
Fixed-Priority Schedulability of Sporadic Tasks on
Uniprocessors is NP-hard

Pontus Ekberg and Wang Yi
Uppsala University, Sweden

Email: {pontus.ekberg | yi}@it.uu.se

Abstract—We study the computational complexity of the FP-
schedulability problem for sporadic or synchronous periodic
tasks on a preemptive uniprocessor. We show that this problem
is (weakly) NP-hard, even when restricted to either (i) task sets
with implicit deadlines and rate-monotonic priority ordering,
or (ii) task sets with constrained deadlines, deadline-monotonic
priority ordering and utilization bounded by any constant c, such
that 0 < c < 1.

I. INTRODUCTION

We consider tasks that are sporadic or synchronous periodic,
executed by the Fixed-Priority (FP) scheduling algorithm on a
single processor that allows preemptions at no associated cost
or penalty. The FP scheduling algorithm is widely used in real-
time systems, but the computational complexity of deciding
whether a set of tasks is FP-schedulable in this basic setting
has been a longstanding open problem. In addressing this we
settle the first problem mentioned by Baruah and Pruhs [1] in
their list of open algorithmic problems in real-time scheduling.

In this introduction we first describe models and definitions,
followed by some technical preliminaries and, last, related
work and our contributions.

A. Model and Definitions
Let a sporadic task τ be represented as a triple (e, d, p)

of positive integers, where e represents the task’s worst-case
execution time, d its relative deadline and p its period (or
minimum separation time), respectively. A task τ = (e, d, p)
generates an unbounded sequence of jobs, where each job
has an execution time of up to e time units and an absolute
deadline exactly d time units after its release time. The release
times of two consecutive jobs from the task τ are separated
by at least p time units. We say that a job is ready when it
has been released but has not yet executed to completion.

A task set T is a (multi-)set of tasks and generates an
interleaving of the job sequences generated by each of the
tasks in T. We say that T has
• implicit deadlines if d = p for all (e, d, p) ∈ T,
• constrained deadlines if d 6 p for all (e, d, p) ∈ T, and
• arbitrary deadlines if no restrictions are placed on the

relation between d and p.
We consider scheduling of sporadic tasks on a preemptive

uniprocessor. On such machines, the Fixed-Priority (FP)
scheduling algorithm takes a fixed (total) priority ordering
of the tasks in the task set and then executes jobs strictly
according to this priority ordering. In other words, the FP

scheduler attaches to each job the priority of the task that
generated it, and at any time point chooses among the ready
jobs to execute the job with the highest priority, preempting
any lower-priority job if needed. If several jobs from the same
task are ready, these are prioritized in FIFO order.

The results of this paper are established by relating schedula-
bility with the FP algorithm to schedulability with the Earliest
Deadline First (EDF) algorithm, for which hardness results
are known. The EDF scheduling algorithm chooses among the
ready jobs to execute the job with the earliest absolute deadline
(ties broken arbitrarily), preempting a job with a later deadline
if needed. Both the FP and EDF scheduling algorithms have
been extensively studied in the literature. The EDF scheduler
is known to be optimal on preemptive uniprocessors [2], but
it is not implemented in most real-time operating systems. In
contrast, the FP scheduler is the default scheduler in many
real-time operating systems, partly due to its easy and efficient
implementations. (Buttazzo [3] discusses some practical aspects
and trade-offs between FP and EDF scheduling.)

We say that a task set T is FP-schedulable with a given
priority ordering if and only if all jobs generated by T will
always complete execution by their deadlines when using
the FP scheduler with that priority ordering on a preemptive
uniprocessor. The FP-schedulability problem is to determine
whether a given task set is FP-schedulable with a given priority
ordering. Let EDF-schedulable and EDF-schedulability be
defined similarly.

The synchronous periodic task is a common alternative
workload model to the sporadic task. A synchronous periodic
task is also defined by a triple (e, d, p) of positive integers, with
the only differences that p instead denotes the exact separation
between consecutive job releases, and the first job of all such
tasks are released synchronously at the same time point. It is
known that FP- and EDF-schedulability is unaffected by the
choice between these two task models.

Theorem I.1 (Lehoczky [4], Baruah et al. [5]). Let T be a set
of sporadic tasks, and let T′ be a set of synchronous periodic
tasks with the same parameters as the tasks in T. Then, on a
preemptive uniprocessor

(i) T is FP-schedulable with a given priority ordering if
and only if T′ is FP-schedulable with the same priority
ordering, and

(ii) T is EDF-schedulable if and only if T′ is EDF-schedulable.

The equivalence of FP- and EDF-schedulability for the

different types of tasks in this setting means that our results
apply to both of them. In the following, when we simply write
“task” we interchangeably mean a task that is either sporadic
or synchronous periodic.

B. Preliminaries

Here we briefly review some results from real-time schedul-
ing theory that are used in this paper.

In FP scheduling, the priority ordering that assigns higher
priority to tasks with shorter relative deadlines (ties broken
arbitrarily) is known as the Deadline-Monotonic (DM) priority
ordering. DM is an optimal priority ordering for task sets with
constrained deadlines.

