
Uniprocessor Feasibility of Sporadic Tasks Remains
coNP-complete Under Bounded Utilization

Pontus Ekberg and Wang Yi
Uppsala University, Sweden

Email: {pontus.ekberg | yi}@it.uu.se

Abstract—A central problem in real-time scheduling theory
is to decide whether a sporadic task system with constrained
deadlines is feasible on a preemptive uniprocessor. It is known
that this problem is strongly coNP-complete in the general case,
but also that there exists a pseudo-polynomial time solution for
instances with utilization bounded from above by any constant c,
where 0 < c < 1. For a long time it has been unknown whether
the bounded case also has a polynomial-time solution. We show
that for any choice of the constant c, such that 0 < c < 1, the
bounded feasibility problem is (weakly) coNP-complete, and thus
that no polynomial-time solution exists for it, unless P = NP.

I. INTRODUCTION

We let a sporadic task system be defined as a finite multiset
T of tasks, where each task is a triple (e, d, p) ∈ N 3

+,
representing its worst-case execution time, relative deadline
and minimum inter-arrival separation (or period), respectively.

A sporadic task generates potentially unbounded sequences
of jobs. A job is an instance of the task’s workload, character-
ized by a release time, an execution time and an absolute dead-
line. A job from task (e, d, p) has execution time not larger
than e time units and absolute deadline exactly d time units
after its release time. Release times of two consecutive jobs
from (e, d, p) are separated by at least p time units. A sporadic
task system T generates any interleaving of job sequences that
can be generated by each of the tasks (e, d, p) ∈ T.

For a sequence of jobs to be successfully scheduled, every
job must be executed for a total duration equal to its execution
time, between its release time and its absolute deadline. In the
following we assume a preemptive uniprocessor, meaning that
only one job can be executed at a time, but a job can be paused
and resumed at a later time at no additional cost.

Definition I.1 (Feasibility). A task system T is feasible if and
only if there is some scheduling algorithm that will successfully
schedule all job sequences that can be generated by T.

A task system T is said to have implicit deadlines if d = p
for all (e, d, p) ∈ T, and said to have constrained deadlines if
d 6 p for all (e, d, p) ∈ T.

The utilization of a task system T is a measure of its
asymptotic resource requirements, and is defined as

U(T)
def
=

∑
(e,d,p)∈T

e

p
. (1)

Liu and Layland [1] showed that a task system T with
implicit deadlines is feasible if and only if U(T) 6 1, but
this is not a sufficient condition with constrained deadlines.

Dertouzos [2] showed that Earliest Deadline First (EDF) is
an optimal scheduling algorithm on preemptive uniprocessors,
for all sequences of independent jobs. This means that the
terms “feasibility” and “EDF-schedulability” can be used
interchangeably here.

Theorem I.2 ([2]). A task system T is feasible if and only if
it is EDF-schedulable.

A related workload model is that of (strictly) periodic
tasks. A periodic task system is a multiset of quadruples
(s, e, d, p) ∈ N × N 3

+. The difference to the sporadic task
model is that the release times of two consecutive jobs from
task (s, e, d, p) must be exactly p time units apart, and the
release time of the first job is fixed at time point s. A periodic
task system is synchronous if s = 0 for all tasks (s, e, d, p),
and asynchronous otherwise. It is known [3] that feasibility
testing of sporadic tasks is equally hard as that of synchronous
periodic tasks, which means that the terms “sporadic” and
“synchronous periodic” can be used interchangeably for the
results in this paper as well.

Theorem I.3 ([3]). A sporadic task system T is feasi-
ble if and only if the synchronous periodic task system
{(0, e, d, p) | (e, d, p) ∈ T} is feasible.

A classic result [4], [5] is that the feasibility problem for
asynchronous periodic task systems with constrained deadlines
is strongly coNP-complete1, even if restricted to instances
where the utilization is bounded from above by a constant
c, such that 0 < c < 1. However, Baruah et al. [5], [3] found
a pseudo-polynomial time algorithm for the special case of
synchronous periodic (or sporadic) task systems with such a
priori bounded utilization.

Except for the existence of this pseudo-polynomial time
algorithm, the complexity of the sporadic feasibility prob-
lem remained open for many years. It was listed as one
of the “most important open algorithmic problems in real-
time scheduling” by Baruah and Pruhs [6]. A few years ago,
Eisenbrand and Rothvoß [7] showed that the general case (with
unbounded utilization) is weakly coNP-complete. This was
recently strengthened by Ekberg and Yi [8], who showed that
the general case is strongly coNP-complete.

