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Abstract—The partitioned scheduling of periodic and sporadic
task systems upon multiprocessor platforms (both identical and
heterogeneous) is considered. The computational complexity of
a large number of such partitioned schedulability problems is
examined. New lower and upper bounds on complexity are
presented for several problems. Some problems are pigeonholed
into their precise complexity classes in this way. A list of problems
for which exact classification remains open is compiled.

Index Terms—Partitioned Scheduling; Sporadic and Periodic
Tasks; Unrelated (Heterogeneous) Multiprocessors; Partitioned
Simultaneous Congruences; Complexity Classification

I. INTRODUCTION

Under the partitioned paradigm of multiprocessor scheduling
for recurrent tasks, each task is pre-assigned to an individual
processor and all jobs generated by a task may only execute
upon the processor to which the task has been assigned.
Schedulability analysis for partitioned scheduling – determining
whether a given task system can be partitioned upon a
specified platform in a manner that guarantees to always
meet all deadlines – is easily shown to be NP-hard under
most non-trivial assumptions regarding the task system or the
platform, by reduction from the PARTITION or BIN PACKING
problem [1, Problems SP12 and SR1]. Hence most prior
work on schedulability analysis for partitioned scheduling has
focused upon the design of good approximation algorithms for
solving these problems (see, e.g., [2]–[9]).

Exact partitioned schedulability and ILPs. The research
reported in this manuscript, in contrast, studies partitioned
scheduling from the perspective of obtaining exact algorithms
for doing partitioned schedulability analysis; given the inherent
intractability of the problem, such algorithms are necessarily
likely to have exponential worst-case running times. Still,
in some cases it is possible to formulate a partitioned
schedulability problem as an integer linear program (ILP),
and to leverage the tremendous performance of optimized
ILP solvers to achieve running times that are acceptable in
practice for reasonably large problem instances. We detail exact
ILP formulations that are known to exist for some important
partitioned schedulability problems, and apply results from
computational complexity theory [10] to show that it is unlikely
that many other important problems can be represented as ILPs
in polynomial time.

Classifying computational complexity. We further seek to
identify the precise computational complexity of those problems
that seem unlikely to be equivalent to ILPs. Our efforts in this

direction may be looked upon as a furthering of the effort
initiated by Eisenbrand and Rothvoß [11], [12] over a decade
ago, and continued by Ekberg and Yi [13]–[16] since then, at
providing a deeper theoretical understanding of schedulability
issues for some of the foundational workload models in real-
time computing. From the works cited above we now know
that most schedulability analysis problems that the real-time
systems community cares about are NP-hard or coNP-hard
since many generalize one of the problems shown to be NP-
or coNP-complete in the above works, while only a select
few (such as feasibility of implicit-deadline [17] task systems)
problems are in P.

However, any binary classification that simply puts each
schedulability problem either among the “difficult” problems
due to being NP- or coNP-hard or among the “easy” problems
in P provides an over-simplified view of matters. Indeed, we
believe most in the real-time systems community would agree
that there seems to be a qualitative difference between the
difficulty of analysing, say, rate-monotonic schedulability of
implicit-deadline sporadic tasks on uniprocessors (which we
know is NP-complete [15]) and doing the same for, say, global
fixed-priority schedulability of arbitrary-deadline asynchronous
periodic tasks on multiprocessors (which seems much harder
still). Simply stating that both are difficult because they
are NP-hard would not differentiate their hardness; while
it is technically correct to state that both are NP-hard, it
likely provides us with a very incomplete picture. Fortunately,
computational complexity theory offers a rich structure of
complexity classes for problems that seem harder than any
problem in NP or coNP. In this work we will pinpoint some of
the basic partitioned schedulability problems at higher levels of
the polynomial hierarchy [18]–[20], showing that they are, in
fact, qualitatively harder than their uniprocessor counterparts.

Contributions. Our major contribution is a methodical cat-
egorization of the computational complexity of partitioned
scheduling problems (summarized in Fig. 2). For some prob-
lems we detail polynomial-time reductions to (the decision
version of) ILP. Such reductions provide constructive proof
that these problems are in NP. Since all the studied problems
are obviously NP-hard as well (as mentioned above), this
establishes that the problems that can be reduced to ILP are in
fact NP-complete. For other problems we apply results from
computational complexity theory to show that they belong
to complexity classes that are widely believed to be strictly
harder than NP, and so unlikely to be representable as ILPs in



polynomial time. We pinpoint the precise complexity classes of
some of these harder-than-NP-or-coNP problems; as a further
contribution we identify gaps between new and known lower
and upper bounds on complexity for those partitioning problems
that we have not been able to pinpoint exactly. In order to
maximize the applicability of our results, all upper bounds and
algorithms (ILPs) that we present have been designed to be
valid for heterogeneous (unrelated) multiprocessors, while all
lower bounds are shown valid also for identical multiprocessors.
This means that the problems that are exactly pinpointed remain
so in both of these settings.

Organization. We provide a brief review of some concepts
and results from computational complexity theory in Section II,
and demarcate the scope of the problems considered in this
paper by formally laying out our workload and platform
model in Section III. In Section IV we demonstrate that two
basic partitioning problems are in fact in NP, by giving ILPs
for solving these problems exactly. Section V is primarily
focused on lower bounds – on showing that some problems
are hard for certain complexity classes and therefore cannot,
in all likelihood, be represented as ILPs in polynomial time.
This section includes a proof that a natural generalization
of the Simultaneous Congruences Problem, which has been
widely used (see, e.g., [21]–[23]) to prove intractability for
uniprocessor scheduling problems, is complete at a higher
level of the polynomial hierarchy; we are optimistic that
this result will play a role in helping determine the precise
complexity of several partitioned multiprocessor scheduling
problems. In Section VI we establish upper bounds upon the
computational complexity of some partitioned schedulability
problems, showing that they are no harder than the hardest
problems of certain complexity classes. Upon combining the
lower and upper bounds we find that the complexity of some
of the studied schedulability problems have been exactly
pinpointed, while others still have a gap between the bounds.
We summarise this current state of knowledge for partitioned
multiprocessor schedulability of recurrent task systems in
Section VII, and close out in Section VIII with some brief
concluding remarks.

II. SOME BACKGROUND FROM COMPLEXITY THEORY

We now provide a brief introduction to concepts of computa-
tional complexity theory that are used in this manuscript.1 We
will make reference to the following complexity classes:
• P is the set of problems that can be solved by algorithms

with running time polynomial in the size of their inputs.
• NP is the set of problems with solutions that can be

verified by algorithms with running time polynomial in
the size of their inputs; coNP is the set of problems whose
complements are in NP.