Theorem I.2 (Leung and Whitehead [6]). If a task set with
constrained deadlines is FP-schedulable on a preemptive
uniprocessor with any priority ordering, then it is also FP-
schedulable with the DM priority ordering.

The Rate-Monotonic (RM) priority ordering instead assigns
higher priority to tasks with shorter periods. For task sets
with implicit deadlines, RM is the same as DM, and is
therefore an optimal priority ordering. The seminal work by
Liu and Layland [7] established a sufficient condition for FP-
schedulability in this setting in the form of a utilization bound.

Theorem I.3 (Liu and Layland [7]). A task set T of n implicit-
deadline tasks is FP-schedulable on a preemptive uniprocessor
with the RM priority ordering if

U(T) 6 n(2
1
n − 1), (1)

where

U(T)
def
=

∑
(e,d,p)∈T

e

p
(2)

is the utilization of T.

Note that limn→∞ n(2
1
n − 1) = ln 2 ≈ 0.693, which leads

to the simpler sufficient condition

U(T) 6 ln 2, (3)

which we will make use of instead of the one in Eq. 1.
Liu and Layland’s utilization-based condition is only suffi-

cient and only valid for task sets with implicit deadlines. Joseph
and Pandya [8] gave an exact condition for FP-schedulability
of task sets with constrained deadlines. This condition is based
on calculating a task’s response time, which is the maximum
amount of time that can pass between the release and finishing
time of any job generated by that task.

Theorem I.4 (Joseph and Pandya [8]). Let τlow =
(elow, dlow, plow) be a constrained-deadline task scheduled by
the FP scheduler on a preemptive uniprocessor, and let Thp

be the set of tasks with higher priority than τlow in the given
priority ordering. The response time rlow of τlow is then the
smallest positive fixed point to

rlow = elow + rbf(Thp, rlow), (4)

where

rbf(T, r)
def
=

∑
(e,d,p)∈T

⌈
r

p

⌉
e (5)

is the request bound function of a set of tasks T in a time
interval of size r. All jobs generated by τlow are guaranteed
to meet their deadlines with the given priority ordering if and
only if rlow 6 dlow.

Baruah et al. [5] gave an exact condition for EDF-
schedulability of task sets with arbitrary deadlines.

Theorem I.5 (Baruah et al. [5]). A task set T is EDF-
schedulable on a preemptive uniprocessor if and only if
U(T) 6 1 and

∀` > 0, dbf(T, `) 6 `, (6)

where

dbf(T, `)
def
=

∑
(e,d,p)∈T

max

{
0,

⌊
`− d
p

⌋
+ 1

}
e (7)

is the demand bound function of T in time interval lengths `.

Note that for a task set T with constrained deadlines, we
have

dbf(T, `) =
∑

(e,d,p)∈T

(⌊
`− d
p

⌋
+ 1

)
e (8)

for ` > 0. As we consider constrained deadlines in this paper,
we will use the simpler form in Eq. 8 for brevity.

We also have the following corollary.1

Corollary I.6 (Baruah et al. [5]). A task set T with constrained
deadlines is EDF-schedulable on a preemptive uniprocessor if
and only if U(T) 6 1 and

∀` ∈ {0, 1, . . . ,P(T)− 1}, dbf(T, `) 6 `. (9)

where

P(T) def
= lcm{p | (e, d, p) ∈ T} (10)

is the hyper-period of T.

The EDF-schedulability problem (or feasibility problem) is
known to be strongly coNP-complete in the general case [9].
We will base our new results on the following theorem about the
hardness in a more restricted setting with bounded utilization.

Theorem I.7 (Ekberg and Yi [10]). Deciding whether a task
set is EDF-schedulable on a preemptive uniprocessor is coNP-
complete in the weak sense if restricted to task sets with
constrained deadlines and utilization bounded from above by
any constant c, such that 0 < c < 1.

1This is slightly different than the result reported by Baruah et al. [5], where
the equivalent is stated for arbitrary deadlines. In this corollary we restrict
attention to constrained deadlines and therefore get a slightly smaller range of
values for ` to consider, which will be a useful property later on. This variant
follows directly by the reasoning of Baruah et al. [5]

Implicit
deadlines
(d = p)

Constrained
deadlines
(d 6 p)

Arbitrary
deadlines

(d, p unrelated)

FP

Arbitrary
utilization

Weakly
NP-complete

(from this work)

Weakly
NP-complete

(from this work)

Weakly NP-hard
(from this work)

(Open†)

Utilization
bounded by
a constant c

Polynomial time
for c 6 ln 2 and
RM priorities [7]

(Open‡)

Weakly
NP-complete
for 0 < c < 1

(from this work)

Weakly NP-hard
for 0 < c < 1

(from this work)
(Open†)

EDF
(Feasibility)

Arbitrary
utilization

Polynomial time [7]
Strongly

coNP-complete [9]
Strongly

coNP-complete [9]

Utilization
bounded by
a constant c

Polynomial time [7]
Weakly

coNP-complete
for 0 < c < 1 [10]

Weakly
coNP-complete

for 0 < c < 1 [10]

Fig. 1. Computational complexity of the schedulability problem for sporadic or synchronous periodic tasks on a preemptive uniprocessor. Except for the
entries marked Open, upper and lower bounds match, with all weakly NP- or coNP-complete problems also having known pseudo-polynomial time solutions.
See the next page for a description of the open problems.

