PARTITIONED SCHEDULING OF RECURRENT REAL-TIME TASKS

Pontus Ekberg Uppsala University

Sanjoy Baruah Washington University in Saint Louis

RTSS 2021

WHAT?

What is the complexity of partitioned schedulability?

What is the complexity of partitioned schedulability?

WHAT?

What is the complexity of partitioned schedulability?

- 1 Exact schedulability tests!
- 2 Schedulers:
 - FP
 - EDF / feasibility
- 3 Tasks:
 - Synchronous periodic / sporadic
 - Asynchronous periodic
- 4 Processors:
 - Identical
 - Unrelated

But, don't we know this already?

BUT, DON'T WE KNOW THIS ALREADY?

Partitioned schedulability generalizes BIN PACKING, and is therefore NP-hard!

BUT, DON'T WE KNOW THIS ALREADY?

Partitioned schedulability generalizes BIN PACKING, and is therefore NP-hard!

NP-hard is just a lower bound on complexity.

What is the exact complexity?

Simultaneous Congruences

Simultaneous Congruences

The Simultaneous Congruences Problem (SCP):

Example:
$$A = \{(2,4), (4,6), (3,8), (0,3)\}, \quad k = 2$$

SIMULTANEOUS CONGRUENCES

The Simultaneous Congruences Problem (SCP):

Example: $A = \{(2,4), (4,6), (3,8), (0,3)\}, \quad k = 2$

SIMULTANEOUS CONGRUENCES

SIMULTANEOUS CONGRUENCES

The Simultaneous Congruences Problem (SCP):

Example: $A = \{(2,4), (4,6), (3,8), (0,3)\}, \quad k = 2$

SCP is NP-complete (Leung and Whitehead, 1982)

PARTITIONED SCP:

Example: $A = \{(2,4), (4,6), (3,8), (0,3), \ldots\}, m, k$

PARTITIONED SCP:

PARTITIONED SCP:

PARTITIONED SCP:

 Σ_2^{P} -complete, Rutenburg, 1986

 $\begin{array}{c} \begin{array}{c} \text{GENERALIZED} \\ \text{GRAPH COLORING} \end{array} \longrightarrow \text{PARTITIONED SCP} \longrightarrow \begin{array}{c} \text{Some partitioned} \\ \text{schedulability} \\ \text{problems} \end{array} \end{array}$

New complexity bounds for partitioned schedulability.

New complexity bounds for partitioned schedulability.

• Some problems are exactly pinpointed.

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
- Some can not be formulated as ILP in polynomial time.

New complexity bounds for partitioned schedulability.

- Some problems are exactly pinpointed.
- Some are provably[†] beyond the corresponding uniprocessor case.
- Some are essentially the same as the uniprocessor case!
- Some can not be formulated as ILP in polynomial time.
- No problem is higher up than Σ^P₃.

∀Thank you!↓∃Questions?