1Recall that the problems that are NP- or coNP-complete in the strong
sense do not permit even pseudo-polynomial time solutions, unless P = NP,
while those that are NP- or coNP-complete in the weak (or ordinary) sense
might have such solutions.

Theorem I.4 ([8]). Deciding whether a sporadic task system
with constrained deadlines is feasible on a preemptive unipro-
cessor is coNP-complete in the strong sense.

For the case with bounded utilization, it was still unknown
whether a polynomial-time solution existed, and Eisenbrand
and Rothvoß [7] conjectured that it did. In this paper, however,
we show that for any choice of the constant c, such that
0 < c < 1, the feasibility problem for sporadic task systems
restricted to instances with utilization at most c is weakly
coNP-complete, and thus that no polynomial-time solutions
exist for it, unless P = NP. As it is known that this problem
has a pseudo-polynomial time solution, this is a complete
classification. A summary of the complexity of the periodic
feasibility problem is shown in Figure 1.

General case
Utilization bounded
by some constant c,
such that 0 < c < 1

Asynchronous
periodic tasks

coNP-complete in
the strong sense. [5]

coNP-complete in
the strong sense. [5]

Synchronous
periodic tasks
(or sporadic)

coNP-complete in
the strong sense. [8]

coNP-complete in
the weak sense
(from this work).

Fig. 1. Complexity classification of the feasibility problem of periodic tasks
with constrained deadlines on preemptive uniprocessors.

Let FEASIBILITY denote the general case of the decision
problem of whether a given sporadic task system with con-
strained deadlines is feasible on a preemptive uniprocessor.
Let c-FEASIBILITY denote the same problem restricted to
instances with utilization at most c. Our hardness proof
consists of a polynomial transformation (a polynomial-time
many-one reduction) from FEASIBILITY to c-FEASIBILITY
for any constant c, such that 0 < c < 1. The transformation
produces some parameter values that grow exponentially in the
size of the FEASIBILITY instance. Therefore, c-FEASIBILITY
is only shown to be weakly coNP-hard (as expected, since a
pseudo-polynomial time solution is known) despite the strong
coNP-hardness of FEASIBILITY.

II. PRELIMINARIES

In the hardness proof in the next section we will make use
of the following theorem due to Baruah et al. [3]

Theorem II.1 ([3]). A sporadic task system T with con-
strained deadlines is feasible on a preemptive uniprocessor
if and only if U(T) 6 1 and

∀` ∈ {0, 1, . . . , B}, dbf(T, `) 6 `, (2)

where B = P(T) + max{d | (e, d, p) ∈ T}, and where

dbf(T, `)
def
=

∑
(e,d,p)∈T

(⌊
`− d
p

⌋
+ 1

)
e (3)

is the demand bound function of T in interval lengths `, and

P(T) def
= lcm{p | (e, d, p) ∈ T} (4)

is T’s hyper-period.

For our purposes it will be helpful to reformulate Eq. (2) in
the above theorem in terms of slack and slightly tighten the
upper bound B used for the values of `.2 First we prove a
simple lemma that will also be useful later on.

Lemma II.2. If T is a sporadic task system with constrained
deadlines and k ∈ N, then

dbf(T, kP(T) + `) = kP(T)U(T) + dbf(T, `).

Proof: From the fact that each of the periods divides the
hyper-period, we get

dbf(T, kP(T) + `) =
∑

(e,d,p)∈T

(⌊
kP(T) + `− d

p

⌋
+ 1

)
e

=
∑

(e,d,p)∈T

(
kP(T)
p

+

⌊
`− d
p

⌋
+ 1

)
e

=
∑

(e,d,p)∈T

(
ekP(T)

p
+

(⌊
`− d
p

⌋
+ 1

)
e

)
= kP(T)U(T) + dbf(T, `).

As we reformulate Theorem II.1, we use this lemma to
tighten the bound on the values of ` that we need to consider.

Corollary II.3. A sporadic task system T with constrained
deadlines is feasible on a preemptive uniprocessor if and only
if U(T) 6 1 and

∀` ∈ {0, 1, . . . ,P(T)− 1}, slack(T, `) > 0, (5)

where

slack(T, `)
def
= `− dbf(T, `). (6)

Proof: To see that the smaller range of values for `
considered in Eq. (5) is sufficient, note that from Lemma II.2
and U(T) 6 1 we have, for any k ∈ N,

dbf(T, kP(T) + `) = kP(T)U(T) + dbf(T, `)

6 kP(T) + dbf(T, `).

