
Rate-Monotonic Schedulability of Implicit-Deadline
Tasks is NP-hard Beyond Liu and Layland’s Bound

Pontus Ekberg
Uppsala University

pontus.ekberg@it.uu.se

Abstract—We study the computational complexity of the Fixed-
Priority (FP) schedulability problem for sporadic or synchronous
periodic tasks with implicit deadlines on a single preemptive
processor. This problem is known to be (weakly) NP-complete in
the general case, but Liu and Layland’s classic utilization bound
trivially provides a polynomial-time solution for task sets with
Rate-Monotonic (RM) priorities and utilization bounded from
above by ln(2), or approximately 69%. Here we show that
ln(2) is in fact the sharp boundary between computationally
easy and hard schedulability testing: The FP-schedulability
problem is NP-complete even if restricted to task sets with RM
priorities and utilization bounded from above by any constant
c > ln(2). This disproves a conjecture by Rothvoß. Further,
we show that if a non-RM priority ordering can be specified,
then the FP-schedulability problem is NP-complete already when
utilization is bounded by any constant c > 0.

I. INTRODUCTION

The utilization bound for Fixed-Priority (FP) scheduling is
a seminal result in real-time scheduling theory, which was
described by Liu and Layland [1] in the early ’70s and
independently by Serlin [2] around the same time. According
to this bound, a set of n implicit-deadline synchronous periodic
tasks executing on a single preemptive processor with Rate
Monotonic (RM) priority ordering is always schedulable if the
tasks’ total utilization is not greater than n(21/n−1). The limit
of this expression as n→∞ is ln(2), or approximately 69%.
The bound therefore provides a sufficient schedulability test by
guaranteeing that any task set with total utilization bounded
by ln(2) is schedulable.

The hyperbolic bound by Bini et al. [3] can be used to
demonstrate the schedulability of more task sets without
sacrificing any of the simplicity or elegance of the original
bound. It does so by considering the utilization of individual
tasks, but is still only sufficient for task sets with total utilization
larger than ln(2). Exact schedulability analysis is instead more
involved, and is typically carried out with the response-time
analysis that was first described by Joseph and Pandya [4].
While it is trivial to test whether a task set’s utilization is less
than Liu and Layland’s bound, the response-time analysis of
Joseph and Pandya requires pseudo-polynomial time to run.
It has been shown by Ekberg and Yi [5] that the general FP-
schedulability problem for implicit-deadline tasks is (weakly)
NP-complete, even when restricted to RM priorities. Pseudo-
polynomial time is therefore the best we could do for this
problem unless P = NP.

This work was supported by Swedish Research Council grant 2018-04446.

However, the reduction used in [5] creates task sets with
utilization arbitrarily close to 1. It is natural then to ask whether
the complexity of the schedulability problem would decrease
if we put an upper bound on the utilization of considered task
sets. Clearly this is true if we bound the utilization to be no
more than ln(2), but what if utilization is bounded by some
constant c that is larger than ln(2) but smaller than 1?

This question was already raised by Eisenbrand and
Rothvoß [6] in their work showing that it is NP-hard to
approximate response times within a constant factor under
FP-scheduling. Rothvoß [7] later conjectured that if utilization
is bounded by any constant c < 1, then response times can be
calculated in polynomial time for FP-scheduling of implicit-
deadline task sets with RM priority ordering (Conjecture 8.11
in [7]). This would imply, of course, that FP-schedulability
could be solved in polynomial time as well.

Further evidence that bounding utilization could decrease
complexity comes from schedulability tests for Earliest Dead-
line First (EDF) scheduling with constrained or arbitrary
deadlines. There, the well-known analysis by Baruah et al. [8]
requires exponential time in the general case, but runs in pseudo-
polynomial time if utilization is bounded by any constant c < 1.
Later it was shown [9], [10] that this is the best one can do
unless P = NP, and hence that bounding the utilization by a
constant c < 1 really does decrease the inherent complexity of
the EDF-schedulability problem. A priori, it seems reasonable
to suspect a similar effect for FP-schedulability.

Contributions: In this paper we show that for all constants c,
such that c > ln(2), the FP-schedulability problem for implicit-
deadline tasks with RM priorities and utilization bounded by
c is (weakly) NP-complete. This means that ln(2) is the sharp
transition point where bounding the utilization to any c 6 ln(2)
results in a computationally easy (indeed, trivial) schedulability
problem while bounding it by any c > ln(2) instead results in
a computationally hard schedulability problem. This disproves
the conjecture by Rothvoß [7] described above.

Since RM is the optimal priority ordering for task sets with
implicit deadlines, a corollary is that the same hardness result
also applies to the variant of the problem where we are asked
if a given task set is schedulable with any priority ordering.

Last, in this paper we observe that if we can specify some
particular non-RM priority ordering, then the schedulability
problem is NP-complete already when utilization is bounded
by any constant c > 0.



Implicit
deadlines
(d = p)

Constrained
deadlines
(d 6 p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete [5]

Pseudo-polynomial time
algorithm exists [4]

Weakly NP-complete [5]

Pseudo-polynomial time
algorithm exists [4]

Weakly NP-hard [5]

Exponential time
algorithm exists [11]

(Open)

Utilization
bounded by a
constant c < 1

Weakly NP-complete for
(i) c > 0 and

arbitrary priorities, or
(ii) c > ln(2) and RM

(from this work)

In P for c 6 ln(2) and RM [1]

Weakly NP-complete
for c > 0 [5]

Pseudo-polynomial time
algorithm exists [4]

Weakly NP-hard
for c > 0 [5]

Pseudo-polynomial time
algorithm exists [11]

(Open)

Fig. 1. The complexity landscape of the fixed-priority schedulability problem for sporadic or synchronous periodic tasks on a single preemptive processor. All
the hardness results reported in this table hold even if we are restricted to RM or DM priority orderings, unless otherwise specified.

Open problems: The current complexity landscape of the FP-
schedulability problem for periodic tasks on a single preemptive
processor is outlined in Figure 1. While complexity is now
well understood with implicit or constrained deadlines in this
setting, we note that the exact complexity of the schedulability
problem with arbitrary deadlines is still open: Membership in
NP is unknown and no pseudo-polynomial time algorithm is
known for the general case even though only weak hardness
has been shown for it.1

II. PRELIMINARIES

Here we briefly recall some definitions and results from
real-time scheduling theory that are relevant for this paper.

