RETHINKING TRACTABILITY FOR
SCHEDULABILITY ANALYSIS

KuNAL AGRAWAL

Washington University in Saint Louis

SANJOY BARUAH

Washington University in Saint Louis

PonTUSs EKBERG
Uppsala University

RTSS 2023

MOVING THE GOALPOSTS FOR FUN AND PROFIT

’70s and early ’80s

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

COMPLEXITY OF UNIPROCESSOR SPORADIC SCHEDULABILITY

Implicit . Constrained Arbitrary
deadlines i deadlines ! deadlines
(d=1p) | (d<p) ' (d, p unrelated)
I I
Arbitrary
utilization
~~~~~~~~~~~
Utilization Polynomial time
bounded by for ¢ < In2and
a constant ¢ RM priorities
Arl?ltréry Polynomial time
utilization
EDF | -----------
Utilization
bounded by Polynomial time
a constant ¢




COMPLEXITY OF UNIPROCESSOR SPORADIC SCHEDULABILITY

Implicit . Constrained Arbitrary
deadlines i deadlines ! deadlines
(d=1p) | (d<p) ' (d, p unrelated)
I I
Arbitrary
utilization
~~~~~~~~~~~
Utilization Polynomial time
bounded by for ¢ < In2 and
a constant ¢ RM priorities
Arl?ltréry Polynomial time
utilization
EDF | -----------
Utilization
bounded by Polynomial time
a constant ¢

COMPLEXITY OF UNIPROCESSOR SPORADIC SCHEDULABILITY

| |
| |
Implicit . Constrained | Arbitrary
deadlines i deadlines . deadlines
(d=p) ! d<p ' (d, p unrelated)
I I
Arbitrary Weakly Weakly Weakly
utilization NP-complete NP-complete NP-hard
~~~~~~~~~~~
Polynomial time
Utilization for ¢ < In2 and Weakly Weakly
bounded by RM priorities NP-complete NP-hard
a constant ¢ for0<e<1 for0<c<1
Else NP-complete
Arbitrary - Strongly Strongly
utilization Polynomial time coNP-complete coNP-complete
EDF | -----------
Utilization Weakly Weakly
bounded by Polynomial time coNP-complete coNP-complete
a constant ¢ for0<ce<1 for0<c<1




COMPLEXITY OF UNIPROCESSOR SPORADIC SCHEDULABILITY

| |
| |
Implicit . Constrained Arbitrary
deadlines i deadlines . deadlines
(d=1p) | (d<p) ' (d, p unrelated)
I I
Arbitrary Weakly Weakly Weakly
utilization NP-complete NP-complete NP-hard
~~~~~~~~~~~
Polynomial time
Utilization for ¢ < In2 and Weakly Weakly
bounded by RM priorities NP-complete NP-hard
a constant ¢ for0<e<1 for0<c<1
Else NP-complete
Arbitrary - Strongly Strongly
utilization Polynomial time coNP-complete coNP-complete
EDF | -----------
Utilization Weakly Weakly
bounded by Polynomial time coNP-complete coNP-complete
a constant ¢ for0<e<1 for0<c<1

MOVING THE GOALPOSTS FOR FUN AND PROFIT

’70s and early ’80s

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

MOVING THE GOALPOSTS FOR FUN AND PROFIT

’70s and early ’80s

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

.

