 93
autocovariance sequence
 - computation using FFT, 55–56
 - computer generation of, 18
 - definition of, 5
 - estimates, 23
 - estimation variance, 72
 - extensions, 118–119, 174
 - for signals with unknown means, 71
 - for sinusoidal signals, 145, 146
 - generation from ARMA parameters,
 - mean square convergence of, 170
 - of ARMA processes, 88–89
 - properties, 5–6
autoregressive (AR) process
 - covariance structure, 88
 - definition of, 88
 - stability of, 133
autoregressive moving average (ARMA) process
 - covariance structure, 88
 - definition of, 88
 - multivariate, 109–117
 - state-space equations, 109
autoregressive moving average spectral estimation, 103–117
 - least squares method, 106–108
 - modified Yule–Walker method, 103–106
 - multivariate, 113–117
autoregressive spectral estimation, 90–94
 - autocorrelation method, 93
 - Burg method, 119–122
 - covariance method, 90, 93
 - least squares method, 91–94
 - postwindow method, 93
 - prewindow method, 93
 - Yule–Walker method, 90
backward prediction, 117, 131
bandpass signal, 266
bandwidth
 - approximate formula, 77
 - definition of, 67
 - equivalent, 40, 54, 69, 224
Bartlett method, 49–50
Bartlett window, 29, 42
baseband signal, 266
basis
 - linearly parameterized, 193–198
 - null space, 193–198
Bayesian information criterion, 392–395
beamforming, 276–279, 288–290
beamforming method, 294
 - and CLEAN, 312–317
beamspace processing, 323
beamwidth, 278, 321, 322
BIC rule, 392–395
Blackman window, 42
Blackman–Tukey method, 37–39
computation using FFT, 57–59
nonnegativeness property, 39
block–Hankel matrix, 113
broadband signal, 269
Burg method, 119–122
CAPES method, 247
Capon method, 222–231, 290–294
as a matched filter, 258
comparison with APES, 246–247
constrained, 298–305
derivation of, 222–227, 258
derived for damped sinusoids, 241–244
derived for DOA estimation, 279–280
derived for two–dimensional signals, 254–256
relationship to AR methods, 228–231, 235–238
robust, 294–305
spectrum of, 258
stochastic signal, 290–291
Carathéodory parameterization, 299
carrier frequency, 265
Cauchy–Schwartz inequality, 258, 279, 301, 304, 316, 344–345
for functions, 345
for vectors, 344
centrosymmetric matrix, 169, 318
Chebyshev inequality, 201
Chebyshev window, 41
chi–squared distribution, 176
Cholesky factor, 128, 342
circular Gaussian distribution, 76, 317, 361, 367, 368
circular white noise, 32, 36
CLEAN algorithm, 312–317
correlation coecient, 13
correlogram method, 23–25
covariance
definition of, 5
matrix, 5
covariance–fitting of, 291–294, 315
using CLEAN, 315–317
covariance–fitting criterion, 126
for Gaussian distributions, 359–364
for line spectra, 364–365
for rational spectra, 365–367
for spatial spectra, 367–376
for unknown model order, 357
cross covariance sequence, 18
cross–spectrum, 12, 18, 64
cyclic minimization, 180–181
cyclic minimizer, 249
damped sinusoidal signals, 193–198, 241–244
Daniell method, 52–54
delay operator, 10
delsarte–genin algorithm, 97–101
demodulation, 268
diagonal loading, 299–305
Dirac impulse, 146
definition of, 349
classical estimator, 355
consistent linear equations, 347–350
constant–modulus signal, 288–289
constrained Capon method, 298–305
continuous spectra, 86
convergence
in probability, 201
mean square, 170, 172, 201
uniform, 259
corrected Akaike information criterion, 391
correlation coefficient, 13
correlation–fitting criterion, 126
covariance function, see autocovariance sequence
covariance matrix
diagonalization of, 133
eigenvalue decomposition of, 297, 302