• ΣP
2 is the set of problems that can be verified in polynomial

time by an algorithm that has access to an oracle for some
NP-complete problem, where an oracle can be thought of
as a “black box” that is able to solve a specific decision

1The presentation of this material is intentionally kept quite informal.

problem in a single step. Similar to how coNP relates
to NP, we have ΠP

2 that is the set of problems whose
complements are in ΣP

2 .
• ΣP

3 is the set of problems that can be verified in polynomial
time by an algorithm that has access to an oracle for some
problem that is complete for ΣP

2 . Again, ΠP
3 is the set of

problems whose complements are in ΣP
3 .

The above idea is generalized for any k ∈ N: ΣP
k and ΠP

k are
defined assuming access to an oracle that is complete for ΣP

k−1

(we will only see the first three levels, explicitly listed above,
in this paper). This infinite hierarchy of complexity classes is
called the polynomial hierarchy. The relationship amongst these
complexity classes is shown in Figure 1 as a Hasse diagram
depicting the subset relationship (i.e., an arrow A → B in
Figure 1 pointing from A to B denotes that complexity class
A is a subset of complexity class B: each problem that falls
in complexity class A is also contained in complexity class
B). It is widely believed that each such depicted containment
is proper – i.e., each depicts the ( relationship.2

An alternate view on the polynomial hierarchy. Instead
of defining the levels in the polynomial hierarchy by using
oracles from the levels below, one can equivalently define the
polynomial hierarchy by the logical structure of the problems
contained in it. We find both views very useful, and therefore
briefly outline this alternate view as well.

In the logical view, a problem A in NP with input x can be
posed as a question of the form A(x) = ∃w : ψ(x,w), where
w is a polynomial-sized witness and ψ(x,w) is a function
in P that verifies that x belongs to the problem A with the
help of the witness w. For example, if our NP-problem A is
SATISFIABILITY, then x is a boolean formula, while w can be
a truth assignment of variables and ψ the function that simply
verifies if the truth assignment w satisfies x.

Similarly, a problem A in coNP with input x can be posed
as a question of the form A(x) = ∀w : ψ(x,w), where ψ(x,w)
is a function in P.

It can be noted that the distinguishing feature of NP is
that solutions (or witnesses), which show that some input x
belongs to the problem, are easily verified. On the other hand,
the distinguishing feature of coNP is that counterexamples,
which show that some input x does not belong to the problem,
are easily verified.

The higher levels of the polynomial hierarchy can then be
defined in the same vein by nesting alternating quantifiers, with
more quantifiers further up in hierarchy. A problem A(x) in
ΣP

2 can be posed in the form A(x) = ∃w1∀w2 : ψ(x,w1, w2),
while a problem A(x) in ΠP

2 can be posed in the form A(x) =
∀w1∃w2 : ψ(x,w1, w2). In general, problems at the k-th level
of the polynomial hierarchy can be posed as questions with k
alternating quantifiers, resulting in class ΣP

k if the first quantifier
is ∃ and in class ΠP

k if the first quantifier is ∀.
2If the containment at some level k would not be proper, then the entire

polynomial hierarchy above level k would collapse to that level (i.e., we would
have ΣP

k = ΣP
w = ΠP

w , for all w > k). In the extreme case, where P = NP,
the entire hierarchy collapses to P, but any collapse further up the hierarchy
would be very astonishing as well.
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Fig. 1. Complexity classes considered in this paper

Relevance to ILP. It has been shown [24] that the problem of
determining whether an ILP has a solution or not is NP-hard
in the strong sense. It was subsequently shown [25] that the
decision version of ILP is in NP, thereby establishing that ILP
is in fact complete for the complexity class NP. Recall from
complexity theory [10] that a problem is said to be hard for a
complexity class of the kinds discussed above if any problem
in the class can be reduced to this problem in polynomial time.
Since ILP belongs to the class NP and it is widely believed
that each of the subset relationships depicted in Figure 1 is a
proper one (as mentioned above), we have the following.

Proposition 1. Showing a problem to be hard for any of the
complexity classes ΣP

k or ΠP
k , for k ≥ 2, offers strong evidence

that it cannot be represented as an ILP in polynomial time.

Another result from complexity theory that we will use concerns
the complexity classes NP and coNP. It is widely believed
that these two classes are not equal: that there are problems in
NP that are not in coNP and vice versa.3 Hence, we get the
following.

Proposition 2. Showing a problem to be hard for both NP
and coNP offers strong evidence that it is not in either of these
two complexity classes (and therefore cannot be represented
as an ILP in polynomial time).

It should be noted that while we have some focus on ILP in
this paper, all the above still hold if we replace ILP with any
other problem in NP, such as SAT.

III. TASK AND PLATFORM MODEL

We will consider the problem of partitioning a given collection
Γ = {τ1, τ2, . . . , τn} of n recurrent tasks upon a platform of m
unrelated processors. Each task τi is characterized by m worst-
case execution time (WCET) parameters 〈Ci1, Ci2, . . . , Cim〉
where Cij denotes the maximum duration that a job of τi
would take to complete execution upon the j’th processor;
a relative deadline Di; and a period Ti. Each task τi may
release a potentially unbounded sequence of jobs during any
given execution of the task system; each job released by τi

3It has been shown that if NP = coNP, then the polynomial hierarchy
collapses to NP.

is required to complete execution within a duration Di of its
release time. We will consider systems of both sporadic and
periodic tasks: for sporadic tasks the period Ti represents the
minimum duration between the release of successive jobs while
for periodic tasks Ti represents the exact duration between the
release of successive jobs. A periodic task τi is additionally
characterized by an initial release time or offset Oi, and hence
releases jobs at instants Oi + k · Ti for all k ∈ N.

Synchronous and asynchronous periodic task systems.
Periodic task systems may be further characterized as being
synchronous if they satisfy the additional constraint that their
initial release times are all equal (in which case they are
typically assumed to be equal to zero, and omitted from the
specifications). Periodic task systems that are not synchronous,
i.e., in which all tasks do not have equal initial release times,
are called asynchronous periodic task systems.

Implicit-, constrained- and arbitrary-deadline systems.
Periodic or sporadic task systems are said to be implicit-
deadline if Di = Ti for all tasks (the Di parameter is typically
dropped from the specification of tasks in such systems), and
constrained-deadline if Di ≤ Ti for all tasks. If no such
restrictions are placed on the Di and Ti parameters (i.e., we
may have Di > Ti), then the task system is said to be arbitrary-
deadline.

EDF and FP scheduling. We will consider the partitioning
of recurrent task systems when each individual processor
is scheduled preemptively during run-time using either the
Earliest Deadline First (EDF) scheduling algorithm, or some
Fixed-Priority (FP) scheduling algorithm. When considering FP
scheduling, we will assume that tasks are indexed according to
priorities: τi has greater priority than τi+1 for all i, 1 ≤ i < n.