Therefore,

slack(T, kP(T) + `) = kP(T) + `− dbf(T, kP(T) + `)

> kP(T) + `− kP(T)− dbf(T, `)

= slack(T, `)

and so if slack(T, `) < 0 holds for any ` ∈ N, then it must be
the case that slack(T, ` mod P(T)) < 0 also holds.

2In [3], the considered tasks could have relative deadlines larger than their
periods, which is why the larger value B is used there.

III. REDUCING FEASIBILITY TO c-FEASIBILITY

In this section we describe a polynomial transformation
from FEASIBILITY to c-FEASIBILITY, for any given constant
c, such that 0 < c < 1. We start by providing a high-level
picture of the transformation in Section III-A, and follow with
the details and proofs in Section III-B.

A. An overview

For the transformation we take an arbitrary sporadic task
system T1 with constrained deadlines and compute a new task
system Tc, also with constrained deadlines, such that

• U(Tc) 6 c and
• Tc is feasible if and only if T1 is feasible.

Note that if U(T1) > 1, then T1 is infeasible and the
transformation is trivially computable by producing any in-
feasible Tc, for example Tc = {(1, 1, d2/ce), (1, 1, d2/ce)}. In
the remainder of this paper we assume U(T1) 6 1, without
loss of generality.

The construction of Tc follows these four high-level steps.

Step 1: Add a filler task to T1, resulting in task system Tfill,
without affecting feasibility. The purpose is to ensure that
slack(Tfill, `) exactly repeats every hyper-period.

Step 2: Scale the deadlines and periods of Tfill uniformly with
a given constant factor σ, producing task system Tσ . The
purpose is to lower utilization while keeping a simple
relation between slack(Tfill, `) and slack(Tσ, `).

Step 3: Construct a “boosting” task system Tb, which is
designed to fill up the extra slack created by the scaling
in step 2 at certain sparsely selected points `. The purpose
is to effectively negate the scaling done in step 2 without
increasing the utilization too much. The extra slack is
filled up at points that are offset by different multiples of
Tσ’s hyper-period. This is possible thanks to the repetitive
nature of slack(Tσ, `) that we ensured in step 1.

Step 4: Take Tc as the union of Tσ and Tb. Even though
U(Tc) 6 c, we will have that there exists some ` ∈ N,
such that slack(T1, `) < 0 if and only if there exists some
`′ ∈ N, such that slack(Tc, `′) < 0.

B. The transformation

Here we describe the transformation in detail and prove a
number of lemmas along the way.

I Step 1: Ensuring the repetitiveness of the slack function:
In the first step we simply add a filler task τfill to T1, if needed,
to create a new task system Tfill with a utilization of 1. Figure 2
illustrates this step. Let

Tfill
def
=

 T1] {τfill}, if U(T1) < 1,

T1, otherwise,
(7)

where τfill
def
= (P(T1) − dbf(T1,P(T1)),P(T1),P(T1)) and

where] is the multiset union operator.

`

P(T1) 2P(T1) 3P(T1)

f(`) = `

dbf(T1, `)

dbf(Tfill, `)

Fig. 2. The demand bound functions of a small example task system T1

and the corresponding Tfill. Note that the difference between the diagonal and
dbf(Tfill, `), which is slack(Tfill, `), repeats every hyper-period.

Lemma III.1. U(Tfill) = 1.

Proof: If U(T1) = 1, the lemma follows directly. Assume
instead U(T1) < 1 and note that

U({τfill}) =
P(T1)− dbf(T1,P(T1))

P(T1)

= 1−

∑
(e,d,p)∈T1

(⌊
P(T1)−d

p

⌋
+ 1
)
e

P(T1)

= 1−

∑
(e,d,p)∈T1

(
eP(T1)
p +

(⌊
−d
p

⌋
+ 1
)
e
)

P(T1)
(∗)
= 1−U(T1),

where for (∗) we used the fact that b−d/pc = −1. Clearly,
U(Tfill) = U(T1) + U({τfill}) = 1.

Now, the property of Tfill that will be useful for our
transformation is captured by the next lemma.

Lemma III.2. For any ` ∈ {0, 1, . . . ,P(T1)− 1} and k ∈ N,

slack(Tfill, kP(T1) + `) = slack(T1, `).