C. Contributions and Related Work

The results summarized in the previous section provide
some upper bounds on the computational complexity of the
FP-schedulability problem. Theorem I.4 immediately yields a
pseudo-polynomial time algorithm for task sets with constrained
deadlines. It also shows that the same problem is in NP
(a set of small fixed points is a witness of schedulability).
Theorem I.3 similarly gives a trivial polynomial-time algorithm
for the special case of task sets with implicit-deadlines, RM
priorities and utilization bounded by ln 2. (See, e.g., Baruah
and Goossens [11] for more in-depth discussions.) For the case
with arbitrary deadlines, there are exponential-time algorithms,
as shown by Lehoczky [4], but no pseudo-polynomial time
algorithms are known.

Despite the wealth of research related to these problems,
lower bounds on their computational complexity have been
lacking for decades. To the best of our knowledge, the only
previous result related to lower bounds on the FP-schedulability
problem was given by Eisenbrand and Rothvoß [12]. They
showed that with FP scheduling it is NP-hard to even approx-
imate the response time of the lowest-priority task within a
constant factor (i.e., to approximate the smallest fixed point
in Eq. 4 for a given task). While this intuitively seems to
suggest that the FP-schedulability problem is hard, Eisenbrand
and Rothvoß [12] as well as Baruah and Pruhs [1] point out
that this does not follow. The reason is that the reductions

employed by Eisenbrand and Rothvoß can create some higher-
priority tasks that are clearly unschedulable in order to make
it hard to calculate the response time of a single lower-priority
task. Rothvoß [13] later conjectured that the FP-schedulability
problem is NP-hard, even with implicit deadlines and RM
priorities.

Our contributions are to provide lower bounds for the FP-
schedulability problem that in several cases match the known
upper bounds. Our main results are as follows.
(1) The FP-schedulability problem is weakly NP-hard, even

when restricted to task sets with implicit deadlines and
RM priority ordering.

(2) The FP-schedulability problem is weakly NP-hard, even
when restricted to task sets with constrained deadlines, DM
priority ordering and utilization bounded by any constant
c, such that 0 < c < 1.

Item (1) settles a stronger version of Open Problem 1 as
listed by Baruah and Pruhs [1] and proves the conjecture of
Rothvoß [13]. Item (2) shows that with constrained deadlines,
the computational hardness of FP-schedulability remains even
if we restrict attention to task sets with very low utilization,
similar to the case for EDF-schedulability.

As the RM and DM priority orderings are known to be
optimal in their respective settings, we have as a corollary that
the hardness results of both items (1) and (2) remain the same
if we were to instead ask if a given task set is FP-schedulable
with any priority ordering, instead of with a given one.

Figure 1 combines our new lower bounds with the known
upper bounds, and contrasts these with the known bounds on
EDF-schedulability. Except for those entries marked as Open,
the lower bounds match the upper bounds, with weakly NP- and
coNP-complete problems having known pseudo-polynomial
time algorithms.

Open†: The lower bounds here carry over from the corre-
sponding problems with constrained deadlines. However, while
there are exponential-time algorithms for FP-schedulability with
arbitrary deadlines (see Lehoczky [4]), there are no known
pseudo-polynomial time algorithms. In contrast to the case
with constrained deadlines, which is seen to be in NP because
of Theorem I.4, it is not clear that the arbitrary deadlines case
admits easily verifiable witnesses, and so to the best of our
knowledge, its membership in NP is also open.

Open‡: If the FP-schedulability problem is restricted to
task sets with utilization bounded by a constant c and RM
priority ordering, then Theorem I.3 yields a trivial polynomial-
time algorithm for c 6 ln 2. It is open whether there exists
a polynomial-time algorithm for the case when we have RM
priority ordering but ln 2 < c < 1, or for the case where an
arbitrary priority ordering can be given and 0 < c < 1.

II. THE HARDNESS OF FP-SCHEDULABILITY

In this section we show that the FP-schedulability problem
is weakly NP-hard, even when restricted to either of the two
special cases mentioned in the previous section. We can prove
either case with only a minor variation to the proofs, so the
following will target both cases. We split this proof into a
chain of two reductions.
(1) The first is a polynomial-time many-one reduction from

the EDF-schedulability problem for task sets with con-
strained deadlines and utilization bounded by any constant
c, such that 0 < c < 1, to a special case of the same
problem that is further restricted to task sets where all
tasks have pairwise coprime periods.

(2) The second is a polynomial-time many-one reduction
from that special case of the EDF-schedulability problem
(though here we must have 0 < c 6 ln 2) to the
complement of the FP-schedulability problem. This works
by finding a duality between demand bound functions and
request bound functions that exists whenever the tasks
have pairwise coprime periods.

