
Who’s Afraid of Butterflies?
A Close Examination of the Butterfly Attack
Sanjoy Baruah∗, Pontus Ekberg†, Mehdi Hosseinzadeh‡, Ao Li∗, Bryan Ward§, and Ning Zhang∗

∗Washington University in St Louis. Email: {baruah, ao, zhang.ning}@wustl.edu
†Uppsala University. Email: pontus.ekberg@it.uu.se

‡Washington State University. Email: mehdi.hosseinzadeh@wsu.edu
§Vanderbilt University. Email: bryan.ward@vanderbilt.edu

Abstract—The Butterfly Attack, introduced in an RTSS 2019
paper, was billed as a new kind of timing attack against control
loops in cyber-physical systems. We conduct a close inspection of
the Butterfly Attack in order to identify the root vulnerability
that it exploits, and show that an appropriate application of
real-time scheduling theory provides an effective countermeasure.
We propose improved defenses against this and similar attacks by
drawing upon techniques from real-time scheduling theory, control
theory, and systems implementation, that are both provably secure
and are able to make efficient use of computing resources.

I. INTRODUCTION

Mahfouzi et al. [1] had introduced the Butterfly Attack in
a prior RTSS, billing it as “a new attack scenario against
cyber-physical systems that carefully exploits the sensitivity
of control applications with respect to the implementation on
the underlying execution platforms.” The principle behind the
Butterfly Attack (which we detail in Section II) is clever and
conceptually very elegant; its effectiveness was demonstrated
in [1] via a pair of case studies that were conducted in simula-
tion. We have conducted a close investigation of the Butterfly
Attack with the objective of understanding its significance and
its applicability, and in order to develop effective mitigations
— this manuscript reports our findings.

The Butterfly Attack [1]. Let us first provide a brief and
superficial description of the Butterfly Attack; please see
Section II for a more detailed discussion. It is assumed that
a safety-critical control loop is implemented as a periodic
task [2]; this task comprises part of a system that is modeled
as a collection of independent periodic tasks and scheduled
for execution upon a shared preemptive processor using the
Rate-Monotonic (RM) fixed-priority scheduling algorithm [2].
This periodic task implementing the safety-critical control
loop is the target task for the Butterfly Attack. There is a
different entry task through which the attack is launched, that
has higher RM scheduling priority than the target task, but
is only responsible for less critical operations and therefore
not as well protected as the target task. A malicious adversary
launches the Butterfly Attack by interfering with the execution
of the entry task so that it changes its timing characteristics
in an apparently harmless manner: having it trigger successive
invocations (release successive “jobs”) farther than its period
parameter apart.

This change in the timing characteristics of the entry task
causes in turn a change in the timing characteristics of the
target task in a manner that had not been anticipated in the
analysis that was conducted prior to run-time, and causes the
control loop associated with the entry task to become unstable;
since this control loop is safety-critical this compromises the
safety of the system.

Protection against Butterfly Attacks. We will discuss this
in greater detail in Section II-C, but briefly stated, Butterfly
Attacks are successful against systems that are modeled using
the periodic task model for the purposes of pre-runtime stability
analysis. An effective preventative measure against Butterfly
Attacks is straightforward: rather than using the periodic task
model during stability analysis, instead model the system using
the sporadic task model.

Improving the implementation. Although the straightforward
fix discussed in the preceding paragraph does indeed provide
adequate protection against Butterfly Attacks, it could poten-
tially yield system implementations that make inefficient use of
platform computing resources. (This equivalently means that it
may be infeasible to implement the system in a secure manner
upon the computing resources that are available.) We will
see that efficiency of the implementation can be significantly
enhanced via innovations in real-time scheduling theory and in
control theory. Additionally, accurate measurement of system
overheads, and the development of novel techniques for
minimizing such overheads, enables us to best exploit these
innovations and allows for a rational trade-off between security
and implementation efficiency.

The big picture take-away message of our investigation of the
Butterfly Attack has been that the concurrent consideration
of real-time, control, and systems security issues is needed in
order to obtain correct and resource-efficient implementations
of secure CPS’s. We have accordingly assembled a team
of investigators with expertise in scheduling, control, and
systems security in order to examine the Butterfly Attack from
three perspectives –Real-Time Scheduling, Control Theory,
and Systems Implementation– to better understand and to
propose defenses against this and similar attacks that are both
provably secure and are able to make efficient use of platform
computing resources. Our technical contributions fall into



three broad categories. In real-time scheduling, we devise a
scheduling-theoretic countermeasure to Butterfly Attacks by
essentially replacing the periodic task model that is used for
pre-runtime stability analysis with the sporadic task model,
and propose two techniques to improve the resource-efficiency
of the secure system implementation (equivalently, make it
more likely that the secure system will be deemed feasible
to implement upon the available computing platform). From
the perspective of control theory, we provide simulation-based
evidence to advocate in favor of considering double-sided jitter
(rather than single-sided jitter – these terms are explained in
Section IV); for double-sided jitter, we develop algorithms for
choosing controller parameters (latency and jitter) in a manner
that makes it more likely that stability will be maintained. We
also experimentally (again via simulation) demonstrate how
hard it is to successfully launch a Butterfly Attack, by showing
that merely changing the timing characteristics of the target task
once is rarely sufficient for an attack to succeed: a sustained
attack that forces the timing characteristics of the target task
to change in very specific ways over a extended interval of
time, is needed for the attack to have any real effect. Regarding
our efforts in computer systems security, we have attempted to
replicate the case studies that were conducted in [1] only in
simulation, upon actual (i.e., physical) systems, but were largely
unsuccessful in replicating the successes achieved in [1]; here
we report on the key challenges in realizing Butterfly Attacks
on physical platforms.