Proof: Note that P(Tfill) = P(T1), and therefore it

follows from Lemmas II.2 and III.1 that

slack(Tfill, kP(T1) + `)

= kP(T1) + `− dbf(Tfill, kP(T1) + `)

= kP(T1) + `− (kP(T1)U(Tfill) + dbf(Tfill, `))

= `− dbf(Tfill, `)
(∗)
= `− dbf(T1, `)

= slack(T1, `),

where for (∗) we have dbf(Tfill, `) = dbf(T1, `) because Tfill

and T1 at most differ on one task τfill = (e, d, p), for which
d = P(T1) > ` and therefore dbf({τfill}, `) = 0.

I Step 2: Scaling down the utilization: In the second step
we apply a scaling factor to the relative deadlines and periods
of all the tasks in Tfill. Figure 3 serves as an illustration. Let

σ
def
=

⌈
2

c

⌉
(8)

be the constant scaling factor, where c is the constant defining
the set of problems c-FEASIBILITY. Then let

Tσ
def
= {(e, σd, σp) | (e, d, p) ∈ Tfill} (9)

be the scaled task system. The utilization of Tσ is now bounded
by half of c.

Lemma III.3. U(Tσ) 6 c/2.

Proof: Directly from Lemma III.1, Eq. (8) and (9).

Because of the uniform way in which Tσ was scaled, we
have the following lemma.

Lemma III.4. For any ` ∈ N,

slack(Tσ, σ`) = slack(Tfill, `) + (σ − 1)`.

Proof: From the definition of Tσ we get

slack(Tσ, σ`) = σ`− dbf(Tσ, σ`)

= σ`−
∑

(e,d,p)∈Tσ

(⌊
σ`− d
p

⌋
+ 1

)
e

= σ`−
∑

(e,d,p)∈Tfill

(⌊
σ`− σd
σp

⌋
+ 1

)
e

= σ`−
∑

(e,d,p)∈Tfill

(⌊
`− d
p

⌋
+ 1

)
e

= σ`− dbf(Tfill, `)

= slack(Tfill, `) + (σ − 1)`.

I Step 3: Generating a boosting task system: The task
system Tσ created in the last step clearly does not preserve
feasibility with regards to Tfill because of the extra slack
introduced by the scaling of parameters. In this step we will
craft a task system Tb, designed to effectively negate this
extra slack. The main challenge is in doing so while using
only polynomially many tasks and keeping the utilization low
enough. This step is more involved than the previous steps and

`

P(T1) 2P(T1) 3P(T1)

f(`) = ` / σ

f(`) = `

dbf(Tσ, `)

dbf(Tfill, `)

Fig. 3. The scaled task system Tσ has essentially the same pattern as Tfill,
but with a lower utilization. Here we have σ = 3.

also a bit harder to visualize, but Figure 4 illustrates some of
the key concepts. The boosting task system will contain β
different tasks that are referred to using their indices,

Tb
def
= {τ0, . . . , τβ−1}, (10)

where

β
def
= dlog2(P(T1))e . (11)

For each boosting task τi, let τi
def
= (ei, di, pi), where

di
def
= (σP(T1) + 2)iσ, (12)

pi
def
= (σP(T1) + 2)i+1σ, (13)

ei
def
=

σ − 1

σ
−

i−1∑
j=0

ej
pj

 di. (14)

The first thing we need to show is that the boosting
task system, as defined above, consists of valid constrained-
deadline sporadic tasks. The next lemma establishes this and
some slightly stronger constraints on the parameters.

Lemma III.5. For all τi ∈ Tb, we have

(ei, di, pi) ∈ N3
+ and ei < di < pi.

Proof: It follows directly from Eq. (12) and (13) that for
any τi ∈ Tb, we have di, pi ∈ N+ and di < pi. What remains
to be shown is that

ei ∈ N+ and ei < di.

We use strong induction over i to prove this statement for all
τi ∈ Tb. As there is nothing to show for i > β, we assume
i < β in the following.

For the base case, note that

e0 =

(
σ − 1

σ

)
d0

=

(
σ − 1

σ

)
σ

= σ − 1.

