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What?

What is fixed-parameter analysis (or parameterized complexity)?

Complexity as a function of both the input size and a
problem-specific parameter .

In short

Many intractable problems are tractable when the right
parameters are kept “small”.

But, why?

Popularized by Downey and Fellows from the ’90s.
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Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?
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Fixed-PaRameteR TRactable (FPT)

FPT is the class of “tractable” parameterized problems.

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

n — size of the input
k — parameter
f — computable function

Parameter isolated in
its own factor

Otherwise
polynomial in
input size

O(nk)
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PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?
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Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2

R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here
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HypeRplanes Exact Test (HET)

Another FP-schedulability test by Bini & Buttazzo (2004).

HET

(Similar ideas also presented by Manabe & Aoyagi (1995).)

HET does not use the iterative RTA approach.
HET directly evaluates at most 2#tasks points in the RTA equation.

=⇒

HET runs in O
(
f (#tasks)× poly(n)

)
time!
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EDF?

Input: A constrained-deadline sporadic task set T.
Question: Is T EDF-schedulable on a single processor?

Another familiar decision problem

This problem is coNP-complete!

k = Tmax/Tmin

Processor Demand Analysis
(PDA) is an fpt-algorithm for
bounded-utilization task sets

k = number of tasks

Neither PDA nor QPA
are fpt-algorithms!

We can make “small” ILPs
that give an fpt-algorithm,
even for asynchronous tasks

10
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To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP
FPT ⊆ para-(co)NPStrict if the

ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11
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Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)
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LoweR bounds on f

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

�

n — size of the input
k — parameter
f — computable function

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time
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LoweR bounds on f

If the ETH holds, then:

Work-conserving schedulability for asynchronous periodic
tasks with constrained deadlines cannot be solved in time

O
(
2o(#tasks) × poly(n)

)
.

EDF-schedulability for synchronous periodic tasks with
constrained deadlines cannot be solved in time

O
(
2o(#periods) × poly(n)

)
.
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∀Thank you!
⋄

∃Questions?