A synchronous2 periodic task τi is represented by a triple
of positive integers, τi = (Ci, Di, Ti), which represent the
task’s worst-case execution time, relative deadline and period,
respectively. Each task τi generates an unbounded sequence
of independent jobs [J i0, J

i
1, J

i
2, . . .], where job J ik

• is released at time point kTi,
• has deadline at time point kTi +Di, and
• must be executed for up to Ci time units between release

time and deadline.
In this paper we consider scheduling on a single preemptive
processor, where jobs can be preempted and later resumed at

1Though it is not mentioned by Lehoczky [11], one can see that the
schedulability test described in [11] for arbitrary-deadline tasks runs in
exponential time in the general case and in pseudo-polynomial time with
bounded utilization. The latter can be seen to hold because the longest busy
period must be pseudo-polynomially bounded when utilization is bounded by
a constant smaller than 1.

2These tasks are called synchronous periodic because all tasks release their
first jobs at the same time point. If different initial offsets can be specified
for the releases of the first jobs, then tasks are called asynchronous periodic
instead, or sometimes just periodic.

no additional cost or penalty. We say that a job is ready if it
has been released, but has not yet executed to completion.

The utilization U(τi) of a task τi is the fraction of the
available processor time that it can require:

U(τi)
def
=

Ci
Ti
. (1)

A task set T is a finite (multi-)set of tasks {τ1, τ2, . . . , τn}
and its utilization U(T) is simply

U(T)
def
=
∑
τi∈T

U(τi). (2)

The hyper-period HP(T) of a task set T is the shortest time
interval after which the pattern of job releases repeats itself:

HP(T)
def
= lcm{Ti | τi ∈ T}. (3)

We say that a task set T has
• implicit deadlines if Di = Ti for all τi ∈ T,
• constrained deadlines if Di 6 Ti for all τi ∈ T, and
• arbitrary deadlines if no restrictions are placed on the

relation between Di and Ti.

A Fixed-Priority (FP) scheduler takes a fixed total order on
the tasks (the priority ordering) and executes the jobs in this
order. That is, at every time point it would execute the ready
job that was released by the task with the highest priority,
preempting any job from a lower-priority task if needed. The
Rate-Monotonic (RM) priority ordering assigns higher priorities
to tasks with shorter periods (ties broken arbitrarily), and was
shown by Liu and Layland [1] to be the optimal fixed priority
ordering for task sets with implicit deadlines.

An alternative task model is offered by sporadic tasks. A
sporadic task τi is represented by the same three parameters,



τi = (Ci, Di, Ti), with the only difference that Ti now denotes
the minimum separation (often still called “period”) between
any two consecutive job releases from τi. Each set of sporadic
tasks could therefore generate an infinite number of distinct
sequences of jobs, but it is known (e.g., [11]) that all of those
are FP-schedulable if and only if the single job sequence
generated by the corresponding set of synchronous periodic
tasks where all jobs execute for their worst-case execution time
is FP-schedulable. This job sequence is called the synchronous
arrival sequence. It follows that the FP-schedulability problems
for sporadic task sets and synchronous periodic task sets are
equivalent, and therefore all results reported here apply to both.
In the following we write just “task” to interchangeably mean
a task that is either sporadic or synchronous periodic.

The worst-case response time of a task is the maximum delay
between a release of a job from that task and its completion
time. It is known [1] that if the first job of a task finishes
before the next job of that task is released in the synchronous
arrival sequence, then the worst-case response time of the task
is the same as the response time of the first job.

Liu and Layland [1] said that a task set fully utilizes the
processor if it is FP-schedulable, but increasing the worst-
case execution time of any task would make the task set
unschedulable. They then defined the least upper bound to
processor utilization as the infimum of the utilizations of all
task sets that fully utilize the processor. Their utilization bound
is stated with this terminology.

Theorem II.1 (Liu and Layland [1]). The least upper bound
to processor utilization (as defined above) of task sets with n
implicit-deadline tasks with RM priorities is n(21/n − 1).

We get the following corollary, which will be useful.

Corollary II.2. For every c > ln(2), there exists an implicit-
deadline task set T = {τ1, τ2, . . . , τn} with U(T) < c that
fully utilizes the processor with RM priorities.

Proof: Let n ∈ N+ be such that ln(2) < n(21/n− 1) < c.
Such an n exists since limn→∞ n(21/n − 1) = ln(2) and
n(21/n− 1) > ln(2) for all positive n. By Theorem II.1, there
exists task sets T of n tasks with U(T) arbitrarily close to
n(21/n − 1) that fully utilize the processor. Such a task set T
with U(T) < c must then exist since n(21/n − 1) < c.

It should be noted here that Liu and Layland seem to have
assumed in [1] that task parameters can be arbitrary positive
real-valued numbers, while we here assume that task parameters
are positive integer-valued numbers. The reason for this choice
is simply that real-valued numbers do not in general have finite
representations and therefore can not be used without restriction
as inputs in standard models of computation. Further, we want
to use integer parameters instead of rational ones because we
then get the strongest hardness results (if a problem is hard
with integer parameters then it must also be so with rational
parameters).

Fortunately, Liu and Layland’s result (Theorem II.1 above)
still holds when restricted to integer-valued parameters, as
noted by Devillers and Goossens [12], who also identified
and revised some weaknesses in the argumentation of Liu and
Layland. We therefore have Theorem II.1 (and Corollary II.2)
also in this setting with integer parameters.

Last, we will show our new hardness results by reducing
from the below class of FP-schedulability problems for task sets
with constrained deadlines, which are known to be NP-hard.3

Theorem II.3 (Ekberg and Yi [5]). Deciding whether a given
set of sporadic or synchronous periodic tasks is FP-schedulable
on a single preemptive processor is (weakly) NP-hard, even
when restricted to task sets with
• utilization bounded by any constant c > 0,
• RM priority ordering,
• implicit deadlines for all tasks except the task with lowest

priority, and
• a constrained deadline for the lowest-priority task.

III. HARDNESS WITH RATE-MONOTONIC PRIORITIES

In this section we show that the FP-schedulability problem
for implicit-deadline tasks is (weakly) NP-hard even when
restricted to RM priorities and task sets with utilization bounded
from above by any constant c > ln(2). Because there is no
minimum c such that c > ln(2) we would not be satisfied by
showing this only for some concrete value of c, no matter how
close it is to ln(2). Instead, we will here show how to construct
an appropriate polynomial-time many-one reduction for any
such c. The resulting family of reductions will demonstrate
that for all c > ln(2), there exists a reduction that shows that
the corresponding FP-schedulability problem is NP-hard.

A. Selecting some constants and a source problem
Let the constant c > ln(2) that bounds utilization for our

target problem be given. We assume, without loss of generality,
that c 6 1. We will define some additional constants before
selecting the exact source problem for the reduction. First, let

cFIX
def
=

c+ ln(2)

2
(4)

and note that ln(2) < cFIX < c. Recall that Liu and Layland [1]
said that a task set fully utilizes the processor if it is FP-
schedulable, but would cease to be schedulable if the worst-
case execution time of any task was increased. We say that
such a task set is minimal if it would no longer fully utilize
the processor if any task was removed from it.

