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What?

What is the complexity of partitioned schedulability?

1 Exact schedulability tests!

2 Schedulers:
• FP
• EDF / feasibility

3 Tasks:
• Synchronous periodic / sporadic
• Asynchronous periodic

4 Processors:
• Identical
• Unrelated

5 …
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But, don’t we Know this alReady?

Partitioned schedulability generalizes bin pacKing, and is
therefore NP-hard!

NP-hard is just a lower bound on complexity.

What is the exact complexity?
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Simultaneous CongRuences

The Simultaneous Congruences Problem (scp):

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3)}, k = 2

0 2 4 6 8 10 12 14 16 18 20

(2, 4)

(4, 6)

(3, 8)

(0, 3)

scp is NP-complete (Leung and Whitehead, 1982)
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Let’s geneRalize it!

paRtitioned scp:

Example: A = {(2, 4), (4, 6), (3, 8), (0, 3), . . .}, m, k

A1 A2 · · · Am

(A1, k) ̸∈ scp (A2, k) ̸∈ scp · · · (Am, k) ̸∈ scp

geneRalized
gRaph coloRing paRtitioned scp

Some partitioned
schedulability

problems

ΣP
2 -complete,

Rutenburg, 1986 ΣP
2 -complete ΣP

2 -hard
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∀Thank you!
⋄

∃Questions?


