
Rate-Monotonic Schedulability of Implicit-Deadline
Tasks is NP-hard Beyond Liu and Layland’s Bound

Pontus Ekberg

Uppsala UniveRsity

RTSS 2020



BacKgRound

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

What if c > ln(2) or if the priorities are non-RM?

Pontus EKbeRg 2



BacKgRound

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

What if c > ln(2) or if the priorities are non-RM?

Pontus EKbeRg 2



BacKgRound

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

What if c > ln(2) or if the priorities are non-RM?

Pontus EKbeRg 2



BacKgRound

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

What if c > ln(2) or if the priorities are non-RM?

Pontus EKbeRg 2



BacKgRound

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

What if c > ln(2) or if the priorities are non-RM?

Pontus EKbeRg 2



Complexity of bounded FP-schedulability

RM-schedulability of task sets with implicit deadlines and
utilization bounded by constant c is in P for all c < 1.

Conjecture by Rothvoß, 2009

FP-schedulability is NP-complete even if restricted to
1 RM priorities and c > ln(2), or
2 non-RM priorities and c > 0.

New results

Pontus EKbeRg 3



Complexity of bounded FP-schedulability

RM-schedulability of task sets with implicit deadlines and
utilization bounded by constant c is in P for all c < 1.

Conjecture by Rothvoß, 2009

FP-schedulability is NP-complete even if restricted to
1 RM priorities and c > ln(2), or
2 non-RM priorities and c > 0.

New results

Pontus EKbeRg 3



Complexity of bounded FP-schedulability

RM-schedulability of task sets with implicit deadlines and
utilization bounded by constant c is in P for all c < 1.

Conjecture by Rothvoß, 2009

FP-schedulability is NP-complete even if restricted to
1 RM priorities and c > ln(2), or
2 non-RM priorities and c > 0.

New results

Pontus EKbeRg 3



An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7? c = 0.695? c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach

Pontus EKbeRg 4



An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7? c = 0.695? c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach

Pontus EKbeRg 4



An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7?

c = 0.695? c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach

Pontus EKbeRg 4



An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7? c = 0.695?

c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach

Pontus EKbeRg 4



An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7? c = 0.695? c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach

Pontus EKbeRg 4



An added layeR of abstRaction

Show that RM-schedulability is NP-complete even when
utilization is bounded by any constant c > ln(2).

Goal

There is no minimum c, such that c > ln(2).

Hurdle

c = 0.7? c = 0.695? c = ln(2) + ϵ?

Show that for any c > ln(2) there exists a reduction from
some NP-complete problem.

Approach

Pontus EKbeRg 4



Classes of computational pRoblems

An RM-schedulability class

• Utilization bounded by some
constant c > 0

• Implicit deadlines for
high-priority tasks

• Constrained deadline for the
lowest-priority task

An RM-schedulability class

All NP-complete
(Ekberg & Yi, 2017)

An RM-schedulability class

• Utilization bounded by some
constant c > ln(2)

• Implicit deadlines

An RM-schedulability class

?

Pontus EKbeRg 5



Classes of computational pRoblems

An RM-schedulability class

• Utilization bounded by some
constant c > 0

• Implicit deadlines for
high-priority tasks

• Constrained deadline for the
lowest-priority task

An RM-schedulability class

All NP-complete
(Ekberg & Yi, 2017)

An RM-schedulability class

• Utilization bounded by some
constant c > ln(2)

• Implicit deadlines

An RM-schedulability class

?

Pontus EKbeRg 5



Classes of computational pRoblems

An RM-schedulability class

• Utilization bounded by some
constant c > 0

• Implicit deadlines for
high-priority tasks

• Constrained deadline for the
lowest-priority task

An RM-schedulability class

All NP-complete
(Ekberg & Yi, 2017)

An RM-schedulability class

• Utilization bounded by some
constant c > ln(2)

• Implicit deadlines

An RM-schedulability class

?