We now briefly state the following well-known results
regarding EDF and FP scheduling of recurrent task systems
upon preemptive uniprocessors. Let Ci denote the WCET of
τi ∈ Γ upon the sole processor.

• A necessary and sufficient condition for any implicit-deadline
periodic or sporadic task system Γ to be successfully
scheduled using EDF is that∑

τi∈Γ

Ci
Ti
≤ 1. (1)

• For constrained-deadline sporadic and synchronous periodic
task systems Γ that are scheduled under fixed priorities, the
response time Ri of task τi ∈ Γ —the maximum duration
that may elapse between the instant that a job of task τi
arrives and the instant it completes execution— is equal to
the smallest positive solution of the following recurrence:4

Ri ≥
∑
j≤i

⌈
Ri
Tj

⌉
· Cj (2)

4Since the smallest solution is necessarily satisfied with equality, this is
often written with an = rather than a ≥.



(Recall that tasks in Γ are assumed indexed according to
priorities: the index j in the summation therefore ranges
over all tasks with greater priorities that τi, plus the task τi.)

IV. PROBLEMS WITH ILP REPRESENTATIONS

In this section we describe polynomial-time algorithms for ob-
taining ILP representations of (i) partitioned EDF scheduling of
implicit-deadline sporadic or periodic task systems (Sec. IV-A),
and (ii) partitioned FP scheduling of constrained-deadline
sporadic or synchronous periodic task systems (Sec. IV-B).

A. EDF SCHEDULING OF IMPLICIT-DEADLINE SYSTEMS

The ILP representation of this problem is straight-forward and
has been part of the folklore in scheduling theory for decades;
we present it here for the sake of completeness. The ILP is
constructed using (n×m) zero-one integer variables xik for
each (i, k) ∈ {1, 2, . . . , n} × {1, 2, . . . ,m}. Variable xik has
the following intended interpretation:

xik = 1 if τi is assigned to the k’th processor (3)

The constraints in the ILP, and their intended interpretation,
are as follows:
• Each task must be assigned to some processor:

m∑
k=1

xik ≥ 1 for each i, 1 ≤ i ≤ n (4)

• The tasks assigned to each processor are successfully
scheduled during run-time; this is assured by appealing to the
uniprocessor EDF-schedulability condition of Expression 1:

n∑
i=1

xik ·
Cik
Ti
≤ 1 for each k, 1 ≤ k ≤ m (5)

It is fairly obvious that the above ILP, comprising n × m
zero-one integer variables and n+m linear constraints, has a
solution if and only if implicit-deadline sporadic or periodic
task system Γ can be partitioned amongst the m processors.

B. FP SCHEDULING OF CONSTRAINED-DEADLINE SYSTEMS

Here we present an ILP for solving the partitioned FP-
schedulability problem for constrained-deadline systems upon
unrelated heterogeneous processors. While this ILP is more
involved than the ILP in Sec. IV-A, it also has only a
polynomial number of variables and constraints and can easily
be constructed in polynomial time from a given task set. (The
key ideas here can readily be extracted from an ILP by Zheng
et al. [26] that was created for calculating end-to-end response
times in distributed systems.)

We first list the variables used in the ILP.
1) As in Section IV-A, we have (n × m) zero-one xik

variables with the same intended interpretation (articulated
in Expression 3).

2) We have n positive real-valued variables R1, R2, . . . , Rn,
where Ri represents the worst-case response time of τi.

3) We have (n2×m) zero-one integer valued variables sijk for
all (i, j, k) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m}, with
the intended interpretation that

sijk = 1 if τi and τj are both assigned to processor k. (6)

4) We have (n2 ×m) non-negative integer variables Zijk for
all (i, j, k) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m}, with
the intended interpretation that

Zijk≥
⌈
Ri
Tj

⌉
if τi and τj are both assigned to processor k. (7)

We now list the constraints in our ILP, that enforce the intended
interpretations of the variables defined above.

1) Each task must be assigned some processor: the Con-
straints 4 of Section IV-A are used here as well.

2) We enforce the intended interpretation of the sijk variables
by having a constraint

sijk ≥ xik + xjk − 1 (8)

for each (i, j, k) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m}.
The above constraint indeed ensures the intended interpre-
tation for sijk: if τi and τj are both assigned to the k’th
processor then xik = 1 and xjk = 1, and the RHS of the
constraint becomes 1 + 1− 1 = 1.

3) We enforce the intended interpretation in the Zijk variables
by having a constraint

Zijk ≥
Ri
Tj
−M(1− sijk) (9)

for each (i, j, k) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m}.
Here M is a sufficiently large positive constant; hence
the RHS of the expression is bounded from below by a
negative number if sijk is 0, and by Ri/Tj if sijk is 1. The
non-negative integer variable Zijk thus has the intended
interpretation: it is ≥ dRi/Tje if τi and τj are both assigned
to the k’th processor.

4) For each (i, k) ∈ {1, . . . , n} × {1, . . . ,m}, we have a
constraint

i∑
j=1

Zijk × Cjk ≤ Ri (10)

These constraints apply the response-time recurrence (Ex-
pression 2) to bound the worst-case response time of task
τi, in the following manner. Suppose τi is assigned to the
k’th processor (i.e., xik = 1). The Constraints 9 ensure
that for each task τj also assigned to the k’th processor we
will have Zijk ≥ dRi/Tje. Constraint 10 is then simply a
restatement of the response-time recurrence (Expression 2)
for task τi, on the k’th processor.

5) Finally, we introduce n constraints, one for each task τi,
requiring that τi’s worst-case response time, represented by
the variable Ri, not exceed its relative deadline:

Ri ≤ Di (11)

It is evident that this ILP is correct, and that it is generated in



polynomial time. It has (nm+n2m+n2m) = (nm+2n2m)
integer variables (of which all but n2m are zero-one variables)
plus n real-valued variables (the Ri’s), and a total of (n +
n2m+ n2m+ nm+ n) = (2n+2n2m+nm) constraints.
Hence it is indeed a polynomial-sized ILP as claimed.

V. ILP-INTRACTABLE PARTITIONING PROBLEMS

We now look at partitioned scheduling problems for which it
can be shown that it is unlikely that they can be represented as
ILPs in polynomial time (since doing so would disprove widely
held conjectures in complexity theory). First in Section V-A
we explain why the ILPs of Section IV probably cannot
be extended to more general task models. In Section V-B
we introduce the PARTITIONED SCP problem and establish
its computational complexity; we use PARTITIONED SCP in
Section V-C to show that some additional partitioning problems
are unlikely to be representable as ILPs in polynomial time.