Now, let TFIX denote a fixed (constant) task set with the
following four properties.

3Theorem II.3 here differs slightly from the original statement (part (ii) of
Theorem II.8 in [5]). In [5], DM priority ordering is specified instead of RM,
and it is not specified that higher-priority tasks can be restricted to implicit
deadlines. However, we note that it follows immediately from that reduction
(Eqs. (20)–(28) in [5]) that the DM and RM priority orderings are the same
for the task sets produced, and that all the tasks except the lowest-priority one
do in fact have implicit deadlines. We conclude that the variant stated here
follows directly from the results in [5].



(i) U(TFIX) 6 cFIX,
(ii) TFIX has implicit deadlines,

(iii) TFIX fully utilizes the processor (with RM priorities), and
(iv) TFIX is minimal.

We observe that such a task set exists.

Lemma III.1. A task set TFIX satisfying criteria (i)–(iv) exists.

Proof: Because cFIX > ln(2) we know from Corollary II.2
that there exists an implicit-deadline task set TFIX that fully
utilizes the processor with U(TFIX) 6 cFIX. If TFIX is not
minimal, we can make it so by repeatedly removing some
suitable task from TFIX until it becomes minimal.

The task set TFIX will be used for the reduction described
in Section III-B. We can let TFIX be any task set that satisfies
criteria (i)–(iv) above, but we will keep this TFIX fixed for the
reduction. In other words, given only constant cFIX we pick
a TFIX that will be hard-coded into the reduction algorithm,
meaning that TFIX will be entirely independent of the inputs
to the reduction. From the point of view of the reduction, the
number of tasks in TFIX is therefore a constant, as are all the
parameter values of the tasks in TFIX.

Let TFIX be fixed and the following notation defined.

• τ lp
FIX is the lowest-priority task in TFIX (under RM),

• C lp
FIX and T lp

FIX are the worst-case execution time and period
of the task τ lp

FIX, respectively,

• T
hp
FIX is the set of all higher-priority tasks in TFIX, and

• ∆ is the worst-case response time of τ lp
FIX under RM

scheduling of TFIX.

Now, let

cIN
def
= min

(
c− cFIX,

1

2∆

)
. (5)

We note that cIN > 0 and since ∆ is a constant cIN is also a
constant. This leads us, finally, to the exact source problem of
the reduction.

Outline: We will describe a polynomial-time many-one re-
duction from the FP-schedulability problem that is described
in Theorem II.3, where utilization is bounded by cIN. Given
any instance of this problem—some input task set TIN—the
reduction will produce an output task set TOUT with implicit
deadlines, such that U(TOUT) 6 c and TOUT is FP-schedulable
with RM priorities if and only if TIN is.

B. Producing TOUT from TIN

We have picked a source problem for our reduction, namely
the FP-schedulability problem described in Theorem II.3 for
task sets with utilization bounded by cIN. We will now describe
the reduction by showing how any instance TIN of this source
problem can be transformed in polynomial time into an instance
TOUT of our target problem. In the next section we will see
that FP-schedulability is preserved by this transformation.

Let TIN be given and the following notation defined.

• τ lp
IN is the lowest-priority task in TIN (under RM),

• C lp
IN , Dlp

IN and T lp
IN are the worst-case execution time,

relative deadline and period of task τ lp
IN , respectively, and

• T
hp
IN is the set of all higher-priority tasks in TIN.

Note that by definition, all tasks in T
hp
IN have implicit

deadlines and τ lp
IN has a constrained deadline. We assume,

without loss of generality, that C lp
IN 6 D

lp
IN .

The reduction will depend heavily on the constant task set
TFIX, which was described in the previous section. The task set
TOUT will be the result of merging TIN with TFIX as described
below. First we scale all the higher-priority tasks in T

hp
IN and

T
hp
FIX . The tasks in T

hp
IN will be uniformly scaled by ∆, and we

denote the resulting task set T∆
IN :

T∆
IN

def
= {(∆Ci,∆Di,∆Ti) | (Ci, Di, Ti) ∈ Thp

IN }. (6)

The tasks in T
hp
FIX will instead be uniformly scaled by a

number k, resulting in TkFIX:

TkFIX
def
= {(kCi, kDi, kTi) | (Ci, Di, Ti) ∈ Thp

FIX}, (7)

where

k
def
= 2∆HP(TIN) +Dlp

IN . (8)

Together, these will form the higher-priority tasks T
hp
OUT in

the output task set TOUT.

T
hp
OUT

def
= T∆

IN ∪ TkFIX (9)

The final piece is the low-priority task τ lp
OUT with execution

time

C lp
OUT

def
= kC lp

FIX + ∆(C lp
IN −Dlp

IN)− 2∆2HP(TIN)U(Thp
IN ) (10)

and with relative deadline and period

Dlp
OUT

def
= T lp

OUT
def
= kT lp

FIX. (11)

The complete output task set TOUT is then

TOUT
def
= T

hp
OUT ∪ {τ lp

OUT}. (12)

We note in the following three lemmas that TOUT is a valid
instance of the target problem: an implicit-deadline task set
with positive integer task parameters and utilization bounded
by c. That the reduction preserves FP-schedulability is shown
in the next section.

Lemma III.2. TOUT has positive integer task parameters.

Proof: The tasks in TIN and TFIX have positive integer
parameters by definition, so the tasks in T

hp
OUT must also have

such parameters by Eqs. (6)–(9).
The same is true of the period (and deadline) of the low-

priority task τ lp
OUT by Eq. (11). What remains to be shown is

that C lp
OUT is a positive integer. First, using Eqs. (5), (8) and



(10) we see that C lp
OUT is positive since

C lp
OUT = kC lp

FIX + ∆(C lp
IN −Dlp

IN)− 2∆2HP(TIN)U(Thp
IN ) (13)

> k −∆Dlp
IN − 2∆2HP(TIN)U(Thp

IN ) (14)

> k −∆Dlp
IN − 2∆2HP(TIN)cIN (15)

> k −∆Dlp
IN −∆HP(TIN) (16)

> k − 2∆HP(TIN) (17)
> 0. (18)

Note that HP(T)U(T) is an integer for any task set T. Since
HP(Thp

IN ) divides HP(TIN), it follows that HP(TIN)U(Thp
IN )

must be an integer, and so is then C lp
OUT by Eq. (10).

Lemma III.3. U(TOUT) 6 c.