persymmetric, 169, 318
properties of, 5
covariance method, 93
covariance sequence, see autocovariance sequence
Cramér–Rao bound, 355–376, 379
for Gaussian distributions, 359–364
for general distributions, 358–359
for line spectra, 364–365
for rational spectra, 365–367
for spatial spectra, 367–376
for unknown model order, 357
cross correlation, 18
cross–spectrum, 12, 18, 64
cyclic minimization, 180–181
cyclic minimizer, 249
damped sinusoidal signals, 193–198, 241–244
Daniell method, 52–54
delay operator, 10
Delsarte–Genin Algorithm, 97–101
demodulation, 268
diagonal loading, 299–305
Dirac impulse, 146
definition of, 349
classical estimator, 355
consistent linear equations, 347–350
constant–modulus signal, 288–289
constrained Capon method, 298–305
continuous spectra, 86
convergence
in probability, 201
mean square, 170, 172, 201
uniform, 259
corrected Akaike information criterion, 391
correlation coefficient, 13
correlation–fitting criterion, 126
covariance function, see autocovariance sequence
covariance matrix
diagonalization of, 133
eigenvalue decomposition of, 297, 302
persymmetric, 169, 318
properties of, 5
covariance method, 93
covariance sequence, see autocovariance sequence
Cramér–Rao bound, 355–376, 379
for Gaussian distributions, 359–364
for general distributions, 358–359
for line spectra, 364–365
for rational spectra, 365–367
for spatial spectra, 367–376
for unknown model order, 357
direction of arrival, 264
direction of arrival estimation, 263–286
beamforming, 276–279
Capon method, 279–280
ESPRIT method, 285–286
Min–Norm method, 285
MUSIC method, 284
nonlinear least squares method, 281
nonparametric methods, 273–280
parametric methods, 281–286
Pisarenko method, 284
Yule–Walker method, 283
direction vector uncertainty, 294–305
Dirichlet kernel, 30
discrete Fourier transform (DFT), 25
linear transformation interpretation, 73
discrete signals, 2
discrete spectrum, 146
discrete–time Fourier transform (DTFT), 3
discrete–time system, 10
finite impulse response (FIR), 17
frequency response, 210
minimum phase, 88, 129
transfer function, 210
displacement operator, 123
displacement rank, 125
Doppler frequency, 320
Durbin’s method, 102, 108
efficiency, statistical, 357
eigenvalue, 331
of a matrix product, 333
eigenvalue decomposition, 297, 302, 330–335
eigenvector, 331
EM algorithm, 179–185
ergy spectral density, 3
Capon estimates of, 242–244
of damped sinusoids, 241
ergodic, 170
ESPRIT method
and min–norm, 202
combined with HOYW, 200
for DOA estimation, 285–286
for frequency estimation, 166–167
frequency selective, 185–193
statistical accuracy of, 167
consistent, 86, 135, 147, 152, 176, 260, 279, 355
statistically efficient, 357
unbiased, 355
Euclidean vector norm, 338
exchange matrix, 346
Expectation–Maximization algorithm, 179–185
expected value, 5
exponentially damped sinusoids, 241–244
extended Rayleigh quotient, 335
far field, 263
fast Fourier transform (FFT), 26–27
for two–sided sequences, 19
pruning in, 28
radix–two, 26–27
two–dimensional, 252, 256
zero padding and, 27
Fejer kernel, 29
filter bank methods, 207–222
and periodogram, 210–211, 231–235
APES, 244–247, 291
for gapped data, 247–250
for two–dimensional signals, 253–254
refined, 212–222
spatial APES, 305–312
Fisher information matrix, 359
flatness, spectral, 132
forward prediction, 117, 130
forward–backward approach, 168–170
frequency, 2, 3, 8
angular, 3
conversion, 3
resolution, 31
scaling, 14
spatial, 272
frequency band, 185
frequency estimation, 146–170
