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Outline of the Reduction

1 Scale all task parameters uniformly by a huge number κ.

2 Add small numbers δi to each period so that the periods become
pairwise coprime.

e1 d1 p1

κe1 κd1 κp1

e2 d2 p2

κe2 κd2 κp2

δ2

e3 d3 p3

κe3 κd3 κp3

δ3

· · · en dn pn

κen κdn κpn

δn

• The δi can be found in polynomial time.
• The δi are so small relative to κ that schedulability is unaffected.
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Some Number Theory

The Jacobsthal function g(n) gives the largest gap between
numbers that are coprime to n.

The Jacobsthal function

Coprime to 100?

0 5 10 15 20 25 30 35

g(100) = 4 g(n) ∈ O(log2 n)

Iwaniec, 1978
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Schedulability unaffected

+

+

+

=

⩾ 1κ

Shifted how much?
Shifted at most
maxi δi · HP

Schedulability unaffected
if κ > maxi δi · HP
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∀Thank you!
⋄

∃Questions?
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