Proof: Note that (C lp
IN −Dlp

IN) 6 0, so by Eq. (10) we have

C lp
OUT 6 kC lp

FIX. (19)

It follows that

U(τ lp
OUT) =

C lp
OUT

T lp
OUT

=
C lp

OUT

kT lp
FIX

6
kC lp

FIX

kT lp
FIX

= U(τ lp
FIX) (20)

and therefore

U(TOUT) = U(T∆
IN ) + U(TkFIX) + U(τ lp

OUT) (21)

= U(Thp
IN ) + U(Thp

FIX) + U(τ lp
OUT) (22)

6 U(Thp
IN ) + U(Thp

FIX) + U(τ lp
FIX) (23)

= U(Thp
IN ) + U(TFIX) (24)

6 cIN + cFIX (25)
6 c, (26)

which is what we wanted to show.

Lemma III.4. TOUT has implicit deadlines.

Proof: The task set TOUT contains only scaled variants of
the tasks in T

hp
IN and T

hp
FIX , as well as the task τ lp

OUT. All the
tasks in T

hp
IN and T

hp
FIX have implicit deadlines and this does

not change when task parameters are uniformly scaled. The
task τ lp

OUT has an implicit deadline by construction.

C. Correctness of the reduction
We know from Lemmas III.2–III.4 that TOUT is a valid

instance of the target problem. From Eqs. (6)–(12) it is clear
that TOUT can be produced from TIN in polynomial time.4 What
remains to be shown here is that the reduction is correct: that
TOUT is FP-schedulable with RM priorities if and only if TIN

is also FP-schedulable with RM priorities.
We start with an overview. The general idea is that the

scheduling of the first job of τ lp
IN in TIN will be “simulated” by

the scheduling of the first job of τ lp
OUT in TOUT. Since τ lp

IN has a
constrained deadline and we are only allowed to use implicit
deadline tasks for TOUT, this requires us to carefully set up the
interference of higher-priority tasks to recreate the effect of
the constrained deadline while keeping utilization low.

4Since the entire task set TFIX is constant, any properties of it, such as the
worst-case response-time ∆ of its lowest-priority task, can be pre-computed.

As we will see in the remainder of this section, the
interference of the higher-priority tasks Thp

OUT is set up so that the
interval [∆(k−Dlp

IN),∆k) in the synchronous arrival sequence
of TOUT is a scaled replicate of the interval [0, Dlp

IN) in the
synchronous arrival sequence of TIN.

We create the effect of a “deadline” for τ lp
OUT at time point ∆k

in the synchronous arrival sequence of TOUT by fully occupying
the processor with higher-priority tasks from ∆k until T lp

OUT.
Task τ lp

OUT will execute for exactly C lp
OUT − ∆C lp

IN time units
before time point ∆(k −Dlp

IN). Therefore, τ lp
OUT will finish by

its deadline if and only if it can execute for the remaining
∆C lp

IN time units inside the interval [∆(k − Dlp
IN),∆k). No

jobs from TkFIX will be active in that interval and the start
of the interval aligns with a hyper-period of T∆

IN . Hence, the
interference suffered by τ lp

OUT in [∆(k−Dlp
IN),∆k) is the same

as the interference suffered by τ lp
IN during its first scheduling

window [0, Dlp
IN), but scaled by ∆. Figure 2 illustrates this

overview.

t

0 T lp
OUT

Fully occupied
by T

hp
OUT

Task τ lp
OUT executes for exactly

C lp
OUT −∆C lp

IN time units

∆(k −Dlp
IN) ∆k

No jobs from
TkFIX active

Multiple of
HP(T∆

IN )

Fig. 2. The execution of τ lpIN in the synchronous arrival sequence of TIN is
“simulated” by τ lpOUT during the interval [∆(k−Dlp

IN ),∆k) in the synchronous
arrival sequence of TOUT .

We will need to establish several lemmas. We start by
observing that the schedulability of TIN hinges only on its
lowest-priority task.

Lemma III.5. If TIN is FP-scheduled with RM priorities, then
all the higher-priority tasks in T

hp
IN are schedulable.

Proof: By definition, the tasks in T
hp
IN have implicit

deadlines and U(Thp
IN ) < U(TIN) 6 cIN. By Eq. (5) we have

cIN 6 1/2 < ln(2), so T
hp
IN is schedulable by Theorem II.1.

We then take a look at the priority ordering of the tasks in
TOUT. Recall that TOUT = T∆

IN ∪ TkFIX ∪ {τ
lp
OUT}.



Lemma III.6. When using RM priority ordering for TOUT, the
task τ lp

OUT has the lowest priority, and the tasks in TkFIX all have
lower priorities than the tasks in T∆

IN .

Proof: Because of the scaling of task parameters in Eqs. (6)
and (7), no period of any task in TkFIX can be less than k and
no period of any task in T∆

IN can be larger than ∆HP(TIN).
But k > ∆HP(TIN), so all tasks in TkFIX have larger periods,
and therefore lower priorities, than the tasks in T∆

IN .
The task τ lp

OUT has period T lp
OUT = kT lp

FIX. No task in T
hp
FIX has

a period larger than T lp
FIX since τ lp

FIX has the lowest priority in
TFIX under RM, so then no task in TkFIX can have a period larger
than kT lp

FIX. The task τ lp
OUT can therefore be given the lowest

priority in TOUT under RM.

We immediately see that all the tasks in T∆
IN are schedulable.

Lemma III.7. If TOUT is FP-scheduled with RM priorities,
then the tasks in the subset T∆

IN are schedulable.

Proof: From Lemma III.6 we know that the tasks in T∆
IN

have the highest priorities of all tasks in TOUT. By Lemma III.5,
these tasks were schedulable before the uniform scaling of
their parameters in Eq. (6), so they must remain so also after
the scaling.

As was mentioned above, the reduction works by “simulat-
ing” the scheduling of the first job of τ lp

IN in the schedule of
TOUT. This will occur during the time interval [∆(k−Dlp

IN),∆k)
in the synchronous arrival sequence of TOUT. The next lemma
is about the behavior of T∆

IN before the start of this interval.

Lemma III.8. Before time point t = ∆(k − Dlp
IN) in the

synchronous arrival sequence of TOUT, the subset of tasks
in T∆

IN will together have released jobs with a total execution
time of

2∆2HP(TIN)U(Thp
IN ), (27)

and all those jobs will have finished no later than t.

Proof: Because HP(Thp
IN ) divides HP(TIN), we must also

have that HP(T∆
IN ) divides ∆HP(TIN). By Eq. (8) we have

t = ∆(k −Dlp
IN) = 2∆2HP(TIN), (28)

which is a multiple of ∆HP(TIN). It follows that HP(T∆
IN )

divides t, and therefore the total execution time of all jobs
released by T∆

IN before t is

tU(T∆
IN ) = ∆(k −Dlp

IN)U(T∆
IN ) (29)

= ∆(k −Dlp
IN)U(Thp

IN ) (30)

= 2∆2HP(TIN)U(Thp
IN ). (31)

Further, since HP(T∆
IN ) divides t and T∆

IN has implicit deadlines,
all tasks of T∆

IN have a deadline at t. Because the tasks in T∆
IN

are schedulable by Lemma III.7, all jobs released before t must
have finished no later than t.