As the source problem of the first reduction is coNP-hard by
Theorem I.7 for any c such that 0 < c < 1, the NP-hardness
of the FP-schedulability problem will follow.

For the first reduction we will use a result from number
theory about the Jacobsthal function g(n). Jacobsthal [14]
defines g(n) to be the smallest number such that all intervals
of g(n) consecutive integers a, a+ 1, a+ 2, . . . , a+ g(n)− 1
contain at least one number that is coprime to n. While g(n)
is very irregular, it grows slowly. The best known upper bound
on the Jacobsthal function is due to Iwaniec [15], from which
we have

g(n) 6 K log2(n) (11)

for n > 2 and some unknown positive constant K. We will
use this bound to show that suitable coprime numbers can be
found for the reduction. As a convenience we assume, without
loss of generality, that K ∈ N+.

A. Reducing EDF-schedulability with Bounded Utilization
to a Special Case with Pairwise Coprime Periods

Let c be any constant such that 0 < c < 1. Then let Tc
denote an instance of the EDF-schedulability problem restricted
to task sets with constrained deadlines and utilization bounded
by c. Given any Tc, our reduction produces a task set T⊥c
that is further restricted so that all tasks in T⊥c have pairwise
coprime periods, while T⊥c is EDF-schedulable if and only if
Tc is.

First, define

n
def
= |Tc|, (12)

κ
def
= (10KnP(Tc))3, (13)

where K is the constant from Iwaniec’s bound on the Jacobsthal
function (see Eq. 11), and P(T) is the hyper-period of a task
set T (see Eq. 10). Then, let the tasks in Tc be denoted as
{(e1, d1, p1), . . . , (en, dn, pn)}, and let those tasks be indexed
by non-decreasing periods, so that pj 6 pi if j < i.

Now, the task set T⊥c produced by the reduction is defined
as

T⊥c
def
= {(e′1, d′1, p′1), . . . , (e′n, d′n, p′n)}, (14)

where

e′i
def
= κei, (15)

d′i
def
= κdi, (16)

p′i
def
= min{m > κpi | m is coprime to p′j , ∀j < i}. (17)

Note that by this construction, T⊥c is a copy of Tc where
task parameters have been scaled by κ, except that the periods
might be even larger to ensure that they are pairwise coprime.
As a consequence, T⊥c also has constrained deadlines and we
must have U(T⊥c) 6 U(Tc) 6 c.

We begin by establishing a lemma about how increasing
the relative magnitudes of the periods by a moderate amount
does not affect EDF-schedulability. Then we show in another
lemma that the conditions of the first lemma apply to the
task set T⊥c , relative to Tc, and that they therefore have the
same EDF-schedulability. Last we show how to compute T⊥c
in polynomial time.

Lemma II.1. Let T be a task set with constrained deadlines
and let T̃ be another task set satisfying

T̃ = {(kei, kdi, kpi + δi) | (ei, di, pi) ∈ T},

where k ∈ N+ and

0 6 δi <
kpi
P(T)

.

Then, T̃ is EDF-schedulable if and only if T is EDF-
schedulable.

Proof: We show the two directions separately.

T is EDF-schedulable =⇒ T̃ is EDF-schedulable:

Assume that T is EDF-schedulable. Then, for all ` > 0
we have

dbf(T̃, `) =
∑

(ẽi,d̃i,p̃i)∈ T̃

(⌊
`− d̃i
p̃i

⌋
+ 1

)
ẽi

=
∑

(ei,di,pi)∈T

(⌊
`− kdi
kpi + δi

⌋
+ 1

)
kei

6
∑

(ei,di,pi)∈T

(⌊
`
k − di
pi

⌋
+ 1

)
kei

= k dbf(T, `/k)
(∗)
6 `,

where (∗) follows from Theorem I.5 and the EDF-
schedulability of T. By the same theorem, T̃ must also
be EDF-schedulable.

T̃ is EDF-schedulable =⇒ T is EDF-schedulable:

Assume that T̃ is EDF-schedulable. Then, for all ` > 0
we have

dbf(T, `) =
∑

(ei,di,pi)∈T

(⌊
`− di
pi

⌋
+ 1

)
ei

=
∑

(ei,di,pi)∈T

(⌊(
k + k

P(T)

)(
`− di

)(
k + k

P(T)

)
pi

⌋
+ 1

)
ei

=
∑

(ei,di,pi)∈T

(⌊
k`+ k`

P(T) − kdi −
kdi
P(T)

kpi +
kpi
P(T)

⌋
+ 1

)
ei

6
∑

(ei,di,pi)∈T

(⌊
k`+ k`

P(T) − kdi
kpi + δi

⌋
+ 1

)
ei

=
∑

(ẽi,d̃i,p̃i)∈ T̃

(⌊
k`+ k`

P(T) − d̃i
p̃i

⌋
+ 1

)
ẽi
k

=
dbf

(
T̃, k`+ k`

P(T)

)
k

(∗)
6 `+

`

P(T)
,

where (∗) follows from Theorem I.5 and the EDF-
schedulability of T̃. Now, because dbf(T, `) is integer-
valued, we must have

dbf(T, `) 6

⌊
`+

`

P(T)

⌋
,

but for all ` ∈ {0, 1, . . . ,P(T)− 1} we then have

dbf(T, `) 6

⌊
`+

`

P(T)

⌋
= `,

and T is EDF-schedulable by Corollary I.6.