Organization. The remainder of this paper is organized in
the following manner. We describe the Butterfly Attack [1] in
Section II. In Section III, we describe how we have applied
scheduling theory to strengthen systems against Butterfly
Attacks, while simultaneously enhancing the efficiency of
implementation. In Section IV we report on our investigations
in applying control theory for similar purposes. In Section V
we seek to identify the reasons behind our failure to replicate
the simulation-based successful attacks of [1] in practice upon
physical systems. We conclude in Section VI by providing
some context to the research efforts reported here.

II. THE BUTTERFLY ATTACK

In this section we describe the Butterfly Attack as it is detailed
in [1], providing explanations from control theory and real-time
scheduling as needed.

A. THE TARGET: A CRITICAL CONTROL LOOP

Since the Butterfly Attack is based on destabilizing a control
loop, let us start out by taking a closer look at control loops.
A control loop seeks to optimize the performance of a plant,
whilst maintaining its stability. To achieve this, it repeatedly
executes a “sense-compute-apply” cycle –see Figure 1– by
carrying out the following steps.

1) Selecting a period (usually denoted ‘h’ in the control
literature) at which to repeat the sense-compute-apply cycle.

PLANT

CONTROLLER

control signal plant output

apply sense
compute

Fig. 1. A generic control loop: the sense-compute-apply cycle

2) For each k ∈ N, reading in (“sensing”) the plant output at
some time-instant within the interval

[kh− Jin, kh+ Jin]

Here Jin is called the sampling jitter (or input jitter) of the
implementation. It is assumed in [1] that successive sensing
operations happen exactly the same duration –the period–
apart (i.e., it is assumed in [1] that sampling jitter = 0).
We will continue with this assumption in this paper.

3) Using the sensed plant output to compute the control signal,
and subsequently applying it to the plant; the duration
of time that elapses between sensing and the subsequent
application of the computed control signal is assumed to
always lie within the interval

[L− J, L+ J ] (1)

for some L, J ∈ R+. Here L is called the latency and J
the output jitter (or when input jitter is assumed to equal
zero as is the case here, simply jitter) of the control loop
implementation.
It is assumed in [1] that J + L ≤ h and J − L ≥ 0; we
will continue with this assumption in this paper.

The stability region of a control loop (see Figure 2 for an
example) is a region on the jitter-versus-latency plane that
defines the latency-jitter value combinations for which the
control loop is stable. Specifically, the latency region specifies
for each possible latency value (plotted on the x axis), the
range of jitter values (plotted on the y axis) for which it
can be guaranteed that the stability of the control loop is not
compromised.

In [1], the stability regions for controllers are determined
by using a methodology developed for this purpose that was
reported by Cervin [3]; specifically, by making use of the “Jitter
Margin” toolbox that is discussed in [3]. (The plot of Figure 2
above is generated by the Jitter Margin toolbox.).

B. MODELING TIMING BEHAVIOR

Mahfouzi et al. [1], model the timing behavior of a safety-
critical cyber-physical system as a collection T of independent
periodic tasks [2] τ1, τ2, . . . , τn that is scheduled upon a shared
preemptive processor using Fixed-Priority (FP) scheduling with



Fig. 2. Illustrating the stability region – this figure is taken from [1]

rate-monotonic priority assignment.1 The control loop that is
the target of attack is thus modeled as one of the periodic tasks,
and is referred to as the target task (or controller task). Each
τi ∈ T is characterized by a period hi, and a lower bound cbi
and upper bound cwi on its actual execution duration each time
it is executed. Task priorities are assigned according to the
rate-monotonic rule: tasks with smaller periods have greater
scheduling priority.

C. HOW THE BUTTERFLY ATTACK IS LAUNCHED

The Butterfly Attack is defined as follows in [1]:

Butterfly Attack (from [1, Definition 2])

“Indirect manipulation of temporal properties of a less
critical task τj to modify the schedule of a more
critical task τi such that the application Λi (τi relates
to application Λi) is out of its expected behaviour is
referred to as Butterfly attack.”

We seek to emphasize a couple of points from this definition:

1) The use of the term “critical tasks”: The task model in [1]
assigns a criticality level to each task in the notation and
spirit of Vestal [4], but does not make further use of the
concept of mixed criticality (as is detailed in, e.g., the survey
by Burns and Davis [5] and the hundreds of references
cited there). As best as we can understand, it seems that
for [1] a (more) critical task is one that can have a severe
impact on plant/ system safety and is therefore designed
to be specially secure from external attacks (whereas the
remaining –less- or non-critical– tasks are not necessarily
secure from external attacks).

1It is pointed out in [1] that the Butterfly Attack may be adapted to other
algorithms/ workload models; however, such generalizations are not really
explored in further detail.

2) The reference to “expected behaviour” in the definition
merits discussion. It appears that the expected behavior
of the application Λi alluded to in the definition above is
any of the range of behaviors that Λi may have, given the
behaviors of τi that are predicted by pre-run-time analysis.

As can be seen from the definition above, the threat model
in the Butterfly Attack is as follows: A different task (the
“less critical task τj” mentioned in the definition above, also
referred to elsewhere in [1] as the entry or adversary task)
has its timing characteristics changed “for the better” — the
execution duration of some of its jobs is reduced to below its
best-case execution time parameter value, or it releases jobs
further apart than its period.

Pre-run-time analysis of the system as described in [1] consists
of the following steps.

1) The worst-case response time Rw
i and best-case response

time Rb
i of τi are computed.

2) The latency Li of the controller task is set equal to Rb
i , and

the jitter Ji to
(
Rw

i −Rb
i

)
. This is equivalent to assuming

that the controller has latency equal to Rb
i , and any delay

beyond this latency is considered to be jitter.
3) It is then checked whether this pair of (Li, Ji) values lies

within the stability region of the jitter-versus-latency plane
of the controller being modeled by task τi; if so, task τi is
declared to be safe from attacks that may compromise its
stability.

