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What is the complexity of partitioned schedulability?

Exact schedulability tests!
Schedulers:
o FP
® EDF / feasibility
Tasks:
® Synchronous periodic / sporadic
¢ Asynchronous periodic
Processors:

® Jdentical
® Unrelated
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BUT, DON’T WE KNOW THIS ALREADY?

Partitioned schedulability generalizes BIN PACKING, and is

therefore NP-hard!

NP-hard is just a lower bound on complexity.

What is the exact complexity?
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EDF with
constrained or
arbitrary deadlines

FP with
arbitrary deadlines

EDF with
implicit deadlines

coNP

ILPs in paper
Problems that can be
efficiently formulated
FP with implicit or as ILP or SAT

constrained deadlines
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The Simultaneous Congruences Problem (scp):

Example: A= {(2,4),(4,6),(3,8),(0,3)}, k=2

(2,4) 3 3 3 ° °
(4,6) 3 3 : o

(3,8) 3 & o
(0,3) 3 3 o 3 S o
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scp is NP-complete (Leung and Whitehead, 1982)
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LET’S GENERALIZE IT!

PARTITIONED SCP:

Example: A = {(2,4),(4,6),(3,8),(0,3),...}, m, k

m

(A1, k) & scp (Ag, k) & scp (Am, k) & scp

Some partitioned

GENERALIZED 10
GRAPH COLORING —— PARTITIONED SCP —— Schedulablllty
problems
P -complete,
2 P »P-complete »P-hard

Rutenburg, 1986



COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS



COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS

25 1§
25 15
NP coNP

/
N



COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS

[\

ﬁ NP\ /coNP

EDF with
implicit deadlines



COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS

o
=
B

— X
EDF with

constrained or
arbitrary deadlines

ﬁ NP\ /coNP

EDF with p
implicit deadlines




COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS

[\

K—» P 15

EDF with
constrained or
arbitrary deadlines

ﬁ NP\ /coNP

EDF with p
implicit deadlines




COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS

P P
FP 23 115

Any work-conserving

ﬁ »P 11 scheduler with
constrained deadlines
EDF with

constrained or
arbitrary deadlines

ﬁ NP\ /coNP

EDF with p
implicit deadlines

[\)
VRV




COMPLEXITY FOR ASYNCHRONOUS PERIODIC TASKS

FP o e
Any work-conserving
K—) ZQP H2P scheduler with
constrained deadlines

EDF with
constrained or
arbitrary deadlines

K—» NP coNP
\ / Problems that can be
P

EDF with efficiently formulated
implicit deadlines
v

as ILP or SAT



CONCLUSIONS

New complexity bounds for partitioned schedulability.




CONCLUSIONS

New complexity bounds for partitioned schedulability.

® Some problems are exactly pinpointed.



CONCLUSIONS

New complexity bounds for partitioned schedulability.

® Some problems are exactly pinpointed.

® Some are provably' beyond the corresponding uniprocessor case.

: Unless the polynomial hierarchy collapses



CONCLUSIONS

New complexity bounds for partitioned schedulability.

® Some problems are exactly pinpointed.
® Some are provably' beyond the corresponding uniprocessor case.

® Some are essentially the same as the uniprocessor case!

: Unless the polynomial hierarchy collapses



CONCLUSIONS

New complexity bounds for partitioned schedulability.

Some problems are exactly pinpointed.
® Some are provably' beyond the corresponding uniprocessor case.
® Some are essentially the same as the uniprocessor case!

® Some can not be formulated as ILP in polynomial time.

: Unless the polynomial hierarchy collapses



CONCLUSIONS

New complexity bounds for partitioned schedulability.

Some problems are exactly pinpointed.
® Some are provably' beyond the corresponding uniprocessor case.
® Some are essentially the same as the uniprocessor case!

® Some can not be formulated as ILP in polynomial time.

No problem is higher up than f.

: Unless the polynomial hierarchy collapses



V'Thank you!
&

3Questions?