From Eq. (8) it is clear that σ > 3, and therefore σ− 1 ∈ N+

and e0 = σ − 1 < σ = d0.
We split the induction step into three parts, showing that

ei ∈ Z, that ei > 0 and that ei < di, respectively.
Part 1 (ei ∈ Z): First, we rewrite ei in a form without frac-

tions.

ei =

σ − 1

σ
−

i−1∑
j=0

ej
pj

 di

= (σ − 1)(σP(T1) + 2)i −
i−1∑
j=0

ej
(σP(T1) + 2)i

(σP(T1) + 2)j+1

= (σ − 1)(σP(T1) + 2)i −
i−1∑
j=0

ej(σP(T1) + 2)i−j−1

Now, from the induction hypothesis we have ej ∈ N+ for
j < i, and therefore the rewritten form of ei consists of
only additions, subtractions and (repeated) multiplications
of integers. As Z are closed under these operations, it
follows that ei ∈ Z.

Part 2 (ei > 0): We have

ei =

σ − 1

σ
−

i−1∑
j=0

ej
pj

 di

(∗)
>

σ − 1

σ
−

i−1∑
j=0

dj
pj

 di

=

σ − 1

σ
−

i−1∑
j=0

1

(σP(T1) + 2)

 di

=

(
σ − 1

σ
− i

(σP(T1) + 2)

)
di

(∗∗)
>

(
σ − 1

σ
− P(T1)

(σP(T1) + 2)

)
di

>

(
σ − 1

σ
− 1

σ

)
di

>

(
1

σ

)
di

> 0,

where for (∗) we used ej < dj from the induction hypothe-
sis and for (∗∗) we used i < β = dlog2(P(T1))e < P(T1).

Part 3 (ei < di): Lastly, note that

ei =

σ − 1

σ
−

i−1∑
j=0

ej
pj

 di

<

1−
i−1∑
j=0

ej
pj

 di

(∗)
6 di,

where for (∗) we used ej ∈ N+ for j < i from the
induction hypothesis.

Taken together, the three parts imply ei ∈ N+ and ei < di,
which concludes the proof.

Having shown that Tb is a valid sporadic task system, we
can show that it has the properties we seek. We start by
showing that the utilization of Tb is low, namely bounded by
half of c.

Lemma III.6. U(Tb) < c/2.

Proof: Consider any τi ∈ Tb and note that

U({τi}) = ei / pi

< di / pi

< 1 / (σP(T1)).

Now, because P(T1) ∈ N+, we have dlog2(P(T1))e < P(T1)
and therefore

U(Tb) < β / (σP(T1))

< 1 / σ

6 c / 2.

Now we study the demand of Tb to see that it provides the
right amount of it to selectively fill up the extra slack that was
created for Tσ by the scaling in step 2. With the next lemma
we ensure that the demand of Tb never fills up more than this
extra slack.

Lemma III.7. For all ` ∈ N,

dbf(Tb, `) 6
σ − 1

σ
`.

Proof: First, let Tmb denote the subset consisting of the
smallest min(m,β) tasks in Tb,

Tmb
def
= {τi ∈ Tb | i < m}.

Then we use induction over m to prove that

∀` ∈ N, dbf(Tmb , `) 6
σ − 1

σ
`,

for all m ∈ N+. Because dbf(Tmb , `) = dbf(Tb, `) for m > β,
the lemma will follow.

The base case holds as we have T1
b = {τ0} and

dbf({τ0}, `) =

(⌊
`− d0

p0

⌋
+ 1

)
e0

6

(⌊
`− d0

d0

⌋
+ 1

)
e0

=

⌊
`

d0

⌋
e0

6
e0

d0
`

=
σ − 1

σ
`.

For the induction step we need to show for all m ∈ N+ that

∀` ∈ N, dbf(Tmb , `) 6
σ − 1

σ
` =⇒

∀` ∈ N, dbf(Tm+1
b , `) 6

σ − 1

σ
`.

The induction step trivially holds for m > β. Assume instead
m < β and note that Tm+1

b \ Tmb = {τm}. Take any ` ∈ N
and write ` = kdm + `′ for some k ∈ N and `′ < dm. Then,

dbf({τm}, `) = dbf({τm}, kdm + `′)

=

(⌊
kdm + `′ − dm

pm

⌋
+ 1

)
em

(∗)
6

(⌊
kdm
pm

⌋
+ 1

)
em

(∗∗)
6 kem

= k

σ − 1

σ
−
m−1∑
j=0

ej
pj

 dm

= kdm
σ − 1

σ
− kdmU(Tmb),

where for (∗) we used `′ < dm and for (∗∗) we used dm < pm.
Now, from Eq. (12) and (13) it is clear that dm = pm−1 =
P(Tmb). Using Lemma II.2 and the induction hypothesis we
then get

dbf(Tmb , `) = dbf(Tmb , kdm + `′)

= kdmU(Tmb) + dbf(Tmb , `′)

6 kdmU(Tmb) +
σ − 1

σ
`′.

