Fixed-Priority Schedulability of Sporadic Tasks on Uniprocessors is NP-hard

Pontus Ekberg & Wang Yi

Uppsala University

RTSS 2017
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p \text{ unrelated}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Joseph and Pandya, 1986
Liu and Layland, 1973
Lehoczky, 1990
Overview

<table>
<thead>
<tr>
<th>Utilization bounded by a constant c</th>
<th>Implicit deadlines $(d = p)$</th>
<th>Constrained deadlines $(d \leq p)$</th>
<th>Arbitrary deadlines $(d, p$ unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

(*) Joseph and Pandya, 1986

Liu and Layland, 1973

Lehoczky, 1990

Joseph and Pandya, 1986
Overview

<table>
<thead>
<tr>
<th>Utilization bounded by a constant c</th>
<th>Implicit deadlines $(d = p)$</th>
<th>Constrained deadlines $(d \leq p)$</th>
<th>Arbitrary deadlines $(d, p$ unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary utilization</td>
<td>Pseudo-poly. time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyn. time for $c \leq \ln 2$ and RM priorities</td>
<td>Polynomial time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
</tr>
</tbody>
</table>

$(*)$ Joseph and Pandya, 1986

$(†)$ Liu and Layland, 1973
<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ($d = p$)</th>
<th>Constrained deadlines ($d \leq p$)</th>
<th>Arbitrary deadlines (d, p unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary utilization</td>
<td>Pseudo-poly. time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Utilization bounded by a constant c</td>
<td>Polynomial time for $c \leq \ln 2$ and RM priorities</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
</tbody>
</table>

(*) Joseph and Pandya, 1986

(†) Liu and Layland, 1973

(‡) Lehoczky, 1990
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p \text{ unrelated}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Pseudo-poly. time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>EDF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Pseudo-poly. time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td></td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>EDF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td></td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>

Joseph and Pandya, 1986

Liu and Layland, 1973

Lehoczky, 1990
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Pseudo-poly. time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Utilization</td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
<tr>
<td>Constrained</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(c\) bounded by a constant \(c\)

\(d = p\)

\(d \leq p\)

\((d, p\) unrelated)

Joseph and Pandya, 1986

Liu and Layland, 1973

Lehoczky, 1990

Pontus Ekberg
Overview

<table>
<thead>
<tr>
<th>Utilization</th>
<th>Implicit deadlines ($d = p$)</th>
<th>Constrained deadlines ($d \leq p$)</th>
<th>Arbitrary deadlines (d, p unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Pseudo-poly. time algorithm</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Polynomials bounded by a constant c</td>
<td>Polynomial time for $c \leq \ln 2$ and RM priorities</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Polynomials bounded by a constant c</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for $0 < c < 1$</td>
<td>Weakly coNP-complete for $0 < c < 1$</td>
</tr>
</tbody>
</table>

- **Utilization**
 - Arbitrary
 - FP: Pseudo-poly. time algorithm
 - EDF: Weakly coNP-complete for $0 < c < 1$

- **Deadlines**
 - Implicit: $d = p$
 - Constrained: $d \leq p$
 - Arbitrary: d, p unrelated

- **Complexity Classes**
 - FP: Weakly NP-hard
 - EDF: Weakly coNP-complete

- **Priorities**
 - FP: Pseudo-poly. time algorithm
 - EDF: Polynomial time

References:
- Joseph and Pandya, 1986
- Liu and Layland, 1973
- Lehoczky, 1990

Pontus Ekberg
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p \text{ unrelated}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP</td>
<td>Weakly NP-hard</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time (\text{for } c \leq \ln 2 \text{ and RM priorities})</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>

\(\text{FP}\) Joseph and Pandya, 1986

\(\text{EDF}\) Liu and Layland, 1973

\(\text{EDF}\) Lehoczky, 1990

Polynomial time

Strongly coNP-complete for \(0 < c < 1\)

Weakly coNP-complete for \(0 < c < 1\)

Weakly NP-hard

Pseudo-poly. time algorithm

Exponential time algorithm
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Weakly (NP)-hard</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Utilization</td>
<td>Polynomial time for (c \leq\ln 2) and RM priorities</td>
<td>Polynomial time</td>
<td>Polynomial time</td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly (coNP)-complete</td>
<td>Strongly (coNP)-complete</td>
</tr>
<tr>
<td>Utilization</td>
<td>Weakly (coNP)-complete for (0 < c < 1)</td>
<td>Strongly (coNP)-complete</td>
<td>Weakly (coNP)-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>

\(d = p\): Deadlines are implicit and match the processor speed.
\(d \leq p\): Deadlines are constrained by the processor speed.
\(d, p\) unrelated: Deadlines and processor speed are unrelated.