ESPRIT method, 166–167
forward–backward approach, 168–170
frequency-selective ESPRIT, 185–193
FRES–ESPRIT, 185–193
high–order Yule–Walker method, 155–159
Min–Norm method, 164–166
modified MUSIC method, 163
MUSIC method, 159–162
nonlinear least squares, 151–155
Pisarenko method, 162
spurious estimates, 163
two-dimensional, 193–198
frequency-selective method, 185–193
Frobenius norm, 339, 348, 350
GAPES method, 247–250
gapped data, 247–250
Gaussian distribution
circular, 361, 367, 368
Gaussian random variable
circular, 76
Cramér–Rao bound for, 359–364
moment property, 33
generalized Akaike information criterion, 390
generalized inverse, 349
Gohberg–Semencul formula, 122–125
grating lobes, 322
Hadamard matrix product, 342, 372
Hamming window, 42
Hankel matrix, 346
block, 113
Hanning window, 42
Heisenberg uncertainty principle, 67
Hermitian matrix, 330, 333–335
Hermitian square root, 342
hypothesis testing, 175
idempotent, 282, 339
impulse response, 19, 68, 210, 213, 214, 216, 265
in–phase component, 268
inconsistent linear equations, 350–353
information matrix, 359
interior point methods, 129
inverse covariances, 238
Jensen’s inequality, 183, 375
Kaiser window, 41, 42
kernel, 328
Kronecker delta, 4
Kronecker product, 253, 254
Kullback-Leibler information metric, 384–385
Lagrange multiplier, 296–297, 302
leading submatrix, 341
least squares, 18, 104, 164, 290, 291, 307, 315
spectral approximation, 17
with quadratic constraints, 296
least squares method, 90–94, 228, 243, 245, 248, 251, 254, 256
least squares solution, 350
Levinson–Durbin algorithm, 96
split, 97–101
likelihood function, 182, 356, 358, 360, 378
line spectrum, 146
linear equations
consistent, 347–350
inconsistent, 350–353
least squares solution, 350
minimum norm solution, 348
systems of, 347–353
total least squares solution, 352
linear prediction, 91, 117, 119, 130–132
linear predictive modeling, 92
linearly parameterized basis, 193–198
lowpass signal, 266
MA covariance parameterization, 127
MA parameter estimation, 125–129
MA process, see moving average process
majorization, 181–182
majorizing function, 181
matrix
centrosymmetric, 169, 318
Cholesky factor, 342
condition, 202, 349
eigenvalue decomposition, 330–335
exchange, 346
fraction, 137
Frobenius norm, 339, 348, 350
Hankel, 346
idempotent, 282, 339
inversion lemma, 347
Moore–Penrose pseudoinverse, 349
orthogonal, 330
partition, 343, 347
persymmetric, 169, 318
positive (semi)definite, 341–345
QR decomposition, 351
rank, 328
rank deficient, 329
semiunitary, 330, 334
singular value decomposition, 113, 157, 336–340
square root, 318, 342
Toeplitz, 346
trace, 331, 332
unitary, 157, 166, 202, 330, 333, 336, 344, 351
Vandermonde, 345
matrix fraction description, 137
matrix inversion lemma, 246, 347
maximum a posteriori detection, 381–384
maximum likelihood estimate, 75, 151, 356, 363, 373, 377
of covariance matrix, 317–319
maximum likelihood estimation, 378–381
regularity conditions, 379
maximum likelihood method, 182
MDL principle, 395
mean square convergence, 170
mean squared error, 28
Min–norm
and ESPRIT, 202
Min–Norm method
and ESPRIT, 202
for DOA estimation, 285
for frequency estimation, 164–166
root, 164
spectral, 164
minimization
cyclic, 180–181
majorization, 181–182
quadratic, 353–354
relaxation algorithms, 181
minimum description length, 395
minimum norm constraint, 286–288
minimum norm solution, 348
minimum phase, 88, 129
missing data, 247–250
model order selection, 357–358, 377–398
AIC rule, 387–391
BIC rule, 392–395