Late ’80s and ’90s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

COMPLEXITY OF UNIPROCESSOR SPORADIC SCHEDULABILITY

| |
| |
Implicit . Constrained Arbitrary
deadlines i deadlines . deadlines
(d=1p) | (d<p) ' (d, p unrelated)
I I
Arbitrary Weakly Weakly Weakly
utilization NP-complete NP-complete NP-hard
~~~~~~~~~~~
Polynomial time
Utilization for ¢ < In2 and Weakly Weakly
bounded by RM priorities NP-complete NP-hard
a constant ¢ for0<e<1 for0<c<1
Else NP-complete
Arbitrary A Strongly Strongly
utilization Polynomial time coNP-complete coNP-complete
EDF | -----------
Utilization Weakly Weakly
bounded by Polynomial time coNP-complete coNP-complete
a constant ¢ for0<e<1 for0<c<1




COMPLEXITY OF UNIPROCESSOR SPORADIC SCHEDULABILITY

Arbitrary
utilization

Utilization
bounded by
a constant ¢

Arbitrary
utilization

Utilization

bounded by
a constant ¢

| |
| |
Implicit . Constrained | Arbitrary
deadlines i deadlines . deadlines
(d=p) ! d<p ' (d, p unrelated)
I I
Weakly Weakly
NP-complete NP-complete Weakly
NP-hard
Pseudo-poly. time Pseudo-poly. time
Polynomial time Weakly Weakly
for ¢ < In2and NP-complete NP-hard
RM priorities for0<c<1 for0<ec<1

Else NP-complete

Pseudo-poly. time

Pseudo-poly. time

Polynomial time

Strongly
coNP-complete

Strongly
coNP-complete

Polynomial time

Weakly
coNP-complete
for0<ec<1

Pseudo-poly. time

Weakly
coNP-complete
for0<c<1

Pseudo-poly. time




MOVING THE GOALPOSTS FOR FUN AND PROFIT

’70s and early ’80s

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

.

Late ’80s and ’90s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)




MOVING THE GOALPOSTS FOR FUN AND PROFIT

’70s and early ’80s

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

.

Late ’80s and ’90s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

More recently

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

r




WHAT CAN BE SOLVED WITH [LPs?




WHAT CAN BE SOLVED WITH [LPs?

PSPACE

Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs?

2-EXP
NEXP
EXP

PSPACE

Ditto if we negate answers

Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs?

Ditto if we negate answers
Solvable by polynomial

number of calls to ILP
Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs?

Partitioned
FP-schedulability
(constrained deadlines)

Ditto if we negate answers

number of calls to ILP
Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs? - - -~ Upperbound

NP
Partitioned NP

EDF-schedulability

Ditto if we negate answers —= /

— Solvable by polynomial
number of calls to ILP

Partitioned
FP-schedulability
(constrained deadlines)

Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs? - - -~ Upperbound

Asynchronous
partitioned
EDF-schedulability

Partitioned

EDF-schedulability Partitioned

FP-schedulability
(constrained deadlines)

Ditto if we negate answers
Solvable by polynomial

number of calls to ILP
Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs? - - -~ Upperbound

Global
EDF-schedulability ~ =~ ~

Global

FP-schedulability 7 <_ye PSPACE

Asynchronous
partitioned
EDF-schedulability
Partitioned

EDF-schedulability Partitioned

FP-schedulability
(constrained deadlines)

Ditto if we negate answers
Solvable by polynomial

number of calls to ILP
Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs? - - -~ Upperbound

Global feasibility
(constrained deadlines)

Global
EDF-schedulability ~ ~

Global

FP-schedulability 7 <_ye PSPACE

Asynchronous
partitioned
EDF-schedulability
Partitioned

EDF-schedulability Partitioned

FP-schedulability
(constrained deadlines)

Ditto if we negate answers
Solvable by polynomial

number of calls to ILP
Solvable by one call to ILP



WHAT CAN BE SOLVED WITH [LPs? - - -~ Upperbound

Global feasibility
(constrained deadlines)

Global

EDF-schedulability = - Global feasibility

"7 (arbitrary deadlines)
Global

FP-schedulability 7 <_ye PSPACE

Asynchronous
partitioned
EDF-schedulability
Partitioned

EDF-schedulability Partitioned

FP-schedulability
(constrained deadlines)

Ditto if we negate answers
Solvable by polynomial

number of calls to ILP
Solvable by one call to ILP



How HARD 1s X5 -HARD?



How HARD IS ¥} -HARD?

The trouble with the second quantifier

Gerhard J. Woeginger'

Received: 6 February 2021/ Revised: 3 April 2021/ Accepted: 16 April 2021 / Published online: 26 April 2021
© The Author(s) 2021

Abstract

We survey optimization problems that allow natural simple formulations with one
existential and one universal quantifier. We summarize the theoretical background from
computational complexity theory, and we present a multitude of illustrating examples.
We discuss the connections to robust optimization and to bilevel optimization, and we
explain the reasons why the operational research community should be interested in
the theoretical aspects of this area.

Keywords Combinatorial optimization - Complexity theory - Polynomial hierarchy -
Bilevel optimization

1 Introduction

The United Nations Security Council consists of 15 members: there are five permanent
members (China, France, Russia, the United Kingdom, and the USA) and there are
ten non-permanent members (which respectively serve for two-year terms). In order
to pass a decision (i) at least nine of the fifteen members must agree, and furthermore



How HARD IS X5 -HARD?

“EQP -complete problems are much, much, much, much,
much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers [...]”



How HARD IS X5 -HARD?

“ZQP -complete problems are much, much, much, much,
much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers [...]”