We now discuss why such pre-runtime analysis is vulnerable
to the Butterfly Attack. Recall that the threat model has two
dimensions: (i) the entry task τj may reduce its execution dura-
tion (this dimension is dealt with by computing the minimum
response time of τi’s job in the synchronous arrival sequence);
or (ii) it may increase the duration between successive job
arrivals. This second dimension to the threat model in essence
implies that the periodic task model is not the appropriate
choice for modeling the timing behavior of the recurrent tasks
in the system2. Indeed, it is not hard to see that the response
time of τi’s job is minimized if all the remaining tasks delay
the release of their jobs by an arbitrarily large duration; in this
event, τi’s job executes without contention and its response
time is therefore simply its own execution duration, which is,
as per the model adopted in [1], lower-bounded by cbi . Hence
a safe lower bound on Rb

i is given by task τi’s own best-
case execution time parameter cbi ; in the absence of additional
information about the remaining tasks, this is also the tightest
lower bound one is able to obtain.

III. APPLYING REAL-TIME SCHEDULING THEORY

We now specify a series of adaptations to modify and generalize
the pre-runtime analysis of a system modeled as in [1] (and

2This is because FP-schedulability of periodic task systems is not sustain-
able [6]–[8] with respect to the period parameter: a periodic task system that
is schedulable may cease to be so if the period parameter of one or more of
the tasks in it is increased.



described in Section II above), that together serve to (i) render
the system safe from Butterfly Attacks; and (ii) enhance the
efficiency of the implementation. The modifications put forth
in this section are all primarily based on the application, in
a security-cognizant and control-aware manner, of principles
from real-time scheduling theory.

Our first (and obvious) adaptation is to consider the task
system T to be a sporadic task system rather than a periodic
one, and hence replace the computation of Rb

i [1, Eqn (6)] with
the safe upper bound that we had discussed in Section II-C
above:

Rb
i ← cbi

This provides an adequate countermeasure to Butterfly Attacks:
no manipulation of any number of entry tasks will cause the
target task to operate outside its stability region.

A consequence. Observe that this bound is almost always
significantly smaller than the value that would be computed
by [1, Eqn (6)], and hence we end up with a smaller value of
Li and a larger value of Ji. As a general rule, the boundary
of the stability region in the jitter-versus-latency plot (such
as Figure 2) has a slope > −1: i.e., going leftwards by an
amount ∆ results in an increase in the permitted jitter that
is < ∆. Hence it is quite possible that a control loop that
was deemed to be within the stability region under the pre-
runtime analysis described in [1] will now be seen to not lie
within the stability region after all, and hence systems that
were previously declared to be stable will now be considered
potentially unstable.

Under the assumption that at least some of the tasks (e.g., the
critical ones) are not vulnerable to the attacker being able
to delay the release of their jobs,3 our second adaptation
seeks to compute an improved (i.e., a larger) value for Rb

i .
Under this assumption, this subset of tasks are all periodic
(rather than sporadic), and it is not hard to show that Rb

i ,
the best-case response time of τi, is equal to the smallest
response time that is experienced by any of τi’s jobs in the
FP schedule of the synchronous arrival sequence of just
these periodic tasks over an interval from zero to the least
common multiple of their periods. This smallest response
time of any of τi’s jobs is easily determined by simulating
the schedule. Since such simulation takes time proportional to
the least common multiple of the periods, one may wonder
whether one can do better; unfortunately, the answer appears
to be NO. This is because we show in the appendix that the
Best-Case Response Time (BCRT) Problem, defined as follows:

3This seems a reasonable assumption, since it is already assumed in [1]
that the target task itself is secure against such attacks; hence other critical
tasks are also likely to be similarly secure. In the event that there are no tasks
other than τi that are invulnerable to such an attack, this modification has no
impact, positive or negative, on the overall implementation.

The Best-Case Response-Time (BCRT) Problem

INSTANCE: An FP-scheduled sporadic task system T
(with best- and worst-case execution times specified),
and a positive integer a.

QUESTION: Does each job of the lowest-priority task
in T have a response time ≥ a in the schedule of its
synchronous arrival sequence?

is coNP-hard. This essentially implies that we should not expect
to find a polynomial-time algorithm for solving it; additionally,
the fact that this problem is coNP-hard (rather than NP-hard,
as FP-schedulability is known to be [9]) offers some evidence
that simple recurrence equations similar in form to the standard
response-time equation (see any standard text-book, e.g. [10],
or a tutorial paper for an explanation):

Rw
i = cwi +

∑
τj∈hp(τi)

⌈
Rw

i

hj

⌉
cwi (2)

that is used to compute the worst-case response time of FP-
scheduled tasks are unlikely to be successful in computing
BCRT’s.

An additional observation: Notice that the pre-runtime analysis
described in [1] requires bounds on both the best-case response
times and the worst-case response times (i.e., it needs both the
Rb

i and the Rw
i values). Since it is known [9] that determining

the worst-case response time is NP-hard, our proof in the
appendix that determining the best-case response time is coNP-
hard immediately implies that the problem of determining both
the upper and the lower response-time bounds is hard for both
the complexity classes NP and coNP. It is widely believed
in the computational complexity theory community (see, e.g.,
[11]) that a problem that is both NP-hard and coNP-hard is
unlikely to be contained in either of the complexity classes
NP and coNP, leading to the conclusion that the pre-runtime
analysis of [1] in fact requires solving a problem that does
not lie in the first level of the polynomial hierarchy [11].