- **FP** (First Fit)
- **EDF** (Earliest Deadline First)

Joseph and Pandya, 1986
Liu and Layland, 1973
Lehoczky, 1990

Utilization bounded by a constant \(c\)

- Polynomial time for \(c \leq\ln 2\) and RM priorities
- Weakly \(coNP\)-complete for \(0 < c < 1\)
Overview

<table>
<thead>
<tr>
<th>Implicit deadlines $(d = p)$</th>
<th>Constrained deadlines $(d \leq p)$</th>
<th>Arbitrary deadlines $(d, p$ unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Weakly NP-hard</td>
<td>Pseudo-poly. time algorithm</td>
</tr>
<tr>
<td>Utilization bounded by a constant c</td>
<td>Polynomial time for $c \leq \ln 2$ and RM priorities</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>EDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant c</td>
<td>Polynomial time for $0 < c < 1$</td>
<td>Strongly coNP-complete</td>
</tr>
</tbody>
</table>

- Weakly NP-hard
- Pseudo-poly. time algorithm
- Exponential time algorithm
- Strongly coNP-complete
- Polynomial time
- Weakly coNP-complete for $0 < c < 1$
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ($d = p$)</th>
<th>Constrained deadlines ($d \leq p$)</th>
<th>Arbitrary deadlines (d, p unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Weakly NP-hard</td>
<td>Pseudo-poly. time algorithm</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Polynomial time for $c \leq \ln 2$ and RM priorities</td>
<td>Weakly NP-hard for $0 < c < 1$</td>
<td>Exponential time algorithm</td>
</tr>
<tr>
<td>Utilization bounded by a constant c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Weakly coNP-complete for $0 < c < 1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utilization bounded by a constant c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Joseph and Pandya, 1986
- Liu and Layland, 1973
- Lehoczky, 1990

Utilization bounded by a constant c:
- Polynomial time for $c \leq \ln 2$ and RM priorities
- Weakly NP-hard for $0 < c < 1$
- Strongly coNP-complete for $0 < c < 1$
Overview

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbitrary utilization</td>
<td>Weakly NP-hard</td>
<td>Weakly NP-hard</td>
<td>Weakly NP-hard</td>
</tr>
<tr>
<td>FP</td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>

Joseph and Pandya, 1986

Liu and Layland, 1973

Lehoczky, 1990
Overview

<table>
<thead>
<tr>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p \text{ unrelated}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-complete</td>
</tr>
<tr>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Weakly NP-complete for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>EDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>

\(\text{Joseph and Pandya, 1986} \)

\(\text{Liu and Layland, 1973} \)

\(\text{Lehoczky, 1990} \)
A Tale of Two Reductions

EDF-schedulability

- Constrained deadlines
- Bounded utilization

FP-schedulability

- Implicit deadlines
 —or—
- Constrained deadlines
- Bounded utilization
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
 —or—
 - Constrained deadlines
 - Bounded utilization

YES
NO

coNP-hard

NP-hard
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
- Constrained deadlines
- Bounded utilization

YES \rightarrow YES \rightarrow YES
NO \rightarrow NO \rightarrow NO

coNP-hard

Pontus Ekberg
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
- Constrained deadlines
- Bounded utilization

YES → YES → YES → YES
NO → NO → NO → NO

coNP-hard
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
 —or—
- Constrained deadlines
- Bounded utilization

\[
\begin{array}{ccc}
\text{YES} & \rightarrow & \text{YES} \\
\text{NO} & \rightarrow & \text{NO} \\
\text{coNP-hard} & \rightarrow & \text{coNP-hard}
\end{array}
\]
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
- Constrained deadlines
- Bounded utilization

Yes
No

coNP-hard

Yes
No

coNP-hard

Yes
No

NP-hard
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
- or
- Constrained deadlines
- Bounded utilization

\[\begin{align*}
\text{YES} & \rightarrow \text{YES} \\
\text{NO} & \rightarrow \text{NO}
\end{align*} \]

\[\begin{align*}
\text{coNP-hard} & \rightarrow \text{coNP-hard} \\
\text{NP-hard} & \rightarrow \text{NP-hard}
\end{align*} \]
EDF-schedulability \leadsto FP-schedulability
EDF-schedulability \leadsto FP-schedulability

\[dbf(\tau_1) \]

\[dbf(\tau_2) \]

\[dbf(\tau_3) \]