Putting the above together, we get

dbf(Tm+1
b , `) = dbf(Tmb , `) + dbf({τm}, `)

6
σ − 1

σ
(kdm + `′)

=
σ − 1

σ
`.

To conclude, we have shown that for all m ∈ N+,

∀` ∈ N, dbf(Tmb , `) 6
σ − 1

σ
`.

In particular, it holds for m = β and the lemma follows.

We now consider the points at which Tb provides exactly
the right amount of demand to negate the scaling done for Tσ
in step 2. We call these the boost points of Tb and denote
them B(Tb).

B(Tb)
def
=

{
` ∈ N | dbf(Tb, `) =

σ − 1

σ
`

}
(15)

The following lemma lets us identify boost points.

Lemma III.8. If Ṫ ⊆ Tb, then∑
τi∈Ṫ

di ∈ B(Tb).

Proof: Consider the relation (2Tb ,⊂), i.e., the power set
of Tb ordered by strict inclusion, and note that it is well-
founded. We prove the lemma using well-founded induction
on this relation. To do so we must show that the following
implication holds for any Ṫ, such that Ṫ ⊆ Tb.∀T̈, s.t. T̈ ⊂ Ṫ,

∑
τi∈T̈

di ∈ B(Tb)

 =⇒
∑
τi∈Ṫ

di ∈ B(Tb)

We split the proof into two cases.

Case 1 (Ṫ = ∅): Clearly,
∑
τi∈∅ di = 0 and from Eq. (15) we

have 0 ∈ B(Tb).

Case 2 (Ṫ 6= ∅): Now, Ṫ must contain a “largest” task τα,
where

α
def
= max{i | τi ∈ Ṫ}

is the largest index of the tasks in Ṫ. Let

T̈
def
= Ṫ \ {τα},

῭ def
=
∑
τi∈T̈

di,

˙̀ def
= dα + ῭.

Since T̈ ⊂ Ṫ, we know that ῭ ∈ B(Tb) holds from
the induction hypothesis. To conclude the proof we must
show that ˙̀ ∈ B(Tb) holds as well.
Consider now the sets of boosting tasks with indices
smaller than α and at least as large as α, respectively.

Tα↓
def
= {τi ∈ Tb | i < α}

Tα↑
def
= {τi ∈ Tb | i > α}

Because T̈ ⊆ Tα↓ we have

῭ 6
∑
τi∈Tα↓

di

= (σP(T1) + 2)0σ + · · · + (σP(T1) + 2)α−1σ

(∗)
= σ

(
(σP(T1) + 2)α − 1

σP(T1) + 2− 1

)
< (σP(T1) + 2)ασ

= dα,

where for (∗) we used the closed form for the sum of a
finite geometric series. It follows that for all τi ∈ Tα↑ we
have di > dα > ῭ and therefore

dbf(Tα↑, ῭) = 0.

Using this and the induction hypothesis we get

dbf(Tα↓, ῭) = dbf(Tb, ῭)− dbf(Tα↑, ῭)

= dbf(Tb, ῭)

=
σ − 1

σ
῭.

Now, from Eq. (12) and (13) we know that pi divides dα
for all τi ∈ Tα↓. Therefore,

dbf(Tα↓, ˙̀) = dbf(Tα↓, dα + ῭)

=
∑
τi∈Tα↓

(⌊
dα + ῭− di

pi

⌋
+ 1

)
ei

=
∑
τi∈Tα↓

(
dα
pi

+

⌊
῭− di
pi

⌋
+ 1

)
ei

=
∑
τi∈Tα↓

ei
pi
dα + dbf(Tα↓, ῭)

=
∑
τi∈Tα↓

ei
pi
dα +

σ − 1

σ
῭

Finally,

dbf(Tb, ˙̀) = dbf(Tα↑, ˙̀) + dbf(Tα↓, ˙̀)

> dbf({τα}, ˙̀) + dbf(Tα↓, ˙̀)

> dbf({τα}, dα) + dbf(Tα↓, ˙̀)

= eα + dbf(Tα↓, ˙̀)

=
σ − 1

σ
dα −

α−1∑
j=0

ej
pj
dα + dbf(Tα↓, ˙̀)

=
σ − 1

σ
dα −

∑
τi∈Tα↓

ei
pi
dα + dbf(Tα↓, ˙̀)

=
σ − 1

σ
(dα + ῭)

=
σ − 1

σ
˙̀

The inequalities above must be strict equalities based on
Lemma III.7, and we conclude that ˙̀ ∈ B(Tb).