Our third adaptation is based on the observation that the
Butterfly Attack requires the attacker to choose an entry task
that has greater scheduling priority than the target task. The
attack surface would hence be reduced by having fewer non-
critical tasks at higher priorities. To this end, we propose a
modification to the manner in which task priorities are assigned;
rather than simply assigning priorities in rate-monotonic order,
we propose that priority-assignment be done according to the
Audsley algorithm [12], [13] for repeatedly choosing the lowest-
priority task but with non-critical tasks favored over the critical
ones for this purpose. (That is if there is a choice of tasks to
which the lowest priority may be assigned, we will assign it to
a non-critical task if possible – this results in fewer non-critical
tasks being assigned higher priorities.) This algorithm can be
implemented efficiently in the following manner.

1) Maintain two lists that together contain all the tasks that



have not yet been assigned a priority. One list comprises
the critical tasks and the other the non-critical tasks, each
sorted in non-decreasing order of period parameter. (These
lists are initialised to contain all the critical/ non-critical
tasks respectively.)

2) While both lists are non-empty, repeatedly determine the
task that is to be assigned the lowest priority task from
amongst all the tasks that have not yet been assigned
priorities, as follows.
• First, determine whether the largest-period non-critical

task that has not yet been assigned a priority is able to
be the lowest priority task. This can be determined by
checking whether this task τi’s worst-case response time
as computed by Equation 2, with hp(τi) set equal to all
the other remaining tasks in both lists, is no larger than
hi. If so, assign this task the lowest priority from amongst
all the tasks that have not yet been assigned priorities,
and remove it from the list.

• If not, determine whether the largest-period critical task
that has not yet been assigned a priority is able to be
the lowest priority task. This, too, can be determined
as above: by checking whether this task τi’s worst-case
response time as computed by Equation 2, with hp(τi)
set equal to all the other remaining tasks in both lists,
is no larger than hi. If so, assign this task the lowest
priority from amongst all the tasks that have not yet been
assigned priorities, and remove it from the list.

• Else, report failure and exit.
3) If one of the lists is empty, then the tasks in other list are

assigned rate-monotonic priorities.

A heuristic refinement. We will see in Section IV below
that if the controller is designed to allow for ‘double-sided
jitter’ (this term is explained in Section IV), then once the
best-case and worst-case response time values of the task
modeling the controller have been computed there is some
freedom in designing the controller to optimize for performance
whilst remaining in its stability region. The priority-assignment
algorithm discussed above may be adapted to account for this
fact in the following manner. If during some iteration of the
priority-assignment algorithm it is a critical task that must be
assigned the lowest priority, one may take into consideration
the process of actually designing the controller (as discussed in
Section IV) in addition to simply determining whether or not its
worst-case response time is less than its period. In this manner
we get to generalize the application of Adusley’s priority-
assignment algorithm to the ‘real-time plus control’ use-case,
to consider not just timeliness (the ability to meet deadlines)
but also control performance and stability in determining the
assignment of priorities to individual tasks.

IV. APPLYING CONTROL THEORY

In this section, we take a closer look at the control-theoretic
aspects of the Butterfly Attack. Specifically, we focus upon the
control attributes of a control loop that needs to be defended

against such an attack, and consider both (i) what can be done
to render such attacks less likely to succeed against this control
loop; and (ii) how likely an attack that has been launched is to
succeed in actually destabilizing the control loop (as opposed
to merely exiting the stability region in its latency-versus-jitter
graph plot).

Single-sided and double-sided jitter. In Section II-A, we
had defined jitter J (Expression 1) such that it could be
either additive (L+ J) or subtractive (L− J) with the latency
parameter L to yield the bounds on actual delay. In control
theory, two notions of jitter are studied: an additive/ subtractive
notion such as is described above is referred to as double-sided
jitter, while in single-sided jitter the range of actual delays is
given by [L,L+J ]. Although Mahfouzi et al. [1] cite the work
of Cervin [3], which primarily addresses double-sided jitter
(see, e.g., [3, Fig. 2]), for their notion of jitter, it appears from
a careful reading of [1] that they are actually using single-sided
jitter (notice, as discussed in Section II-C, that they choose to
assign Li ← Rb

i and Ji ← (Rw
i −Rb

i ); hence actual delay is
never less than Li — jitter is never negative).

Regardless of whether Mahfouzi et al. [1] actually use single-
sided or double-sided jitter in their models, we conducted
extensive evaluations comparing the two, and find the evidence
to be very strong that double-sided jitter is generally preferable
for both control loop performance and stability. Briefly, this is
because a control algorithm is generally designed to apply an
actuation signal to the controlled plant a particular duration after
having sampled the plant output — this is the latency parameter
for the controller. Controller performance is best if the actuation
signal is actually applied to the plant with exactly this delay, but
tends to falls off if the actuation signal is applied at a different
point in time – the greater the difference (i.e., the greater the
magnitude of the jitter), the poorer the performance. Hence
for best performance, it is best to minimize the magnitude of
jitter; it is generally the case that the magnitude of jitter can
be minimized if it is allowed to be both positive and negative.

Of course, the stability region of the jitter-versus-latency plane
depends upon whether single-sided or double-sided jitter is
assumed; in generating the stability region plot (as in Figure 2),
Cervin’s Jitter Margin toolbox [3] allows the user to specify
which form of jitter is being modeled. In our evaluations,
we used the Jitter Margin toolbox [3] to obtain the stability
regions for a wide range of controllers under both assumptions;
after extensive comparisons we feel comfortable in asserting
that both worst-case performance and stability appear to be
superior for double-sided jitter, for a wide range of worst-case
performance metrics.

Double-sided jitter: choosing latency & jitter values. For
single-sided jitter, the assignment of values to the latency and
jitter parameters that was done by Mahfouzi et al. [1] (as we
have described in Section II-C) seems exactly right: latency
must be set to the best-case response time, and jitter must be
set to the difference between worst-case response time and
best-case response time. For double-sided jitter, however, the



values of the best-case and worst-case response times do not
uniquely determine the values that should be assigned to these
two parameters;4 for instance, one could minimize the jitter
magnitude (and thereby minimize the worst-case performance
degradation that could possibly be experienced on any single
iteration of the control loop) by simply setting latency to be the
mean of the best-case and the worst-case response times – this
would cause jitter to be equal to half the difference between
the worst-case and the best-case response times.