Now we show that task set T⊥c meets the conditions of
Lemma II.1, relative to Tc, and therefore preserves the EDF-
schedulability of Tc.

Lemma II.2. T⊥c is EDF-schedulable if and only if Tc is
EDF-schedulable.

Proof: The lemma holds, by construction and Lemma II.1,
if

p′i − κpi <
κpi
P(Tc)

, (18)

for all 1 6 i 6 n. We show that Eq. 18 holds by strong
induction over i. The base case (i = 1) trivially holds as
p′1 = κp1. For 1 < i 6 n, note that p′i is coprime to p′j for all
j < i if and only if p′i is coprime to N , where N =

∏i−1
j=1 p

′
j .

We know that all intervals of g(N) consecutive integers contain
a number coprime to N , where g is the Jacobsthal function.
Also note that we have

N =

i−1∏
j=1

p′j

(∗)
<

i−1∏
j=1

(
κpj +

κpj
P(Tc)

)

6
i−1∏
j=1

2κpj

(∗∗)
6 (2κpi)

n,

where (∗) follows from the induction hypothesis and (∗∗) from
the ordering of task indices by non-decreasing periods. Using
Iwaniec’s bound on g from Eq. 11, we then have

g(N) 6 K log2(N)

< K log2((2κpi)
n)

= Kn2 log2(2κpi) (19)

= 36Kn2 log2
(

6
√
2κpi

)
< 36Kn2 3

√
2κpi

< 36Kn2(2 3
√
κpi)

= 72Kn2(10KnP(Tc))pi
= 720K2n3P(Tc)pi
< 1000K3n3P(Tc)2pi

=
(10KnP(Tc))3pi

P(Tc)
=

κpi
P(Tc)

.

It follows from the definition of g that there exists a number
coprime to N in the interval

[
κpi, κpi +

κpi
P(Tc)

)
. By the

definition of p′i we therefore have

p′i < κpi +
κpi
P(Tc)

,

and Eq. 18 holds. There is nothing to show for i > n, so this
concludes the induction step and the proof.

Finally, the reduction can be shown to be valid.

Lemma II.3. Deciding whether a task set of sporadic or
synchronous periodic tasks is EDF-schedulable on a preemptive
uniprocessor is coNP-complete in the weak sense if restricted
to task sets with constrained deadlines, utilization bounded
from above by any constant c, such that 0 < c < 1, and tasks
with pairwise coprime periods.

Proof: We know from Theorem I.7 that this decision
problem without the restriction to pairwise coprime periods is
coNP-complete for any constant c such that 0 < c < 1. We
have shown that there exists a reduction2 to the special case
with pairwise coprime periods that by Lemma II.2 is a valid
many-one reduction. What remains to be shown is that the
reduction can be computed in polynomial time.

For this, the only challenge is to compute the values of the
periods p′i. To see that this can be done in polynomial time,
we again use Iwaniec’s bound on the Jacobsthal function g.
By definition, p′i is the smallest integer not less than κpi and
coprime to N =

∏i−1
j=1 p

′
j . This number must be in the interval

[κpi, κpi + g(N)), but from Eq. 19 we have

g(N) < Kn2 log2(2κpi).

As Kn2 log2(2κpi) is bounded by some polynomial in the size
of the representation of Tc, we know that p′i is contained in
an interval of polynomial length. We can search this interval
for p′i by looking at all integers κpi, κpi + 1, . . . until we find
a number that is coprime to N . Using standard algorithms
for computing greatest common divisors (e.g., the Euclidean
algorithm), this can be done in polynomial time.

B. Reducing EDF-schedulability with Pairwise Coprime Pe-
riods to the Complement of FP-schedulability

Now we describe a polynomial-time many-one reduction
from the special case of the EDF-schedulability problem
that was shown to be coNP-complete in Lemma II.3 to the
complement of the FP-schedulability problem.

Let c be any constant such that 0 < c 6 ln 2. Given
an instance T⊥c of the EDF-schedulability problem with
constrained deadlines, utilization bounded by c, and pairwise
coprime periods, let ˆ̀ be the smallest number such that

ˆ̀ ≡ d (mod p), ∀ (e, d, p) ∈ T⊥c (20)

and

ˆ̀ > max{p | (e, d, p) ∈ T⊥c }. (21)

Because the tasks in T⊥c have pairwise coprime periods,
we know by the Chinese remainder theorem that ˆ̀ exists and
that ˆ̀ 6 2P(T⊥c). Note that if dbf(T⊥c ,

ˆ̀) > ˆ̀, then T⊥c is
infeasible by Theorem I.5 and the reduction is trivial. In the

2This proof is actually somewhat non-constructive. As we do not know the
value of K—the constant in Iwaniec’s bound on the Jacobthal function—we
have not described a concrete reduction, but only showed that one exists.
While this is a bit unusual, it is enough for the purposes of demonstrating
computational hardness.

