Rethinking Tractability for Schedulability Analysis

> KUNAL AGRAWAL Washington University in Saint Louis

> SANJOY BARUAH Washington University in Saint Louis

> > **PONTUS EKBERG** Uppsala University

> > > RTSS 2023

Moving the goalposts for fun and profit

'70s and early '80s

Polynomial-time schedulability tests (Liu and Layland's utilization bounds for implicit-deadline EDF end FP, etc.)

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant <i>c</i>	Polynomial time for $c \leq \ln 2$ and RM priorities Else NP-complete	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leqslant p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant c	Polynomial timefor $c \leq \ln 2$ andRM prioritiesElse NP-complete	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

Moving the goalposts for fun and profit

'70s and early '80s

Polynomial-time schedulability tests (Liu and Layland's utilization bounds for implicit-deadline EDF end FP, etc.)

MOVING THE GOALPOSTS FOR FUN AND PROFIT

'70s and early '80s

Polynomial-time schedulability tests (Liu and Layland's utilization bounds for implicit-deadline EDF end FP, etc.)

Late '80s and '90s

Pseudo-polynomial time tests (Response-time analysis for FP, processor-demand analysis for EDF, etc.)

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leqslant p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant c	Polynomial timefor $c \leq \ln 2$ andRM prioritiesElse NP-complete	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leqslant p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete Pseudo-poly. time	Weakly NP-complete Pseudo-poly. time	Weakly NP-hard
	Utilization bounded by a constant <i>c</i>	Polynomial time for <i>c</i> ≤ ln 2 and RM priorities Else NP-complete	Weakly NP-complete for $0 < c < 1$ Pseudo-poly. time	Weakly NP-hard for $0 < c < 1$ Pseudo-poly. time
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant c	Polynomial time	Weakly coNP-complete for $0 < c < 1$ Pseudo-poly. time	Weakly coNP-complete for $0 < c < 1$ Pseudo-poly. time

MOVING THE GOALPOSTS FOR FUN AND PROFIT

'70s and early '80s

Polynomial-time schedulability tests (Liu and Layland's utilization bounds for implicit-deadline EDF end FP, etc.)

Late '80s and '90s

Pseudo-polynomial time tests (Response-time analysis for FP, processor-demand analysis for EDF, etc.)

MOVING THE GOALPOSTS FOR FUN AND PROFIT

'70s and early '80s

Polynomial-time schedulability tests (Liu and Layland's utilization bounds for implicit-deadline EDF end FP, etc.)

Late '80s and '90s

Pseudo-polynomial time tests (Response-time analysis for FP, processor-demand analysis for EDF, etc.)

More recently

Integer Linear Programming (ILP) and similar optimized tools to implement non-pseudo-polynomial time tests.

The trouble with the second quantifier

Gerhard J. Woeginger¹

Received: 6 February 2021 / Revised: 3 April 2021 / Accepted: 16 April 2021 / Published online: 26 April 2021 © The Author(s) 2021

Abstract

We survey optimization problems that allow natural simple formulations with one existential and one universal quantifier. We summarize the theoretical background from computational complexity theory, and we present a multitude of illustrating examples. We discuss the connections to robust optimization and to bilevel optimization, and we explain the reasons why the operational research community should be interested in the theoretical aspects of this area.

Keywords Combinatorial optimization · Complexity theory · Polynomial hierarchy · Bilevel optimization

1 Introduction

The United Nations Security Council consists of 15 members: there are five permanent members (China, France, Russia, the United Kingdom, and the USA) and there are ten non-permanent members (which respectively serve for two-year terms). In order to pass a decision (i) at least nine of the fifteen members must agree, and furthermore

The trouble with the second quantifier

Gerhard J. Woeginger¹ 💿

" Σ_2^{P} -complete problems are much, much, much, much, much harder than any problem in NP or coNP and anything that can be attacked via ILP solvers [...]."

the theoretical aspects of this area.

Keywords Combinatorial optimization · Complexity theory · Polynomial hierarchy · Bilevel optimization

1 Introduction

The United Nations Security Council consists of 15 members: there are five permanent members (China, France, Russia, the United Kingdom, and the USA) and there are ten non-permanent members (which respectively serve for two-year terms). In order to pass a decision (i) at least nine of the fifteen members must agree, and furthermore

The trouble with the second quantifier

Gerhard J. Woeginger¹ 💿

" Σ_2^{P} -complete problems are much, much, much, much, much harder than any problem in NP or coNP and anything that can be attacked via ILP solvers [...]."

the theoretical aspects of this area.