But such a choice, while perhaps minimizing performance
degradation, does not address the issue of control-loop stability
at all: it is entirely possible that the pair of values for latency
and jitter pair computed above does not lie within the stability
region of the control loop. What we are essentially seeking
is a point (Li, Ji) within the stability region of the controller
modeled by τi such that both the following hold

Li − Ji ≤ Rb
i

Li + Ji ≥ Rw
i

(Here, Rb
i and Rw

i denote the computed best-case and worst-
case response times of the control task τi.)

The choice of this point (Li, Ji) is complicated by the fact
that although (as mentioned earlier – footnote 4) the running
time of a controller does not much depend upon the specific
parameter values used in its computation, its stability region
very much does. Hence the step of finding an appropriate pair of
(Li, Ji) values is likely to be an iterative search process: while
scheduling theory can be deployed (as described in Section III
to obtain the values of Rb

i and Rw
i , one may need to repeatedly

iterate to find (Li, Ji) values within the stability region of
the current controller configuration, update the controller for
the value chosen for Li and determine the stability region
for the updated controller, and ensure that the point (Li, Ji)
continues to line in the stability region (while providing good
performance) for this updated controller.

How conservative is the stability region? Stability regions
of the jitter-versus-latency plane (such as the one depicted
in Figure 2) represent safe choices from the perspective of
stability: controllers with (latency, jitter) parameters that fall
within the stability region are guaranteed to be stable. However,
controller with their (latency, jitter) parameters that lie outside
the stability region are not guaranteed to be unstable; e.g., the
model underlying the Jitter Margin tool that generated these
plots “does not care about how or whether the actual controller
timing varies from period to period” [3, Sec. II-B]. Thus a
successful instantiation of the Butterfly Attack would need

4We point out that a single controller execution typically comprises a series
of matrix operations. While the values populating these matrices do depend
upon the latency for which the controller is being designed, the dimensions
of the matrices, the number of operations, etc., do not change; hence the
execution-time of the code implementing the controller does not generally
depend significantly upon the specific latency for which it has been designed.
Hence, one can complete the design of the controller –i.e., populate the values
in the matrices– after the value to be assigned to Li is determined.

Fig. 3. How conservative is the stability region determined by the Jitter
Margin tool [3]? – stability regions as determined by Jitter Margin versus by
simulation. (The lines denote the upper envelopes of the stability regions.)

to not only change the jitter and latency parameters enough
to exit the stability region, it would need to sustain a ‘worst-
case’ pattern of enforced delays (which it is very non-trivial to
determine, let along achieve during an attack) across multiple
consecutive invocations (i.e., jobs) of the controller task. In the
absence of such a concerted effort across multiple invocations,
Butterfly Attacks appear to be very unlikely to succeed. As an
illustrative example, we considered the operation of system and
controller discussed in Figure ?? outside its stability region
(as determined by the sufficient analysis of the Jitter Margin
toolbox), by simulation (across 1000 runs for each plotted
point) with the actual jitter experienced by each invocation
of the controller being uniformly drawn from the interval
[0, J ] where J denotes the maximum jitter (i.e., the parameter
that, for the chosen latency value, lies outside the stability
region). Our findings are depicted in Figure 3; the boundary
of the stability region in the jitter-versus-latency plane that is
determined by Jitter Margin (assuming single-sided jitter) is
depicted in blue, and the boundary of the region within which
the system remains stable in these simulations is depicted
in red. The takeaway message again appears to be that the
Butterfly Attack is exceedingly difficult to carry out in practice;
this has certainly been in case in an actual physical setting, as
we discuss in the next section.

V. APPLYING PRINCIPLES OF SYSTEM SECURITY

The success of the Butterfly attack in real systems hinges on
the success of three essential steps. S1: The first step is to
manipulate the timing of an entry task via external inputs,
where the tasks under attack are often the non-critical and less
protected tasks. In general, the greater the magnitude and the



finer-grained the control, the higher the likelihood of causing
the butterfly effect on the rest of system. S2: The second
step is to exploit the timing dependency between the entry
task and the target task to manipulate the timing of the target
task using the influence on the entry task. Generally, both
predictability and strength of the influence upon the target
task are the key factors. S3: The last step transfers the timing
impact to variation in control performance. The success of this
step hinges on the control algorithm’s sensitivity to the effected
manipulation of the critical control task’s timing. As a result,
the impact of the attack on the physical state of the system
depends on not only the successful execution of individual
steps, but also the interplay of these factors. In the remainder of
this section, we aim to share our experience realizing the attack
on two CPS platforms to highlight the gaps our community
needs to bridge towards a more holistic understanding of the
exploitation process of timing vulnerabilities in cyber-physical
systems.5
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Fig. 4. Experimental results on ArduRover, an unmanned ground vehicle. The
line in Figure 4(a)-4(c) is downsampled by 50, and the marker is downsampled
by 200 to enhance the visualization.

A. CASE STUDY I: AN AUTOMOTIVE APPLICATION

The experimental setup in the original Butterfly Attack paper [1]
assumes an architecture where multiple ECU functionalities
(e.g., motor control, propulsion-control software, etc.) are on
the same ECU. This is a futuristic setting with no existing
automotive system adapting such a design to the best of our
knowledge. Furthermore, there is no target software/hardware
described in the original paper. Hence we aren’t able to realize
the attack on actual hardware, software and physical platform.
To make the best effort in recreating the experiment under the
same spirit, we conduct this experiment using a ground vehicle
with ArduRover, where all controls are on the same SoC.

