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Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)
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’70s and early ’80s

Polynomial-time schedulability tests (Liu and Layland’s
utilization bounds for implicit-deadline EDF end FP, etc.)

.

Late ’80s and ’90s

Pseudo-polynomial time tests (Response-time analysis for
FP, processor-demand analysis for EDF, etc.)

More recently

Integer Linear Programming (ILP) and similar optimized
tools to implement non-pseudo-polynomial time tests.
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Abstract

We survey optimization problems that allow natural simple formulations with one
existential and one universal quantifier. We summarize the theoretical background from
computational complexity theory, and we present a multitude of illustrating examples.
We discuss the connections to robust optimization and to bilevel optimization, and we
explain the reasons why the operational research community should be interested in
the theoretical aspects of this area.

Keywords Combinatorial optimization - Complexity theory - Polynomial hierarchy -
Bilevel optimization

1 Introduction

The United Nations Security Council consists of 15 members: there are five permanent
members (China, France, Russia, the United Kingdom, and the USA) and there are
ten non-permanent members (which respectively serve for two-year terms). In order
to pass a decision (i) at least nine of the fifteen members must agree, and furthermore
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Fm )

Instance: Sets A and B C N, and two bins of capacity S.

Question: Can the items in A be partitioned upon the bins
such that the items in B cannot be partitioned upon the
remaining capacities?

Berit Johannes, PhD thesis, 2011

ADVERSARIAL PARTITIONING is Z2P -complete.

“Adversarial” problems in general are relevant for security.
Many are %5 -complete.
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ADVERSARIAL PARTITIONING

Pseudo-polynomial time algorithm

Generate the possible sizes of a partitioning of A
(using dynamic programming).
Ditto for B.

Scan the possible sizes of a partition of A for one
that prevents partitioning of B.

Runtime is O((|A| + |B| + log S)S)
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Changing time units should preferably not change running time.

4

Running times should be poly(n, N/G), where
G is the GCD of the numerical parameters.

A running time of poly(n, N/G) is robust.

We want é

this as well
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