Fixed-Priority Schedulability of Sporadic Tasks on Uniprocessors is NP-hard

Pontus Ekberg & Wang Yi

UPPSALA UNIVERSITY

RTSS 2017

	Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
Arbitrary utilization	* Pseudo-poly. time algorithm	* Pseudo-poly. time algorithm	
Utilization bounded by a constant <i>c</i>	* Pseudo-poly. time algorithm	* Pseudo-poly. time algorithm	

(*) Joseph and Pandya, 1986

	Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
Arbitrary utilization	* Pseudo-poly. time algorithm	* Pseudo-poly. time algorithm	
Utilization bounded by a constant <i>c</i>	Polynomial time \dagger for $c \leq \ln 2$ and RM priorities	* Pseudo-poly. time algorithm	

- (*) Joseph and Pandya, 1986
- (†) Liu and Layland, 1973

	Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d, p</i> unrelated)
Arbitrary utilization	*	*	‡
	Pseudo-poly.	Pseudo-poly.	Exponential
	time algorithm	time algorithm	time algorithm
Utilization	Polynomial time \dagger	*	‡
bounded by	for $c \leq \ln 2$ and	Pseudo-poly.	Exponential
a constant <i>c</i>	RM priorities	time algorithm	time algorithm

- (*) Joseph and Pandya, 1986
- (†) Liu and Layland, 1973
- (‡) Lehoczky, 1990

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Pseudo-poly. time algorithm	Pseudo-poly. time algorithm	Exponential time algorithm
	Utilization bounded by a constant c	Polynomial time for $c \leq \ln 2$ and RM priorities	Pseudo-poly. time algorithm	Exponential time algorithm
EDF	Arbitrary utilization			
	Utilization bounded by a constant <i>c</i>			

Pontus Ekberg

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Pseudo-poly. time algorithm	Pseudo-poly. time algorithm	Exponential time algorithm
	Utilization bounded by a constant <i>c</i>	Polynomial time for $c \leq \ln 2$ and RM priorities	Pseudo-poly. time algorithm	Exponential time algorithm
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Pseudo-poly. time algorithm	Pseudo-poly. time algorithm	Exponential time algorithm
	Utilization bounded by a constant <i>c</i>	Polynomial time for $c \leq \ln 2$ and RM priorities	Pseudo-poly. time algorithm	Exponential time algorithm
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

Pontus Ekberg

Pontus Ekberg

Pontus Ekberg

EDF-schedulability \rightsquigarrow FP-schedulability

Pontus Ekberg

EDF-schedulability \rightsquigarrow FP-schedulability

_

EDF-schedulability \rightsquigarrow FP-schedulability

=

REDUCING EDF-SCHEDULABILITY TO A SPECIAL CASE

Pontus Ekberg

1 Scale all task parameters uniformly by a *huge* number κ .

1 Scale all task parameters uniformly by a *huge* number κ .

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

• The δ_i can be found in polynomial time.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is *unaffected*.

The Jacobsthal function

The Jacobs thal function g(n) gives the largest gap between numbers that are coprime to n.

The Jacobsthal function

The Jacobs thal function g(n) gives the largest gap between numbers that are coprime to n.

Coprime to 100?

The Jacobsthal function

The Jacobsthal function g(n) gives the largest gap between numbers that are coprime to n.

The Jacobsthal function

The Jacobsthal function g(n) gives the largest gap between numbers that are coprime to n.

The Jacobsthal function

The Jacobsthal function g(n) gives the largest gap between numbers that are coprime to n.

Iwaniec, 1978

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is *unaffected*.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is *unaffected*.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is *unaffected*.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is *unaffected*.

- **1** Scale all task parameters uniformly by a *huge* number κ .
- 2 Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is *unaffected*.

A TALE OF TWO REDUCTIONS

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d, p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant c	Polynomial time for $c \leq \ln 2$ and RM priorities	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant <i>c</i>	Polynomial time for $c \leq \ln 2$ and RM priorities	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant <i>c</i>	Polynomial time for $c \leq \ln 2$ and RM priorities	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d, p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant <i>c</i>	Polynomial time for $c \leq \ln 2$ and RM priorities	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant <i>c</i>	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

		Implicit deadlines $(d = p)$	Constrained deadlines $(d \leq p)$	Arbitrary deadlines (<i>d</i> , <i>p</i> unrelated)
FP	Arbitrary utilization	Weakly NP-complete	Weakly NP-complete	Weakly NP-hard
	Utilization bounded by a constant c	Polynomial time for $c \leq \ln 2$ and RM priorities	Weakly NP-complete for $0 < c < 1$	Weakly NP-hard for $0 < c < 1$
EDF	Arbitrary utilization	Polynomial time	Strongly coNP-complete	Strongly coNP-complete
	Utilization bounded by a constant c	Polynomial time	Weakly coNP-complete for $0 < c < 1$	Weakly coNP-complete for $0 < c < 1$

∀Thank you! ⇒ ∃Questions?