
Fixed-PaRameteR Analysis of PReemptive
UnipRocessoR Scheduling PRoblems

Sanjoy BaRuah
Washington University in Saint Louis

Pontus EKbeRg
Uppsala University

AbhisheK Singh
Washington University in Saint Louis

RTSS 2022



What?

What is fixed-parameter analysis (or parameterized complexity)?

Complexity as a function of both the input size and a
problem-specific parameter .

In short

Many intractable problems are tractable when the right
parameters are kept “small”.

But, why?

Popularized by Downey and Fellows from the ’90s.

2



What?

What is fixed-parameter analysis (or parameterized complexity)?

Complexity as a function of both the input size and a
problem-specific parameter .

In short

Many intractable problems are tractable when the right
parameters are kept “small”.

But, why?

Popularized by Downey and Fellows from the ’90s.

2



What?

What is fixed-parameter analysis (or parameterized complexity)?

Complexity as a function of both the input size and a
problem-specific parameter .

In short

Many intractable problems are tractable when the right
parameters are kept “small”.

But, why?

Popularized by Downey and Fellows from the ’90s.

2



What?

What is fixed-parameter analysis (or parameterized complexity)?

Complexity as a function of both the input size and a
problem-specific parameter .

In short

Many intractable problems are tractable when the right
parameters are kept “small”.

But, why?

Popularized by Downey and Fellows from the ’90s.

2



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Example

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

This problem is NP-complete!

=⇒

If P ̸= NP, there is no algorithm to solve it with runtime poly(n),
where n is the size of the input (#bits needed to represent T)

What if the runtime is expressed as a function
of both the input size n and a parameter k?

?

Parameterization 1

k1 = max numerical value in T

Parameterization 2

k2 = number of tasks in T

Is FP-schedulability “tractable” when k1 or k2 are small?
?

3



Fixed-PaRameteR TRactable (FPT)

FPT is the class of “tractable” parameterized problems.

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

n — size of the input
k — parameter
f — computable function

Parameter isolated in
its own factor

Otherwise
polynomial in
input size

O(nk)

4



Fixed-PaRameteR TRactable (FPT)

FPT is the class of “tractable” parameterized problems.

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

n — size of the input
k — parameter
f — computable function

Parameter isolated in
its own factor

Otherwise
polynomial in
input size

O(nk)

4



Fixed-PaRameteR TRactable (FPT)

FPT is the class of “tractable” parameterized problems.

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

n — size of the input
k — parameter
f — computable function

Parameter isolated in
its own factor

Otherwise
polynomial in
input size

O(nk)

4



Fixed-PaRameteR TRactable (FPT)

FPT is the class of “tractable” parameterized problems.

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

n — size of the input
k — parameter
f — computable function

Parameter isolated in
its own factor

Otherwise
polynomial in
input size

O(nk)

4



Fixed-PaRameteR TRactable (FPT)

FPT is the class of “tractable” parameterized problems.

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

n — size of the input
k — parameter
f — computable function

Parameter isolated in
its own factor

Otherwise
polynomial in
input size

O(nk)

4



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

5



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

5



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

5



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

5



Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2

R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here

6



Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2
R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here

6



Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2
R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here

6



Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2
R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here

6



Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2
R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here

6



Response-Time Analysis (RTA)

Ci Di Ti

τ1 x− 1 x x

τ2 x x2 x2
R(k+1)
i = Ci +

∑
j∈ hp(i)

⌈
R(k)i
Tj

⌉
× Cj

R(0)2 = 2x− 1

R(1)2 = 3x− 2

R(2)2 = 4x− 3

...

R(x−1)
2 = x2

x iterations!

RTA is not
O
(
f (#tasks)× poly(n)

)
and is therefore not
an fpt-algorithm here

6



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Not with RTA!

7



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Not with RTA!

7



HypeRplanes Exact Test (HET)

Another FP-schedulability test by Bini & Buttazzo (2004).