A. SOME HARDNESS RESULTS

Let us first explore the possibility of extending the ILP
of Section IV-A, which partitions implicit-deadline tasks
for EDF scheduling, to constrained-deadline sporadic (or
synchronous periodic) systems. This problem has been looked
at previously [27]–[31]. Baruah and Bini [27] obtained an
ILP representation of this problem with polynomially many
variables but exponentially many constraints. They showed how
this ILP could be modified to obtain approximations that have
polynomially many constraints at a speedup cost that depends
upon the degree of approximation. Marchetti-Spaccamela et
al. subsequently [28]–[31] improved this result to show that
polynomial-sized ILPs are possible if one is willing to pay a
speedup cost larger than 2. However the following theorem, in
conjunction with Proposition 2, offers strong evidence that we
are unlikely to obtain speedup-optimal ILP representations in
polynomial time:

Theorem 1. The partitioned EDF-schedulability problem for
sporadic (or synchronous periodic) tasks with constrained or
arbitrary deadlines is both strongly NP-hard and coNP-hard,
even when restricted to m = 2 identical processors.

Proof. Already the uniprocessor version of this problem is
strongly coNP-complete [13], and therefore the partitioned
version is clearly strongly coNP-hard for m = 2 processors.

The partitioned EDF-schedulability problem is strongly NP-
hard even for implicit-deadline tasks (Ci = Di for all τi ∈ Γ)
and m = 2 processors: this is easily shown by reducing from
PARTITION WITH RATIONAL WEIGHTS, which is known [32]
to be strongly NP-complete (the reduction maps the rational
weights to task utilizations).

Proposition 2 states that problems that are both NP and coNP
hard are unlikely to have efficient ILP representations; hence
the ILP of Section IV-A is unlikely to extend to constrained-
deadline systems.
Extending the ILP of Section IV-B to the partitioned FP-
scheduling of arbitrary-deadline sporadic or synchronous peri-

odic systems also seems unlikely, since even the uniprocessor
version of this problem is not known to be in NP.5

B. PARTITIONED SIMULTANEOUS CONGRUENCES

The Simultaneous Congruences Problem (SCP) – see Defini-
tion 1 below – has played an important role in establishing
the computational complexity of several basic (uniprocessor)
scheduling problems concerning periodic real-time task systems
(see, e.g., [21]–[23], [33]). SCP was shown to NP-complete
in [22]; this was later strengthened in [34] to show that SCP is
in fact NP-complete in the strong sense.

In this section we define and study a generalization to SCP
that suggests itself as a natural extension for the purposes of
studying partitioned scheduling of periodic task systems. We
prove (Theorem 2 below) that this generalization, which we
have called PARTITIONED SCP (Definition 2), is complete for
the complexity class ΣP

2 . We can look upon Theorem 2 as
the analogue in the second level of the polynomial hierarchy
depicted in Figure 1, of the NP-hardness of SCP that was proved
in [22], [34]. In fact in the following sections of this paper we
will use PARTITIONED SCP to pigeonhole the computational
complexity of several partitioned scheduling problems, in much
the same manner as SCP was used [21]–[23], [33] to establish
the complexity of many uniprocessor scheduling problems.

Definition 1 (Simultaneous Congruences Problem (SCP)).
INSTANCE: 〈A, k〉, where A = {(a1, b1), . . . , (an, bn)} is a set
of ordered pairs of non-negative integers satisfying ai < bi for
each i, and k is a positive integer that is ≤ n.

QUESTION: Is there an integer x and an A′ ⊆ A such that
|A′| = k and (x ≡ ai (mod bi)) for each (ai, bi) ∈ A′?

Any instance 〈A, k〉 for which the answer to the above question
is “yes” is said to belong to SCP; this may be expressed formally
as “〈A, k〉 ∈ SCP”.

We now define PARTITIONED SCP as a natural generalization
to the SCP:

Definition 2 (PARTITIONED SCP).
INSTANCE: 〈A, k,m〉, where A = {(a1, b1), . . . , (an, bn)} is a
set of ordered pairs of non-negative integers satisfying ai < bi
for each i, and k and m are positive integers both ≤ n.

QUESTION: Is there an m-partitioning 〈A1, . . . , Am〉 of A such
that 〈Ai, k〉 6∈ SCP for each i, 1 ≤ i ≤ m? In other words, is it
the case that there does not exist an integer x and an A′ ⊆ Ai
for any partition Ai such that |A′| = k and

x ≡ ai (mod bi)

for each (ai, bi) ∈ A′?

Similarly to above, we will say an instance 〈A, k,m〉 ∈
PARTITIONED SCP if the answer to the question above upon
instance 〈A, k,m〉 is “yes”.

5In Lemma 6.1, we will present the first upper bound on this uniprocessor
scheduling problem’s complexity: we show that it is in ΠP

2 .



The remainder of this section is devoted to showing that
PARTITIONED SCP is a highly intractable problem; this is
formally stated in Theorem 2 below. But before getting to
that we introduce an additional problem called the GENER-
ALIZED GRAPH COLORING problem6 that we will use to
prove Theorem 2, that has previously been considered in the
computational complexity literature. The following special
case of GENERALIZED GRAPH COLORING was shown [35,
Theorem 5] to be ΣP

2 -complete (although we will refer to this
special case as the GENERALIZED GRAPH COLORING problem
in the remainder of this manuscript, we emphasize here that it
is in fact only a special case of the more general problem of
this name).

Definition 3 (GENERALIZED GRAPH COLORING).
INSTANCE: 〈G, k〉, where G is a graph and k a positive integer.
QUESTION: Is there a 2-coloring of G that does not contain a
clique of size k in which all vertices have the same color? (I.e.,
no set of k vertices, all of which have edges to each other,
should all be of the same color.)

Similarly to above, we will say an instance 〈G, k〉 ∈
GENERALIZED GRAPH COLORING if the answer to the ques-
tion above upon instance 〈G, k〉 is “yes”.

Theorem 2. PARTITIONED SCP is ΣP
2 -complete.

Proof. It is evident that PARTITIONED SCP ∈ ΣP
2 : given an

instance 〈A, k,m〉 we can simply guess an m-partitioning
〈A1, . . . , Am〉 of A in polynomial time, and use an oracle for
SCP, which is known [22], [33] to be NP-complete, to verify
that each 〈Ai, k〉 6∈ SCP for each i, 1 ≤ i ≤ m.