Before considering the subset TkFIX we look closer at the
constant task set TFIX on which it is based. The next three
lemmas describe some useful properties of TFIX.

Lemma III.9. If TFIX is FP-scheduled with RM priorities, then
no task in T

hp
FIX is active in the time interval [∆− 1,∆) in the

synchronous arrival sequence.

Proof: By definition, ∆ is the finishing time of the first
job of the lowest-priority task τ lp

FIX in the synchronous arrival
sequence of TFIX. Since task parameters are integer it follows
that τ lp

FIX executes in [∆ − 1,∆), and therefore none of the
higher-priority tasks in T

hp
FIX can be active there.

Lemma III.10. If TFIX is FP-scheduled with RM priorities,
then the time interval [∆, T lp

FIX) is fully occupied by execution
of tasks in T

hp
FIX in the synchronous arrival sequence.

Proof: Assume that the time interval [∆, T lp
FIX) is not fully

occupied by tasks in T
hp
FIX . Then the processor would be idle

at some points during that interval since the first job of τ lp
FIX

finished already at ∆. But if there is idle time during the interval
[0, T lp

FIX), then the execution time of τ lp
FIX could be increased

without it becoming unschedulable. This is a contradiction to
the fact that TFIX fully utilizes the processor.

Lemma III.11. If TFIX is FP-scheduled with RM priorities,
then the first job of any task τi ∈ T

hp
FIX would meet its deadline

in the synchronous arrival sequence, even if that job suffered 1
additional time unit of interference from higher-priority tasks.

Proof: Assume that the first job of some task τi ∈ T
hp
FIX

would miss its deadline if it suffered 1 additional time unit
of interference. Then τi would not be schedulable if any of
the tasks with higher priority than τi had its execution time
increased, since that would cause at least 1 time unit of extra
interference for the first job of τi. Similarly, the execution time
of τi itself could not be increased, even by 1, without the first
job missing its deadline.

But if τi would cease to be schedulable if any task with
higher priority, or τi itself, has its execution time increased,
then TFIX would fully utilize the processor even if all tasks
with lower priority than τi were removed from it. This is in
contradiction to the fact that TFIX is minimal by definition and
does not fully utilize the processor if any task is removed.

We can now consider the behavior of TkFIX before the start
of the interval [∆(k −Dlp

IN),∆k).

Lemma III.12. Any job from a task in TkFIX that is released
before time point t = ∆(k −Dlp

IN) in the synchronous arrival
sequence of TOUT will finish no later than t.

Proof: Consider for the moment the schedule we would
get by only scheduling the tasks in subset TkFIX, without the
other tasks in TOUT. Since these tasks are copies of the tasks
in T

hp
FIX , uniformly scaled by k, the schedule of these tasks

would look the same as the schedule of Thp
FIX , only stretched so

that every time unit becomes k time units long. Lemma III.9
then tells us that in this schedule of TkFIX, no job is active in
[k(∆− 1), k∆). Since t ∈ [k(∆− 1), k∆), all tasks released
before time point t would be finished by k(∆ − 1), and no
new jobs released in [k(∆− 1), t).



However, when scheduling the whole of TOUT the tasks
in TkFIX suffer additional interference from the tasks in T∆

IN ,
which have higher priority by Lemma III.6. From Lemma III.8
we know that the tasks in T∆

IN together will execute for
2∆2HP(TIN)U(Thp

IN ) time units in total until time point t. Using
Eqs. (5) and (8) we have

2∆2HP(TIN)U(Thp
IN ) 6 2∆2HP(TIN)U(TIN) (32)

6 2∆2HP(TIN)cIN (33)

6
2∆2HP(TIN)

2∆
(34)

= ∆HP(TIN) (35)

6
k

2
, (36)

As any job from tasks in TkFIX released before t would have
finished before k(∆−1) without the interference from T∆

IN , the
latest completion time for such a job if we include interference
from T∆

IN is no later than

k(∆− 1) + 2∆2HP(TIN)U(Thp
IN ) 6 k(∆− 1) +

k

2
(37)

= k∆− k

2
(38)

6 k∆−∆HP(TIN) (39)

6 k∆−∆T lp
IN (40)

6 ∆(k −Dlp
IN) (41)

= t. (42)

It follows that if a job is released by a task in TkFIX before t,
then it will finish no later than t even under interference from
the tasks in T∆

IN .

We can now see that the tasks in TkFIX are also schedulable,
and hence that the schedulability of TOUT, like TIN, hinges only
on its lowest-priority task.

Lemma III.13. If TOUT is FP-scheduled with RM priorities,
then the tasks in the subset TkFIX are schedulable.

Proof: From Lemma III.11 we know that in the syn-
chronous arrival sequence of the constant task set TFIX, the first
job of any task in T

hp
FIX would still meet its deadline even if

it suffered additional interference of 1 time unit from higher-
priority tasks. If we consider the scheduling of the tasks in
the subset TkFIX in isolation (without the other tasks in TOUT),
it follows from those tasks’ uniform scaling by k that the first
job of any task in TkFIX would still meet its deadline even if it
suffered additional interference of k time units from higher-
priority tasks.

If we now consider the scheduling of the whole task set
TOUT, the tasks in TkFIX will suffer additional interference from
the tasks in T∆

IN . From Lemma III.12 we know that the first
job of any task in TkFIX will finish no later than time point
t = ∆(k − Dlp

IN), and from Lemma III.8 we know that the

tasks in T∆
IN will execute for a total of 2∆2HP(TIN)U(Thp

IN )
time units before t. From Eqs. (32)–(36) we have

2∆2HP(TIN)U(Thp
IN ) 6

k

2
(43)

and therefore the first job of any task in TkFIX will only suffer
interference of up to k/2 time units from tasks in T∆

IN . The
first job of any task in TkFIX then meets its deadline in the
synchronous arrival sequence despite the interference from T∆

IN .
We conclude that the task is schedulable since the first job has
the maximum response time.

We can now see that the tasks in TkFIX are not causing any
interference during time interval [∆(k −Dlp

IN),∆k) where we
will “simulate” τ lp

IN ’s first job.

Lemma III.14. No job from subset TkFIX is active during time
interval [∆(k−Dlp

IN),∆k) in the synchronous arrival sequence
of TOUT.