following we assume, without loss of generality, that

dbf(T⊥c ,
ˆ̀) 6 ˆ̀. (22)

The reduction then produces a task set TFP as

TFP
def
= Thp

FP ∪ {τlow}, (23)

where

Thp
FP

def
= {(e, p, p) | (e, d, p) ∈ T⊥c } (24)

τlow
def
= (elow, dlow, plow) (25)

elow
def
= ˆ̀− dbf(T⊥c ,

ˆ̀) + 1 (26)

dlow
def
= ˆ̀ (27)

plow
def
= ϕˆ̀ (28)

for some ϕ ∈ N+. We will set the value of ϕ later in
Theorem II.8, to target either of the two special cases of the
FP-schedulability problem that was mentioned in Section I-C.
Note that T

hp
FP is a copy of T⊥c with deadlines set to equal

periods.
First we establish two lemmas, starting with a lemma about

the sizes of counterexamples to the EDF-schedulability of T⊥c .

Lemma II.4. T⊥c is EDF-schedulable if and only if

∀` ∈ {0, 1, . . . , ˆ̀}, dbf(T⊥c , `) 6 `. (29)

Proof: The necessity of the condition in Eq. 29 follows
directly from Theorem I.5. We show the sufficiency by
contradiction. Assume for this purpose that the condition
in Eq. 29 holds but T⊥c is not EDF-schedulable. Then, by
assumption and Theorem I.5 there must exist a λ ∈ N+ such
that dbf(T⊥c , ˆ̀+ λ) > ˆ̀+ λ, but

dbf(T⊥c ,
ˆ̀+ λ) =

∑
(e,d,p)∈T⊥

c

(⌊ ˆ̀+ λ− d
p

⌋
+ 1

)
e

(∗)
=

∑
(e,d,p)∈T⊥

c

(⌊ ˆ̀− d
p

⌋
+

⌊
λ

p

⌋
+ 1

)
e

=
∑

(e,d,p)∈T⊥
c

(⌊ ˆ̀− d
p

⌋
+ 1

)
e +

∑
(e,d,p)∈T⊥

c

⌊
λ

p

⌋
e

6 dbf(T⊥c ,
ˆ̀) + λU(T⊥c)

(∗∗)
6 ˆ̀+ λU(T⊥c)

6 ˆ̀+ λc

< ˆ̀+ λ,

where (∗) holds because (ˆ̀− d)/p is an integer for all
(e, d, p) ∈ T⊥c by the definition of ˆ̀ (see Eq. 20), and (∗∗)
follows by assumption. The sufficiency of the condition in
Eq. 29 follows from this contradiction.

Next we find a connection between demand bound functions
and request bound functions. We know from Theorems I.4
and I.5 that these can provide conditions for EDF- and FP-
schedulability, respectively, which makes this a key step for
the reduction.

Lemma II.5. For all ` ∈ {0, 1, . . . , ˆ̀}, we have

dbf(T⊥c ,
ˆ̀)− dbf(T⊥c , `) = rbf(Thp

FP ,
ˆ̀− `).

Proof: Take any ` ∈ {0, 1, . . . , ˆ̀} and we have

dbf(T⊥c ,
ˆ̀)− dbf(T⊥c , `)

=
∑

(e,d,p)∈T⊥
c

(⌊ ˆ̀− d
p

⌋
+1

)
e−

(⌊
`− d
p

⌋
+ 1

)
e

=
∑

(e,d,p)∈T⊥
c

(⌊ ˆ̀− d
p

⌋
−
⌊
`− d
p

⌋)
e

(∗)
=

∑
(e,d,p)∈T⊥

c

(ˆ̀− d
p
−
⌊
`− d
p

⌋)
e

(∗)
=

∑
(e,d,p)∈T⊥

c

(⌈ ˆ̀− d− (`− d)
p

⌉)
e

=
∑

(e,d,p)∈T⊥
c

⌈ ˆ̀− `
p

⌉
e

(∗∗)
=

∑
(e,d,p)∈Thp

FP

⌈ ˆ̀− `
p

⌉
e

= rbf(Thp
FP ,

ˆ̀− `),

where equalities marked (∗) follow because (ˆ̀− d)/p is an
integer and (∗∗) follows from the definition of Thp

FP .

Recall that we restricted the source problem of our reduction
to instances T⊥c with U(T⊥c) 6 c 6 ln 2. As is demonstrated by
the following lemma, this means that the FP-schedulability of
the constructed task set TFP hinges only on the schedulability of
its lowest priority task τlow for appropriate priority orderings.

Lemma II.6. Task set TFP is FP-schedulable with RM and
DM priority ordering if and only if under this scheduling all
jobs generated by τlow are guaranteed to meet their deadlines.