Pontus EKbeRg 5



The existence of a Reduction foR a concRete c

0 ln(2) 1

ccfix

cin

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Pontus EKbeRg 6



The existence of a Reduction foR a concRete c

0 ln(2) 1c

cfix

cin

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Pontus EKbeRg 6



The existence of a Reduction foR a concRete c

0 ln(2) 1c

cfix

cin

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Pontus EKbeRg 6



The existence of a Reduction foR a concRete c

0 ln(2) 1ccfix

cin

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Pontus EKbeRg 6



The existence of a Reduction foR a concRete c

0 ln(2) 1ccfix

cin

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Pontus EKbeRg 6



The existence of a Reduction foR a concRete c

0 ln(2) 1ccfix

cin

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Pontus EKbeRg 6



BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks Lowest-priority task

0 T low

Pontus EKbeRg 7



BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks Lowest-priority task

0 T low

Pontus EKbeRg 7



BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks Lowest-priority task

0 T low

Pontus EKbeRg 7



BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks Lowest-priority task

0 T low

Pontus EKbeRg 7



BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks

Lowest-priority task

0 T low

Pontus EKbeRg 7



BacK to the ’70s

For every c > ln(2), there exists an implicit-deadline task
set with utilization < c that fully utilizes_ the processor.

Corollary from Liu & Layland, 1973

_ It is schedulable, but no WCET can be increased.

High-priority tasks Lowest-priority task

0 T low

Pontus EKbeRg 7



The existence of a Reduction foR a concRete c

0 ln(2) 1ccfix

cin

Let Tfix be a constant task set with
U(Tfix) < cfix that fully utilizes the processor

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Tfix

Pontus EKbeRg 8



The existence of a Reduction foR a concRete c

0 ln(2) 1ccfix

cin
Let Tfix be a constant task set with

U(Tfix) < cfix that fully utilizes the processor

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Tfix

Pontus EKbeRg 8



The existence of a Reduction foR a concRete c

0 ln(2) 1ccfix

cin
Let Tfix be a constant task set with

U(Tfix) < cfix that fully utilizes the processor

RM-schedulability

• Utilization bounded by cin
• Implicit deadlines for

high-priority tasks
• Constrained deadline for the

lowest-priority task

RM-schedulability

• Utilization bounded by c

• Implicit deadlines

Tfix

Pontus EKbeRg 8



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin

Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin

? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

Tfix

0 T low
fix

Finishing time of
lowest-prio task

? ? ? ? ?

Add C low
in

to C low
fix

Aligns with a
hyper-period

of Tin

Acts as a deadline
for the new

lowest-prio task

Tin ? ? ? ? ? ? ? ? ? ? ? ?

0 D low
in

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

0 ln(2) 1ccfix

cin

U(Tout) ⩽ U(Tin) + U(Tfix)

⩽ cin + cfix
⩽ c

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

0 ln(2) 1ccfix

cin

U(Tout) ⩽ U(Tin) + U(Tfix)

⩽ cin + cfix
⩽ c

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

0 ln(2) 1ccfix

cin

U(Tout) ⩽ U(Tin) + U(Tfix)

⩽ cin + cfix
⩽ c

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

0 ln(2) 1ccfix

cin

U(Tout) ⩽ U(Tin) + U(Tfix)

⩽ cin + cfix
⩽ c

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

0 ln(2) 1ccfix

cin

U(Tout) ⩽ U(Tin) + U(Tfix)

⩽ cin + cfix

⩽ c

Pontus EKbeRg 9



How the Reduction woRKs



Tfix

Tin Tout

0 ln(2) 1ccfix

cin

U(Tout) ⩽ U(Tin) + U(Tfix)

⩽ cin + cfix
⩽ c

Pontus EKbeRg 9



Conclusions

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete with
(i) RM and c > ln(2), or
(ii) non-RM and c > 0

Otherwise in P

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

Pontus EKbeRg 10



Conclusions

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete with
(i) RM and c > ln(2), or
(ii) non-RM and c > 0

Otherwise in P

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

Pontus EKbeRg 10



Conclusions

Implicit
deadlines
(d = p)

Constrained
deadlines
(d ⩽ p)

Arbitrary
deadlines

(d, p unrelated)

Arbitrary
utilization

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-complete

Pseudo-polynomial time
algorithm exists

Weakly NP-hard

Exponential time
algorithm exists

Utilization
bounded by a
constant c < 1

Polynomial time
with RM priorities and

c ⩽ ln(2)

Weakly NP-complete with
(i) RM and c > ln(2), or
(ii) non-RM and c > 0

Otherwise in P

Weakly NP-complete
for c > 0

Pseudo-polynomial time
algorithm exists

Weakly NP-hard
for c > 0

Pseudo-polynomial time
algorithm exists

Pontus EKbeRg 10



∀Thank you!
⋄

∃Questions?