We now show that PARTITIONED SCP is ΣP
2 -hard, by defining

a polynomial-time reduction from GENERALIZED GRAPH
COLORING to PARTITIONED SCP. That is, given a graph
G we describe below how to construct a set f(G) of
ordered pairs of integers in time that is polynomial in
the number of vertices in G, such that for any integer
k, 〈G, k〉 ∈ GENERALIZED GRAPH COLORING if and only
if 〈f(G), k, 2〉 ∈ PARTITIONED SCP. This, in conjunction
with the ΣP

2 -hardness of GENERALIZED GRAPH COLOR-
ING [35, Theorem 5], establishes that PARTITIONED SCP
is ΣP

2 -hard (since one can determine whether 〈G, k〉 ∈
GENERALIZED GRAPH COLORING by first computing f(G) in
polynomial time, and then checking whether 〈f(G), k, 2〉 ∈
PARTITIONED SCP).

We now describe how, given a graph G = (V,E) where
V = {v1, v2, . . . , vn} is the set of vertices and E the set of
edges, we obtain the set f(G) of n ordered pairs of integers –
we point out that this construction is essentially identical to the
one introduced by Leung and Whitehead [22, Theorem 3.6] for
the purpose of showing that SCP is NP-hard. Our construction
of f(G) uses (n2 − n)/2 distinct prime numbers; hence we
point out that (i) it follows from the Prime Number Theorem
(see, e.g., [36]) that the first n2 prime numbers are bounded

6Listed as Problem [GT9] in the compendium [20] of problems that are
complete for various levels of the polynomial-time hierarchy.

in value by a polynomial in n; and (ii) they can therefore be
determined in time polynomial in n even by a relatively naı̈ve
algorithm such as the Sieve of Eratosthenes.

Let us refer to (n2−n)/2 distinct prime numbers as pij for
each pair (i, j), 1 ≤ i < j ≤ n. We construct the bi’s in the
following manner:

bi =
∏
j<i

pji ×
∏
i<j

pij for each i, 1 ≤ i ≤ n (12)

and the ai’s as follows:

ai =
∏
j<i

pji ×
∏
i<j ∧

(vi,vj)∈E

pij for each i, 1 ≤ i ≤ n (13)

It is evident that this reduction takes time polynomial in n. It
now remains to show that it is correct: i.e., that for any integer
k, 〈G, k〉 ∈ GENERALIZED GRAPH COLORING if and only if
〈f(G), k, 2〉 ∈ PARTITIONED SCP.

Lemma 2.1. ai ≡ aj (mod gcd(bi, bj)) iff (vi, vj) ∈ E.

Proof. Without loss of generality assume that i > j (the case
for i < j is symmetric).
• From Expression 12, gcd(bi, bj) = pji, since that is the

only prime number that bi and bj have in common (by
construction).

• From Expression 13, pji is a factor of ai; however it is a
factor of aj if and only if (vi, vj) ∈ E. Therefore ai ≡ 0
(mod pji), but aj ≡ 0 (mod pji) if and only if (vi, vj) ∈ E.

The lemma follows.

Lemma 2.2. V ′ ⊆ V is a clique in G if and only if ai ≡ aj
(mod gcd(bi, bj)) for each pair of vertices vi, vj ∈ V ′.

Proof. Consider any V ′ ⊆ V . By definition of clique, V ′

is a clique in G iff there is an edge between each pair of
vertices in V ′. It follows by Lemma 2.1, that V ′ is a clique
in G iff ai ≡ aj (mod gcd(bi, bj)) for each pair of vertices
vi, vj ∈ V ′.

To complete the proof of Theorem 2, we must show that
〈G, k〉 ∈ GENERALIZED GRAPH COLORING if and only if
〈f(G), k, 2〉 ∈ PARTITIONED SCP. We consider the “if” and
“only if” separately below.

Suppose 〈G, k〉 ∈ GENERALIZED GRAPH COLORING: Con-
sider the 2-coloring of G such that there is not a clique of size k
of either color. Partition the ordered pairs in f(G) into two sets
S1 and S2 according to the color of the vertices to which they
correspond; it follows from Lemma 2.2 and the Generalized
Chinese Remainder Theorem [36] that 〈S1, k〉 6∈ SCP and
〈S2, k〉 6∈ SCP. Hence 〈f(G), k, 2〉 ∈ PARTITIONED SCP.

Suppose 〈f(G), k, 2〉 ∈ PARTITIONED SCP: Consider some 2-
partitioning of f(G) into S1 and S2 such that 〈S1, k〉 6∈ SCP
and 〈S2, k〉 6∈ SCP. By Lemma 2.2 and the Generalized
Chinese Remainder Theorem, the vertices corresponding to
all the ordered pairs in neither S1 nor S2 contain cliques
of k vertices; hence color all the vertices corresponding to



ordered pairs in S1 to be of one color and those corresponding
to ordered pairs in S2 of another color to obtain a 2-
coloring of G that bears witness to the fact that 〈G, k〉 ∈
GENERALIZED GRAPH COLORING.

Observe that the reduction in the proof of Theorem 2, an
arbitrary instance 〈G, k〉 of GENERALIZED GRAPH COLORING
was reduced to an instance 〈f(G), k,2〉 of PARTITIONED SCP;
this immediately yields the following corollary:

Corollary 3. PARTITIONED SCP is ΣP
2 -complete even when

restricted to two partitions.

C. HARDNESS RESULTS FOR ASYNCHRONOUS SYSTEMS

In this section we apply the hardness results for PARTITIONED
SCP obtained in Section V-B above to show that partitioning
asynchronous periodic task systems is computationally highly
intractable. Both reductions in this section were closely inspired
by Leung and Whitehead [22], who reduced from (ordinary)
SCP to schedulability of uniprocessor asynchronous periodic
tasks.

As mentioned in Section I, we establish all lower bounds for
identical multiprocessors in order to get the strongest results.
Throughout this section we simply write Ci for the execution
time of τi, since Cij = Cik for all processors j, k.

Theorem 4. The partitioned schedulability problem for any
work-conserving scheduler, and the partitioned feasibility
problem, is ΣP

2 -hard for asynchronous periodic tasks. This
holds even when restricted to m = 2 identical processors,
constrained deadlines and total utilization bounded from above
by any constant c > 0.

Proof. We create a polynomial-time reduction from PARTI-
TIONED SCP to the considered problem. Given a PARTITIONED
SCP instance 〈A, k,m〉, we transform this instance into a set Γ

of n def
= |A| asynchronous periodic tasks. For each (ai, bi) ∈ A,

we have a τi ∈ Γ with the following parameters:

Oi
def
= µai,

Ci
def
= 1,

Di
def
= k − 1,

Ti
def
= µbi,

where

µ
def
= k

⌈n
c

⌉
.

We note that by this construction, x ≡ ai (mod bi) if and only
if task τi releases a job at time-instant µx, for x ≥ 0.

We will now show that Γ is feasible with partitioned
scheduling on m processors (and also schedulable by any
work-conserving partitioned scheduler on m processors) if and
only if 〈A, k,m〉 ∈ PARTITIONED SCP by considering the two
directions separately.