Proof: From Lemma III.9 we know that no job from T
hp
FIX

would be released during [∆−1,∆) in the synchronous arrival
sequence of the constant task set TFIX. Since TkFIX is identical
to T

hp
FIX , except that task parameters are uniformly scaled by

k, it follows that no jobs from tasks in TkFIX are released in
interval [k(∆− 1), k∆) in the synchronous arrival sequence
of TOUT.

From Lemma III.12 we know that all jobs from subset TkFIX

that are released before t = ∆(k −Dlp
IN) are finished no later

than t. Because t > k(∆−1), it follows that no job from TkFIX is
active during [t, k∆) = [∆(k −Dlp

IN),∆k) in the synchronous
arrival sequence of TOUT.

The next lemma quantifies the interference of tasks in TkFIX

before the time interval [∆(k −Dlp
IN),∆k).

Lemma III.15. In the synchronous arrival sequence of TOUT,
the tasks in subset TkFIX execute for a total duration of

k(∆− C lp
FIX) (44)

time units until time point t = ∆(k −Dlp
IN).

Proof: Consider first the constant task set TFIX. Because ∆
is the worst-case response time of the lowest-priority task τ lp

FIX

we know that in the synchronous arrival sequence of TFIX, the
higher-priority tasks in T

hp
FIX would execute for a total amount

of ∆− C lp
FIX during interval [0,∆). Further, all jobs released

by tasks in T
hp
FIX before ∆ would have finished before ∆, since

otherwise τ lp
FIX would not be able to execute and finish at that

point. It follows that the total execution time of all jobs released
by tasks in T

hp
FIX before time point ∆ is ∆− C lp

FIX.
Since TkFIX is uniformly scaled by k from T

hp
FIX it follows that

the total execution time of all jobs released by tasks in TkFIX

before time point ∆k must be k(∆−C lp
FIX). By Lemma III.14

we know that no jobs from tasks in TkFIX are active in the
interval [t,∆k), so the tasks in TkFIX must have executed for a
total duration of k(∆− C lp

FIX) until time point t.

Finally we can put the pieces together and show that the
reduction preserves schedulability.



Lemma III.16. TOUT is FP-schedulable with RM priorities if
and only if TIN is.

Proof: From Lemmas III.5, III.7 and III.13 we know that
the task sets TIN and TOUT are schedulable if and only if their
respective low-priority tasks are schedulable. What we need
to show is therefore that τ lp

OUT is schedulable if and only if τ lp
IN

is. Since any task with a constrained (or implicit) deadline is
FP-schedulable if and only if its first job in the synchronous
arrival sequence meets its deadline, we will focus on the first
jobs from τ lp

IN and τ lp
OUT, respectively.

Consider the scheduling window [0, T lp
OUT) of the first job

of τ lp
OUT in the synchronous arrival sequence of TOUT. We will

in turn look closer at the three subintervals [0,∆(k −Dlp
IN)),

[∆(k −Dlp
IN),∆k) and [∆k, T lp

OUT).
We start by considering the first interval [0,∆(k − Dlp

IN)).
From Lemma III.8 we know that the tasks in T∆

IN execute for a
total duration of 2∆2HP(TIN)U(Thp

IN ) during this interval. By
Lemma III.15, the tasks in TkFIX execute for a total duration of
k(∆− C lp

FIX) in the same interval. Let x be the total duration
that the processor is available for executing τ lp

OUT during interval
[0,∆(k −Dlp

IN)). We must then have

x = ∆(k−Dlp
IN)− k(∆−C lp

FIX)− 2∆2HP(TIN)U(Thp
IN ) (45)

= kC lp
FIX −∆Dlp

IN − 2∆2HP(TIN)U(Thp
IN ). (46)

Using Eq. (10) we see that the total remaining execution time
of the first job from τ lp

OUT at time point ∆(k −Dlp
IN) must be

C lp
OUT − x = ∆C lp

IN . (47)

Now we consider the middle subinterval [∆(k −Dlp
IN),∆k).

We note that no job from a task in TkFIX is active in time interval
[∆(k − Dlp

IN),∆k) by Lemma III.14. We then note that the
start of the interval is a multiple of HP(T∆

IN ) because

∆(k −Dlp
IN) = 2∆2HP(TIN) (48)

and HP(T∆
IN ) must divide ∆HP(TIN). Since the interval is

∆Dlp
IN time units long and the start of it aligns with a hyper-

period of T∆
IN , it follows that the total duration that jobs from

T∆
IN are executed in [∆(k − Dlp

IN),∆k) must be the same as
during interval [0,∆Dlp

IN). But since T∆
IN is just Thp

IN scaled by
∆, this must be ∆ times the amount of execution received
by tasks in T

hp
IN during interval [0, Dlp

IN) in the synchronous
arrival sequence of TIN. Therefore the total duration where the
processor is available for τ lp

OUT during [∆(k − Dlp
IN),∆k) in

the synchronous arrival sequence of TOUT is ∆ times the total
duration the processor is available for τ lp

IN during [0, Dlp
IN) in

the synchronous arrival sequence of TIN.
Last we consider now the subinterval [∆k, T lp

OUT). By
Lemma III.10 we know that in the synchronous arrival sequence
of the constant task set TFIX, the higher-priority tasks in
T

hp
FIX would fully occupy the processor during [∆, T lp

FIX). Since
TkFIX ⊆ T

hp
OUT and TkFIX is T

hp
FIX scaled by k, it follows that in

the synchronous arrival sequence of TOUT, the higher-priority
tasks in T

hp
OUT fully occupies the processor during time interval

[k∆, kT lp
FIX) = [∆k, T lp

OUT), and therefore τ lp
OUT will not be able

to execute after ∆k.
Putting all of the above together we know that τ lp

OUT will
execute for a total of x time units during the first interval
[0,∆(k − Dlp

IN)) and will not execute at all during the last
interval [∆k, T lp

OUT). To meet its deadline it must then receive
a total of C lp

OUT − x = ∆C lp
IN time units of execution during

the middle interval [∆(k − Dlp
IN),∆k). We know that the

execution time received by τ lp
OUT during [∆(k−Dlp

IN),∆k) in the
synchronous arrival sequence of TOUT is ∆ times the execution
time received by τ lp

IN during [0, Dlp
IN) in the synchronous arrival

sequence of TIN. Task τ lp
OUT will therefore receive the remaining

amount ∆C lp
IN if and only if τ lp

IN receives the amount C lp
IN that

it requires during its scheduling window. We conclude that
τ lp

OUT is schedulable if and only if τ lp
IN is schedulable.

The main result follows.

Theorem III.17. Deciding whether a set of implicit-deadline
sporadic or synchronous periodic tasks is FP-schedulable
with RM priority ordering on a single preemptive processor
is (weakly) NP-hard, even when restricted to task sets with
utilization bounded from above by any constant c > ln(2).