So...



So...

Polynomial
time



So...

Polynomial
time

Pseudo-poly.
time



So...

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar)



So...

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar)



So...

Polynomial
time

Weakly
(co)NP-hard

Pseudo-poly.
time

Use ILP
(or similar)



So...

1me

Weakly
(co)NP-hard

Pseudo-poly.
time

Use ILP
(or similar)



So...

1me

Weakly
(co)NP-hard

Pseudo-poly.
time

Strongly
(co)NP-hard

Use ILP
(or similar)



So...

1me

Weakly
(co)NP-hard

Pseudopoly.
1me

Strongly
(co)NP-hard

Use ILP
(or similar)



So...

1me

Weakly
(co)NP-hard

Pseudopoly.
1me

Strongly
(co)NP-hard

Use ILP
(or similar)

»P-hard
(or HZP -hard)



So...

P al Pseudo-poly. el
1me 1me 1mi

»P-hard
(or HZP -hard)

Weakly ; Strongly ;
(co)NP-hard (co)NP-hard



So...

1me

Weakly
(co)NP-hard

el

»P-hard
(or HZP -hard)



So...

P al Pseudo-poly. el
ime time D) 1mt
Weakly ¥P-hard

(co)NP-hard (or HZP -hard)



WHERE IS PSEUDO-POLYNOMIAL TIME?

10



WHERE IS PSEUDO-POLYNOMIAL TIME?

10



WHERE IS PSEUDO-POLYNOMIAL TIME?




WHERE IS PSEUDO-POLYNOMIAL TIME?

Pseudo-polynomial
time

ADVERSARIAL
PARTITIONING

10



ADVERSARIAL PARTITIONING

Instance: Sets A and B C N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

11



ADVERSARIAL PARTITIONING

Instance: Sets A and B C N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Berit Johannes, PhD thesis, 2011

ADVERSARIAL PARTITIONING is E2P -complete.

11



ADVERSARIAL PARTITIONING

Fm )

Instance: Sets A and B C N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Berit Johannes, PhD thesis, 2011

ADVERSARIAL PARTITIONING is Z2P -complete.

“Adversarial” problems in general are relevant for security.
Many are %5 -complete.

11



ADVERSARIAL PARTITIONING

Pseudo-polynomial time algorithm

Generate the possible sizes of a partitioning of A
(using dynamic programming).
Ditto for B.

Scan the possible sizes of a partition of A for one
that prevents partitioning of B.

12



ADVERSARIAL PARTITIONING

Pseudo-polynomial time algorithm

Generate the possible sizes of a partitioning of A
(using dynamic programming).
Ditto for B.

Scan the possible sizes of a partition of A for one
that prevents partitioning of B.

12



ADVERSARIAL PARTITIONING

Pseudo-polynomial time algorithm

Generate the possible sizes of a partitioning of A
(using dynamic programming).
Ditto for B.

Scan the possible sizes of a partition of A for one
that prevents partitioning of B.

12



ADVERSARIAL PARTITIONING

Pseudo-polynomial time algorithm

Generate the possible sizes of a partitioning of A
(using dynamic programming).
Ditto for B.

Scan the possible sizes of a partition of A for one
that prevents partitioning of B.

Runtime is O((|A| + |B| + log S)S)

12



WHERE IS PSEUDO-POLYNOMIAL TIME?

Pseudo-polynomial
time

ADVERSARIAL
PARTITIONING

13



So...

1me

Weakly
(co)NP-hard

Pseudo-poly.

time

?

el

»P-hard
(or H2P -hard)

14



So...

Weakly ¥P-hard
(co)NP-hard (or H2P -hard)

(ADVERSARIAL PARTITIONING)

14



So...

Weakly
(co)NP-hard

»P-hard
(or H2P -hard)

(ADVERSARIAL PARTITIONING)

14



So...

FPTAS

P al ) Pseudo-poly ) el )
1me€ time M @

Weakly ¥P-hard
(co)NP-hard (or H2P -hard)

(ADVERSARIAL PARTITIONING)

14



So...

FPTAS

P al ) Pseudo-poly ) el )
1me€ time M @

Weakly ¥P-hard
(co)NP-hard (or H2P -hard)

(ADVERSARIAL PARTITIONING)

14



So...

Weakly
(co)NP-hard

(MEMORY-CONSTRAINED TASK SELECTION)

14



So...

P al
1me

Weakly
(co)NP-hard

Pseudo-poly. Use ILP
time (or similar)

(MEMORY-CONSTRAINED TASK SELECTION)

14



So...

o

P al Pseudo-poly. Use ILP @
ime time (or similar)

Weakly
(co)NP-hard

(MEMORY-CONSTRAINED TASK SELECTION)

14



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Pseudo-polynomial time: poly(n, N)

15



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Pseudo-polynomial time: poly(n, N)

But even for “nice” problems, we expect N > n.

15



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Pseudo-polynomial time: poly(n, N)

But even for “nice” problems, we expect N > n.

4

Anything but linear in N can quickly get out of hand.

15



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Pseudo-polynomial time: poly(n, N)

But even for “nice” problems, we expect N > n.

4

Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O (n* x N).

15



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Pseudo-polynomial time: poly(n, N)

But even for “nice” problems, we expect N > n.

4

Anything but linear in N can quickly get out of hand.

We want
é@ this

An algorithm is pseudo-linear if it is O (n* x N).

15



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

16



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Changing time units should preferably not change running time.

16



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Changing time units should preferably not change running time.

4

Running times should be poly(n, N/G), where
G is the GCD of the numerical parameters.

16



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Changing time units should preferably not change running time.

4

Running times should be poly(n, N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n, N/G) is robust.

16



A MORE FINE-GRAINED TAKE ON PSEUDO-POLYNOMIAL TIME

Changing time units should preferably not change running time.

4

Running times should be poly(n, N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n, N/G) is robust.

We want é

this as well

16



V'Thank you!
&

3Questions?