Proof: Assume either RM or DM priority ordering. Then
τlow is the lowest-priority task in TFP as by Eqs. 21, 27 and 28
we have plow > max{p | (e, d, p) ∈ T

hp
FP } and we also have

dlow > max{d | (e, d, p) ∈ T
hp
FP }. As the tasks in T

hp
FP all have

implicit deadlines, the RM and DM priority orderings are in
fact the same for TFP. Note also that by construction we have

U(Thp
FP) = U(T⊥c) 6 c 6 ln 2.

As τlow can not affect the scheduling of the higher-priority
tasks in T

hp
FP , we know by Theorem I.3 (see especially the

simplified condition in Eq. 3) that all jobs generated by tasks
in T

hp
FP will meet their deadlines. Task set TFP is therefore

FP-schedulable if and only if all jobs generated by τlow will
meet their deadlines.

With a last lemma we show that the schedulability of the
jobs generated by τlow, and thus the whole task set TFP, is
inversely related to the EDF-schedulability of T⊥c .

Lemma II.7. Task set TFP is FP-schedulable with RM and DM
priority ordering if and only if T⊥c is not EDF-schedulable.

Proof: First note that by Lemma II.6 we know that TFP is
FP-schedulable under RM or DM priority ordering if and only
if all jobs generated by task τlow are guaranteed to meet their
deadlines. By Theorem I.4, this is the case if and only if there
exists a fixed point rlow to the equation

rlow = elow + rbf(Thp
FP , rlow),

such that 0 < rlow 6 dlow. Note that rlow, if it exists, is an
integer. We separately prove the two directions of the lemma.

TFP is FP-schedulable =⇒ T⊥c is not EDF-schedulable:
Assume that TFP is FP-schedulable, and hence that there
exists some rlow such that 0 < rlow 6 dlow and rlow =
elow + rbf(Thp

FP , rlow). Then,

dbf(T⊥c ,
ˆ̀− rlow)

= dbf(T⊥c ,
ˆ̀− rlow) + dbf(T⊥c ,

ˆ̀)− dbf(T⊥c ,
ˆ̀)

(∗)
= dbf(T⊥c ,

ˆ̀)− rbf(Thp
FP ,

ˆ̀− (ˆ̀− rlow))
= dbf(T⊥c ,

ˆ̀)− rbf(Thp
FP , rlow))

= dbf(T⊥c ,
ˆ̀) + elow − rlow

(∗∗)
= ˆ̀− rlow + 1,

where (∗) follows from Lemma II.5 and (∗∗) from the
definition of elow. By Theorem I.5 it follows that T⊥c is
not EDF-schedulable.

T⊥c is not EDF-schedulable =⇒ TFP is FP-schedulable:
Assume that T⊥c is not EDF-schedulable. Then, by
Lemma II.4 there exists some ` ∈ {0, 1, . . . , ˆ̀} such that
dbf(T⊥c , `) > `. Let r′ = dlow − ` and note that

r′ = dlow − `
= ˆ̀− `
(∗)
> ˆ̀− dbf(T⊥c , `)

= ˆ̀− dbf(T⊥c , `) + dbf(T⊥c ,
ˆ̀)− dbf(T⊥c ,

ˆ̀)

= elow + dbf(T⊥c ,
ˆ̀)− dbf(T⊥c , `)− 1

(∗∗)
= elow + rbf(Thp

FP ,
ˆ̀− `)− 1

= elow + rbf(Thp
FP , r

′)− 1,

where (∗) follows by assumption and (∗∗) follows from
Lemma II.5. Because both r′ and elow + rbf(Thp

FP , r
′)− 1

are integers, we must then have

r′ > elow + rbf(Thp
FP , r

′), (30)

but by the definition of request bound functions (see Eq. 5)
we also have

0 < elow + rbf(Thp
FP , 0). (31)

Combining Eqs. 30 and 31 with the observation that
rbf(Thp

FP , r) is a non-decreasing function in r, we can see
that there must exist some rlow such that 0 < rlow 6 r′ 6
dlow and rlow = elow + rbf(Thp

FP , rlow). By Theorem I.4,
it follows that all jobs from τlow are guaranteed to meet
their deadlines, and thus by Lemma II.6 that TFP is FP-
schedulable.

Finally we can show the NP-hardness of the FP-
schedulability problem.

Theorem II.8. Deciding whether a set of sporadic or syn-
chronous periodic tasks is FP-schedulable with a given priority
ordering on a preemptive uniprocessor is NP-hard in the weak
sense. This holds even if restricted in either of the following
ways.

(i) All tasks have implicit deadlines and the priority ordering
is RM.

(ii) All tasks have constrained deadlines, the priority ordering
is DM and the utilization of the task set is bounded from
above by any constant c̃, such that 0 < c̃ < 1.

Proof: We have described a reduction from the EDF-
schedulability problem restricted to task sets with constrained
deadlines, pairwise coprime periods and utilization bounded
by any constant c, such that 0 < c 6 ln 2, to the complement
of the FP-schedulability problem. By Lemma II.7, this is a
valid many-one reduction with both the RM and DM priority
orderings. Note that the value of ˆ̀ can be computed in
polynomial time using standard algorithms for the Chinese
remainder theorem, and the rest of the reduction can trivially
be computed in polynomial time as well. Because the above
EDF-schedulabilty problem is coNP-complete by Lemma II.3,
the FP-schedulability problem is (weakly) NP-hard.