5Experimental artifacts are available at https://butterflyexploitation.github.io/
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Fig. 5. Experimental results on ArduCopter, an unmmaned aerial vehicle.
The line in the Figure 5(a)-5(c) is downsampled by 100, and the marker is
downsampled by 400 to enhance the visualization.

With the change of platform, a key design choice we had to
make was how to launch the attack on the new system where
components communicate not via CAN bus but direct messages
within the same program. The core idea of the attack is to use
a message to influence the entry task, and this is similar to
the radio control message in ArduRover which is implemented
as MAVLink message. Therefore in our experiment we use
the MAVLink message as the attack vector for influencing the
timing behavior of the entry task in the system. The experiments
are conducted on an autonomous ground vehicle powered by
Raspberry Pi 3 Model B coupled with a Navio2 peripheral
daughter board [14]. The software is ArduRover [15] package
(version Rover-4.0) running on a single SoC (Pi3).

The attack we implemented is as follows. The entry task
is handleMessage, which is a non-critical task respon-
sible for processing Mavlink messages. To have a similar
message pattern as CAN bus, we use a ground station
to send Mavlink messages to ArduRover periodically. The
adversary intentionally jams three out of every four messages,
following the same method in [1], to induce jitters in the
task handleMessage(). There are two main factors from
the handleMessage() task that determine the degree of
jitter: its period and computation time. Since the workload of
handleMessage() stays fixed, we explore the impact at
different frequencies (10Hz, 100Hz, and 500Hz). Note that
most of the existing vehicles generally generate the heartbeat
message at 10 Hz [16], therefore the settings under investigation
is advantageous for the attacker.

Step 1 - We measured the actual task release intervals of
handleMessage() under attack in the three said experi-
mental settings. The results are shown in Figure 4(a). The CPU
time consumed is 0.00125%, 0.11%, and 0.48% respectively.
From the figure, we can observe: First, the task release intervals

https://butterflyexploitation.github.io/


can be directly manipulated by attackers, demonstrating the
attacker’s capability to execute a predictable attack. Second,
while the CPU consumption remains relatively low, it increases
linearly with the message frequency. This linear relationship can
be attributed to the predictable and straightforward workload
associated with handling Mavlink messages.

Step 2 - In ArduRover, Rover::set_servos() sends the
control output at a frequency of 400Hz. To assess its sensitivity
to jitters introduced by the handleMessage() task, we
measured its task release time across our three experimental
scenarios. Under normal conditions, the average interval is
2.49 ms with a variance of 0.0063 ms. For the three different
settings, the average intervals are 2.49 ms (variance: 0.0022
ms), 2.49 ms (variance: 0.0042 ms), and 2.48 ms (variance:
0.0081 ms), respectively. Figure 4(b) plots the results for the
setting with a frequency of 500Hz, which showed the most
significant impact. The limited impact from the attacks is due
to two key factors. First, the Rover::set_servos() task
is time-triggered and therefore task release times remain the
same, even if additional CPU resource is available. Second,
the computation time of handleMessage() task remains
relatively lightweight compared to the aggregated load of the
processor. This highlights the importance of identifying an entry
task where there exist strong temporal dependency between
entry task and victim task, which can be non-trivial to do.

Step 3 - Figure 4(c) shows the average control errors in lateral
acceleration under both attack and baseline conditions. Lateral
acceleration is used as a representative control state due to
its direct impact on safety, and it is also the metric with
the largest deviation in our experiments, which represents
a worst case from our empirical study. Under attack condi-
tions, the average error is 0.00237m/s2 with a variance of
0.000037m/s2. In contrast, the baseline condition exhibits an
error of 0.00223m/s2 with a variance of 0.000031m/s2. This
represents a 6.3% increase, yet it wasn’t significant enough
to cause the control system failure. To further understand the
feasibility, a jitter of 0.83 ms is manually injected into the
control output task (0.83 ms is one third of the period 2.5
ms). It is selected since the original attack [1] on automotive
injects a jitter of 10 ms to a victim task with 30ms period.
The attack resulted in an average error of 0.0040m/s2, which
was still not significant enough to cause the vehicle to deviate
from the original trajectory. The trajectories for the execution
of the same mission with and without attacks are shown in
Figure 4(d). From these experiments, we find that the existing
design and deployment of the control software are incredibly
resilient to computational jitter. Though the attacks are highly
novel, it can be challenging to realize the exploitation in some
systems.

B. CASE STUDY II: UNMANNED AERIAL VEHICLES

The second case study in the Butterfly Attack paper [1] focuses
on Ardupilot [17] (an open-source UAV software) through two
real-time tasks: update_GPS and run_nav_updates. In

our efforts to realize the attack, we found that the actuation is
sent via the fast_loop() task in Ardupilot 4.0. As a result,
to be consistent with the original design of the attack, our
experiment assumes that the victim task is fast_loop() in-
stead. Our experiments were conducted using a self-assembled
drone equipped with a Raspberry Pi 3B coupled with a Navio2
board, running Ardupilot 4.0. To emulate the GPS attack, the
software is instrumented to drop three out of every four GPS
messages.

Step 1 - Figure 5(a) shows the time intervals between job
completions of the update_GPS() task with and without
the attack. Without the attack, the average interval is 20.0051
ms, with 99.71% of the intervals lie within one variance (0.2227
ms). When the system is under attack, the average interval
is 20.016 ms, with 99.88% of the intervals are also within
one variance (0.6478 ms). The difference as compared to the
previous study is likely due to the difference in the target
software. In [1], the task is assumed to have an execution
time of 4 ms with period of 5 ms, while in ArduPilot 4.0
Copter configuration, the average execution time of the task is
56.6231 us with a period of 20,000 us. The source code for
update_GPS() and its period is detailed in Appendix B-A.