Now that we have a lemma for identifying boost points, we
can show that B(Tb) cover enough relevant points in N.

Lemma III.9. For all ` ∈ {0, 1, . . . ,P(T1)− 1}, there exists
some k ∈ N, such that

σ(kP(T1) + `) ∈ B(Tb).

Proof: Take any ` ∈ {0, 1, . . . ,P(T1)− 1} and note that
` can be represented in binary using β = dlog2(P(T1))e bits.

Let

bβ−1 · · · b1b0

be this binary representation of `, where b0 is the least
significant bit. Consider the set of boosting tasks with indices
matching the indices of the positive bits in the binary repre-
sentation of `

Ṫ
def
= {τi ∈ Tb | bi = 1}.

For any τi ∈ Ṫ we can rewrite

di = (σP(T1) + 2)iσ

(∗)
=

(
i∑

m=0

(
i

m

)
σmP(T1)

m2i−m

)
σ

=

(
i∑

m=1

(
i

m

)
σmP(T1)

m2i−m + 2i

)
σ

=
(
kiP(T1) + 2i

)
σ,

where

ki =

i∑
m=1

(
i

m

)
σmP(T1)

m−12i−m

and where for (∗) we used the binomial theorem. Let

k
def
=
∑
τi∈Ṫ

ki

and note that k ∈ N. We then have∑
τi∈Ṫ

di =
∑
τi∈Ṫ

(kiP(T1) + 2i)σ

= σ

∑
τi∈Ṫ

kiP(T1) +
∑
τi∈Ṫ

2i


= σ

(
kP(T1) +

∑
{2i | bi = 1}

)
= σ(kP(T1) + `).

To conclude, we note that because Ṫ ⊆ Tb, Lemma III.8 gives
us ∑

τi∈Ṫ

di = σ(kP(T1) + `) ∈ B(Tb)

and the lemma follows.

I Step 4: Assembling the finished task system: In the last
step we put everything together. Let

Tc
def
= Tσ] Tb, (16)

and note that Tc is an instance of c-FEASIBILITY.

Lemma III.10. U(Tc) < c.

Proof: Directly from Lemmas III.3 and III.6.

We can now show that the transformation correctly pre-
serves the feasibility of the original task system. We start by
showing that Tc is feasible if T1 is.

log(`)

σ−1
σ

dbf(Tb,`)
`

d0 d1 d1 + d0

d2

d2 + d0

d2 + d1 d2 + d1 + d0

Fig. 4. A plot of dbf(Tb, `) / ` for a small example Tb with β = 3. Note
the logarithmic scale on the horizontal axis. The boost points are those points
at which this function touches the line (σ−1) / σ. Every task τi ∈ Tb adds a
new “peak” to the plot, touching the line (σ− 1) / σ at ` = di. Immediately
after, all previous peaks for tasks τj , with j < i, will repeat, as can be seen
in the zoomed in portions of the plot. The number of boost points therefore
grows exponentially in β. The labels show the value of ` at the peaks. Note
also how the function converges towards U(Tb) to the right.

Lemma III.11. If T1 is feasible, then Tc is also feasible.

Proof: We prove the lemma by contradiction. Assume
for this purpose the negation of the lemma’s claim—that T1 is
feasible, but Tc is not. By Corollary II.3, there must then exist
some ` ∈ N such that slack(Tc, `) < 0. Since all (e, d, p) ∈ Tc
have d and p that are multiples of σ, it is evident that there
must also exist some `′ ∈ N such that

slack(Tc, σ`
′) < 0.

Note that

slack(Tc, σ`
′) = σ`′ − dbf(Tc, σ`

′)

= σ`′ − dbf(Tσ, σ`
′)− dbf(Tb, σ`

′)

= slack(Tσ, σ`
′)− dbf(Tb, σ`

′). (17)

From Lemma III.4 we have

slack(Tσ, σ`
′) = slack(Tfill, `

′) + (σ − 1)`′ (18)

and from Lemma III.7 we have

dbf(Tb, σ`
′) 6 (σ − 1)`′. (19)

By combining Eq. (17), (18) and (19) and using Lemma III.2,
we conclude that

slack(Tc, σ`
′) > slack(Tfill, `

′)

= slack(T1, `
′ mod P(T1)).