Pontus Ekberg
EDF-schedulability \leadsto FP-schedulability

\[
dbf(\tau_1) = \sum dbf(1) + \sum dbf(2) + \sum dbf(3) = \sum (x + 1) = D \equiv D = x + 1
\]
EDF-schedulability \iff FP-schedulability

\[\text{dfb}(\tau_1) + \text{dfb}(\tau_2) + \text{dfb}(\tau_3) = \sum \text{dfb} \]

\[D = x + 1 \]
EDF-schedulability \rightsquigarrow FP-schedulability
EDF-schedulability \(\rightsquigarrow\) FP-schedulability

\[
dbf(\tau_1) + \dbf(\tau_2) + \dbf(\tau_3) = D \leq \sum \dbf
\]
EDF-schedulability \Leftrightarrow FP-schedulability

$$
\begin{align*}
&\text{dbf}(\tau_1) + \text{dbf}(\tau_2) + \text{dbf}(\tau_3) = \\
&\sum \text{dbf}
\end{align*}
$$
EDF-schedulability \leadsto FP-schedulability

\[\text{dbf}(\tau_1) + \text{dbf}(\tau_2) + \text{dbf}(\tau_3) = \sum \text{dbf} \]

\[\text{rbf}(\tau_1) + \text{rbf}(\tau_2) + \text{rbf}(\tau_3) = \sum \text{dbf} \]

Pontus Ekberg
EDF-schedulability \leadsto FP-schedulability

\[
\sum \text{dbf} = D \iff D = \sum \text{rbf} + x
\]
EDF-schedulability \leadsto FP-schedulability

$$
\text{dbf}(\tau_1) + \text{dbf}(\tau_2) + \text{dbf}(\tau_3) = \sum \text{dbf} = \text{dbf}(\tau_1) + \text{dbf}(\tau_2) + \text{dbf}(\tau_3) = \sum \text{rbf} + x + 1
$$
EDF-schedulability \leadsto FP-schedulability

$$dbf(\tau_1) + dbf(\tau_2) + dbf(\tau_3) = D$$

$$\sum dbf = D \iff \sum \text{dbf}$$

$$\sum rbf(\tau_1) + rbf(\tau_2) + rbf(\tau_3) = x + 1$$
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines—or—
- Constrained deadlines
- Bounded utilization

YES → YES → YES
NO → NO → NO

coNP-hard
coNP-hard
NP-hard
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
- or
- Constrained deadlines
- Bounded utilization

YES → YES → YES
NO → NO → NO

coNP-hard
coNP-hard
NP-hard
Reducing EDF-schedulability to a Special Case

Bonifaci et al., 2013
Reducing EDF-schedulability to a Special Case

EDF-schedulability with constrained deadlines and bounded utilization

Bonifaci et al., 2013

T

T'
Reducing EDF-schedulability to a Special Case

- EDF-schedulability with constrained deadlines and bounded utilization is coNP-hard.
- With pairwise coprime periods, EDF-schedulability is coNP-hard.
- With harmonic periods, EDF-schedulability is polynomial time.

Bonifaci et al., 2013
Reducing EDF-schedulability to a Special Case

EDF-schedulability with constrained deadlines and bounded utilization

coNP-hard

With pairwise coprime periods
Reducing EDF-schedulability to a Special Case

EDF-schedulability with constrained deadlines and bounded utilization

coNP-hard

coNP-hard?

With pairwise coprime periods

EDF-schedulability with constrained deadlines and bounded utilization

With pairwise coprime periods
Reducing EDF-schedulability to a Special Case

EDF-schedulability with constrained deadlines and bounded utilization

coNP-hard

Polynomial time\(^\dagger\)

With pairwise coprime periods

coNP-hard?

With harmonic periods

\(\dagger\) Bonifaci et al., 2013
Reducing EDF-schedulability to a Special Case

EDF-schedulability with constrained deadlines and bounded utilization

- coNP-hard
- Polynomial time

With pairwise coprime periods

With harmonic periods

\[\mathcal{T} \]

† Bonifaci et al., 2013
Reducing EDF-schedulability to a Special Case

EDF-schedulability with constrained deadlines and bounded utilization

- coNP-hard
- Polynomial time\(^\dagger\)

With pairwise coprime periods

With harmonic periods

\(^\dagger\) Bonifaci et al., 2013
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number.
2. Add small numbers i to each period so that the periods become pairwise coprime.

- The i can be found in polynomial time.
- The i are so small relative to the parameters that schedulability is unaffected.
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

\begin{align*}
 e_1 & \quad d_1 & \quad p_1 \\
 e_2 & \quad d_2 & \quad p_2 \\
 e_3 & \quad d_3 & \quad p_3 \\
 \cdots \\
 e_n & \quad d_n & \quad p_n
\end{align*}
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

- The κ can be found in polynomial time.
- The κ are so small relative to κ that schedulability is unaffected.
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

\[\kappa e_1 \quad \kappa d_1 \quad \kappa p_1 \quad \kappa e_2 \quad \kappa d_2 \quad \kappa p_2 \quad \kappa e_3 \quad \kappa d_3 \quad \kappa p_3 \quad \ldots \quad \kappa e_n \quad \kappa d_n \quad \kappa p_n \]
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.
2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

The i can be found in polynomial time.