We can get either of the two restrictions (i) and (ii) by
adapting the value of the constant ϕ in Eq. 28. Note that all
lemmas shown so far are independent of the value of ϕ. If we
set ϕ = 1, then TFP has implicit deadlines and the NP-hardness
of the FP-schedulability problem with restriction (i) follows.

Consider instead restriction (ii) with any constant c̃, such
that 0 < c̃ < 1. We choose the constant c for bounding the
utilization for the EDF-schedulability problem that is the source
of the reduction as c = c̃/2. Note that we still have c 6 ln 2
and that our EDF-schedulability problem is coNP-complete
also with this c by Lemma II.3. Then we set ϕ = d2/c̃e. Now,
TFP has constrained deadlines and we also have

U(TFP) = U(Thp
FP) + U({τlow})

= U(T⊥c) +
elow
plow

6 c+
1

ϕ

6
c̃

2
+
c̃

2
= c̃.

The NP-hardness of the FP-schedulability problem with re-
striction (ii) follows.

III. CONCLUSIONS

The computational complexity of deciding whether a set
of sporadic or synchronous periodic tasks is FP-schedulable
on a preemptive uniprocessor has been a longstanding open
problem, arguably going back to the seminal work of Liu and
Layland [7]. We have provided lower bounds on the complexity
of this problem, which in several important settings match upper
bounds provided by classic results in real-time scheduling
theory.

A remaining open problem is to determine the exact
complexity of FP-schedulability with arbitrary deadlines. It has
a well-known exponential-time algorithm, but there remains
a gap between this and our lower bound, which shows that
FP-schedulability is weakly NP-hard. Membership in NP is
also open for the case with arbitrary deadlines.

Another outstanding open problem is to determine whether
FP-schedulability of task sets with implicit deadlines and uti-
lization bounded by some constant c < 1 admits a polynomial-
time solution. We know from Liu and Layland [7] that this is
(trivially) the case when c 6 ln 2 and the priority ordering is
RM, but it is unknown if this also holds for ln 2 < c < 1 or
with arbitrary priority orderings.

REFERENCES

[1] S. Baruah and K. Pruhs, “Open problems in real-time scheduling,” Journal
of Scheduling, vol. 13, no. 6, pp. 577–582, 2010.

[2] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes,” in Proceedings of the IFIP congress, vol. 74, 1974, pp.
807–813.

[3] G. C. Buttazzo, “Rate monotonic vs. EDF: Judgment day,” Real-Time
Systems, vol. 29, no. 1, pp. 5–26, 2005.

[4] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines,” in Proceedings of the 11th Real-Time Systems
Symposium (RTSS), Dec 1990, pp. 201–209.

[5] S. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling hard-
real-time sporadic tasks on one processor,” in Proceedings of the 11th
Real-Time Systems Symposium (RTSS), 1990, pp. 182–190.

[6] J. Y.-T. Leung and J. Whitehead, “On the complexity of fixed-priority
scheduling of periodic, real-time tasks,” Performance Evaluation, vol. 2,
no. 4, pp. 237–250, 1982.

[7] C.-L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20,
no. 1, pp. 46–61, 1973.

[8] M. Joseph and P. Pandya, “Finding response times in a real-time system,”
The Computer Journal, vol. 29, no. 5, pp. 390–395, 1986.

[9] P. Ekberg and W. Yi, “Uniprocessor feasibility of sporadic tasks with
constrained deadlines is strongly coNP-complete,” in Proceedings of the
27th Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp.
281 – 286.

[10] ——, “Uniprocessor feasibility of sporadic tasks remains coNP-complete
under bounded utilization,” in Proceedings of the 36th Real-Time Systems
Symposium (RTSS), 2015, pp. 87–95.

[11] S. Baruah and J. Goossens, “Scheduling real-time tasks: Algorithms and
complexity,” 2004.

[12] F. Eisenbrand and T. Rothvoß, “Static-priority real-time scheduling:
Response time computation is NP-hard,” in Proceedings of the 29th
Real-Time Systems Symposium (RTSS). IEEE Computer Society, 2008,
pp. 397–406.

[13] T. Rothvoß, “On the computational complexity of periodic scheduling,”
Ph.D. dissertation, SB, Lausanne, 2009.

[14] E. E. Jacobsthal, “Über Sequenzen ganzer Zahlen, von denen keine zu n
teilerfremd ist, 1-3,” Norske Vid. Selsk. Forh. (Trondheim), vol. 33, pp.
117–139, 1960.

[15] H. Iwaniec, “On the problem of Jacobsthal,” Demonstratio Math., vol. 11,
pp. 225–231, 1978.

�

	Introduction
	Model and Definitions
	Preliminaries
	Contributions and Related Work

	The Hardness of FP-schedulability
	Reducing EDF-schedulability with Bounded Utilization to a Special Case with Pairwise Coprime Periods
	Reducing EDF-schedulability with Pairwise Coprime Periods to the Complement of FP-schedulability

	Conclusions
	References