〈A, k,m〉 ∈ PARTITIONED SCP ⇒ Γ is schedulable: Assume
that 〈A, k,m〉 ∈ PARTITIONED SCP. Then there exists a
partitioning A1, . . . , Am of A such that no partition Aj has a

simultaneous collision of k or more congruence classes. That
is, there is no number x and subset A′ ⊆ Aj of size k where
x ≡ ai (mod bi) for all (ai, bi) ∈ A′.

Let Γ1, . . . ,Γm be a partitioning of Γ such that τi ∈ Γj if
(ai, bi) ∈ Aj . It follows that for all partitions Γj , there is no
time point where more than k − 1 tasks release a job at the
same time. Further, since Oi and Ti are multiples of µ for
all tasks τi, any jobs that are not released at the same time
are separated by at least µ ≥ k time units. As all jobs have
execution time 1 and relative deadline k− 1, all jobs will meet
their deadlines under any work-conserving scheduling.

〈A, k,m〉 6∈ PARTITIONED SCP ⇒ Γ is not schedulable: As-
sume that 〈A, k,m〉 6∈ PARTITIONED SCP. Then all possible
m-partitionings of A will contain at least one partition Aj with
a subset A′ ⊆ Aj where |A′| ≥ k, such that x ≡ ai (mod bi)
for all (ai, bi) ∈ A′ and for some x. It follows that all possible
m-partitionings of Γ will contain a partition where at least k
tasks release a job at the same time point. Since all tasks have
execution time 1 and relative deadline k− 1, no scheduler can
successfully schedule k or more jobs that are released at the
same time point.

Finally, we note that the the reduction is easily carried out
in polynomial time, that PARTITIONED SCP is ΣP

2 -complete
already when m = 2 (by Corollary 3) and that the utilization
of the produced task set is∑

τi∈Γ

Ci
Ti

=
∑
τi∈Γ

1

µbi
≤ n

µ
≤ c,

which completes the proof.

Since Theorem 4 is applicable to any work-conserving
scheduler, we immediately get ΣP

2 -hardness for both partitioned
EDF and partitioned FP (regardless of the priority ordering)
for constrained-deadlines asynchronous periodic tasks.

In the next theorem we see that partitioned FP schedulability
with a specified priority ordering is ΣP

2 -hard also with implicit
deadlines.

Theorem 5. The partitioned FP-schedulability problem for
asynchronous periodic tasks is ΣP

2 -hard when the priority
ordering is given, even when restricted to m = 2 identical
processors, implicit deadlines and total utilization bounded
from above by c×m, for any constant c > 1/2.

Proof. Here, given a PARTITIONED SCP instance 〈A, k,m〉, we
transform it into a set Γ of n+m asynchronous periodic tasks
with implicit deadlines, where n def

= |A| . For each (ai, bi) ∈ A,
let τi be a task with the following parameters.

Oi
def
= µ2ai,

Ci
def
= µ,

Di = Ti
def
= µ2bi,

where

µ
def
= 2kn

⌈ n+m

c− 1/2

⌉
.



Then we create m more tasks τn+i, for 1 ≤ i ≤ m that all
have the same parameters:

On+i
def
= 0,

Cn+i
def
= kµ+ 1,

Dn+i = Tn+i
def
= 2kµ.

The set Γ contains the above n+m tasks. The tasks τi, for
1 ≤ i ≤ n, are all given high priorities, while the tasks τn+i,
for 1 ≤ i ≤ m, are all given low priorities. The internal
priority ordering for the first n tasks is RM. The internal
priority ordering for the latter m tasks does not matter as long
as they all have lower priorities than the first n tasks.

Note that, by construction, task τi will release a job at time
point µ2x if and only if x ≡ ai (mod bi), for 1 ≤ i ≤ n and
x ≥ 0.

We now show that Γ is schedulable if and only if 〈A, k,m〉 ∈
PARTITIONED SCP, considering the two directions separately.

〈A, k,m〉 ∈ PARTITIONED SCP ⇒ Γ is schedulable: Assume
that 〈A, k,m〉 ∈ PARTITIONED SCP, and that A1, . . . , Am is an
m-partitioning of A such that no partition has a simultaneous
collision of k or more congruence classes. Let Γ1, . . . ,Γm be
an m-partitioning of Γ, where the n higher-priority tasks are
assigned following the partitioning of A, such that τi ∈ Γj if
(ai, bi) ∈ Aj . Further, we assign each lower-priority task τn+j

to partition Γj .
We first note that the higher-priority tasks τi, for 1 ≤ i ≤ n,

are all schedulable. Their total utilization is
n∑
i=1

Ci
Ti

=

n∑
i=1

µ

µ2bi
≤ n

µ
<

1

2
,

and hence they are guaranteed to be schedulable by Liu and
Layland’s utilization bound [17], no matter how they are
partitioned.

Then, to see that the low-priority task τn+j on each partition
Γj is schedulable as well, we note that at most k − 1 higher-
priority tasks can release a job at the same time point on Γj ,
and that consecutive job releases from those tasks are at least µ2

time units apart. Any job from the low-priority task then suffers
at most (k−1)µ time units of interference, which can not cause
it to miss its deadline since Cn+j + (k − 1)µ < 2kµ = Dn+j .

〈A, k,m〉 6∈ PARTITIONED SCP ⇒ Γ is not schedulable: Con-
sider first the low-priority tasks τn+i, for 1 ≤ i ≤ m. Since
each of these has utilization (kµ + 1)/(2kµ) > 1/2, each
partition must have one of these tasks assigned to it, since
otherwise some partition will be assigned at least two and
therefore be unschedulable due to utilization overload.

Consider then the n high-priority tasks. Assume that
〈A, k,m〉 6∈ PARTITIONED SCP, and hence that for all m-
partitionings A1, . . . , Am of A, there exists some partition
Aj and subset A′ ⊆ Aj with |A′| ≥ k and a number x, such
that x ≡ ai (mod bi), for all (ai, bi) ∈ A′. It follows that for
any m-partitioning of the tasks τi, for i ≤ i ≤ n, there will
be some partition where at least k of those tasks release a

job at the same time point µ2x, thereby creating high-priority
workload of at least kµ time units at a this single time point.

If one of the low-priority tasks τn+i is also assigned to this
partition, as it must if no partition should be overloaded with
utilization > 1, then it will also release a job at time point
µ2x since µ2x ≡ On+i (mod Tn+i). But that low-priority
job then suffers interference of at least kµ time units from
the higher-priority tasks, and it will miss its deadline since
Cn+i + kµ = 2kµ+ 1 > 2kµ = Dn+i.

