
RethinKing TRactability foR
Schedulability Analysis

Kunal AgRawal
Washington University in Saint Louis

Sanjoy BaRuah
Washington University in Saint Louis

Pontus EKbeRg
Uppsala University

RTSS 2023

Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to solve non-pseudo-polynomial time problems.

More recently

2

Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time

Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3

Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time

Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3

Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time
Weakly

coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3

Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time
Weakly

coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3

Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

4

Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

4

Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

Weakly
NP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
NP-hard

for 0 < c < 1

Pseudo-poly. time

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time
Weakly

coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

5

Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

Weakly
NP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
NP-hard

for 0 < c < 1

Pseudo-poly. time

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

5

Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

6

Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

6

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

7

How haRd is ΣP
2 -haRd?

“ΣP
2 -complete problems are much, much, much, much,

much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers […].”

😱

8

How haRd is ΣP
2 -haRd?

“ΣP
2 -complete problems are much, much, much, much,

much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers […].”

😱

8

How haRd is ΣP
2 -haRd?

“ΣP
2 -complete problems are much, much, much, much,

much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers […].”

😱

8

How haRd is ΣP
2 -haRd?

“ΣP
2 -complete problems are much, much, much, much,

much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers […].”

😱
8

So…

Polynomial
time

Pseudo-poly.
time ?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time ?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?
Use ILP

(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar)

😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time

?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

9

So…

Polynomial
time

Pseudo-poly.
time ?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

9

WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

10

WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

10

WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

10

WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

10

AdveRsaRial PaRtitioning

Instance: Sets A and B ⊂ N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Definition

AdveRsaRial PaRtitioning is ΣP
2 -complete.

Berit Johannes, PhD thesis, 2011

“Adversarial” problems in general are relevant for security.
Many are ΣP

2 -complete.

11

AdveRsaRial PaRtitioning

Instance: Sets A and B ⊂ N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Definition

AdveRsaRial PaRtitioning is ΣP
2 -complete.

Berit Johannes, PhD thesis, 2011

“Adversarial” problems in general are relevant for security.
Many are ΣP

2 -complete.

11

AdveRsaRial PaRtitioning

Instance: Sets A and B ⊂ N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Definition

AdveRsaRial PaRtitioning is ΣP
2 -complete.

Berit Johannes, PhD thesis, 2011

“Adversarial” problems in general are relevant for security.
Many are ΣP

2 -complete.
11

AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12

AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12

AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12

AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12

WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

13

So…

Polynomial
time

Pseudo-poly.
time ?

✓

Use ILP
(or similar) 😱

FPTAS

?✓
Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

FPTASFPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?✓
Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

FPTASFPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?

✓
Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

FPTASFPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?

✓

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱

FPTASFPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?

✓

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱

FPTASFPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?

✓

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

FPTAS

FPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?

✓
Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

FPTAS

FPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

So…

Polynomial
time

Pseudo-poly.
time

?

✓
Use ILP

(or similar) 😱

FPTAS

?

✓
Polynomial

time
Pseudo-poly.

time
Use ILP

(or similar) 😱

Polynomial
time

Pseudo-poly.
time

Use ILP
(or similar) 😱

FPTAS

FPTAS

Weakly
(co)NP-hard

Strongly
(co)NP-hard

ΣP
2 -hard

(or ΠP
2 -hard)

ΣP
2 -hard

(or ΠP
2 -hard)

(AdveRsaRial PaRtitioning)

(MemoRy-ConstRained TasK Selection)

14

A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N)

But even for “nice” problems, we expect N ≫ n.

⇓
Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O(nk × N).

Definition �

We want
this

15

A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N)

But even for “nice” problems, we expect N ≫ n.

⇓
Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O(nk × N).

Definition �

We want
this

15

A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N)

But even for “nice” problems, we expect N ≫ n.

⇓
Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O(nk × N).

Definition �

We want
this

15

A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N)

But even for “nice” problems, we expect N ≫ n.

⇓
Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O(nk × N).

Definition

�

We want
this

15

A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N)

But even for “nice” problems, we expect N ≫ n.

⇓
Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O(nk × N).

Definition �

We want
this

15

A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16

A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16

A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16

A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16

A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16

∀Thank you!
⋄

∃Questions?

