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Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to solve non-pseudo-polynomial time problems.

More recently
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Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time

Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3



Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time

Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3



Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time
Weakly

coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3



Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time
Weakly

coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

3



Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

4



Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

4



Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

Weakly
NP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
NP-hard

for 0 < c < 1

Pseudo-poly. time

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time
Weakly

coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

5



Complexity of unipRocessoR spoRadic schedulability
Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

Weakly
NP-complete

Weakly
NP-hard

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-complete

Pseudo-poly. time

Weakly
NP-hard

Utilization
bounded by
a constant c

Polynomial time
for c ⩽ ln 2 and
RM priorities

Else NP-complete

Weakly
NP-complete
for 0 < c < 1

Weakly
NP-hard

for 0 < c < 1

Weakly
NP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
NP-hard

for 0 < c < 1

Pseudo-poly. time

EDF

Arbitrary
utilization

Polynomial time Strongly
coNP-complete

Strongly
coNP-complete

Utilization
bounded by
a constant c

Polynomial time

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

Weakly
coNP-complete
for 0 < c < 1

Pseudo-poly. time

5



Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

6



Moving the goalposts foR fun and pRofit

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

’70s and early ’80s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

Late ’80s and ’90s

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.

More recently

6



What can be solved with ILPs?

Solvable by polynomial
number of calls to ILP

Solvable by one call to ILP

Ditto if we negate answers

u

Partitioned
FP-schedulability

(constrained deadlines)

u

Partitioned
EDF-schedulability

Upper bound

u

Asynchronous
partitioned

EDF-schedulability

u

u

Global
EDF-schedulability

Global
FP-schedulability

u

Global feasibility
(constrained deadlines)

u

Global feasibility
(arbitrary deadlines)

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...
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How haRd is ΣP
2 -haRd?

“ΣP
2 -complete problems are much, much, much, much,

much harder than any problem in NP or coNP and any-
thing that can be attacked via ILP solvers […].”

😱
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So…

Polynomial
time

Pseudo-poly.
time ?

Use ILP
(or similar) 😱

Weakly
(co)NP-hard

Strongly
(co)NP-hard
Strongly

(co)NP-hard
ΣP
2 -hard

(or ΠP
2 -hard)
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WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...
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AdveRsaRial PaRtitioning

Instance: Sets A and B ⊂ N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Definition

AdveRsaRial PaRtitioning is ΣP
2 -complete.

Berit Johannes, PhD thesis, 2011

“Adversarial” problems in general are relevant for security.
Many are ΣP

2 -complete.
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AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12



AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12



AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12



AdveRsaRial PaRtitioning

1 Generate the possible sizes of a partitioning of A
(using dynamic programming).

2 Ditto for B.
3 Scan the possible sizes of a partition of A for one

that prevents partitioning of B.

Pseudo-polynomial time algorithm

Runtime is O((|A|+ |B|+ log S)S)

12



WheRe is pseudo-polynomial time?

Pseudo-polynomial
time

u

AdveRsaRial
PaRtitioning

P
NP

NP-C

coNP

coNP-C
NPNP
=

ΣP
2

ΣP
2-C

coNPNP
=

ΠP
2

ΠP
2-C PNP = ∆P

2

PH...

PSPACE

EXP

NEXP

2-EXP

...

13



So…

Polynomial
time

Pseudo-poly.
time ?

✓

Use ILP
(or similar) 😱

FPTAS

?✓
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time
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time
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time
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time
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A moRe fine-gRained taKe on pseudo-polynomial time

Pseudo-polynomial time: poly(n,N )

But even for “nice” problems, we expect N ≫ n.

⇓
Anything but linear in N can quickly get out of hand.

An algorithm is pseudo-linear if it is O(nk × N ).

Definition �

We want
this
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A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16



A moRe fine-gRained taKe on pseudo-polynomial time

Changing time units should preferably not change running time.

⇓
Running times should be poly(n,N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n,N/G) is robust.

Definition

�We want
this as well

16



∀Thank you!
⋄

∃Questions?