Finally, we (i) recall that PARTITIONED SCP is ΣP
2 -complete

already for m = 2, (ii) note that Γ is easily produced in
polynomial time and, (iii) see that the total utilization of Γ is

n∑
i=1

Ci
Ti

+

m∑
i=1

Cn+i

Tn+i
≤ n

µ
+
mkµ+m

2kµ

≤ m

2
+
n+m

µ

≤ m

2
+ c− 1

2

≤ m

2
+m

(
c− 1

2

)
= cm,

which completes the proof.

VI. UPPER BOUNDS ON COMPLEXITY

In this section we show that certain partitioned scheduling
problems belong to particular complexity classes and can
therefore be no harder than the hardest problems in those
classes.

It has been shown [21]–[23], [33], [37] that uniproces-
sor EDF-schedulability is in coNP. We begin by observing
that moving to partitioned multiprocessors “lifts” the EDF-
schedulability problem at most one level up in the polynomial
hierarchy, from coNP to ΣP

2 , even in the most general setting:

Theorem 6. Partitioned feasiblity (or, equivalently, partitioned
EDF-schedulability) on m heterogeneous processors is in ΣP

2 ,
even for asynchronous periodic tasks with arbitrary deadlines.

Proof. It is known [23] that the equivalent uniprocessor
feasibility problem is in coNP, and therefore the uniprocessor
infeasibility problem is in NP: Using the standard demand
bound function analysis [23], a polynomial-time verifiable
witness to infeasibility consists of two time points 〈t1, t2〉 such
that dbf(t1, t2) > t2 − t1.

Using the uniprocessor infeasibility problem as an NP-oracle
it is easy to see that the partitioned feasibility problem is in
ΣP

2 . A witness is simply an m-partitioning 〈Γ1, . . . ,Γm〉 of
Γ, and we can check whether each partition is feasible using
the oracle. (It should be noted that it does not matter that the
oracle is for infeasibility rather than feasibility since we can
simply negate its answer.)

Informally speaking, the partitioned EDF-schedulability
problem is in ΣP

2 since it has the logical form “∃ ∀”: does there
exist a partitioning such that for all time intervals, no partition



is overloaded? Ultimately, this is because the uniprocessor
EDF-schedulability problem is in coNP: the demand bound
function analysis asks if all time intervals are non-overloaded.

In contrast, uniprocessor FP-schedulability for constrained-
deadline sporadic/synchronous periodic systems is in NP rather
than coNP, since it can be posed as “do there exist solutions
to the response-time equation (Expression 2) that are ≤ Di

for each τi?”. The partitioned FP-schedulability problem is
then of the form “∃ ∃”: does there exist a partitioning such that
there exist solutions to the response-time equation on those
partitions? Questions of the form “∃ ∃” can be flattened to
just “∃” by combining both witnesses into one, and therefore
partitioned FP-schedulability for constrained-deadline and
implicit-deadline sporadic/synchronous periodic task systems
is in NP (indeed, that is why we were able to formulate the
partitioned FP-schedulability problem as an ILP in polynomial
time, in Section IV-B).

However, the smallest solution to Expression 2 equals
the response time of a task under fixed-priority scheduling
only for constrained-deadline and implicit-deadline sporadic/
synchronous periodic task systems: this has been shown [38] to
not be the case for arbitrary-deadline systems. As a consequence
we are unable to extend the claim above (that partitioned FP-
schedulability for constrained-deadline and implicit-deadline
sporadic/synchronous periodic task systems is in NP) to
arbitrary-deadline systems; in fact the best upper bound we
have been able to establish for partitioned FP-schedulability
with arbitrary deadlines and/or asynchronous periodic tasks is
at the third level of the polynomial hierarchy, as we will see in
Theorem 7. First we show that the corresponding uniprocessor
FP-schedulability problem is in ΠP

2 .

Lemma 6.1. Uniprocessor FP-schedulability for asynchronous
periodic tasks with arbitrary deadlines is in ΠP

2 .

Proof. Consider the decision problem CHECK JOB WITH
BACKLOG that asks if one particular job J from one of the
tasks τi in a task system Γ is schedulable on a uniprocessor,
under the assumption that there is a backlog of exactly b units
of unfinished work from jobs of equal or greater priority when
J is released. (It is not a part of this decision problem to verify
whether a backlog of b is actually possible.)

CHECK JOB WITH BACKLOG is in NP: It is readily verified
that J is schedulable under the given assumptions if and only
if there exists a positive solution R ≤ Di to the equation

R ≥ b+ Ci +
∑
j<i

max

(
0,

⌈
R− xj
Tj

⌉
Cj

)
, (14)

where xj ≥ 0 is the minimum time between the release of J
and the next release of a job from τj . Such a solution R is a
witness for CHECK JOB WITH BACKLOG that can be verified in
polynomial time, and therefore CHECK JOB WITH BACKLOG is
in NP.

We will now use the above observation to show an up-
per bound of ΠP

2 on the complexity of uniprocessor FP-
schedulability. Consider a job J from some task τi ∈ Γ that

is released at time t2, and some time point t1 < t2. Let w
denote the total workload of jobs from equal- or higher-priority
tasks from Γ that are released in time interval [t1, t2) and let
b = max(0, w− (t2− t1)). We consider two cases based upon
whether t1 starts a level-i busy period [38] in the schedule.

Case 1 (t1 is the start of a level-i busy period): Since t1 is
the start of a level-i busy-period, there can be no backlog of
equal- or higher-priority jobs at t1, and no idle time in [t1, t2).
The backlog of such jobs at t2 is then exactly b, and 〈J, b〉 is
an instance of CHECK JOB WITH BACKLOG if and only if job
J is schedulable.

Case 2 (t1 is not the start of a level-i busy period): Here there
can be a backlog of equal- or higher-priority work already
at t1 and there could also be idle time in [t1, t2). Both of
these possibilities would cause b to be smaller than the actual
backlog at t2, and hence 〈J, b〉 is an instance of CHECK JOB
WITH BACKLOG if job J is schedulable.

We can then verify all instances 〈J, b〉 using CHECK JOB
WITH BACKLOG as an oracle, where J ranges over all jobs
in the first two hyper-periods7 and where b is calculated as
above for all integer time points t1 before the release of J .
By the reasoning above, we will then have checked every job
for schedulability, once exactly (when b is the exact backlog)
and several more times with no false negatives (when b is less
than the backlog), and hence this is a method of solving the
uniprocessor version of the schedulability problem. While this
is not at all a practical method, it does show that uniprocessor
FP-schedulability is in ΠP

2 since a single instance 〈J, b〉 serves
as a potential counterexample that can be checked with the
oracle.

An upper bound for the partitioned version follows easily:

Theorem 7. Partitioned FP-schedulability for asynchronous
periodic tasks with arbitrary deadlines on m heterogeneous
processors is in ΣP

3 .