HET

(Similar ideas also presented by Manabe & Aoyagi (1995).)

HET does not use the iterative RTA approach.
HET directly evaluates at most 2#tasks points in the RTA equation.

=⇒

HET runs in O
(
f (#tasks)× poly(n)

)
time!

8



HypeRplanes Exact Test (HET)

Another FP-schedulability test by Bini & Buttazzo (2004).

HET

(Similar ideas also presented by Manabe & Aoyagi (1995).)

HET does not use the iterative RTA approach.
HET directly evaluates at most 2#tasks points in the RTA equation.

=⇒

HET runs in O
(
f (#tasks)× poly(n)

)
time!

8



HypeRplanes Exact Test (HET)

Another FP-schedulability test by Bini & Buttazzo (2004).

HET

(Similar ideas also presented by Manabe & Aoyagi (1995).)

HET does not use the iterative RTA approach.
HET directly evaluates at most 2#tasks points in the RTA equation.

=⇒

HET runs in O
(
f (#tasks)× poly(n)

)
time!

8



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

RTA is an fpt-alg. even with
k = Tmax/Tmin

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Not with RTA!

Yes!
O
(
2k2 × n2

)
using HET

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Yes!
O
(
2k2 × n2

)
using HET

HET is an fpt-alg. even with
k = number of distinct periods

9



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

RTA is an fpt-alg. even with
k = Tmax/Tmin

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Not with RTA!

Yes!
O
(
2k2 × n2

)
using HET

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Yes!
O
(
2k2 × n2

)
using HET

HET is an fpt-alg. even with
k = number of distinct periods

9



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

RTA is an fpt-alg. even with
k = Tmax/Tmin

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Not with RTA!

Yes!
O
(
2k2 × n2

)
using HET

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Yes!
O
(
2k2 × n2

)
using HET

HET is an fpt-alg. even with
k = number of distinct periods

9



PaRameteRizing the FP-schedulability pRoblem

Input: A constrained-deadline sporadic task set T.
Question: Is T FP-schedulable on a single processor?

A familiar decision problem

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

k1 = max numerical value in T

In FPT?
O
(
f (k1)× poly(n)

)
?

?

Yes!
O
(
k1 × n2

)
using RTA

RTA is an fpt-alg. even with
k = Tmax/Tmin

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Not with RTA!

Yes!
O
(
2k2 × n2

)
using HET

k2 = number of tasks in T

In FPT?
O
(
f (k2)× poly(n)

)
?

?

Yes!
O
(
2k2 × n2

)
using HET

HET is an fpt-alg. even with
k = number of distinct periods

9



EDF?

Input: A constrained-deadline sporadic task set T.
Question: Is T EDF-schedulable on a single processor?

Another familiar decision problem

This problem is coNP-complete!

k = Tmax/Tmin

Processor Demand Analysis
(PDA) is an fpt-algorithm for
bounded-utilization task sets

k = number of tasks

Neither PDA nor QPA
are fpt-algorithms!

We can make “small” ILPs
that give an fpt-algorithm,
even for asynchronous tasks

10



EDF?

Input: A constrained-deadline sporadic task set T.
Question: Is T EDF-schedulable on a single processor?

Another familiar decision problem

This problem is coNP-complete!

k = Tmax/Tmin

Processor Demand Analysis
(PDA) is an fpt-algorithm for
bounded-utilization task sets

k = number of tasks

Neither PDA nor QPA
are fpt-algorithms!

We can make “small” ILPs
that give an fpt-algorithm,
even for asynchronous tasks

10



EDF?

Input: A constrained-deadline sporadic task set T.
Question: Is T EDF-schedulable on a single processor?

Another familiar decision problem

This problem is coNP-complete!

k = Tmax/Tmin

Processor Demand Analysis
(PDA) is an fpt-algorithm for
bounded-utilization task sets

k = number of tasks

Neither PDA nor QPA
are fpt-algorithms!

We can make “small” ILPs
that give an fpt-algorithm,
even for asynchronous tasks

10



EDF?