Proof: Given any constant c > ln(2), we have described
how to create a reduction from an NP-hard problem (from
Theorem II.3) to the target problem. This is a correct many-one
reduction by Lemmas III.2–III.4 and III.16. From Eqs. (6)–(12)
it is clear that the transformation required by the reduction can
be computed in polynomial time.

IV. HARDNESS WITH ARBITRARY PRIORITIES

In this section we will see that if we may specify some
particular non-RM priority ordering, then the FP-schedulability
problem for implicit-deadline tasks is (weakly) NP-hard even
if we restrict it to task sets with utilization bounded by any
constant c > 0.

Similar to the case with RM priorities in the previous section,
we will create a family of reductions from the FP-schedulability
problem that is described in Theorem II.3. This case is more
straightforward, however.

A. The reduction

Let the constant c > 0 be fixed and assume, without loss of
generality, that c 6 1. The source problem for the reduction is
then the decision problem of Theorem II.3 where utilization is
bounded by

cIN
def
=

c

2
. (49)

Let TIN be any given instance of the source problem. We
use the same notation as in the previous section:

• τ lp
IN is the lowest-priority task in TIN (under RM),

• C lp
IN , Dlp

IN and T lp
IN are the worst-case execution time,

relative deadline and period of task τ lp
IN , respectively, and

• T
hp
IN is the set of all higher-priority tasks in TIN.



Let TOUT be the task set produced by the reduction. The
higher-priority tasks in TIN will be included in TOUT without
modification:

T
hp
OUT

def
= Thp

IN . (50)

The lowest-priority task TIN will be included with modified
parameters. Let τ lp

OUT denote this task. Its execution time C lp
OUT

is copied directly from τ lp
IN :

C lp
OUT

def
= C lp

IN (51)

Its deadline and period are changed:

Dlp
OUT

def
= T lp

OUT
def
= HP(TIN) +Dlp

IN (52)

Finally, one additional task τ fill
OUT is included in TOUT. The

task τ fill
OUT has execution time

Cfill
OUT

def
= HP(TIN)(1−U(Thp

OUT)) (53)

and deadline and period

Dfill
OUT

def
= T fill

OUT
def
=

⌈
4Cfill

OUT

c

⌉
. (54)

The produced task set is then

TOUT
def
= T

hp
OUT ∪ {τ fill

OUT, τ
lp
OUT}. (55)

Definition IV.1 (The priority ordering). The produced task
set TOUT is given the following priority ordering: The tasks in
T

hp
OUT have the highest priorities in TOUT, with their internal

priority ordering being RM. The task τ fill
OUT has the next-to-

lowest priority, and the task τ lp
OUT has the lowest priority.

We note that the priority ordering specified above is simply
the RM priority ordering where the priorities of the two lowest-
priority tasks have been switched.

B. Correctness of the reduction

Here we show that the reduction described above is a correct
many-one reduction. The idea is that τ fill

OUT fills up all the
remaining processor time left over from the higher-priority
tasks in T

hp
OUT during interval [0,HP(TIN)), and is then inactive

during interval [HP(TIN), Dlp
OUT) = [HP(TIN),HP(TIN) +Dlp

IN).
The first job of the lowest-priority task τ lp

OUT can then only
execute during interval [HP(TIN),HP(TIN) + Dlp

IN) where it
will face the same interference as τ lp

IN faces during [0, Dlp
IN).

See Figure 3 for an illustration.

t· · · · · ·
0 Dlp

IN HP(TIN) Dlp
OUT 2HP(TIN)

Fully occupied
by T

hp
OUT and τ fill

OUT

No job from
τ fill

OUT active

Fig. 3. The first job from τ lpOUT will be blocked from executing before HP(TIN)

and will then experience exactly the same interference during [HP(TIN), Dlp
OUT)

as τ lpIN would experience during [0, Dlp
IN ).

We begin by noting that TOUT is a valid instance of the target
problem.

Lemma IV.2. TOUT has implicit deadlines, positive integer task
parameters and U(TOUT) 6 c.

Proof: The tasks in T
hp
OUT have implicit deadlines since the

tasks in T
hp
IN have so by definition. The tasks τ fill

OUT and τ lp
OUT

have implicit deadlines by construction.
We note that Cfill

OUT is a positive integer by Eq. (53) because
(1 − U(Thp

OUT)) > 0 and HP(TIN)U(Thp
OUT) = HP(TIN)U(Thp

IN ),
which is a multiple of the integer HP(Thp

IN )U(Thp
IN ). All other

task parameters are easily seen to be positive integers as well.
By Eqs. (51) and (52) we have C lp

OUT = C lp
IN and T lp

OUT > T lp
IN ,

so we must have U(τ lp
OUT) < U(τ lp

IN ). It follows that

U(Thp
OUT) + U(τ lp

OUT) < U(Thp
IN ) + U(τ lp

IN ) (56)

= U(TIN) (57)

6 cIN (58)

=
c

2
. (59)

We also have

U(τ fill
OUT) =

Cfill
OUT

T fill
OUT

(60)

=
Cfill

OUT⌈
4Cfill

OUT/c
⌉ (61)

6
c

4
, (62)

and hence U(TOUT) = U(Thp
OUT) + U(τ lp

OUT) + U(τ fill
OUT) < c.

Next we note that the tasks in T
hp
IN and T

hp
OUT must be

schedulable.

Lemma IV.3. If TIN is FP-scheduled with RM priorities, then
the higher-priority tasks in T

hp
IN are schedulable. If TOUT is FP-

scheduled with the priority ordering specified in Definition IV.1,
then the higher-priority tasks in T

hp
OUT are schedulable.

Proof: We have U(Thp
IN ) < U(TIN) 6 c/2 6 1/2. Since

the tasks in T
hp
IN have implicit deadlines they are schedulable

with RM priorities by Theorem II.1.
The tasks in T

hp
OUT are identical to the tasks in T

hp
IN . Since

they have RM priorities internally and also higher priorities
than the other tasks in TOUT, they must also be schedulable.

We then note that the interference from higher-priority tasks
upon τ lp

OUT is easily characterized.

Lemma IV.4. In the synchronous arrival sequence of TOUT,
the processor will be completely busy with executing jobs
from tasks in T

hp
OUT ∪ {τ fill

OUT} in time interval [0,HP(TIN)), and
all jobs released by those tasks inside the interval will have
finished by time point HP(TIN).

Proof: We have HP(Thp
OUT) = HP(Thp

IN ) and therefore
HP(TIN) is a multiple of HP(Thp

OUT). The tasks in T
hp
OUT have

implicit deadlines and must therefore all have a deadline at



time point HP(TIN). By Lemma IV.3 the tasks in T
hp
OUT are

schedulable, and so all jobs from tasks in T
hp
OUT released before

time point HP(TIN) must have finished by HP(TIN). The total
execution time of those jobs is HP(TIN)U(Thp

OUT).
The processor is then not busy executing jobs from T

hp
OUT for

a total duration of HP(TIN)(1−U(Thp
OUT)) during [0,HP(TIN)).