The i are so small relative to that schedulability is unaffected.
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

\begin{itemize}
\item δ_1 can be found in polynomial time.
\item δ_i are so small relative to κ that schedulability is unaffected.
\end{itemize}
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.
2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

$\begin{align*}
\kappa e_1 & \quad \kappa d_1 & \quad \kappa p_1 \\
\kappa e_2 & \quad \kappa d_2 & \quad \kappa p_2 \\
\kappa e_3 & \quad \kappa d_3 & \quad \kappa p_3 \\
\ldots & \quad \kappa e_n & \quad \kappa d_n & \quad \kappa p_n
\end{align*}$
Outline of the Reduction

1. Scale all task parameters uniformly by a *huge* number κ.

2. Add *small* numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is unaffected.
The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

Iwaniec, 1978
The Jacobsthal function \(g(n) \) gives the largest gap between numbers that are coprime to \(n \).

Coprime to 100?
The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

Coprime to 100?

0 5 10 15 20 25 30 35
The Jacobsthal function $g(n)$ gives the largest gap between numbers that are coprime to n.

$g(100) = 4$
Some Number Theory

The Jacobsthal function

The Jacobsthal function \(g(n) \) gives the largest gap between numbers that are coprime to \(n \).

Coprime to 100?

\[
g(100) = 4
\]

\[
g(n) \in \Theta(\log^2 n)
\]

Iwaniec, 1978
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is unaffected.
1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is unaffected.
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.
2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is unaffected.
Schedulability unaffected

Shifted at most $\max_i \overline{H}_i$
Schedulability unaffected

\[\text{Shifted how much?} \]

\[\text{Shifted at most} \quad \max_i \quad \text{HP} \]

\[\quad \implies \quad \text{Schedulability unaffected if} \quad > \quad \max_i \quad \text{HP} \]
Schedulability unaffected

Shifted at most $\max_i i$
Schedulability unaffected

\[\text{Shifted at most } \max_i \]
Schedulability unaffected

Shifted how much?

≥ \kappa

\text{Shifted at most} \ max_i \ HP

Schedulability unaffected if > \ max_i \ HP
Schedulability unaffected if
\[\max_i \delta_i \cdot HP \geq K \]
Schedulability unaffected if \(\kappa > \max_i \delta_i \cdot HP \)

Shifted at most \(\max_i \delta_i \cdot HP \)

\(\geq \kappa \)
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is unaffected.
Outline of the Reduction

1. Scale all task parameters uniformly by a huge number κ.

2. Add small numbers δ_i to each period so that the periods become pairwise coprime.

- The δ_i can be found in polynomial time.
- The δ_i are so small relative to κ that schedulability is unaffected.
A Tale of Two Reductions

EDF-schedulability
- Constrained deadlines
- Bounded utilization

EDF-schedulability
- Constrained deadlines
- Bounded utilization
- Pairwise coprime periods

FP-schedulability
- Implicit deadlines
- or-
- Constrained deadlines
- Bounded utilization

YES → YES → YES
NO → NO → NO

coNP-hard → coNP-hard → NP-hard
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-hard</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Weakly NP-complete for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>EDF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-hard</td>
</tr>
<tr>
<td>Utilization</td>
<td>Polynomial time (c \leq \ln 2) and RM priorities</td>
<td>Weakly NP-complete for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>Arbitrary</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>utilization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-hard</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Weakly NP-complete for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>EDF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arbitrary utilization</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-hard</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time for (c \leq \ln 2) and RM priorities</td>
<td>Weakly NP-complete for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>Utilization bounded by a constant (c)</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
</tbody>
</table>

FP
- Arbitrary utilization
- Weakly NP-complete
- Weakly NP-complete
- Weakly NP-hard

EDF
- Arbitrary utilization
- Polynomial time
- Strongly coNP-complete
- Strongly coNP-complete
Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Implicit deadlines ((d = p))</th>
<th>Constrained deadlines ((d \leq p))</th>
<th>Arbitrary deadlines ((d, p) unrelated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-complete</td>
<td>Weakly NP-hard</td>
</tr>
<tr>
<td>Utilization</td>
<td>Polynomial time</td>
<td>Weakly NP-complete for (0 < c < 1)</td>
<td>Weakly NP-hard for (0 < c < 1)</td>
</tr>
<tr>
<td>bounded by a</td>
<td>Polynomials time</td>
<td>Strongly coNP-complete</td>
<td>Strongly coNP-complete</td>
</tr>
<tr>
<td>constant (c)</td>
<td>for (c \leq \ln 2) and RM priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDF</td>
<td>Polynomial time</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
<td>Weakly coNP-complete for (0 < c < 1)</td>
</tr>
<tr>
<td>Utilization</td>
<td>Polynomial time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bounded by a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant (c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
∀Thank you!

∃Questions?