Step 2 - To understand the feasibility of the second step, we
manually inject a 60 ms jitters into the task update_GPS(),
since the jitters from step 1 was not large enough in our
evaluation platform. The 60 ms was chosen because it is three
times its period 20 ms, consistent with [1], where the jitter
is 15ms in the entry task update_GPS()(three times of the
period of 5ms). The resulting control command output intervals
are shown in Figure 5(a). Under normal conditions, the average
interval is 2.5080 ms with a variance of 0.4266 ms, and 99.95%
of the intervals fall within one variance. In the attack scenario,
the average interval is 2.5083 ms with a variance of 0.4449 ms,
and 99.95% of the intervals also fall within one variance. From
the experiment, we observe no significant difference in the
control intervals, prompting a closer examination at the root
cause. It turns out in ArduPilot 4.0, the output control command
is executed prior to the task update_GPS() within the main
control loop, therefore control has no direct dependency on
update_GPS(). The source code for this design is detailed
in Appendix B-B. The only exception is when the prior cycle of
main control loop does not finish before the deadline. However,
under such circumstances there are many other safety problems
due to critical tasks missing their deadlines.

Step 3 - The translation from victim task jitter to physical
state deviation depends highly on the robustness of the control
algorithm. To gain a better understanding of the feasibility of
this step upon a physical platform, a 1 ms jitter is manually
injected into the control task fast loop (since the second step
did not result in substantial jitter). The 1 ms jitter was chosen
in our target system, where fast loop runs at 400Hz with a
period of 2.5 ms, to be consistent with the original attack [1],
where a 4 ms jitter is injected into a task with a period of 10
ms. Figure 5(c) presents the errors in the velocity controller,



which is a vital controller for maintaining the stability of the
drone. The average errors under normal conditions and during
an attack are 0.0047m/s with variance of 0.0000149m/s
and 0.0048m/s with variance of 0.0000128m/s, respectively.
Regarding the injected jitter, it causes an average error of
0.0049m/s with variance of 0.0000134m/s. The trajectories
for the execution of the same mission with and without attacks
are shown in Figure 5(d).

VI. CONTEXT AND CONCLUSIONS

The work reported in this paper can be looked upon as
an illustrative example validating our thesis that securing
safety-critical real-time control loops from attack by malicious
adversaries requires coordinated effort from domain experts in
real-time scheduling, control theory, and systems security. For
us, this thesis arose out of our experiences with the Butterfly
Attack [1], a proposed attack upon a safety-critical control
loop that is conceptually very elegant. The idea of the Butterfly
Attack was, to our knowledge, novel (and very interesting);
this motivated us to investigate it closely with the objective
of understanding its significance and its applicability, and in
order to develop effective mitigations.

Amongst the aspects of our findings that we would like to
particularly highlight is the relatively straightforward nature of
the fix: simply modeling the system using the sporadic (rather
than periodic) task model where appropriate during pre-runtime
analysis is an adequate countermeasure against Butterfly
Attacks. This leads us to suggest that the real-time scheduling
community needs to do a better job of communicating our basic
results to other research communities in order that they may use
these results to build better (in this specific case, more secure)
systems. The additional modifications to pre-runtime analysis
(reported in Section III) that are inspired by scheduling theory,
alongside the results reported in Section IV and Section V, also
points to the need for real-time scheduling theory researchers
to work in collaboration with systems builders, in order to
facilitate the effective application, after appropriate adaptation,
of results from real-time scheduling theory.

Perhaps somewhat ironically, our experiences reported here also
provide evidence that similar coordinated effort from domain
experts in real-time scheduling, control theory, and systems
security is also required in order to carry out successful attacks
– as we have reported in Section V, merely identifying a single
vulnerability (in [1], this was the ability to move a control
loop out of its stability region) is not in itself adequate to
successfully carry out an actual physical attack.
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APPENDIX A
THE BEST-CASE RESPONSE TIME PROBLEM

In this appendix, we consider the problem of establishing a
lower bound on the best-case response-time (BCRT) of a task in
a periodic task system (or equivalently, a sporadic task system
when its synchronous arrival sequence is being scheduled)
under FP-scheduling. Recall (Section II-B) that in this paper
each task τi ∈ T is characterized by a period hi, and a lower
bound cbi and upper bound cwi on its actual execution duration
each time it is executed. The hardness of the BCRT problem
that we will establish here does not stem from any complicated
relationship between the cbi and cwi parameters; in the following
we show that the BCRT problem is coNP-hard even if cbi = cwi
for all tasks.

http://doi.acm.org/10.1145/3131347
https://doi.org/10.1109/RTSS.2017.00020
https://ardupilot.org/copter/docs/common-navio2-overview.html
https://ardupilot.org/copter/docs/common-navio2-overview.html
https://ardupilot.org/rover/
https://gitlab.com/autowarefoundation/autoware.auto
https://gitlab.com/autowarefoundation/autoware.auto
https://ardupilot.org/


We reproduce the definition of the BCRT Problem from
Section III:

The Best-Case Response-Time (BCRT) Problem

INSTANCE: An FP-scheduled sporadic task system T
(with best- and worst-case execution times specified),
and a positive integer a.

QUESTION: Does each job of the lowest-priority task
in T have a response time ≥ a in the schedule of its
synchronous arrival sequence?

We will establish the coNP-hardness of the BCRT problem by
relating it to the worst-case response-time (WCRT) problem.
Determining FP-schedulability is equivalent to determining
whether the WCRT Rw

i of each task is no larger than its
period parameter hi (if a relative deadline parameter Di ≤ hi

is additionally specified for the task, then this requirement
becomes Rw

i ≤ Di). We find it convenient in our derivation
below to use the following utilization-restricted variant of the
WCRT problem, which has itself been shown [9] to be NP-
complete.

The Worst-Case Response-Time (WCRT) Problem

INSTANCE: An FP-scheduled sporadic task system T
with U(T) ≤ ln 2, and a positive integer a. (Here U(T)
denotes the sum

∑
τi∈T(c

w
i /hi) of the individual task

utilizations.)