Keywords Combinatorial optimizati Bilevel optimization

1 Introduction

The United Nations Security Council consists of 15 members: there are five permanen members (China, France, Russia, the United Kingdom, and the USA) and there are ten non-permanent members (which respectively serve for two-year terms). In order to pass a decision (i) at least nine of the fifteen members must agree, and furthermore.

Polynomial time

Weakly (co)NP-hard
$$\rightarrow$$
 (co)NP-hard \rightarrow (co)NP-hard (or $\Pi_2^{\rm P}$ -hard)

Weakly (co)NP-hard
$$\rightarrow$$
 (co)NP-hard \rightarrow Σ_2^{P} -hard (or Π_2^{P} -hard)

Where is pseudo-polynomial time?

Where is pseudo-polynomial time?

WHERE IS PSEUDO-POLYNOMIAL TIME?

Where is pseudo-polynomial time?

Definition

Instance: Sets *A* and $B \subset \mathbb{N}$, and two bins of capacity *S*.

Question: Can the items in *A* be partitioned upon the bins such that the items in *B* cannot be partitioned upon the remaining capacities?

Definition

Instance: Sets *A* and $B \subset \mathbb{N}$, and two bins of capacity *S*.

Question: Can the items in *A* be partitioned upon the bins such that the items in *B* cannot be partitioned upon the remaining capacities?

Berit Johannes, PhD thesis, 2011

Adversarial Partitioning is Σ_2^{P} -complete.

Definition

Instance: Sets *A* and $B \subset \mathbb{N}$, and two bins of capacity *S*.

Question: Can the items in *A* be partitioned upon the bins such that the items in *B* cannot be partitioned upon the remaining capacities?

Berit Johannes, PhD thesis, 2011

Adversarial Partitioning is Σ_2^{P} -complete.

"Adversarial" problems in general are relevant for security. Many are Σ_2^P -complete.

Pseudo-polynomial time algorithm

- Generate the possible sizes of a partitioning of *A* (using dynamic programming).
- 2 Ditto for *B*.
- 3 Scan the possible sizes of a partition of *A* for one that prevents partitioning of *B*.

Pseudo-polynomial time algorithm

Generate the possible sizes of a partitioning of *A* (using dynamic programming).

2 Ditto for *B*.

3 Scan the possible sizes of a partition of *A* for one that prevents partitioning of *B*.

Pseudo-polynomial time algorithm

- Generate the possible sizes of a partitioning of *A* (using dynamic programming).
- 2 Ditto for *B*.
- 3 Scan the possible sizes of a partition of *A* for one that prevents partitioning of *B*.

Pseudo-polynomial time algorithm

- Generate the possible sizes of a partitioning of *A* (using dynamic programming).
- 2 Ditto for *B*.
- 3 Scan the possible sizes of a partition of *A* for one that prevents partitioning of *B*.

Runtime is
$$O((|A| + |B| + \log S)S)$$

Where is pseudo-polynomial time?

(Memory-Constrained Task Selection)

(Memory-Constrained Task Selection)

(Memory-Constrained Task Selection)

Pseudo-polynomial time: poly(n, N)

Pseudo-polynomial time: poly(n, N)

But even for "nice" problems, we expect $N \gg n$.

Pseudo-polynomial time: poly(n, N)

But even for "nice" problems, we expect $N \gg n$.

Anything but <u>linear</u> in *N* can quickly get out of hand.

Pseudo-polynomial time: poly(n, N)

But even for "nice" problems, we expect $N \gg n$.

Anything but <u>linear</u> in *N* can quickly get out of hand.

But even for "nice" problems, we expect $N \gg n$.

Anything but <u>linear</u> in *N* can quickly get out of hand.

Changing time units should preferably not change running time.

Changing time units should preferably not change running time.

Running times should be poly(n, N/G), where *G* is the GCD of the numerical parameters.

Changing time units should preferably not change running time.

Running times should be poly(n, N/G), where *G* is the GCD of the numerical parameters.

Definition

A running time of poly(n, N/G) is *robust*.

Changing time units should preferably not change running time.

Running times should be poly(n, N/G), where *G* is the GCD of the numerical parameters.

Definition

A running time of poly(n, N/G) is *robust*.

∀Thank you!↓∃Questions?