corrected AIC rule, 391
generalized AIC rule, 391–392
generalized information criterion, 390
Kullback-Leibler metric, 384–385
maximum a posteriori, 381–384
MDL rule, 395
multimodel, 397
modified MUSIC method, 163, 193–198
modified Yule–Walker method, 103–106
modulation, 267
Moore–Penrose pseudoinverse, 291, 349
moving average noise, 200
moving average parameter estimation, 125–129
moving average process
covariance structure, 88
definition of, 88
parameter estimation, 125–129
reflection coefficients of, 134
moving average spectral estimation, 101–103, 125–129
multimodel order selection, 397
multiple signal classification, see MUSIC
method
multivariate systems, 109–117
MUSIC method
for DOA estimation, 284
modified, 163, 325
root, 161
spectral, 161
subspace fitting interpretation, 324
narrowband, 271
nilpotent matrix, 124
NLS method, see nonlinear least squares
method
noise
complex white, 32
noise gain, 299–301
nonlinear least squares method
for direction estimation, 281–282
for frequency estimation, 151–155
nonsingular, 329
normal equations, 90
null space, 160, 328
null space basis, 193–198
order selection, see model order selection
orthogonal complement, 338
orthogonal matrix, 330
orthogonal projection, 161, 188, 189, 338
overdetermined linear equations, 104, 347, 350–353
Padé approximation, 136
parameter estimation
maximum likelihood, 378–381
PARCOR coefficient, 96
Parseval’s theorem, 4, 126
partial autocorrelation sequence, 117
partial correlation coefficients, 96
partitioned matrix, 343, 347
periodogram
and frequency estimation, 153
bias analysis of, 28–32
definition of, 22
Index 425

FFT computation of, 25–27
for two-dimensional signals, 251–252
properties of, 28–36
variance analysis of, 32–36
windowed, 47
periodogram method, 22
periodogram–based methods
 Bartlett, 49–50
 Daniell, 52–54
 refined, 48–54
 Welch, 50–52
persymmetric matrix, 169, 318
Pisarenko method
 ARMA model derivation of, 200
 for DOA estimation, 284
 for frequency estimation, 159, 162
 relation to MUSIC, 162
planar wave, 264, 271
positive (semi)definite matrices, 341–345
postwindow method, 93
power spectral density
 and linear systems, 11
 continuous, 86
 definition of, 6, 7
 properties of, 8
 rational, 87
prediction
 backward, 117
 forward, 130
 linear, 91, 117, 119, 130–132, 367
prediction error, 91, 367
prewindow method, 93
principal submatrix, 341
probability density function, 68, 75, 356, 359
projection matrix, 188, 189
projection operator, 338
QR decomposition, 351
quadratic minimization, 353–354
quadratic program, 129
quadrature component, 268
random signals, 2
range space, 160, 328
rank, 189
rank deficient, 329
rank of a matrix, 328
rank of a matrix product, 329
rational spectra, 87
Rayleigh quotient, 334
 extended, 335
rectangular window, 42
reflection coefficient, 96
 properties of, 134
region of convergence, 87
RELAX algorithm, 181
relaxation algorithms, 181
resolution
 and time–bandwidth product, 68
 and window design, 40–41
 and zero padding, 27
 for filter bank methods, 208
 for parametric methods, 155, 204
 frequency, 31
 limit, 31
 of beamforming method, 278, 320
 of Blackman–Tukey method, 38
 of Capon method, 225, 230, 238
 of common windows, 42
 of Daniell method, 53
 of periodogram, 22, 31
 of periodogram–based methods, 83
 spatial, 278, 320–323
 super–resolution, 139, 140, 147
Riccati equation, 111
Rihaczek distribution, 15
robust Capon method, 299–305
root MUSIC
 for DOA estimation, 284
 for frequency estimation, 161
row space, 328