QUESTION: Does each job of the lowest-priority task
in T have a response time ≤ a?

We note that the key difference between the above two problem
formulations is that we are asked if the given number a is an
upper bound to the possible response times in the WCRT case,
and a lower bound in the BCRT case. We will now define a
simple reduction from the WCRT problem to the complement
of the BCRT problem, thereby showing coNP-hardness for the
BCRT problem.

We reduce from the WCRT problem to the BCRT problem
by copying the task set T of the former problem to a task
set T′ for the new problem, but changing the period of the
lowest-priority task τlow in T′ to equal the hyper-period,

Tlow = H(T),

(here H(T) denotes the hyperperiod of task system T) and
assigning each task τi ∈ T′ a best-case execution time cbi that is
equal to the worst-case execution time cwi of the corresponding
task in the original task system T.

The change to τlow’s period effectively means that it will only
release the first job in every hyper-period in T′ compared to T.
It is well-known that if the first job in the hyper-period has a
response-time ≤ Tlow, then that job has the maximum response

time [18]. Since we have U(T) ≤ ln 2, the response-time of
the first job must be ≤ Tlow by Liu and Layland’s utilization
bound [2], and so τlow’s WCRT must be the same in T and
T′. But since τlow only releases a single job per hyper-period
in T′, and since all tasks have cbi = cwi , it must also be the
case that τlow’s WCRT and BCRT are the same in T′. In order
to answer the WCRT problem for T

“Does each job of the lowest-priority task in T have a
response time ≤ a?”

we can simply answer the BCRT problem for T′

“Does each job of the lowest-priority task in T′ have a
response time ≥ a+ 1?”

and negate the answer. It follows that the BCRT problem is
coNP-hard.

As a corollary we can conclude that the following problem of
bounding the response time within an interval is both NP-hard
and coNP-hard, and is therefore unlikely to be contained in
the first level of the polynomial hierarchy.

The Response-Time Jitter Problem

INSTANCE: An FP-scheduled sporadic task system T
(with best- and worst-case execution times specified),
and positive integers a, b.

QUESTION: Does each job of the lowest-priority task in
T have a response time in interval [a, b] in the schedule
of its synchronous arrival sequence?

APPENDIX B
ARDUCOPTER 4.0.0 SOURCE CODE

In this section, we showcase simplified source code snippets
extracted from Ardupilot, specifically from version Copter-
4.0.06.

A. Task Model of update_GPS

Figure 6(a) displays the definition for the period of the
Update_GPS task, which is set with a frequency of 50Hz,
equivalent to a period of 20,000 us.

Meanwhile, Figure 6(b) provides its execution logic. The
function Update_GPS is initiated with a conditional check.
If this condition is not fulfilled, the main portion of the code
remains unexecuted. This check determines whether a fresh
message has arrived and if the status of this received signal
matches previously GPS readings. If yes, it will skip the
execution of function camera.update, whose workload is
shown in Figure 6(c). Therefore, should an attacker disrupt
the GPS signal, the computational duration for the complete
update_GPS task will see a reduction. From our profiling

6https://github.com/ArduPilot/ardupilot/tree/Copter-4.0.0
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/*
  scheduler table for fast CPUs - all regular tasks apart from the fast_loop()
  should be listed here, along with how often they should be called (in hz)
  and the maximum time they are expected to take (in microseconds)
 */
const AP_Scheduler::Task Copter::scheduler_tasks[] = {
    SCHED_TASK(rc_loop,              100,    130),
    SCHED_TASK(throttle_loop,         50,     75),
    SCHED_TASK(update_GPS,            50,    200),

(a) Period of update_GPS.

// called at 50hz
void Copter::update_GPS(void)
{
    static uint32_t last_gps_reading[GPS_MAX_INSTANCES];   // time of last gps 
message
    bool gps_updated = false;

    gps.update();

    // log after every gps message
    for (uint8_t i=0; i<gps.num_sensors(); i++) {
        if (gps.last_message_time_ms(i) != last_gps_reading[i]) {
            last_gps_reading[i] = gps.last_message_time_ms(i);
            gps_updated = true;
            break;
        }
    }

    if (gps_updated) {
#if CAMERA == ENABLED
        camera.update();
#endif
    }
}

(b) Workload of update_GPS.

// Camera Update - take a picture
void AP_Camera::update()
{
    // . . .
    // take a local picture:
    trigger_pic();

    // tell all of our components to take a picture:
    mavlink_command_long_t cmd_msg {};
    cmd_msg.command = MAV_CMD_DO_DIGICAM_CONTROL;
    cmd_msg.param5 = 1;

    // forward to all components
    GCS_MAVLINK::send_to_components(MAVLINK_MSG_ID_COMMAND_LONG, 
(char*)&cmd_msg, sizeof(cmd_msg));
}

(c) Workload of camera.update.

Fig. 6. Period and workload of task update_GPS

results, this reduction are around 56.6231 us with variance of
62.1848 us.

B. Scheduler in ArduCopter

void AP_Scheduler::loop()
{
    // Execute the fast loop
    // ---------------------
    _fastloop_fn();
   if (now - sample_time_us < loop_us) {
        // get remaining time available for this loop
        time_available = loop_us - (now - sample_time_us);
    }
    // add in extra loop time determined by not achieving scheduler tasks
    time_available += extra_loop_us;

    // run other tasks
    run(time_available);
    // …
}

Fig. 7. Scheduling logic of ArduCopter.

Figure 7 illustrates the task scheduling mechanism within
Ardupilot. The primary control loop is the first to be scheduled
during each scheduling cycle (emphasized in green). If there
is extra available time, the scheduler will run other tasks
(highlighted in yellow), where update_GPS is one of the
‘other tasks’.
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