Fixed-Priority Schedulability of Sporadic Tasks on Uniprocessors is NP-hard

Pontus Ekberg \& Wang Yi

Uppsala University

RTSS 2017

Overview

	Implicit deadlines $(d=p)$	Constrained deadlines $(d \leqslant p)$	Arbitrary deadlines (d, p unrelated)
Arbitrary utilization			
Utilization bounded by a constant c			

Overview

	Implicit deadlines $(d=p)$	Constrained deadlines $(d \leqslant p)$	Arbitrary deadlines
	(d,p unrelated)		

(*) Joseph and Pandya, 1986

Overview

	Implicit deadlines $(d=p)$	Constrained deadlines $(d \leqslant p)$	Arbitrary deadlines (d, p unrelated)
Arbitrary utilization	Pseudo-poly. time algorithm	Pseudo-poly. time algorithm	
Utilization bounded by a constant c	Polynomial time for $c \leqslant \ln 2$ and RM priorities	Pseudo-poly. time algorithm	

(*) Joseph and Pandya, 1986
(\dagger) Liu and Layland, 1973

Overview

(*) Joseph and Pandya, 1986
(\dagger) Liu and Layland, 1973
(\ddagger) Lehoczky, 1990

Overview

A Tale of Two Reductions

EDF-schedulability
-Constrained deadlines - Bounded utilization ${ }^{2}$

[^0]

- Bounded utilization

\rightarrow	FP-schedulability
Implicit deadlines $-o r-$ Constrained deadlines Bounded utilization	

A Tale of Two Reductions

A Tale of Two Reductions

A Tale of Two Reductions

coNP-hard

A Tale of Two Reductions

A Tale of Two Reductions

coNP-hard

coNP-hard
NP-hard

A Tale of Two Reductions

coNP-hard

coNP-hard
NP-hard

EDF-schedulability \rightsquigarrow FP-schedulability

EDF-schedulability \rightsquigarrow FP-schedulability

EDF-schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

EDF-schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

EDF-Schedulability \rightsquigarrow FP-schedulability

A Tale of Two Reductions

coNP-hard

coNP-hard
NP-hard

A Tale of Two Reductions

EDF-schedulability	EDF-SCHEDULABILITY	FP-schedulability
- Constrained deadlines - Bounded utilization	- Constrained deadlines - Bounded utilization - Pairwise coprime periods	- Implicit deadlines -or- - Constrained deadlines - Bounded utilization

coNP-hard

coNP-hard
NP-hard

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Reducing EDF-schedulability to a Special Case

Outline of the Reduction

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.
- The δ_{i} are so small relative to κ that schedulability is unaffected.

Some Number Theory

The Jacobsthal function

The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

Some Number Theory

The Jacobsthal function

The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

$$
\text { Coprime to } 100 ?
$$

Some Number Theory

The Jacobsthal function

The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

Some Number Theory

The Jacobsthal function

The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

Some Number Theory

The Jacobsthal function

The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

Coprime to $100 ?$														
\diamond	\diamond	\diamond	\diamond	\diamond	\diamond	\bigcirc	\diamond							
1	+								1					$\xrightarrow{+}$
0														35

$$
g(100)=4
$$

$$
g(n) \in \mathcal{O}\left(\log ^{2} n\right)
$$

Iwaniec, 1978

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.
- The δ_{i} are so small relative to κ that schedulability is unaffected.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.
- The δ_{i} are so small relative to κ that schedulability is unaffected.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.
- The δ_{i} are so small relative to κ that schedulability is unaffected.

Schedulability unaffected

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.
- The δ_{i} are so small relative to κ that schedulability is unaffected.

Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.
2 Add small numbers δ_{i} to each period so that the periods become pairwise coprime.

- The δ_{i} can be found in polynomial time.
- The δ_{i} are so small relative to κ that schedulability is unaffected.

A Tale of Two Reductions

EDF-schedulability	EDF-SCHEDULABILITY	FP-schedulability
- Constrained deadlines - Bounded utilization	- Constrained deadlines - Bounded utilization - Pairwise coprime periods	- Implicit deadlines -or- - Constrained deadlines - Bounded utilization

coNP-hard

coNP-hard
NP-hard

Conclusions

Conclusions

Conclusions

Conclusions

Conclusions

\forall Thank you!

\diamond

\exists Questions?

[^0]: FP-schedulability

 - Implicit deadlines