sample covariance, 23, 49, 55, 71–73, 75, 78
sample covariance matrix
 ML estimates of, 317–319
sampling
 Shannon sampling theorem, 8
 spatial, 263, 272, 273
temporal, 3
 semi-parametric estimation, 312
semidefinite quadratic program, 129
semiunitary matrix, 330, 334
Shannon sampling theorem
 spatial, 273
temporal, 8
sidelobe, 31, 41, 42
signal modeling, 88
similarity transformation, 111, 167, 331
singular value decomposition (SVD), 113, 157, 292, 336–340
Index

sinusoidal signals
 amplitude estimation, 146
 ARMA model, 149
 covariance matrix model, 149
damped, 193–198, 241–244
 frequency estimation, 146–170
 models of, 144, 148–150
 nonlinear regression model, 148
 phase estimation, 146
two–dimensional, 251–256
skew–symmetric vector, 346
Slepian sequences, 215–216
two–dimensional, 253–254
smoothed periodogram, 221
smoothing filter, 131
spatial filter, 275, 278
spatial frequency, 272
spatial sampling, 273
spatial spectral estimation problem, 263
spectral analysis
 high–resolution, 147
 nonparametric, 2
 parametric, 2
 semi–parametric, 312
 super–resolution, 147
spectral density
energy, 3
power, 4
spectral estimation
 definition of, 1, 12
spectral factorization, 87, 126, 163
spectral flatness, 132
spectral line analysis, 146
spectral LS criterion, 126
spectral MUSIC
 for DOA estimation, 284
 for frequency estimation, 161
spectral
 coherence, 12–14
 continuous, 86
cross, 18
discrete, 146
 rational, 87
split Levinson algorithm, 97
square root of a matrix, 318, 342
stability
 for AR models, 133
 of AR estimates, 90
 of Padé approximation, 136
 of Yule–Walker estimates, 94, 133
state–space equations
 for ARMA process, 109
 minimality, 112
 nonuniqueness of, 111
 statistically efficient estimator, 357
 steering vector uncertainty, 294–305
 structure indices, 109
 subarrays, 285
submatrix
 leading, 341
 principal, 341
subspace
 and state–space representations, 109, 112–117
 noise, 161
 signal, 161
 super–resolution, 139, 147
 symmetric matrix, 330
 symmetric vector, 346
 synthetic aperture, 319
 systems of linear equations, 347–353
taper, 47
Taylor series expansion, 355
time width
 definition of, 67
 equivalent, 40, 50, 54, 69
time–bandwidth product, 40–41, 66–71
time–frequency distributions, 15
Toeplitz matrix, 346
total least squares, 104, 158, 164, 167, 352
trace of a matrix, 331
trace of a matrix product, 332
transfer function, 10
two–dimensional sinusoidal signals, 193–198
two–dimensional spectral analysis
 APES method, 254–256
 Capon method, 254–256
 periodogram, 251–252
 refined filter bank method, 253–254
two–sided sequences, 19
unbiased estimate, 355
uncertainty principle, 67
uniform linear array, 271–273
 beamforming resolution, 320
 spatial APES, 305–312
unitary matrix, 157, 166, 202, 330, 333, 336, 344, 351
Vandermonde matrix, 345
vector
 skew-symmetric, 346
 symmetric, 346
 vectorization, 253, 255

wave field, 263
 planar, 264
Welch method, 50–52
white noise
 complex, 32
 real, 36
whitening filter, 144
Wiener–Hopf equation, 18
window function
 Bartlett, 42
 Chebyshev, 41
 common, 41–42
 data and frequency dependent, 59
 design of, 39
 Hamming, 42
 Hanning, 42
 Kaiser, 41
 leakage, 31
 main lobe, 30
 rectangular, 42
 resolution, 31
 resolution–variance tradeoffs, 40–41
 sidelobes, 31

Yule–Walker equations, 90
Yule–Walker method
 for AR processes, 90
 for DOA estimation, 283
 for frequency estimation, 155–159
 modified, 103–106
 overdetermined, 104
 stability property, 94

zero padding, 26–27
zeroes
 extraneous, 286, 288
 in ARMA model, 87, 108