This is exactly the same as Cfill
OUT, so it follows that the first job

from τ fill
OUT finish no later than HP(TIN) and that the processor

is completely busy executing jobs from TOUT ∪ {τ fill
OUT} during

time interval [0,HP(TIN)).

We can now show that the reduction is correct.

Lemma IV.5. Task set TOUT is FP-schedulable with the priority
ordering in Definition IV.1 if and only if TIN is FP-schedulable
with RM priority ordering.

Proof: From Lemma IV.3 we know that TIN is schedulable
if and only if its lowest-priority task τ lp

IN is schedulable, and
that TOUT is schedulable if and only if τ fill

OUT and τ lp
OUT are.

Since c 6 1 and U(Thp
OUT) = U(Thp

IN ) < U(TIN) 6 cIN = c/2
we have

T fill
OUT =

⌈
4Cfill

OUT

c

⌉
(63)

=

⌈
4HP(TIN)(1−U(Thp

OUT))

c

⌉
(64)

>

⌈
4HP(TIN)(1− (c/2))

c

⌉
(65)

=

⌈(4

c
− 2
)

HP(TIN)

⌉
(66)

> 2HP(TIN). (67)

From Lemma IV.4 we know that the first job from τ fill
OUT

finish no later than time point HP(TIN) in the synchronous
arrival sequence of TOUT. Because Dfill

OUT = T fill
OUT > 2HP(TIN)

it follows that task τ fill
OUT must be schedulable. Since T fill

OUT >
2HP(TIN) > HP(TIN) +Dlp

IN = Dlp
OUT, it also follows that the

second job from τ fill
OUT is released after Dlp

OUT and hence that no
job from τ fill

OUT is active during interval [HP(TIN), Dlp
OUT) in the

synchronous arrival sequence of TOUT.
From Lemma IV.4 we know that task τ lp

OUT has not exe-
cuted at all during interval [0,HP(TIN)) in the synchronous
arrival sequence. The task τ lp

OUT, and therefore the whole task
set TOUT, is then schedulable if and only if the first job
of τ lp

OUT receives C lp
OUT units of execution time during the

remainder of its scheduling window, which is the time interval
[HP(TIN), Dlp

OUT) = [HP(TIN),HP(TIN) +Dlp
IN).

Because HP(TIN) is a multiple of HP(Thp
OUT), the amount

of processor time left over by the tasks in T
hp
OUT during

[HP(TIN),HP(TIN) + Dlp
IN) is the same as during interval

[0, Dlp
IN). The task set TOUT is then schedulable if and only

if at least C lp
OUT time units of processor time is left over from

T
hp
OUT during [0, Dlp

IN), but since T
hp
OUT = T

hp
IN and C lp

OUT = C lp
IN ,

this is equivalent to saying that the first job of task τ lp
IN receives

C lp
IN units of execution time during its scheduling window. We

conclude that TOUT is schedulable if and only if TIN is.

The hardness of the target problem follows.

Theorem IV.6. Deciding whether a set of implicit-deadline
sporadic or synchronous periodic tasks is FP-schedulable on a
single preemptive processor when any priority ordering can be
given is (weakly) NP-hard, even when restricted to task sets
with utilization bounded from above by any constant c > 0.

Proof: We have described a reduction from an NP-hard
problem (from Theorem II.3) to the target problem, for any
given constant c > 0. It is easy to compute the reduction in
polynomial time following Eqs. (50)–(55), and by Lemmas IV.2
and IV.5 it is a correct many-one reduction.

V. CONCLUSIONS

Thanks to Liu and Layland’s utilization bound it is trivial to
conclude that a task set with implicit deadlines and utilization
no larger than ln(2) is FP-schedulable with RM priorities.
We have seen in this paper that if we allow task sets with
utilization up to some constant c > ln(2), then deciding if a
task set is FP-schedulable with RM priorities becomes weakly
NP-complete, even if c exceeds ln(2) by just an arbitrarily
small amount. This again highlights the importance of ln(2) as
a transition point where the FP-schedulability problem with RM
priorities undergoes a transformation. From surely schedulable
to possibly unschedulable, as we know from Liu and Layland,
but also from computationally easy to computationally hard.

We have also seen that if we can specify an arbitrary priority
ordering to the FP-schedulability problem for implicit-deadline
tasks, then it is weakly NP-complete already if we bound the
utilization of considered task sets by any constant c > 0.

REFERENCES

[1] C.-L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[2] O. Serlin, “Scheduling of time critical processes,” in Proceedings of the
1972 Spring Joint Computer Conference, p. 925–932.

[3] E. Bini, G. C. Buttazzo, and G. M. Buttazzo, “Rate monotonic analysis:
the hyperbolic bound,” IEEE Transactions on Computers, vol. 52, no. 7,
pp. 933–942, 2003.

[4] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[5] P. Ekberg and W. Yi, “Fixed-priority schedulability of sporadic tasks on
uniprocessors is NP-hard,” in Proceedings of the 38th Real-Time Systems
Symposium (RTSS), 2017, pp. 139–146.

[6] F. Eisenbrand and T. Rothvoß, “Static-priority real-time scheduling:
Response time computation is NP-hard,” in Proceedings of the 29th
Real-Time Systems Symposium (RTSS), 2008, pp. 397–406.

[7] T. Rothvoß, “On the computational complexity of periodic scheduling,”
Ph.D. dissertation, SB, Lausanne, 2009.

[8] S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” in Proceedings of the 11th
Real-Time Systems Symposium (RTSS), 1990, pp. 182–190.

[9] P. Ekberg and W. Yi, “Uniprocessor feasibility of sporadic tasks with
constrained deadlines is strongly coNP-complete,” in Proceedings of the
27th Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp.
281 – 286.

[10] ——, “Uniprocessor feasibility of sporadic tasks remains coNP-complete
under bounded utilization,” in Proceedings of the 36th Real-Time Systems
Symposium (RTSS), 2015, pp. 87–95.



[11] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th Real-Time Systems
Symposium (RTSS), Dec 1990, pp. 201–209.

[12] R. Devillers and J. Goossens, “Liu and Layland’s schedulability test
revisited,” Information Processing Letters, vol. 73, no. 5, pp. 157 – 161,
2000.

�


	Introduction
	Preliminaries
	Hardness with Rate-Monotonic Priorities
	Selecting some constants and a source problem
	Producing Tout from Tin
	Correctness of the reduction

	Hardness with Arbitrary Priorities
	The reduction
	Correctness of the reduction

	Conclusions
	References