Input: A constrained-deadline sporadic task set T.
Question: Is T EDF-schedulable on a single processor?

Another familiar decision problem

This problem is coNP-complete!

k = Tmax/Tmin

Processor Demand Analysis
(PDA) is an fpt-algorithm for
bounded-utilization task sets

k = number of tasks

Neither PDA nor QPA
are fpt-algorithms!

We can make “small” ILPs
that give an fpt-algorithm,
even for asynchronous tasks

10



EDF?

Input: A constrained-deadline sporadic task set T.
Question: Is T EDF-schedulable on a single processor?

Another familiar decision problem

This problem is coNP-complete!

k = Tmax/Tmin

Processor Demand Analysis
(PDA) is an fpt-algorithm for
bounded-utilization task sets

k = number of tasks

Neither PDA nor QPA
are fpt-algorithms!

We can make “small” ILPs
that give an fpt-algorithm,
even for asynchronous tasks

10



To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP
FPT ⊆ para-(co)NPStrict if the

ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11



To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP

FPT ⊆ para-(co)NP

Strict if the
ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11



To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP
FPT ⊆ para-(co)NP

Strict if the
ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11



To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP
FPT ⊆ para-(co)NP

Strict if the
ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11



To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP
FPT ⊆ para-(co)NPStrict if the

ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11



To FPT, oR not to FPT

Can we show that some problems are not in FPT?
?

Strict if P ̸= NP
FPT ⊆ para-(co)NPStrict if the

ETH is true

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

11



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



Some haRdness Results

1. Asynchronous periodic
2. Constrained deadlines
3. Work-conserving scheduler

Setting

Schedulability para-coNP-hard w.
• #distinct deadlines
• #distinct WCETs
• max WCET

Schedulability W[1]-hard w.
• max deadline

1. Synchronous / sporadic
2. Constrained deadlines
3. EDF

Setting

Schedulability para-coNP-hard w.
• #distinct WCETs
• max WCET

This is not para-coNP-hard
with #distinct periods!

(Unless P = NP)

12



LoweR bounds on f

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

�

n — size of the input
k — parameter
f — computable function

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

13



LoweR bounds on f

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

�

n — size of the input
k — parameter
f — computable function

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

13



LoweR bounds on f

An fpt-algorithm runs in time O
(
f (k)× poly(n)

)
.

�

n — size of the input
k — parameter
f — computable function

Exponential Time Hypothesis (ETH)
≈

3-SAT cannot be solved in sub-exponential time

13



LoweR bounds on f

If the ETH holds, then:

Work-conserving schedulability for asynchronous periodic
tasks with constrained deadlines cannot be solved in time

O
(
2o(#tasks) × poly(n)

)
.

EDF-schedulability for synchronous periodic tasks with
constrained deadlines cannot be solved in time

O
(
2o(#periods) × poly(n)

)
.

14



LoweR bounds on f

If the ETH holds, then:

Work-conserving schedulability for asynchronous periodic
tasks with constrained deadlines cannot be solved in time

O
(
2o(#tasks) × poly(n)

)
.

EDF-schedulability for synchronous periodic tasks with
constrained deadlines cannot be solved in time

O
(
2o(#periods) × poly(n)

)
.

14



LoweR bounds on f

If the ETH holds, then:

Work-conserving schedulability for asynchronous periodic
tasks with constrained deadlines cannot be solved in time

O
(
2o(#tasks) × poly(n)

)
.

EDF-schedulability for synchronous periodic tasks with
constrained deadlines cannot be solved in time

O
(
2o(#periods) × poly(n)

)
.

14



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



Give us the taKe-home message alReady…

Classical
complexity

Analytical
Worst-case

By input size

Empirical
evaluation

Empirical
Average-case

Very flexible

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Parameterized
complexity

Analytical
Worst-case

By input size
and a parameter

Much to
discover!,

15



∀Thank you!
⋄

∃Questions?


