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Complexity of bounded FP-schedulability

RM-schedulability of task sets with implicit deadlines and
utilization bounded by constant c is in P for all c < 1.

Conjecture by Rothvoß, 2009

FP-schedulability is NP-complete even if restricted to
1 RM priorities and c > ln(2), or
2 non-RM priorities and c > 0.

New results
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An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7? c = 0.695? c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach
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Classes of computational pRoblems

An RM-schedulability class

• Utilization bounded by some
constant c > 0

• Implicit deadlines for
high-priority tasks

• Constrained deadline for the
lowest-priority task

An RM-schedulability class

All NP-complete
(Ekberg & Yi, 2017)
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constant c > ln(2)
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The existence of a Reduction foR a concRete c

0 ln(2) 1

ccfix

cin

RM-schedulability

• Utilization bounded by cin
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high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines
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BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks Lowest-priority task

0 T low
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How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
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? ? ? ? ?
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to C low
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of Tin

Acts as a deadline
for the new

lowest-prio task
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? ? ? ? ? ? ? ? ? ? ? ?

0 D low
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∀Thank you!
⋄

∃Questions?