Proof. A partitioning Γ1, . . . ,Γm of Γ is a witness to parti-
tioned FP-schedulability that can be verified using an oracle
for the uniprocessor version. Since the oracle is in ΠP

2 by
Lemma 6.1, the considered problem is in ΣP

3 .

We can look at the fact that partitioned FP-schedulability
for asynchronous periodic tasks with arbitrary deadlines is in
ΣP

3 in two ways. We can think of it as the partitioned version
being solvable using an oracle for the uniprocessor version,
which in turn uses an oracle for CHECK JOB WITH BACKLOG.
But we could also think about it in a different way: that the
partitioned version can be posed as a question of the form
“∃ ∀∃”, namely, does there exist a partitioning, such that for
all pairs 〈J, b〉 with those partitions, there exists a solution to
Expression 14?

7Note that for task systems that are not over-utilized, the first two hyper-
periods will contain all unique busy periods.



VII. A MAP OF THE COMPLEXITY LANDSCAPE

In this section we integrate our results into a comprehensive
view of the complexity landscape of partitioned schedulability
problems — see Figure 2. Recall that all our upper bounds
are valid for unrelated heterogeneous processors and all our
lower bounds for identical processors; when the bounds match,
we have pinpointed the precise complexity of the partitioning
problem upon both identical and heterogeneous platforms. In
Figure 2, lighter cells are problems that can be represented
as ILPs in polynomial time (i.e., they are in NP) and darker
cells are problems that cannot (they are not in NP unless the
polynomial hierarchy collapses). For the dual-shaded cells, it
is currently unknown if they can be so represented. In the
following we use the numbers in the top-left corners of the
cells (numbered 1 – 24 ) to refer to the problems.

Synchronous periodic and sporadic tasks. The scheduling
problem is strongly NP-complete for partitioned EDF with
implicit deadlines ( 7 and 10 ), and can readily be formulated as
an ILP as described in Section IV-A. The well-known reduction
from BIN PACKING shows that 7 is indeed NP-hard in the
strong sense, but does not show the same for 10 since BIN
PACKING is only strongly NP-complete for arbitrary number of
bins. However, recent results [32] on PARTITION with rational
weights are easily applied to show that also 10 is NP-hard in
the strong sense, even for m = 2.

On the other hand, the FP-schedulability problem is NP-
complete also for constrained deadlines, and 1 , 2 , 4 and 5
can all be solved by the ILP in Section IV-B. However, it is not
immediate that the results of [32] apply here, so it is unknown
if 4 and 5 are NP-hard in the strong sense.

For EDF with constrained or arbitrary deadlines, Theorem 1
tells us that schedulability is both NP- and coNP-hard, so 8 ,
9 , 11 and 12 cannot be formulated as ILPs in polynomial
time unless NP = coNP. They are all contained in ΣP

2 by
Theorem 6, but it is unknown is they are hard for this class.

A much larger gap exists for FP with arbitrary deadlines,
the lower bounds for 3 and 6 are just the same as the variants
with implicit or constrained deadlines, but the best upper bound
we have is ΣP

3 by Theorem 7. For 3 and 6 it is currently
unknown if they can be formulated as ILPs in polynomial time.

Asynchronous periodic tasks. Here we have a complete clas-
sification for all the considered EDF-schedulability problems.
The cases with implicit deadlines, 19 and 22 , are strongly
NP-complete and can be solved by the ILP in Section IV-A.
For constrained and arbitrary deadlines, we have pinpointed the
complexity at the second level of the polynomial hierarchy, so
20 , 21 , 23 and 24 are all ΣP

2 -complete by Theorems 4 and 6
(already when m = 2). These problems cannot be formulated
as ILPs in polynomial time unless the polynomial hierarchy
collapses to NP.

The FP-schedulability problems with constrained or arbitrary
deadlines are at least as hard as with EDF: 14 , 15 , 17
and 18 are also ΣP

2 -hard by Theorem 4 (indeed, so are the
schedulability problems for all work-conserving partitioned

schedulers by that theorem), but for FP there is a gap to the
upper bound of ΣP

3 from Theorem 7.
For implicit deadlines, the schedulability problem for FP is

much harder than for EDF if the priority ordering is specified:
13 and 16 are ΣP

2 -hard as well by Theorem 5. However, if the
priority ordering can be chosen freely we only have the same
lower bounds as for synchronous tasks, and it is unknown if
13 and 16 can be formulated as ILPs in polynomial time in
this case. The best known upper bound is ΣP

3 in either case.

VIII. CONCLUSIONS

Most task schedulability problems considered in the real-time
systems literature are NP- or coNP-hard, but not all are in
either of those classes. To understand the relative complexity
of schedulability problems—to see why some are seemingly
much harder than others—we would often have to look beyond
NP and coNP.

In this work we have considered the complexity of partitioned
schedulability problems for different types of recurrent tasks. In
some settings, such as FP-scheduling of constrained-deadline
sporadic tasks, the partitioned version of the schedulability
problem remains in the same complexity class as the corre-
sponding uniprocessor version (both are NP-complete). This
partitioned schedulability problem can be solved by the ILP
described in Sec. IV-B.

For other settings, such as the equivalent EDF-schedulability
problem, the partitioned version is provably beyond the class of
its corresponding uniprocessor version (under the widely held
conjecture of complexity theory that the polynomial hierarchy
does not collapse to NP).

We have shown that several of the basic partitioned schedu-
lability problems are similarly of a qualitatively different sort
than their uniprocessor variants. Some are exactly pinpointed in
the polynomial hierarchy, for others gaps still remain between
the best known upper and lower bounds. We are hopeful that
the remaining gaps can be closed, perhaps with a starting point
in the useful PARTITIONED SCP problem that is shown to be
ΣP

2 -complete in this paper.
Other well-known schedulability problems could be beyond

the polynomial hierarchy altogether. For example, the best
known upper bound to most basic global schedulability
problems put them in PSPACE or even double-exponential
time [39], but the best known lower bounds for most of these
are just the same as for the uniprocessor variants, leaving
very large gaps.8 Further exploring the complexity of all these
common schedulability problems is an important step if we
want to truly understand them.

8Some exact complexity results are in fact known for global scheduling:
Global feasibility for implicit-deadline tasks is (quite remarkably!) in P [40]
and global schedulability for arbitrary-deadline tasks where the scheduler
is specified as a part of the input was shown to be PSPACE-complete by
Geeraerts et al. [41], which puts it outside the entire polynomial hierarchy
unless the hierarchy collapses.
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Fig. 2. Complexity of partitioned multiprocessor schedulability problems. Lighter cells have efficient ILP representations; darker cells are unlikely to. It is
currently unknown whether the dual-shaded cells ( 3 , 6 , 13 and 16 ) have such ILP representations or not.
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