By assumption, however, T1 is feasible and therefore

slack(Tc, σ`
′) > slack(T1, `

′ mod P(T1)) > 0.

The lemma follows from this contradiction.

We now show the other direction.

Lemma III.12. If T1 is infeasible, then Tc is also infeasible.

Proof: Assume that T1 is infeasible, then by Corollary II.3
there exists an ` ∈ {0, 1, . . . ,P(T1)− 1} such that

slack(T1, `) < 0.

By Lemma III.9, there also exists some k ∈ N such that

σ(kP(T1) + `) ∈ B(Tb).

By the definition of B(Tb), we therefore have

dbf(Tb, σ(kP(T1) + `)) = (σ − 1)(kP(T1) + `). (20)

Note also that from Lemma III.4 we have

slack(Tσ, σ(kP(T1) + `))

= slack(Tfill, kP(T1) + `) + (σ − 1)(kP(T1) + `). (21)

Using Eq. (20) and (21) and Lemma III.2 we conclude that

slack(Tc, σ(kP(T1) + `))

= slack(Tσ, σ(kP(T1) + `))− dbf(Tb, σ(kP(T1) + `))

= slack(Tfill, kP(T1) + `)

= slack(T1, `)

< 0,

and hence that Tc is infeasible by Corollary II.3.

Finally, our main Theorem follows.

Theorem III.13. The c-FEASIBILITY problem is (weakly)
coNP-complete for any constant c such that 0 < c < 1.

Proof: First, note that we have described a transforma-
tion from FEASIBILITY to c-FEASIBILITY, which produces
correct outputs according to Lemmas III.10, III.11 and III.12.
Secondly, note that the constructed task system Tc has only
polynomially many tasks,

|T1|+ 1 + dlog2(P(T1))e

at most. Also note that the largest parameter in Tc is pβ−1,
which has a value of

(σP(T1) + 2)dlog2(P(T1))eσ,

which requires only polynomial space. The transformation is
then trivially computable in polynomial time.

From Theorem I.4 we know that FEASIBILITY is coNP-
complete. The polynomial transformation therefore proves the
coNP-hardness of c-FEASIBILITY. Because c-FEASIBILITY is
a special case of FEASIBILITY, we know that c-FEASIBILITY
is also in coNP. The coNP-completeness of c-FEASIBILITY
follows.

IV. CONCLUSIONS

The sporadic task model is one of the basic formalisms
for specifying real-time workload. The problem of deciding
whether a given sporadic task system is schedulable on a

preemptive uniprocessor is of fundamental importance for real-
time scheduling theory. The special case that is limited to task
systems with utilization bounded by some constant is widely
encountered in the literature, thanks to the existence of an
algorithm that solves that problem in pseudo-polynomial time.
A long-standing open question has been whether this special
case also has a polynomial-time solution. We have shown
that for any reasonable choice of the constant, the problem is
coNP-complete and therefore cannot be solved in polynomial
time, assuming P 6= NP.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
detailed and helpful comments.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[2] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes,” in Proceedings of the IFIP congress, vol. 74, 1974, pp. 807–
813.

[3] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-
time sporadic tasks on one processor,” in Proceedings of the Real-Time
Systems Symposium (RTSS), 1990, pp. 182–190.

[4] J. Y.-T. Leung and M. Merrill, “A note on preemptive scheduling of
periodic, real-time tasks,” Information Processing Letters, vol. 11, no. 3,
pp. 115–118, 1980.

[5] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” Real-Time Systems, vol. 2, no. 4, pp. 301–324, 1990.

[6] S. Baruah and K. Pruhs, “Open problems in real-time scheduling,” Journal
of Scheduling, vol. 13, no. 6, pp. 577–582, 2010.

[7] F. Eisenbrand and T. Rothvoß, “EDF-schedulability of synchronous
periodic task systems is coNP-hard,” in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2010, pp. 1029–1034.

[8] P. Ekberg and W. Yi, “Uniprocessor feasibility of sporadic tasks with
constrained deadlines is strongly coNP-complete,” in Proceedings of the
Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp. 281 –
286.

�

